Loading...
HomeMy WebLinkAbout02 - Floodplains - Flood Hazard AnalysisN:\6787\002 - NW Crossing Ph II Pre Plat\04 Design\Reports\Flood Hazard Update\Flood Hazard- Cover.docx NORTHWEST CROSSING SUBDIVISION FLOOD HAZARD ANALYSIS FOR BAXTER CREEK & BAXTER DITCH BOZEMAN, MONTANA SEPTEMBER, 2019 Updated October 2022 For NWX Phase 2 PREPARED BY: Morrison-Maierle, Inc. 2880 Technology Boulevard West Bozeman, MT 59771 N:\5659\005 NWX Phase 1 Major Sub\04 Design\Flood Hazard Analysis\Table of Contents.docx TABLE OF CONTENTS 1 FLOOD HAZARD ANALYSIS 2 FLOOD HAZARD EXHIBIT 3 APPENDICIES 3.1 HYDROLOGY CALCULATIONS 3.2 BAXTER CREEK CROSS SECTIONS 3.3 BAXTER DTICH CROSS SECTIONS 3.4 ALLIED ENGINEERING- LAUREL GLEN FLOOD HAZARD ASSESMENT- 2002 3.5 VALLEY WEST SUBDIVISION- PUD DRAINAGE PLAN Page 1 of 2 1.1 INTRODUCTION This report provides an analysis of the flood hazard for the proposed Northwest Crossing Subdivision. The 160 acre development has two waterways that run south to north through the property. Baxter Creek runs along the western boundary. Baxter Ditch runs through the center of the property. Both water ways are classified as stream/ditch as they are fed by natural drainage and irrigation. Both are bordered by wetland plants and meander through cultivated pasture. Two previous studies were used to help develop flowrates for these stretches. First, Morrison-Maierle analyzed both waterways in the Drainage Plan provided in the Valley West PUD application in 2001 (See Appendix 3.5) Second, Allied Engineering submitted two reports for the Laurel Glen subdivision in 2002 ( See Appendix 3.4- Flood Hazard Assessment-Baxter Creek and Phase 1 Storm Water Facilities Design Report). 1.2 METHOD Morrison-Maierle surveyed the 160 acre property, including the water ways with GPS survey equipment. Cross sections were developed approximately every 100 ft along each water way in AutoCAD. Bentley Flowmaster V8i was used to analyze each cross section to determine the water surface elevation for the given flow rate. The water surface elevation was then mapped in AutoCAD to show the extents of flooding in the current condition and areas that will require grading to contain flood waters. 1.3 HYDROLOGY: BAXTER CREEK The 2002 report from Allied identifies the 100-year flowrate of Baxter Creek at Durston Road to be 169 cfs. This includes potential overflow from Farmers Canal south of Huffine Lane. Approximately 90 acres of residential land in Laurel Glen will contribute to Baxter Creek between Durston Road and W. Oak St., the south boundary of Northwest Crossing. The 100- year runoff rate for this area is estimated to be 31 cfs. It is likely that the peak flow from Laurel Glen runoff would pass through the study area in this report long before the peak of 169 cfs originating south of Huffine Road and overflow from Famers Canal, but it is conservative to add the two together. For this report, cross sections of Baxter Creek were analyzed with a 100-year flowrate of 200 cfs. Currently, there is head gate at approximately station 15+00 that diverts water to a channel that runs to the west of the main channel. This side channel is proposed to be removed as it runs into the proposed Laurel Parkway right-of-way. For this analysis, we conservatively assumed all flow will go through the main channel. 1.4 HYDROLOGY: BAXTER DITCH The 1999 Drainage Plan for Valley West prepared by Morrison-Maierle identified the 100-year flowrate of Baxter Ditch at Durston Road to be 74.8 cfs. About 120 acres of residential land between Durston and Oak will runoff into Baxter Ditch before reaching the proposed Northwest Crossing area. This additional runoff is estimated to be 45 cfs, see calculations in Appendix 3.1. For this study, cross sections of Baxter Creek were analyzed with a 100-year flowrate of 120 cfs. A roughness coefficient of 0.050 was used for all cross sections. 1.5 RECOMMENDATIONS: BAXTER CREEK. Our analysis shows that all flood waters will be contained within the existing banks of Baxter Creek. We recommend all structures in the vicinity of the creek maintain a minimum floor elevation at least two feet above the identified flood water surface elevation. Page 2 of 2 1.6 RECOMMENDATIONS: BAXTER DITCH The majority of the flood water will be contained within the existing banks of the waterways. Exhibit 1- “Baxter Creek and Baxter Ditch Cross Sections and Flood Extents” identifies a few areas where flooding will overtop the banks and flow out beyond the 50’ wetland setback. In these cases, we recommend filling areas along the outer 20’ of the wetland setback. This may be accomplished with a stabilized and landscaped berm or trail that will run the length of the creek within the open space. In cases that the open spaces are adjacent to proposed right-of- way, set grades at the back of the sidewalk to be at least one foot above the projected flood water surface elevations. The open space trails should also be graded to contain flood waters. See the proposed parkland plan (MSP 1.05) for trail locations. Additionally, we recommend all structures in the vicinity of the ditch maintain a minimum floor elevation at least two feet above the identified flood water surface elevation. The finished grade of the subdivision improvements will be raised two to 5 feet across the site in order to meet the grade of the surrounding roads (Oak Street, Cottonwood Road, Baxter Lane) and to achieve clearance from the high ground water. 1.7 EXISTING FLOW PATTERNS AT BAXTER LANE At Baxter Lane, Baxter Creek is currently conveyed under the roadway through a 40-foot long 48-inch CMP pipe at about 0.28% slope. The estimated capacity of this culvert is about 115 cfs without overtopping the roadway. When Baxter Lane is widened to a 100-foot wide City of Bozeman Right-of-way, a new culvert will be designed for this location with sufficient capacity to pass flows at least equivalent to the existing condition. Headwater flood conditions will be evaluated, as well as potential downstream affects on erosion if additional capacity is provided to this crossing. Baxter ditch has previously been modified from its original channel to improve the surrounding farmland. In its current state, the ditch tees into the roadside barrow ditch on the south side of Baxter Lane. A portion of the ditch flows east about 450 feet to an 18-inch CMP culvert that conveys the ditch north under Baxter Lane. The remainder of the flow is directed west along the barrow ditch and joins Baxter Creek. The final design of the flow control and conveyance methods of Baxter Ditch at Baxter Lane will be determined through on-going coordination with downstream water users, the irrigation authority, Gallatin County Conservation District, and the City of Bozeman. To date, research on existing water rights and coordination with the ditch company, it has been determined that all of the water in Baxter Ditch can be routed to Baxter Creek along the south side of Baxter Lane. The final design slope of the channel will depend on the design of Baxter Lane but will generally vary between 0.90% and 1.65%. Assuming the channel will be trapezoidal with a two-foot wide bottom section and 4:1 side slopes, the depth of the 100-year flood will range from 2.3 feet to 2.6 feet, when modeled using the range of slopes noted above. The construction of the channel will require cutting into the exiting ground to depths ranging one to four feet. The proposed improvements will require significant fill in order to match the grades of Baxter Lane and to create clearance from the high groundwater in the area. Therefore, the proposed Baxter Ditch channel that runs parallel to the roadway will sufficiently convey the estimated 100-year flood extents without overtopping. Final ditch alignment and depth will be dependent on the design of Baxter Lane and future Phase 3 infrastructure. DYH DYH DYHDYH ISSSSSSSMWMWMWMWSSSSSTP TP TP TPTPTP TWV WV WVWV WVWV WV WV WVWV WV WVWV WV WV WV WV WV WVWV WVWV WVWVWV ESEWES0 + 4 4 1+703+ 0 0 4+235+006+00 7+ 00 8+009+001 0 + 0 0 11+0012+ 0 0 13+1714+0015+0716+3417+2118+4120+5221+00 21+9423+0024+0024+7727+2929+0429+0430+0030+0031+0031+0031+7831+7833+3033+3034+0834+0834+9534+9536+0036+001 + 0 0 2+003+125+006+018+009+3110+5011 + 2 4 13+0014+7716+0017+0018+0019+0020+0021+0022 +0 0 23+ 00 24+0025+0026+0027+0028+0029+0030+0031+1132+00 33+0033+5734+7547354 7 3 0 472547204715 471047104 7 1 5 4720472547304735474035+660+001 + 0 0 2+003+004+ 0 0 5+ 0 0 6+007+00 8+00 9 + 0 0 10+00 11 + 0 0 12+00 13 + 0 0 14+00 15+0016+0017+0018+0019+0020+0021+0022 +00 23+ 00 24+ 00 25+0026+0027+0028+0029+0030+0031+0032+00 33+00 34 + 0 0 35+000+001+0 0 2+003+ 0 0 4+00 5+006+00 7+0 0 8+009+001 0 + 0 0 11+0012 + 0 0 13+00 14+0015+0 0 16+0017+00 18+0019+00 20+0021+00 22+0023+0024+0025+00 2 6 + 0 0 27+00 28+0 0 29+0030+0031+0032+0 0 33+00 34+0035+0036+0036+60FIGURE NUMBER © PROJECT NO.DRAWN BY: DSGN. BY: APPR. BY: DATE: COPYRIGHT MORRISON-MAIERLE, INC.,2019 N:\5659\005 NWX Phase 1 Major Sub\ACAD\Civil\Flood Hazard Analysis\Flood Hazard Exhibit.dwg Plotted by cooper krause on Sep/10/2019 engineers surveyors planners scientists MorrisonMaierle 2880 Technology Blvd West Bozeman, MT 59718 406.587.0721 www.m-m.net 5659.005 EX.1 NORTHWEST CROSSING FLOOD HAZARD ANALYSISBOZEMAN MONTANA BAXTER CREEK AND BAXTER DITCH CROSS SECTIONS AND FLOOD EXTENTS CPK CPK MEE 08/2019 100 200501000 SCALE IN FEET PROPOSED RIGHT OF WAY LEGEND PROPOSED OPEN SPACE PROPOSED LOTS BAXTER D T I C H BAXTER C R E E K BAXTER LANELAUREL PARKWAY W. OAK ST.RECOMMENDED FILL AREAS 100-YEAR FLOOD EXTENTS 4714.4 4714.0 4713.6 47 1 2 . 6 4714.4 RECOMMENDED MIN. FILL ELEVATION AT BACK OF LOT 4736.0 4713.0 50' WETLAND SETBACK (TYP.) DYH DYH DYHDYH I SSSSSSSMWMWMWMWSSSSSTP TP TP TPTP TP TWV WVWVWVWV WV WVWVWVWVWVWVWV WV WV WV WV WV WVWVWVWV WVWV WV ESDESDESDESDESEWESWWCOCO COCOMW0 + 4 4 1+703+ 0 0 4+235+006+00 7+ 0 0 8+009+001 0 + 0 0 11+0012 + 0 0 13+1714+0015+0716+3417+2118+4120+5221+00 21+9423+0024+0024+7727+2929+0429+0430+0030+0031+0031+0031+7831+7833+3033+3034+0834+0834+9534+9536+0036+001 + 0 0 2+003+125+006+018+009+3110+5011 + 2 4 13+0014+7716+0017+0018+0019+0020+0021+00 22+ 00 23+00 24 +0 0 25+0026+0027+0028+0029+0030+0031+1132+00 33+0 033+5734+7547354 7 3 0 472547204715 471047104 7 1 5 47204725473047354740474135+660+001 + 0 0 2+003+004 + 0 0 5+006+007+00 8+00 9+ 0 0 10+00 11 + 0 0 12+00 13 + 0 0 14+00 15+0016+0017+0018+0019+0020+0021+0022+ 00 23+ 00 24 +0 0 25+0026+0027+0028+0029+0030+0031+0032+00 33+00 34 + 0 0 35+000+001+0 0 2+003+ 0 0 4+00 5+006+00 7+0 0 8+009+001 0 + 0 0 11+0012 + 0 0 13+00 14+0015+00 16+0017+0 0 18+0 0 19+00 20+0021+00 22+00 23+0024+0025+00 2 6 + 0 0 27+00 28+0 0 29+0030+0031+0032+00 33+00 34+0035+0036+0036+60SDSDSDSDSD SDSDSDSDSDSDSDSDSD..FIGURE NUMBER © PROJECT NO.DRAWN BY: DSGN. BY: APPR. BY: DATE: COPYRIGHT MORRISON-MAIERLE, INC.,2022 N:\5659\005 NWX Phase 1 Major Sub\ACAD\Civil\Flood Hazard Analysis\Flood Hazard Exhibit - Proposed-Ph 2.dwg Plotted by cooper krause on Oct/24/2022 engineers surveyors planners scientists MorrisonMaierle 2880 Technology Blvd West Bozeman, MT 59718 406.587.0721 www.m-m.net 5659.005 EX.2 NORTHWEST CROSSING FLOOD HAZARD ANALYSISBOZEMAN MONTANA PROPOSED BAXTER DITCH CROSS SECTIONS AND FLOOD EXTENTS CPK CPK MEE 08/2019 100 200501000 SCALE IN FEET PROPOSED RIGHT OF WAY LEGEND PROPOSED OPEN SPACE PROPOSED LOTS BAXTER D T I C H BAXTER C R E E K BAXTER LANELAUREL PARKWAY W. OAK ST.RECOMMENDED FILL AREAS PROPOSED 100-YEAR FLOOD EXTENTS 4714.5 4714.3 4713.8 47 1 3 . 2 0 4714.4 RECOMMENDED MIN. FILL ELEVATION AT BACK OF LOT OR OPEN SPACE TRAIL 4736.0 4714.3 4713.8 47 1 3 . 2 0 47 1 0 . 8 0 ROSA WA Y TOUCHSTONE DRIVEOPEN SPACE TRIAL GRADED TO CONTAIN FLOOD EXTENTS PROPOSED BAXTER DITCH RE-ALIGNMENT 2FT BOTTOM 4:1 SIDE SLOPES SLOPE = ± 1.65% WATER DEPTH = ± 2.3 FT TOP WIDTH = ± 20.5 FT SLOPE = ± 0.90% WATER DEPTH = ± 2.6 FT TOP WIDTH = ± 22.5 FT NOTE: FINAL BAXTER DITCH RE-ALIGNMENT DESIGN WILL BE BASED ON FUTURE DEISGN GRADES OF BAXTER LANE AND NWX PAHSE 3 INFRASTRUCTURE. POTENTIAL FILL ASSOCIATED WITH NWX PHASE 3 INFRASTRUCTURE N:\5659\005 NWX Phase 1 Major Sub\04 Design\Flood Hazard Analysis\Table of Contents.docx APPENDIX 3.1 HYDROLOGY CALCULATIONS Rational Method For Runoff Calculations Baxter Creek- Laurel Glen Area Between Durston Road and Oak Street Design Storm Frequency = 100 Years C= 0.35 Low to medium density residentialCf =1.25 L= 2600 S= 0.75 Tc =69.5 min C= 0.35 i= 1.0 in/hr from C.O.B. Fig. I-2 A= 90 acres Q= 31.5 cfs Baxter Ditch- Area Between Durston Road and Oak Street Design Storm Frequency = 100 Years C= 0.375 Cf =1.25 L= 2800 S= 0.75 Tc =72 min C= 0.375 i= 1.0 in/hr from C.O.B. Fig. I-2 A= 120 acres Q= 45 cfs ܶ௖ ൌ 1.87 1.1 െ ܥ · ܥ௙ ܮଵ/ଶ ܵଵ/ଷ ܳ௣ ൌܥᇱ݅ܣ ܶ௖ ൌ 1.87 1.1 െ ܥ · ܥ௙ ܮଵ/ଶ ܵଵ/ଷ ܳ௣ ൌܥᇱ݅ܣ N:\5659\005 NWX Phase 1 Major Sub\04 Design\Flood Hazard Analysis\Table of Contents.docx APPENDIX 3.2 BAXTER CREEK CROSS SECTIONS Station Channel Slope (ft/ft) Roughness Coefficient Water Surface Elevation (ft) Flow Area (ft²) Wetted Perimeter (ft) Hydraulic Radius (ft) Top Width (ft) Normal Depth (ft) Critical Depth (ft) Critical Slope (ft/ft) Velocity (ft/s) Velocity Head (ft) Specific Energy (ft) Froude Number 0+44 0.0104 0.050 4733.36 56.82 45.39 1.25 44.93 2.17 1.63 0.03709 3.52 0.19 2.36 0.55 1+70 0.0104 0.050 4732.24 95.38 165.73 0.58 165.28 3.05 2.23 0.03574 2.1 0.07 3.12 0.49 3+00 0.0104 0.050 4730.67 70.03 76.54 0.91 76.14 2.23 1.74 0.03926 2.86 0.13 2.36 0.52 4+23 0.0104 0.050 4729.81 56.57 44.9 1.26 44.16 3.24 2.49 0.03501 3.54 0.19 3.43 0.55 5+00 0.0066 0.050 4728.5 95.24 117.41 0.81 116.57 2.42 2.01 0.04659 2.1 0.07 2.49 0.41 6+00 0.0066 0.050 4728.42 85.58 89.88 0.95 89.3 2.47 1.85 0.04021 2.34 0.08 2.56 0.42 7+00 0.0066 0.050 4727.43 71.16 56.64 1.26 55.74 2.79 2.02 0.03756 2.81 0.12 2.92 0.44 8+00 0.0066 0.050 4726.87 64.41 44.17 1.46 43.6 2.66 1.83 0.03598 3.1 0.15 2.81 0.45 9+00 0.0066 0.050 4725.94 75.95 66.68 1.14 65.87 2.49 1.76 0.03852 2.63 0.11 2.6 0.43 10+00 0.0066 0.050 4725.21 87.55 95.13 0.92 94.65 2.4 1.48 0.03743 2.28 0.08 2.48 0.42 11+00 0.0098 0.050 4724.27 63.14 56.51 1.12 55.95 2.31 1.77 0.03831 3.17 0.16 2.46 0.53 12+00 0.0098 0.050 4723.08 92.64 147.38 0.63 146.94 1.83 1.56 0.04893 2.16 0.07 1.9 0.48 13+17 0.0098 0.050 4721.95 58.64 46.99 1.25 46.4 2.44 1.89 0.03753 3.41 0.18 2.62 0.53 14+00 0.0098 0.050 4721.48 63.78 57.96 1.1 57.06 2.45 1.92 0.03888 3.14 0.15 2.6 0.52 15+07 0.0036 0.050 4720.96 103.45 91.64 1.13 90.07 2.16 1.36 0.04125 1.93 0.06 2.22 0.32 16+34 0.0036 0.050 4720.51 123.73 143.37 0.86 143.11 2.22 1.54 0.04426 1.62 0.04 2.26 0.31 17+21 0.0113 0.050 4719.15 71.92 87.1 0.83 86.93 1.71 1.34 0.04193 2.78 0.12 1.83 0.54 18+41 0.0047 0.050 4718.52 104.13 113.81 0.91 113.02 2.94 1.98 0.03717 1.92 0.06 3 0.35 20+52 0.0047 0.050 4717.31 113.02 139.64 0.81 139.23 1.87 1.3 0.04479 1.77 0.05 1.92 0.35 21+00 0.0047 0.050 4716.86 111.77 135.8 0.82 135.57 1.46 1 0.04776 1.79 0.05 1.51 0.35 21+94 0.0047 0.050 4715.81 88.12 74.95 1.18 74.73 1.95 1.27 0.04125 2.27 0.08 2.03 0.37 23+00 0.0047 0.050 4715.64 105.43 117.34 0.9 116.94 2.03 1.45 0.04403 1.9 0.06 2.09 0.35 24+00 0.0062 0.050 4714.47 88.55 93.41 0.95 93.18 1.63 1.15 0.04401 2.26 0.08 1.71 0.41 24+77 0.0062 0.050 4714.02 99.42 124.77 0.8 124.51 1.87 1.43 0.04563 2.01 0.06 1.93 0.4 26+25 0.0062 0.050 4713.46 81.34 75.55 1.08 74.81 2.32 1.66 0.04047 2.46 0.09 2.42 0.42 27+29 0.0106 0.050 4712.48 59.85 52.45 1.14 52.25 2.29 1.8 0.0379 3.34 0.17 2.46 0.55 29+04 0.0106 0.050 4710.91 67.27 70.24 0.96 69.42 2.87 2.36 0.03911 2.97 0.14 3.01 0.53 30+00 0.0106 0.050 4709.3 61.77 56.75 1.09 56.49 1.81 1.38 0.03938 3.24 0.16 1.97 0.55 31+00 0.0106 0.050 4707.57 90.7 148.13 0.61 147.93 1.1 0.85 0.04925 2.21 0.08 1.17 0.5 33+30 0.0106 0.050 4706.27 68.49 73.45 0.93 73.04 2.24 1.86 0.0417 2.92 0.13 2.37 0.53 34+08 0.0106 0.050 4705.59 69.7 76.76 0.91 76.39 2.58 2.09 0.03867 2.87 0.13 2.71 0.53 34+95 0.0106 0.050 4704.6 62.94 59.47 1.06 58.56 2.73 2.23 0.03918 3.18 0.16 2.88 0.54 36+00 0.0106 0.050 4704.21 72.87 85.8 0.85 84.63 2.7 2.38 0.04451 2.74 0.12 2.82 0.52 Baxter Creek Cross Sections N:\5659\005 NWX Phase 1 Major Sub\04 Design\Flood Hazard Analysis\Table of Contents.docx APPENDIX 3.3 BAXTER DITCH CROSS SECTIONS Station Channel Slope (ft/ft) Rougness Coefficient Water Surface Elevation (ft) Flow Area (ft²) Wetted Perimeter (ft) Hydraulic Radius (ft) Top Width (ft) Normal Depth (ft) Critical Depth (ft) Critical Slope (ft/ft) Velocity (ft/s) Velocity Head (ft) Specific Energy (ft) Froude Number 1+00 0.005 0.05 4736.91 90.79 188.79 0.48 188.62 1.19 0.83 0.0487 1.32 0.03 1.21 0.34 2+00 0.005 0.05 4735.97 89.88 177.41 0.51 177.33 1.36 1 0.0521 1.34 0.03 1.39 0.33 3+12 0.0092 0.05 4735.11 76.69 188.59 0.41 187.84 1.93 1.74 0.0581 1.56 0.04 1.97 0.43 5+00 0.0092 0.05 4734.06 54.18 79.08 0.69 78.82 1.93 1.53 0.0447 2.22 0.08 2 0.47 6+01 0.0092 0.05 4733.14 77.06 190.82 0.4 190.48 2.1 1.73 0.0466 1.56 0.04 2.14 0.43 8+00 0.005 0.05 4732.9 76.92 120.27 0.64 119.53 2.85 2.15 0.0426 1.56 0.04 2.89 0.34 9+31 0.005 0.05 4731.59 80.92 136.6 0.59 135.59 2.44 2.02 0.0501 1.48 0.03 2.47 0.34 10+50 0.005 0.05 4731.15 80.36 134.2 0.6 133.61 2.44 1.98 0.0488 1.49 0.03 2.48 0.34 11+24 0.005 0.05 4730.8 67.2 85.83 0.78 85.22 2.51 1.96 0.0457 1.79 0.05 2.56 0.35 13+00 0.005 0.05 4729.7 69.84 94.46 0.74 93.89 2.75 2.13 0.0438 1.72 0.05 2.79 0.35 14+77 0.0092 0.05 4727.27 57.77 92.86 0.62 92.41 1.76 1.31 0.0442 2.08 0.07 1.83 0.46 16+00 0.0092 0.05 4726.72 66.93 134.13 0.5 133.73 2.22 1.79 0.0446 1.79 0.05 2.27 0.45 17+00 0.0092 0.05 4725.54 58.48 95.76 0.61 95.23 2.08 1.78 0.0489 2.05 0.07 2.14 0.46 18+00 0.0084 0.05 4724.6 67.36 127.41 0.53 126.84 2.22 1.91 0.0502 1.78 0.05 2.27 0.43 19+00 0.0084 0.05 4723.4 74.78 165.37 0.45 164.81 1.99 1.68 0.0501 1.6 0.04 2.03 0.42 20+00 0.0084 0.05 4722.14 57.38 85.27 0.67 84.71 2.02 1.69 0.0483 2.09 0.07 2.09 0.45 21+00 0.0084 0.05 4721.01 69.88 139.59 0.5 138.81 2.22 1.88 0.0488 1.72 0.05 2.26 0.43 22+00 0.0084 0.05 4719.81 63.28 108.96 0.58 108.53 2.11 1.76 0.0481 1.9 0.06 2.17 0.44 23+00 0.0247 0.05 4718.43 40.76 81.41 0.5 80.95 1.48 1.37 0.0485 2.94 0.13 1.61 0.73 24+00 0.027 0.05 4717.53 50.88 151.66 0.34 151.22 1.86 1.76 0.0538 2.36 0.09 1.94 0.72 25+00 0.005 0.05 4716.15 81.09 137.24 0.59 136.46 2.56 2.15 0.0513 1.48 0.03 2.59 0.34 26+00 0.005 0.05 4715.18 78.98 128.42 0.61 127.56 2.33 1.85 0.0482 1.52 0.04 2.37 0.34 27+00 0.005 0.05 4714.35 82.17 141.83 0.58 141.14 2.07 1.71 0.0526 1.46 0.03 2.1 0.34 28+00 0.005 0.05 4713.87 101.88 242.81 0.42 242.06 1.98 1.64 0.0559 1.18 0.02 2 0.32 29+00 0.005 0.05 4713.75 104.52 258.56 0.4 258.08 2.6 1.93 0.0438 1.15 0.02 2.62 0.32 30+00 0.005 0.05 4712.84 79.52 130.67 0.61 130.05 2.63 2.26 0.0523 1.51 0.04 2.67 0.34 31+11 0.005 0.05 4711.04 74.59 111.38 0.67 110.95 1.54 1.07 0.0479 1.61 0.04 1.58 0.35 32+00 0.005 0.05 4710.66 75.17 113.54 0.66 113.28 1.31 0.91 0.0505 1.6 0.04 1.35 0.35 33+00 0.005 0.05 4710.74 86.49 161.3 0.54 160.95 1.84 1.38 0.0498 1.39 0.03 1.87 0.33 33+57 0.0047 0.05 4710.64 87.98 160.6 0.55 160.31 1.69 1.2 0.0500 1.36 0.03 1.72 0.32 34+75 0.0047 0.05 4710.01 78.91 122.3 0.65 122.02 1.71 1.24 0.0482 1.52 0.04 1.74 0.33 Baxter Ditch Cross Sections Worksheet for Ditch at Baxter- 0.9Project DescriptionManning FormulaFriction MethodNormal DepthSolve ForInput Data0.045Roughness Coefficientft/ft0.009Channel SlopeH:V4.000Left Side SlopeH:V4.000Right Side Slopeft2.00Bottom Widthcfs120.00DischargeResultsin30.7Normal Depthft²31.3Flow Areaft23.1Wetted Perimeterin16.3Hydraulic Radiusft22.46Top Widthin24.0Critical Depthft/ft0.030Critical Slopeft/s3.84Velocityft0.23Velocity Headft2.79Specific Energy0.573Froude NumberSubcriticalFlow TypeGVF Input Datain0.0Downstream Depthft0.0Length0Number Of StepsGVF Output Datain0.0Upstream DepthN/AProfile Descriptionft0.00Profile Headlossft/s0.00Downstream Velocityft/s0.00Upstream Velocityin30.7Normal Depthin24.0Critical Depthft/ft0.009Channel Slopeft/ft0.030Critical SlopePage 1 of 127 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-166610/24/2022FlowMaster[10.02.00.01]Bentley Systems, Inc. Haestad Methods Solution CenterBaxter Ditch Hydraflow-Phase 2 Proposed.fm8 Worksheet for Ditch at Baxter- 1.65 Project Description Manning FormulaFriction Method Normal DepthSolve For Input Data 0.045Roughness Coefficient ft/ft0.015Channel Slope H:V4.000Left Side Slope H:V4.000Right Side Slope ft2.00Bottom Width cfs120.00Discharge Results in27.6Normal Depth ft²25.8Flow Area ft21.0Wetted Perimeter in14.8Hydraulic Radius ft20.43Top Width in24.0Critical Depth ft/ft0.030Critical Slope ft/s4.64Velocity ft0.34Velocity Head ft2.64Specific Energy 0.728Froude Number SubcriticalFlow Type GVF Input Data in0.0Downstream Depth ft0.0Length 0Number Of Steps GVF Output Data in0.0Upstream Depth N/AProfile Description ft0.00Profile Headloss ft/s0.00Downstream Velocity ft/s0.00Upstream Velocity in27.6Normal Depth in24.0Critical Depth ft/ft0.015Channel Slope ft/ft0.030Critical Slope Page 1 of 127 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 10/24/2022 FlowMaster [10.02.00.01] Bentley Systems, Inc. Haestad Methods Solution CenterBaxter Ditch Hydraflow-Phase 2 Proposed.fm8 N:\5659\005 NWX Phase 1 Major Sub\04 Design\Flood Hazard Analysis\Table of Contents.docx APPENDIX 3.4 ALLIED ENGINEERING- LAUREL GLEN FLOOD HAZARD ASSESMENT- 2002 nn.^sees/'ssss.0ENGINEERINGSERVICES. IMC.February 4, 2002Bob Murray, Project EngineerCity ofBozeman Engineering DepartmentPO Box 1230Bozeman, MT 59771RE: Laurel Glen SubdivisionFlood Hazard Assessment - Baxter CreekDear Bob:This letter provides our assessment of the flood hazard for Baxter Creek in the proposed LaurelGlen Development. The proposed development is a 156.96-acre site located on the north side ofDurston Road approximately 1300 feet west of the intersection ofDurston Road and CottonwoodRoad. The proposed residential and commercial subdivision will be constructed in four phases.The proposed development will consist of a variety ofbuildable lots for single and multi-familyuse. The commercial area is proposed for Neighborhood Service area Bl zoning. The proposedsubdivision will also incorporate open spaces and park areas. Please refer to the Figure Onezone map for lot locations and area breakdown per zoning classification.Field WorkAllied Engineering Services, Inc. surveyed cross-sections of the creeks in September, Octoberand November of 2001 using survey grade Global Positioning System (GPS) equipment. FigureTwo shows the location of these sections. Additionally, the culvert conveying Baxter Creekacross Huffine Lane was surveyed. City ofBozeman BM #717, the northwest bonnet bolt on firehydrant, (elevation 4793.18) located northeast of the intersection of West Babcock and NorthFerguson is the elevation benchmark for the project.HydrologyThe historical drainage basin for Baxter Creek is shown overlaid upon a United StatesGeological Survey (USGS) topographic map in Figure Three. The historical drainage area forBaxter Creek is approximately 2.0 mi2 upstream of the project site. Drainage patterns for theBaxter Creek basin are complex and highly modified from natural conditions.32 Discovery Drive•»Bozemaji, MT 59718*(406)582-0221*Fax (406) 582-5770 cN0Laurel Glen Zone MapCity of Bozeman-77/a 7 BWER,NWK SECTION 4VESTA FERN NELSONMARY CA THERINE ANOERSON(MARIE C. BAXTER LIFE ESTA TEjZONED ASFrF^SWy^WK SECTION 4RICHARD G. NOLLMEYER. TRUSTEEZONED AS^!!9si^NE'/S SECTION 4VESTA FERN NELSONMARY CA THERINEANOERSONfMARIE C. BAXTER LIFE ESTA TE)ZONED ASI' ' . j.'j—ww^; •-,,„„.„ - •— „„- , •:-i;-i -VTB'T-.N BS'IS'lt" E (M) I 2657.21' (M)PROPERFr' BOUNDARYOAK STREETIf^K^l£!^VM%SM% SECTION 4RICHARD S. NOLLMEYER, TRUSTEEZONED AS^^I§TRACT 1.C.O.S. 1SS120.52AC.AijWD.FULTOHZONED AS^^•^^^^^^.07asf,^^gE®..?^3a"!6;!viZONE-i.-Ra^mRim-^rmISANNIESTREET^•A^<a^%•V^0m^0^i-pas%^^-p^s^^ ///^-0^»'I^-ymli^7T4'4:4'^EJM} __DURSTON ROADTRACT 1, C.O.S. 1005B41J9AC.360 RANCH CORP.TRACT 2A, C.O.S. 100SC23.WAC.BURNT LEATHER RANCH, INCtd2001\\A-i._ -_?iit-7^-;t't788A-BABCOCK FKW.^<r._^Z--\ NUFFNE.«a»_^•s '~^s?r~'"IT..J-™,X ;^j.-^-^LJi.N^?ro'Hn-~-1;';..i.Sl!:L-^-^i!3L!.yrjRi]"CT:iIffl•r~h7." "'11 [" r~® ^Lsrl7"-"j?i ^ 'i[jM\fi^-r^^I IS. f 4S15 T ;iW~^!¥^1^r-T'rwiw^-^tff• •--h'l.'•Ja"-§5?T!~='~~i- •~"~^'y'i~^'i "L:'-*' '\MMvw^LTJ-'<?X@^-.^-^-—^.J^i •""•yA4.JXjT"-TJT'?i^TI!1\Vicinity MapNOT TO SCALE\\\REMAINDERE'/SE'/S SECTION <PESSYH. METCALFZONEDAS\\ZONING SUMMARYZONEB1R2R3R3-AR4PARKSAREA8.72 Acres34.74 Acres32.56 Acres38.06 Acres21.84 Acres23.80 AcresTOTAL159.72 AcresTRACT 1. C.O.S. 115523.15 AC.WILLIAM S PEGGY H. METCM.FZONED AS\\PROPOSED LAND USE LEGENDRESIDENTIAL SINGLE FAMILY.MEDIUM DENSHY DISTRICTRES[DE^mAL MEDIUM DENSITY DISTRICTRESIDENTIAL TWO-FAMILY,MEDIUM DENSm' DISTRICTI R-4 j RESIDENTIAL HIGH DENSITf DISTRICTB1 I NEIGHBORHOOD SERVICE DISTRICTfXfSIK [ FWRK LANDOPEN SPACERIGHT-OF-WAY / ROADS:XT'G 18"SAN. SWR MAIN— BOZEMAN CTIYLBDTS——MAM BRONKEN MEMORIAL PARKTRACT3Ac.o.s. looseS7.TO AC.2QMEDPL/Ii:>'7'G 12"WATERMAIh!!II^1ilS|tS? ^"S»a^sALLIEDENGINEERINGsEFtvices. INC.Civil EngineeringLand Siu-veyingGeotectmical EngmeeringStructural Engmeering32 DISCOVERY DRIVEBOZEMAN.MT S9718PHONE (406) 582-0221FAX (406) 582-5770PROJECT t: 00-185DATE: 1/31/02Color Exhibit-2.dwgFIGURELAUREL GLENPROPOSED ZONING r:%sn200LEGENDXS LOCATION0 BRUSHCENTERLINE OF BAXTER CREEKF!3 ^iZ.Ct.OO N0000000r^l00HcnwMrt^CO.M^:ziSS\<;,00~DOt/00000 Cslr--)^-0^t-r^ro0U-)^0000^t-_0H00HCMincn^;^-1^1^H0m0^r^-,<0r/ CREEXs1[^0Qin^t£)^<^00^in\0inz000000r/~)0^^rsl0cnU-)00N^LUCD^0^^Q0^?^^1.^1-??^in3ILAUREIPARKWAY?^0.REVISIONSDRAVW BYDATC1002003000SCAl£: 1 INCH • 200 FEETPROJECT ENGINEER: PJSDESIGNED BY: PJSDRAWN BY: RFCREVIE»»ED BY: DSC, CSflLAUREL GLEN SUBDIVISIONBAXTER CREEK CROSS SECTIONSBOZEMAN, MONTANA^.:K'/ / 'sssrr^./sALLIEDENGINEERINGSER\/ICES. INCCivil EngineeringLand SurveyingGeotechnical EngineeringStructural Engineering32 DISCOVERY DBJVEBOZEMAN.MT 5971 SPHONE (406) 582-0221FAX (406) 582-5770PROJECT (t 00-185DATE 12/29/01Flood FigZdwgFIGURE2LAUREL GLEN SUBDIVISION.BAXTER CREEK X-SECTIONS -^E2LSJZ3TI:^E':.ZZJ:^=..-^^^^^;.^.^^«,-—^.»,.-^^1^ 7 '•%l::ii.:'-.'l':tN'"c°=as' .'i!/¥.1 \ I"~ ^ •'1^:..'\. I '.11' r7r~^--~~~~-"^^-Y;T=^'"E—:^^^$<^="-fc=T—=ai;',^"',.::..... ......--.^T^^Qi^?t'='\.^^:;^J_^"-='r''r':-7;j "\m^!1- S snjj ;-11?- -4-^z•}-II.-I-i/ i ft^^^fcy?:hA..- /-!i—^'(-----+fc-^--^:rtI^^i^sK-.^'r^^^-\- \- :~r&^ :- ^^:!'-L^~"~^^—-^ t '^.11•ri.--.—-,:..^..;!/'!..SiN I:i'l-—^^""4£———, ; ii'"T7~~"yL..,....,...Ji::_3:.--...l_,..........-.,.--C^..^.,^;^^^^^-...,....._,............,.-..._.4...j,??i_-..llll:inT:z_••»-i>~.-^••;-J!% s'i!-..^\ ^r3K II.11.-s^!Mt^^s^r '^1 -^; ^•;=^..==.^==^^,^.^^—^...1^. _sh___. __^rLJ_^{==^ /t^^&\i~3^1^R!—td3••.==s7^-==3==m:w:?:=s7tWf3-i=J^11^®Sl3=====nT3! .W•a%p>i•I...;; :0.1^%?"s\Q-\- %^i.^§1^M-.S5=Q^ir*•%^Jl^'rt:i............ -^S.I^c>-IHt"1a--7I1^'———^J•:?5^1!v^"••"--j^ ^'^'^t^ I-.—..—i! ^!^\ L^•fe*—'——y-^<1@jSQap^»2=£y;EC i..fcSS:^_ _ _ ^.^ ,»^-.'illFLANDERS MILL ROAD^i--.'^:'^4i\^.i.'!'-ssr)-~.}^iss';15^--I<nE?—.ii-2.-—j—.,—..y^--.^-i^aar"w^^wBAXTER CREEKI DRAINAGE BASIN2;Q SQ. MILES.'\*/!••^-^/ .^"i,1-1'^1A.uASF\ -slS S)<3!I •*.--1-^?..-.cbek^l"LMJ3fcEL GLEN |~^F —R^ SUBDIVISION J?%B-%-;-.^--S—:•iM• ;•s;^'j ^ ,-/.£-_i,5?,_.._-—.-i—.„„,;at""•"-•••"^•"••••1\!. t?—X-^—TJ1:^l^cDonoio:VT^===-=-=t \s.'?•^3.;^'^^1-I•::•"^'^-f^foy^-I&?-j Lriaai^I k.s j ;^ ;-^__^^^^^^i ^'^i'5,t'y:--^0^y t-9\...ri••^-s•e•^..•fl:1_±l_,,,^,y^^^^. —_..-.,^-—,,^,- -^.-.^-I __'^&=2fc°;^-7=^;^x •«°*•=^^^^^Sx:^^::^r-^—.-„!•—•.-.,.-...^^y-- ,--::n^^.......^.....^...^,.^...^.........::.-^^^'•„•_................sSrf-F:---:;:-gi"•*->/!0fy ":^^.ii*5Q*.?s""r;:« --:'^-••'u\}- ?";~y.^as • - ,~Ss=JlIs\11slII>[NO.REVISIONSDRAWN BYDATC100020003000SCALE: 1 INCH -2000 FEETPROJECT ENGINEER: PJSDESIGNS) BY: PJSDRAWN BY: RFCREVIEWED BY: DSC, CBGLAUREL GLEN SUBDIVISIONBAXTER CREEK DRAINAGE BASINBOZEMAN, MONTANAase'»f /-as^2SALLIEDENGINEERINGSERVICES, IMCCivil EngineeringLand Sury eyingGeotecluiica] EngineeringStructuni Engineering32 DISCOVERY DRIVEB02EMAN, MT S971SPHONE (406) 582-0221FAX (406) 5S2-5770PROJECT (k 00-185DATE: 12/29/01Rood Og3.dwgFIGURE3LAUREL GLENDRAINAGE CORRIDOR Bob MurrayFebruary 4, 2002nnProject 00-185r.Fanners Canal collects drainage from the south as it traverses northeast across the valley from itsGallatin River intake to Bozeman. Through slide gates located on the canal, the Farmers CanalCompany can discharge water to the Baxter Creek drainage. Furthennore, ponds, culvertcrossings, ditches, roads, and other obstructions have significantly altered the historical drainagenetwork for the basins. Refer to Figure Four for an annotated aerial photo showing some of thefeatures of the basins.Three different hydrologic methods were used to estimate historical runoff. The methods usedare: Rational, SCS TR-55, and the USGS regressions equations given in Water-ResourcesInvestigations Report 92-4048 (Omang, 1992). The applicability of each of these methodsdepends upon drainage area and other factors. For example, the USGS regression equations donot consider average slope of the basin, and therefore would tend to overestimate peak flows forrelatively flat basins (which these are). The standard errors of prediction of the USGS regressionequations range from 22 to 128 percent.Both the Rational method and SCS method require time of concentration (tc) as an input. The'time of concentration, tc was estimated using Manning's kinematic solution along withManning's equation for open channel flow. Development in the basins both increases anddecreases the time of concentration as compared to the pre-development condition. Tc isdecreased by clearing brush, paving, drainage ditches, etc., and increased by detention fromroads, ponds and other obstructions. A detailed analysis accounting for detention and ditches isbeyond the scope of this project.The Rational method requires the rainfall intensity to correspond to a duration equal to tc. Therequired intensity value was estimated from the Intensity-Duration-Frequency (IDF) equationsgiven on Figure 23 of the Bozeman Stormwater Master Plan (1982). Characteristics of thedrainage basin are provided in Table 1.IDArea(acres)CurveNumberRationalcTc(Hours)Baxter Creek Basin1263740.33.2Baxter Creek BasinHuffine- South of700740.32.5Table 1. Drainage Basin Characteristics.LFor analyzing historical flows, the SCS method is selected as it best takes into account thevarious local variables that effect runoff. The default SCS rainfall distribution for Montana isType II. Based on the criteria in section 7.20.3 of the MDT Hydraulics manual, an SCS Type Idistribution was detennined to be more appropriate for use in Bozeman.Allied Engineering Services, Inc.Page 5 ni•—fEE5SSBSBBsSOgaK-^9s"-3SIm%^-saW£Sas»•ES^wmItmm.Bae?wmmsss.°%as»s•£v:^^sSS2S.-wwssesamvs SXSSIie®'^s.Pim&-isea^imSEm,mfK'mm9m.-iiBsvm gmsi<-2SSs®-I.®fS•a.1^IssiS»^•''-®ggj&i^a%s'-asaasgiS8°13•^ss^sSS^^im38^.••wSiimm^1FSd^-sm^mMe"lsim°.s:^'s'sE-feBgmISjgmsss«WMm3m^^—r-f^:-wmssi%^^g^-—ssf&a^&mas^mie^?BIBSfim&5.%%BsSgaE•S3.«MBK1^^S9•assSSa3¥£,iaWfsa^^^wssNSKm!;Xm@N8 istt®§E^amIs'35em-«^mimslSS*§Ii^msv Ssm^aa»:sSsK^?5aai^ssas^a3teSSs^nISS9s«rssmi=2sIS1<a^I^ssWtsiims^SiNO.REVISIONSDRAW! BYDATE1000 2000 3000SCALE: 1 INCH -2000 FEETPROJECT f: 00-185FIGURELAUREL GLEN SUBDIVISIONBAXTER CREEK DRAINAGE BASINBOZEMAN. MONTANACivil EngineenngLand SuryeyiagGeotechnical EngineeringStructurid Engineeringssss,12/2B/01DATE:32 DISCOVERY DRIVEBOZEM^N, MT 59718PHONE (406) 582.0221FAX (406) 532-57704ALLIEDRood Flg4.d»gPROJECT ENBNEER: PJSDRAWN BY: RFCLAUREL GLENENGINEERINGDES16NED BY: PJSREVIEWED BY: PJSDRAINAGE CORRIDOR Bob MurrayFebmary4, 2002\Project: 00-185r()uThis is based on the ratio of the local six and twenty-four hour precipitation values given in theNOAA atlas. The peak flows predicted by the Rational Method are significantly higher,particularly for frequent storm events. One reason is that the Rational method does not accountfor infiltration in a way that would differentiate the increased percentage of infiltration thatoccurs for smaller (more frequent) storm events. For example, for a given basin, there is somethreshold storm event for which smaller storms will yield practically no mnoff. This is modeledby an initial abstraction in the SCS method but is not predicted by the rational method. Insummary, it is our opinion that the SCS method is the most applicable for estimating historical"mn on" flows from the upstream basin.Results of the hydrologic modeling are provided in Table Two. Appendix A contains designnotes and information used for the hydrologic analysis. Note that the computer program CulvertMaster was used to calculate the SCS and Rational method given the following inputs: 1) SCS -basin area, SCS rainfall type I, time of concentration, curve number = 74, and the 100-year 24-hour precipitation depth (from NOAA) = 2.8 inches; 2) Rational - basin area, C coefficient, IDFdata from the City ofBozeman Storm. Water Master Plan, time of concentration, and a 100-yearreturn period. In detennining the curve number for the SCS method, we assumed a pasture covertype in good hydrologic condition and a hydrologic soil group C (see Appendix C for soilsinfomiation).IDUSGS(cfs)Rational(cfs)scs(cfs)Baxter Creek Basin422177129Baxter Creek BasinHuffine- South of82Table 2. Base Flood (100-year) values for different Hydrologic Methods.We also looked at the possibility of increased peak flows during a 100-year stomi event higherthan those calculated using standard hydrologic methods (SCS) due to the altered characteristicsof the basin. Specifically, we investigated the possibility of higher peak flows occurring due toFarmers Canal discharging water into the basin, say by an overtopping or breaching of the canalbank. While we are unsure of how much flow Farmers Canal could discharge into the basin, wedecided to look at the capacity of the culvert which conveys Baxter Creek under Huffine Lane.We obtained the hydrologic analysis (see Appendix B) done by the Montana Department ofTransportation (MDT) in 1994 for the Huffine Lane rebuild project. In their hydrologic analysisfor the culvert design, MDT calculated the following:Base Flood (100-year) at culvert = 90 cfsOvertopping Flood (overtops basin divide located approximately 320 feet to the west) ==122 cfs with a frequency of < 0.2% (greater than 500 years)Allied Engmeering Services, Inc.Page? Bob MurrayFebmary 4, 2002Project: 00-185FlHeadwater at Overtopping =5.3 feetChannel capacity = 65 cfsDesign Culvert: 54" CMPWe field verified a 54" CMP culvert in place with the following characteristics:Length =139 feetInvert Elevation In = 4846.02 feetInvert Elevation Out =: 4843.72 feetUsing the computer program Culvert Master by Haestad Methods, we calculated a headwaterdepth of 5.4 feet at a flow of 122 cfs which closely matches the overtopping analysis done byMDT. Using the SCS method we also calculated a 100-year base flood of 82 cfs at the culvertwhich is reasonably close to the base flood flow of 90 cfs calculated by MDT. This number (82cfs) was used to estimate the proportion of the flow generated by the basin upstream ofHuffmeand downstream ofHuffine. Considering the possibility of additional flow from Farmers Canal,a base flood of 169 cfs at the project site was used for our hydraulic analysis. We arrived at thisby adding the overtopping flow of 122 cfs conveyed under Huffine Lane to the flow contributionnorth ofHuffine Lane, 47 cfs (129 cfs for entire basin - 82 cfs at Huffme culvert = 47 cfs).HydraulicsWater surface profiles for the proposed development were estimated using the U.S. Army Corpof Engineers' HEC-RAS River Analysis System computer Program, Version 3.0.1 (March,2001). The geometry used in the model assumes post-development conditions which include thefollowing:Five roads crossing Baxter Creek as shown in Figure One.Culverts extend 15 feet beyond the road right of way. The following right of way widthswere assumed:o Oak Street: 120 feeto Glen Ellen Drive: 60 feeto Annie Street: 74 feeto Glenwood Drive: 60 feeto DurstoiiRoad: 120 feetRemoval of the existing pond and outlet structure located on the south end of the projectand constmction/restoration of the stream channel in this area.uAllied Engineering Services, Inc.Page 8 Bob MurrayFebmary4, 2002r",Project: 00-185r\The channel portion of the cross sections at the upstream and downstream end of the culvertswere interpolated from the field surveyed sections while the overbank portion of the sections wastaken from the topographic surface generated from the field survey. Cross sections 40, 420, 540,1110, 1330, and 1340 were interpolated entirely from surveyed field data. The selection ofManning's n values was based on Table 5-6 on page 112 of Chow's text Open-ChannelHydraulics (Chow, 1959). The following n values were used:•Channel = 0.04Overbank (high grass) = 0.045Overbank (bnish) =0.09Overbank (intermittent brush) 0.06Concrete Pipe =0.013The model was run in the mixed flow regime with starting conditions at the downstream andupstream end of the model set at normal depth with slopes of 0.0075 and 0.02 ft/ft, respectively.A mixed flow regime was used because both supercritical (in and downstream of the culverts)and subcritical flow occur in the model. As discussed in the hydrology section of this report, abase flood of 169 cfs was used in the model. To account for possible future development outsideof the stream corridor, encroachment method number one was run in HEC-RAS withencroachments set at the stream corridor boundary (i.e. at the property boundary between thestream corridor and adjacent private/park lands). As shown in Figure Five, the un-encroachedbase flood only goes outside the stream corridor significantly in the backwater areas upstream ofculverts. There was no significant difference between the water surface elevation of theencroached and un-encroached models. The data for the encroached and un-encroached runs isprovided in Appendix D.Reinforced concrete pipe (RCP) culverts were used in the model as they are required by the CityofBozeman (page 47 of City ofBozeman Design Standards and Specifications Policy, 2001).To evaluate backwater upstream of road crossings, we modeled three culvert configurations forthe road crossings:1. Two 48-inch RCP culverts2. Two 58.5 x 36 inch reinforced concrete pipe arch (RCPA) culverts3. One 88 x 54 inch RCPA culvertIn determining the floodplain elevations for our study, we checked the above three options foreach crossings and used the option that resulted in the highest water surface upstream of eachcrossing. We chose not to consider more than two culvert barrels to avoid the need to widen thestream bed (generally 8 to 18 feet from bottom of bank to bottom of bank). Of course largerculverts would also be acceptable but would cost more.AUied Engmeenng Services, Inc.Page 9 EXISTING GROUND CONTOUR5-FOOT INTERVALLEGENDz200CROSS SECTION LOCATIONBRUSHFLOODPLAIN BOUNDARYBASE FLOOD CONTOUREXISTING GROUND CONTOUR1-FOOT INTERVALrCENTERLINE OF BAXTER CREEKPROPOSED LOT LINE4-760%riSfi«-•g^x..<::0.0000: t. S0! 00r^rp;c^.0~ ^ <.,.,h^ •-.,..0-/\•:: ^E-.-^—„-;/<„„-cn.A\.EWE:\swE S I: -^^coji:""N^• .Q)^^^•A'_0""'s-:-;>:-IA0^'.^^^f^'^AI ^-1-\^^A'^>-:^^\/-—\\%w47680^.(tiv^^t0^^^^y.'7•/•yo Q/'^ j i,.y- ,/y [^«,.^"ri< .lllfc-.-'-"f^'^'VIIIV"0Q;<'l:|^d--.o^:">"j !i^i;'i: I'. I:0IHco00MSLO»iB! | g'CTl^-m^Ll,0';l!'6'.01^I(5'^f.^M.xsw-^^Wi^s^wiKi.fess^ss.'^rK^ssssaiisewss&s!:!-.•^.'10•-.2srf-•^y,-t>i^y'-AJ(>Q)<yj'.7<0/ <y(^L-^:/y7u-^/\CP^CP\w^/^-^-^5fe.i<30(^v....'-•^<bw^•\^..-:3^^inty-^J..t0^,--"00.-^'s.^<b//•^f-.LO^^00-sLF3LO'^/?0<^010^--:"%..IJ:,0r~-c?^0-p--•••-••-1: IIHi'[:lglc/3...4^11 ^-r^^-.,.-xr0-^-SfS-^Sr^:^:/E-..-r:0<y(-^LO•~J\005.^^;: -1,*^-/f.(J1inOJ0s0^^•M':O-PLO /i.r^ ^t-•^t-mxh1s^±s^=2^. '"-"<'../'LAUREL PARKWAY; " ' r " ' :^ Q'? :•Y'. ~—~- '^.sl:'s '•'•>.'^;^:»:.:^:.^^' ;;' '';^'."•-:... . ———a;-:5! | : '''.'"'•••^, •-••••• ''•' i. ^"s1s^•""^3-PROJECT f: 00-185FIGURENO.REVISIONSDRAWN BYDATE0200 300SCALE: 1 INCH = 200 FEET100LAUREL GLEN SUBDIVISIONBAXTER CREEK FLOODPLAIN BOUNDARYBOZEMAN, MONTANACivil EngineeringLand SurveyingGeotechnical EngineeringStructural Engineering12/29/01DATE^^s.32 DISCOVERY DRIVEBOZEMAN.MT 59718PHONE (406) 582-022)FAX (406) 582-5770.ZSiALLIEDRood Rg5.dwgPROJECT ENGINEER: PJSORAWN BY: RFCLAUREL GLEN SUBDI^SION^FLOODPLAIN BOUNDARYENGINEERINGDESIGNED BY:PJSREVIEWED BY: DSC, C8G Bob MurrayFebruary 4, 2002Project: 00-185The existing culvert at Durston Road is a 48-inch corrugated metal pipe (CMP). We alsoevaluated the culvert crossings in HEC-RAS using one 48-inch RCP culvert to match the size ofthe existing culvert at Durston Road. Using one 48-inch RCP culvert at the road crossingsincreased the backwater approximately one to two feet compared to the culvert configurationslisted above.Figure Five shows a plan view of the site with the un-encroached base flood boundary and un-encroached base flood contours. Note that the flood elevations in Figure Five are the maximumof the three water surface elevations calculated for the three above listed culvert configurations.Appendix D contains summary printouts from the HEC-RAS program. In the HEC-RAS output,profile one refers to the un-encroached geometry and profile two refers to the encroachedgeometry.Unfortunately, there is no historical data (flows and flood elevations) to calibrate the model forhigh flow. If data existed to calibrate the model, the Manning's n values could possibly change.Increasing Manning's n values would increase the base flood elevation. We believe theManning's n values used in our model are reasonable.RecommendationsWe recommend installing one of the following culvert configurations at the five roadwaycrossings:1. Two 48-inch RCP culverts2. Two 58.5 x 36 inch reinforced concrete pipe arch (RCPA) culverts3. One 88 x 54 inch RCPA culvertWith the exception of road crossings, we also reconmiend keeping the stream corridor in anahiral condition free firom obstruction (e.g. buildings and constructed fill other than roadcrossings).Although no floodplain is officially designated for Baxter Creek within the subdivision area, allfloodplain regulations contained in the City of Bozeman Zoning Ordinance should be followed.For residential structures within the floDdplain, section 1.8.44.27Q.C of the City of BQzemaiiZoning Ordinance states that "The New construction, alterations, and substantial improvementsof residential stmctures including manufactured homes must be constmcted on suitable fill suchthat the lowest floor elevation (including basement) is two feet or more above the base floodelevation. The suitable fill shall be at an elevation no lower than the base flood elevation andshall extend for at least fifteen feet, at that elevation, beyond the stmcture(s) in all directions."Section 18.44.270.D goes on to say, "The new construction, alteration, and substantialimprovement of commercial and industrial structures can be constructed on suitable fill asAllied Engineering Services, Inc.Page 11 Bob MurrayFebmary 4, 2002rnProject: 00-185specified in subsection C of this section. If not constructed on fill, commercial and industrialstructures must be adequately flood proofed to an elevation no lower than two feet above thebase flood elevation."At a minimum, we recommend that structures adjacent to the stream corridor regardless ofwhether they are in the base flood area (see Figure 4) be constructed as outlined above and in thezoning ordinance.Please give us a call if you have any questions or require additional information.Sincerely,Allied Engineering Services, Inc./^ il-^^jPaul J. Sanford;PE ^'Civil EngineerDougla^ S. Chandler, PhD, PEPrincipalenc: Copy of Letter from Craig E. Brawner, P.E., Foraier City EngineerAppendix A - Hydrology NotesUSGS MethodRational MethodSCS MethodAppendix B - MDT Hydrologic Analysis for culvert conveying Baxter Creek underHuffme LaneAppendix C - NRCS Soils InformationAppendix D - HEC-RAS OutputSummary of Calculated ResultsProfile ViewCross Sectionsec: Chuck HinesleyS:\Projects\2000\00-185 Laurel Glen Sub\Hydrology-Hydraulics\Flood Hazard Report.docAllied Engineering Services, Inc.Page 12 Bob MurrayFebmary 4, 2002/^.Project: 00-185REFERENCESArmy Corps of Engineers, (1997). "HEC-RAS River Analysis System - Hydraulic ReferenceManual". Davis, California.Chow, V.T., (1959). "Open -Channel Hydraulics ". McGraw-Hill, Lie., New York, New York.Omang, R.J., (1992). "Analysis of the Magnitude and Frequency of Floods and the Peak-FlowGaging Network in Montana: U.S. Geological Survey Water-Resources Investigations Report92-4048".Thomas, Dean & Hoskins, Inc., (1982). "Bozeman Stormwater M.aster Plan for the City ofBozeman, Montana ".AUied Engineering Services, Inc.Page 13 ^''•»^?um^p^).~^THE CITlr OF BOZEMAN20 E. OLIVE » P.O. BOX 1230BOZEMAN, MONTANA 59771-1230ENGINEERING DEPARTMENTPHONE: (406) 582-2380 • FAX: (406) 582-2363nPaul J. Sanford, P.E.Allied Engineering Services, Inc.32 Discovery DriveBozeman, MT 59718Re: Laurel Glen SubdivisionFlood Hazard EvaluationDear Paul;As we recently discussed on the telephone, Baxter Creek's historical drainage basin upgradient of the subject property is indeed less than the 25 square mile thresholdreferenced in our subdivision code. However, the Farmers Canal collects drainage froma very large portion of the up gradient Gallatin Valley between Bozeman and it's GallatinRiver in take. Baxter Creek is routinely used by the Farmers Canal Company duringflood events as a "blow-off" drainage for significant runoff flows it recieves. Thus, theeffective drainage for Baxter Creek can be significant and it is therefore important thatthe hydraulic and topographical characteristics of the subject site be assessed andaddressed in the development of the subject site.As such, please expect that City Staff will ask that the hydraulic profile and limits ofimpact of a 100 year equivalent event be provided with the subdivision submittal.Pursuant to the City's Subdivision Code and in that the lay-out of lots and otherimprovements may be impacted by the flood limits of impact, the assessment needs tobe completed and provided with the preliminary plat submittal.Please contact me if you have any other questions.Sincer.e.Ly,/z^?..•'-u^Cr-^ig E. Brawner, P.E.City Engineerec: Planning DepartmentProject FileERFHOME OF MONTANA STATE UNIVERSITYGATEWAY TO YELLOWSTONE PARK nn0(")u 0nnrdr^( nn0(:')u nnr' ^- ^BAXTERNational Flood Frequency Program ————————Flood Peak Discharges, in cubic feet per secondDate: 10/22/2001 15:05Basin: Baxter Creek, MontanaConsult the log file for the input data.Recurrence Interval, years 2 5 10 25 50 100 500Rural 16 57 107 196 294 422 8420Page 1 rNationwide Summary of U.S. Geological SurveyRegional Regression Equations for EstimatingMagnitude and Frequency of Floods forUngaged Sites, 1993Compiled By IVi.E. Jennings, W.O. Thomas, Jr., and H.C. RiggsU.S. GEOLOGICAL SURVEYWater-Resources Investigations Report 94-4002MTOF-^.%^!.(^'^@'&s53aK©\6ecu3Prepared in cooperation with theFEDERAL HIGHWAY ADMINISTRATIONand theFEDERAL EMERGENCY MANAGEMENT AGENCYuReston, Virginia1994 n\/ ^^0r0ruI5^isy- i y-a- j a." 1:S^ iuT5cJnco^1Hoo S°0 .c-^•^ro..1c^s~g'-sc mw0 j® 0g s—I IIs^00ins. 0'd-§1_]'(lli I'I^^[s\-s\s_.t§lCMishS1 n o co LO co o <n in no cn in n ocb incocoh-r^-r^-r^cocDcor^^-h-^r^-i^i^-t^^-^-r^-t^-N-h-^.^•^t'^fst-t-cl-^l-^-^t-^l-^t-tt^i-'t'ii-^t-(y) uoffeAa|30t;J< 'sQ-" iK. £sl1—8N-ss1^u ^llroIs; LL.! a-IsLLa.wLLa.•c0^ -s§ _"2 •I" egl.i..i..jj.,!"T"-';c••"••.:";•It031s• 0 ^tLOCO0^§1>oo LO n oGO 00 00 001 GO LOCO-Tg\[s'}s-8^§." g1s I[s wr>i^^T-l 'I 'I' ]' I'oooor^-r^-i^-r^-cDcocDCDLOtOLninI I ' ILOcooooLOnoooLD0^.i^i^i^r-^.r^.^-i^i^.N.^fst--^^i''d-iT^fst^l-^l'^t-(U) UOBBA913[>J^/^<.0;•-. n00680125049}~!^>^rITi-^i:^•ll—A^-;-;-il\.V;>J^^r^i—r-r—r»1_-;--L^•^^-\-\^.^-!-^/ --!'-r-r-:--^-:^!-;-:-;--!-m.-:--!^-T-r-rI-i--\-^'-->;-l-^^:-:--:--:-r-!--r/S--ry-L-J-^^:-\'-^-~-)-r-;-T+-!-!-:--'-_k--;-^/J-.:^-"^^rr-f--I—!-!-(-^-r~-:-^-r-!--r<t-r--1-'_!-f-i-J^---±t3:—!-+-!-r-I"-----i-^s:T-'rT+-.,^—-h-:--^r"-;4-"-!-!,t-i---:--I\-^7r!J—!-!^+-+^t-^-'--!-^i-'r''-^^f-r-6I--!-->-.:l-!-!-I.;-1""—-1—,L+^-!--!--^-!--!—;-'I--:---I-^-',-!-!-!-.<:--?-!--!-;-I--i-;--:-^-!;-;--I-!-7-:--;-T-!--(--,s"•^-::,\^!-4-!-»LVi-<-I-1-_1-!--;-g-!--!--!--I--!-:!-'_1^-+^\m-!-rt-^--\-^<1f-^=-T-'!---t'r-r.'T-!-y-'rJ_-;--!--r-r-!-^--r--*--^^•\-r-!--!--!-L-I^-r-I-"A-!--T+-:--:--i7"--;--!--!-"-:-!-!--!-^:-I--!--!-r-!-V'-1-1-^-r-!-^-[--I-0•-?-!-"-;-T--r'^,k-.-^r-!-"+-!-'-L32 -:--!-"-r-;^0-!--I---:--!--!-N>.;- „1171>-:--.'-^~!-\-!"<-»--!-i"-4---L;-!--!--!--:--!-•^^-L:•:\^ -^ +^:!--^-;-ys--^-!-.;-;-!-~-r-!--s-i-P:T-!--!-^-!-^-;-yN"r,-'<.,-:- -;-I'-!-\y\l+.-!--!-•f'>_L•,i- -;^s'-?v0250500 MILES0250500 KILOMETERSEXPLANATIONRegional boundar/[0^ RegionDigital base from U.S. Geological Survey 1:2,000,000 ,1970Alters equal-area projection based on standard parallels 23.5 and 45.5 degreesu3. Map of the conterminous United States showing flood-region boundaries. (From Crippen and Bue, 1 977.)Figure16 Nationwide Summary of U.S. Geological Survey Regional Regression Equations for Estimating Magnitude and Frequency ofFloods for Ungaged Sites, 1993 nSSiSiSiSiiiiiSI^^^^ffl81iiSff'IBifiilii%^^^^iiWmws&^^'^'••K'^:.^'''.'^''^i.^iM--^''/:"'"-;11"''1:.;1.-:'1''..'"^;:':;''1;^:;":-y,;.'^'.;-':'':.;?':s-;:? •::m^m^Wx^^mj^tW-^ .:^M'.'...1-^?;'l:'s'••^tsM^?;'WHWffii^-.':;;s'';.:1-:'•e:.^.B?5::BBS888ife-:^:STATEWIDE RURALSummaryMontana is divided into eight hydrologic regions(fig. 1). The regression equations developed for theseregions are for estimating peak discharges (QT) havingrecurrence intervals T that range from 2 to 500 years.The explanatory basin variables used in the equationsare drainage area (A), in square miles; mean annualprecipitation (P), in inches; basin high elevation index(HE+10), which is the percentage of the total basin areaabove 6000 feet, plus 10; and mean basin elevation (E),in feet, divided by 1000 (E/1000). The constant 10 isadded to HE and E is divided by 1000 in the computerapplication of the regression equation. The user shouldenter the actual values of HE and E. The variable P istaken from a map developed by the U.S. Soil Conser-vation Service (1980). The other variables can be mea-sured from topographic maps. The regressionequations were developed from peak-discharge recordsavailable as of 1988 for 476 stations in Montana and 46stations in adjacent states and Canada. The regressionequations apply to unregulated streams having a drain-age area ranging from 0.04 to 2,554 square miles, butare not valid where unique topographic or geologic fea-tares affect floods. The standard errors of prediction of.the equations range from 22 to 128 percent. The reportby Omang (1992) includes graphs of flood characteris-tics along seven major streams, and a table showingbasin and flood characteristics and maximum floods ofrecord at gaging stations.ProcedureTopographic maps, the hydrologic regions map(fig. 1), the mean annual precipitation map in U.S. SoilConservation Service (1980), and the following equa-tions are used to estimate the needed peak dischargesQT, in cubic feet per second, having selected recur-rence inter/aJ.s T.Northwest-Foothiils RegionQ2 = 0.653A0'49 (E/1000)2-60Q5 = 3.70A0-48 (E/1000)2'22Q10 = 8.30AO'47(E/1000)2'10Q25 = 20.3A°-46(E/1000)L95Q50 = 47.7A°'47(E/1000)L62Q100= 79.8A°-48(E/1000)L4°Q500= 344A0'50 (E/IOOO)0'98Northeast Piains RegionQ2 = 15.4A0-69 (E/1000)-0-39Q5 = 77.0A0'65 (E/1000)-0-71Q10 = 161AO'63(E/1000)-°'84Q25 = 343A0-61 (E/1000)-1'00Q50 = 543A0'60 (E/1000)-1-09Q 100- 818A°'59(E/1000)-1-19Q500= l,720Aa57(E/1000)-L37East-Centraj Plains RegionQ2 = ]41A°-55(E/1000)-L88Q5 = 509A0'53 (E/1000)-1'92Q10 = 911A°-52(E/1000)'1-88Q25 = l,545Aa50(E/1000)-L79Q50 =2,100A°'49(E/1000)-1-72Q100= 2,260A°-49 (E/1000)-1-62Q500= 3,930A°'47 (E/1000)-1-44Southeast Plains RegionQ2 = 537AU'33 (E/1000)0.55y2.91r2.75Q5 = 1,350A°-53 (E/1000)-Q10 =2,050Aa52(E/1000)-2-64Q25 = 3,240A°'51 (E/1000)-2'55Q50 = 4,140A°-50 (E/1000)-2'47Q100= 5,850A°-50 (E/lOOOy2-51Q500= 8,250A°-49 (E/1000)-2'33MONTANA101 West RegionQ2 =0.042A°-94PL49Q5 =0.140AO-90PL31Q10 = 0.235A°-89PL25Q25 = 0.379Aa87P1-19Q50 = 0.496A°'86PL17Q100=0.615A°-85P1'15Q500=0.874Aa83PL14Northwest RegionQ2 = 0.266Aa94PU2Q5 = 2.34Aa87P°-75QIC = 7.84Aa84P°-54Q25 =23.1Aa81P°-40Q50 = 25.4A°-79P0-46Q100=38.9A°-74P0-50Q500=87.1A°'67P0-49Southwest RegionQ2 = 2.48A°-87(HE+10)-0'19Q5 = 24,8A°'82(HE+10)-a16Q10 = 81.5Aa78(HE+10)-°'32Q25 = 297A°-72(HE+10)-°-49Q50 = 695AO'70(HE+10)-°-62Q 100= 1,523A°-68(HE+10)-0'74Q500= 7,460Aa64(HE+10)-°-99Upper Yellowstone-Central Mountain RegionQ2 = 0.177A°'85(E/1000)3-57(HE+10)-0'57Q5 = 0.960AO-79(E/1000)3-44(HE+10)-°-82Q10 = 2.71A°-77(E/1000)3-36(HE+10)-°-94Q25 = 8.54AO'74(E/1000)3-16(HE+10)-L03Q50 = 19.0Aa72(E/1000)2-95(HE+10)-L05Q100= 41.6 Aa70(E/1000)2-72(HE+10)-L07Q500=205A°'65(E/1000)2-17(HE+10)-L07ReferenceOmang, R.J., 1992, Analysis of the magnitude and frequencyof floods and the peak-flow gaging network in Mon-tana: U.S. Geological Survey Water-Resources Investi-gations Report 92-4048, 70 p.102 Nationwide Summary of U.S, Geological Survey Regional Regression Equations for Estimating Magnitude and Frequency ofFloods for Ungaged Sites, 1993 n0ne10449 °4;T;-49^--!-^.^:1^0e;!--d-\^^e^^ayF\las^:^a^v^-^^\-71.1I^•^-7\^>^^^IL*>L^?-!-x-!--I-t?^V.n^^tr<h-1ra-lr-^'^11^.—f•^-:-/'(^^1*\<^'u46115050J.100 MILES01T50 100 KILOMETERSDigital base from U.S, Geological Surrey 1:2,000,000 , 1970Alters equal-area projection based on standard parallels 29.5 and 45.5 degreesEXPLANATIONRegional boundaryWest RegionFigure 1. Flood-frequency region map for Montana.MONTANA 103 n n0ng °I g6is -0sIsI i0 "? sai ^^ g611g °IsI0i.is;i2sj2dlicoII&&p~jIj02•5^. II II ?I p ^s £ II.1^1^ ^IllI IS S 361-11sCN"°sg§i3I II"o ifsa /nRAINI-ALLFR: JENCY25YEARYEAR10 YEAR25 YEAR50 YEAR100 YEAR/(K=)0xsinLJI(Jl^in<I<a:cr^vit—f\ \^^<» » •-~X= HR ~1Y= 1N/HRY=0.36XY=0.52XY=0.€4X'Y =0.78)CY =0.92X-.60-.64,65-.64.66Y = 1.0 IX-.67600E:0104I" 10ITN<u>-\zo>-330uac-J-"22^Slecc\<r00 5 10 15 20 25 30 40 50DURATION IN MINUTES6070iia-'-•^aast!'(la'>•RAINFALL INTENSITY-DURATION CURVESBOZEMAN,MONTANABASED ON NOAA ATLAS2,VOL.fFIGURE23'"I,'lIJ!'IM11fllII•'s'.I»'I^•^M:M81BS?!l^:i%•s'.s®•^mli;;^i9-: • :^:a:':,^y-K:'u^:',."'-'.^^-•;:.^^;.-.s,^. n.i-t}j!III•^Ii^^OJ(\JUJ-<r <o h-U3 U3 U3XXX XX Xu? rj <g- 03o '3- in(£) U5 U3>D:=1ecco0xOJ —k0I<-U30IDQ: 0=d)LJ I ^d -0000? -I] IIII11IIIIIIII0>-x >->->->-?->-Q.in,tO1£=)05-a: iro: a: cr ir<<<<<<UJ LJ UJ LiJ Ld UJ^- >•>>->->uUJN<LL.=)0c?o ip o prd in o< UJCMin>-CL<ecec=)Qm7tD7/,iwafl[7ro170/1-Tnj>01-3T1sj Izsyvs/- NI A3N3no3y^ "nvjNivyssz00^.000ynoH y3cf SBHONI NI AIISN^INI i-ivjNivylljec^rr30CdiZ0>CMV]<<t<t<0zcn0uQ>UJQ:<n<Z30z0.^ <h-<<a:h-Z)Q0>-h-cn<2uLJh-(MS= 003-JJ<u-z<CCIst^-Mf.^3'^I!^f s'IB0 TIME OF CONCENTRATION CALCULA1 lONSBy Paul SanfordDecember, 2001A. OVERLAND TIME OF CONCENTRATION1. SCS CURVE NUMBER METHODsee "Basin Characteristics" tab for calculationOverland t^:2. FIGURE 7-1 OF MDT HYDROLOGY MANUAL4.034 hoursslope: 1.4 %cover: short grass pasture & lawnsvelocity: 0.85 ft/sOverland Flow Length: 12,500 feetOverland t<:: 4.085 hours3. FIGURE 7-2 OF MDT HYDROLOGY MANUAL (see also Figure 22 of Bozeman Stormwater Master Plan, 1982)Overland Flow Length:slope:c:Overland tc:12,500 feet1.4 %0.3NA minutes (not valid for overland flow lengh >1200)4. MDT HYDROLOGY MANUAL, PAGE 7-0-2SHEET FLOW (T( = [0.007(nL)°-s/(P2°'5s°'4)]Sheet Flow Length, L:n:slope:SHALLOW CONCENTRATED FLOWunpaved: V= 16.1345(s)°,)°'5^0.5unpaved or paved ?slope:average velocity:Overland Flow Length:Overland tc:Total Overland tc:paved: V= 20.3282(s)uunpaved300 feet (max of 300 feet)0.15 from Table D-11.2 inches (2-year 24-hour rainfall)1.4 %0.741 hours (travel time)ft/sft/s1.4 %1.91 ft/s12,200 feet1.775 hours2.516 hoursB. CHANNEL TIME OF CONCENTRATION1. MANNING'S EQUATIONChannel Flow Length:velocity:9,900 feet4.00 ft/s (from other program)Channel t,;:0.6875 hours ?IgsgIIIn(nI^II"§?IIIssgit°1§(0uI'II0s-gIflt8A01: sSs^ll10i §yD2^ss5"SJgBI.pjltt'III11!jjgIIIII8JpsLU SI?3s|Ul&s6sIIlls sIfus^yiilssi?1|5 s | SagIII6s&III;Iss 5 £tt^ I- NIS9lll!!iili ^ s sIs^^lV)§ s(00^ ^IIlinIsri.j-II PRECIPITATION DATA')By Paul SanfordDecember, 2001From NOAA Atlas 2, 1973Duration 2-yr 5-yr6 hour24 hourP6/P24Storm Type0.71.20.58310-yr25-yr50-yr100-yrI0.91.60.563I1.11.90.579I1.42.30.6091.52.60.577I1.62.80.571Bozeman (6 Miles West) Rainfall Intensities from MDT1-hrprecip (in.)2-yr0.375-yr0.5010-yr0.5825-yr0.7050-yr0.80100-yr0.89Estimate shorter duration intensities (in/hr) from Table B-2 page 7-B-2 in MDT Hydrology ChapterDuration (hrs)(m in) 2-yrssa0.1010-yr25-yr50-yr100-yr6.00 1.64 2.22 2.58 3.11 3.55 3.95;;;u&^^^^^i^Jtg^..3Sl;^^KES£,£.S^^£.^l^^S;^.fi^^ i^^.ri^^faA.aSS^S.^il0.20 12.00 1.17 1.58 1.83 2.21 2.53 2.810.30 18.00 0.95 1.29 1.50 1.81 2.06 2.300.40 24.00 0.79 1.07 1.24 1.500.60 36.00 0.58 0.78 0.90 1.090.70 42.00 0.53 0.71 0.82 0.990.80 48.00 0.47 0.64 0.74 0.900.90 54.00 0.42 0.57 0.66 0.801.711.90iSfflluAl';;) ^"j-i)t,.. '.u.';'':; .n";;. 3WKlaM;«™gS.;^3ft!;i£<>;';.a igi ^;1.251.141.020.911.391.261.141.01IDF Equations from Bozeman Stormwater Master Plan for City of Bozeman, March 1982ngeneral equation: i = a/(b+D)'Rainfall Frequency(years) a b n2 0.36 0.00 0.605 0.52 0.00 0.6410 0.64 0.00 0.6525 0.78 0.00 0.6450 0.92 0.00 0.66100 1.01 0.00 0.67 nSCS Curve Number Method (continued)rI<Runoff Factor(continued)2 Crop residue cover applies only if residue is on at least 5% of thesurface throughout the year.Hydrologic condition is based on a combination of factors that affectinfiltration and runoff, including (a) density and canopy of vegetativeareas, (b) amount of year-round cover, (c) amount of grass or closed-seeded legumes m rotatioiis, (d) percent of residue cover on the landsurface (good > 20%), and (e) degree of roughness.Poor: Factors impair infiltration and tend to increase runoff.Good: Factors encourage average and better than average infiltra-tion and tend to decrease mnoff.Row crops are typically sugar beets and com, whereas wheat, oats andbarley would be classified as small grain.Table 7-10 Other Agricultural Lands1Cover descriptionCurve numbers forhydrologic soil groupCover typeHydrologicconditionABcPasture, grassland, or Poorrange-continuous forage Fairfor grazing^ GoodMeadow-continuous grass, -protected from grazing andgenerally mowed for hayBrush-bmsh-weed-grass Poormixture with brush the Fairmajor element3 GoodWoods-grass combination Poor(orchard or tree farm) FairGoodWoods6 PoorFairGoodFarmsteads-buildings,lanes,driveways, andsurrounding lots68493930483543057433245364305979696158675648736558666055748679747177706582767277737082D8984807883777386827983797786t ',7-66 ^SCS Curve Number Method (continued)rI<Runoff Factor(continued)The following pages give a series of tables related to runoff factors.The first tables (Tables 7-8 - 7-11) gives curve numbers for variousland uses. These tables are based on an average antecedent moisturecondition i.e., soils that are neither very wet nor very dry when thedesign stonn begiiis. Curve numbers should be selected only after afield inspection of the watershed and a review of zoning and soilmaps. Table 7-12 gives conversion factors to convert average curvenumbers to wet and dry curve numbers. Table 7-13 gives the antece-dent conditions for the three classifications.Table 7-8 Runoff Curve Numbers1Urban AreasCover descriptionCurve numbers forhydrologic soil groupsCover type andhvdroloeic conditionAverage percent Aimpervious areaBcD(IOpen space (lawns, parks,golf courses, cemeteries, etc.)3Poor condition- (grass cover < 50%)Fair condition (grasscover 50% to 75%)Good condition (grasscover > 75%)Impervious areas:Paved parking lots, roofs,driveways, etc. (excludingright-of-way)Streets and roads:Paved; curbs and stormdrains (excludingright-of-way)Paved; open ditches(including right-of-way)Gravel (includingright-of-way)Dirt (includingright-of-way)68493983767279696186 897974848098 98 98 9898 98 98 988985829289879391897-63 nnuiiysis.Culvert Conveying Baxter Creek Under HuSne(J nsrFP ^-2^2^^^•ST-A ^O^.-^ Z-0BA'<-£R C^C£|<3/3i|^4^LT~— •-—'-, Cc- C ' ^-iEy..~st^;c^ ;' .'•'•,< '.. -~v'^ v--^—'. ;n ..."_'', •2..,1-^^ ^ - I 5 -<- /• ^^-~-; ^' c i^! P . (^ A F ^.^.! — •-( --^| 2.0^ ^ -Ts'_ ^\-..'"'• ^J^ - •' — -^^^ ^ <^r r'-.:~1''^s'^j s2,5' cL&r ^ r =; ^ ^-" iS -.'-" •"- ~~ .i^>^'&-< Vo^s d'-J..'d--s_ 4'.c~' 'AJ^'S' i^ S-^L. Z^O-' 60 A-!. 3',.'?/' —TT^^-i LD<=^ Plo't'1Os ^Q.]OU80°\0c^s^sjC. l^_a ,v ,\_2,'- c o- a a -'^-' 4--i "^ ^ SA~p'rop'='<-'-oi. '.'J •.d-2-^-i-^—^ ~"1 ^ '•+"L-^- T, o/--ir'/--- ~ .'. .. ^~" •J'^- ^a...r^jz.^, o c_<=^--^~ c^-/-\ - ''-T^vCs i^-ir'V'. S'lre^p^-^\ <-^ p ^ipe c o/\^ i'cLL^cL'3'-~-LO •Y-^.O-^TC-^ O'-^-(L£J^- -(-(. Ol^) ^'.'F^J^ £2 t-e'^jO^Hc'-'"' -^^-+'^-^ l^lil\ '^A_ ^O'-/^0' /&^'J- Or PTI^' C^ -fr'fo^j Ji">^A ^L;-'-- ^/SZS, I -ro ^6Z.3.Q ,S^" ft^P Q^ S'H''' c-5 ^ ^)''//' r-^^'c.^ -e'^'^^^Q-'S 0 ~f"k f~S--^L .' / -s ^i-^ L<-'T r' p r-Ap ^ ^ r ^>-^ j <?- ^ .fs -s- -"-.- .^-XL^^ \ -J 3^^- i^Xl ,' S ~i~i" ^'- a c' LJ-~r !-£-'^ ^VA '-^2- ~^Jb^, r C^^^/r^S ( o/^?'y)'ba ' T5 . /..,... ^^_ 2--±f-.-°-"T^=Z.OL Cr+^'8') ;-1^ ='^—^—- 5,-^ 8oC-<$ -; s^1sb.'-.^7 .'-J.^'''2' /-, ^\/ 'fl-3/.^ -.2.S5-^sl:.^(-^-/2,oV ^/^,5fv^-/.33/,^0-3 -^ ,y^ ^-^.X^ ^ /.7 £)c ^/D,^^ - 3I/.22^ ^ 3D.7^,s) ^%..r-)-363(^^ =- /3,5g r ^.+C ^ ^-^L ^-/'?. <c' = ^-i-^IS S-z^. "~,'£5/J ^ho^-^ ^A<a^^&/'&;/•'^.y&t^t~T^I n"}0?)<noN.»ssr.s^^-^sr^^-^ — |SECTIU< 7 MHt fss- s-^-^^ s.'s^t-LS-^-s: ^.'^•.^-j=^£A--ss-^s;t;^>*s-=^%^^^^MONTANA DEPARTMENT OF HIGHWAYSTON SKETCH uurr<SURVEY DATA FOR DESIGd OF WATBWAYS^=cSnm ma g^<TEt-C^- to. 2533^'_^ ?^^STD*:IE3£33tND.^a^r-,sSinwlt^ /U@^s5FOR DRAtUGES OF ONE SQUARE MU ORLABGS1 A AU- WB6A'nON.flfcesnw. icmjcnoNsPT^ ~~^3)M1^x*zt1my,rflKrii»*rti ntaf » •<—KM* rffthttl ••to. I* •^k> <—1^ ^••111to4&•X^*f=)•«l«—t. <«>•>•»>-<<r- ;o/ sc*»«<int r- S'SECTION 6 CROSSfrtrfui—r'n' rvhrL -m.BitC^^=^^^^T?££aS=-ir\"?2StBB;al—--»--5l-;=;S.-S-.r=^^ •*h — tn •• XUU.hAA h to*. •< dd•»«|iirii<«Ari»<iTiiii^ho»<««*7.«&^«ato inirfrwy»*fcCBU.K*«r-)B'»UNdM__l_j_*^••••—(ylitefal.NS?N3^Bh«5>^SS^«(S'S£ <5»JI?dXTt^.,«.— Bhd>h<k»bMto<Nrt_»ah>»*rt»l«rit.ft^rt^»rf«*N^r»h«aNh—«^»N itd—ibr»*Saction 1 WATBSHH) DATA(Mi»U<c th. • .1)^1 0 ,*to.D .N—raOhrD .(^^•(1fiiNfti .>faf a .>«• aa*rDte.Oifi—D .0 .0 .S»k«»< D•••to *•..»—»•HSECTION 2 EXISIXG STRUCTURE.^->._4^_id—.<-0" .^. CM^r—- C.D<->t> ,1^« 7£. •U^clfIB.tfCIBNLsr-totor3&z2SECIBN 3 BfOSUN AND GBXOGY tWTA.•d—oaii a.a .•<• a ..to— a • *• »u4%)(tvfc.)h-igSECTION 4 IRnGAIIW DATAN—Oart ' ' ' ! ' ' 'nnotd,Ak.T.d*t»hod •aadnlCOMMENTSRt! ^FJ'"-'•"S^-" —•—'•—• ». b. <-»'°-?~"~-—r l—»wyrii B^.chKlk— Q. B5»i Bi^B^r»]<j ^|~,,,^BI A— rt »»^(. f) In*:^ '—fii- r'm i iiji i d»Mi « 5yfc«i ^u« •(^•r-w-.r-ar.a-r-ard^mfcv onSECTON 8 PLANA!lQ£o&& seCT'OA^^ ^1<2£' A..077E-& ^.ooifc/A/f.. C>o<^^ ST^SM^ • -?-EN-DA'E: 02-31-1 =c^ S-r^ Zya..^-7-.o^RET TIPE: -;3l;=!^< S— - -^^ to^-' ,^.f-/i. pFILE DATE: 03-31-19^;;_; ?„;?!;; ;-lC2i;"2:"^~- CLLI.'E:: Acl-L';^!::-!^. ^^:C?. ^-;S;-E J""ACULV:^ 5 P:. ^r£PI"L, I"L::^Li~ ;U7L:T •:JL',;l:=:T i rA^ELEELEV, :L£V. _EMSTH ! SHAPE:"-; ;:T] ' "u-^;;,^V^ FIEE "ANNINE INLET.FT: -. T:-PE^;5.=0 ' ~::M \ : ;52;,L'O 3,:)0 .;2-: COi^ENTIQN-L.3 ].3=-ARY OF CLiiyEST FLQN5fj:CFS)FILE; e^C203DATE; 03-31-1?C4-EV ;;T)26.20:7.4929,0"28,4s:^,5529, i825>:22U,5C^:13G,JsTOT"L0uIS3o45"4...;-^ i_,-/.i.70^109IS36^£4=3;!J.-300000.*.00300'.Q0Q010QQg0•••:.).-.'.;0;;0000!;...'6 ROftDNfiY ITRu Q 10 1Q 100,••,00o0'.'0 1:; 1Q 10 2:-' 1;i ^•;• 10 QvEaTCPPINuG.'i/.'&E .^-:' ^-FA .2.0^1 ^ ^1.3SUi-i^RV OF ITERATIVE SOLUTION ERRORS FILE; B4C2C3DATES 03-3i-19°4u-EADEL£-F~26. :02"7.4s28,042S.4S2°. IS29.5229.3030.il30.5c30. osHE^DiW^\?~^0.000.000.000.000,000.000.000.000.000.000.00TOT^L?:Loyfcrss,•;9•-;^364;54£.3-;--so=0=LOWEFRDR(C;5)00:-,0..-.;•-.;000y•. FLCyEWOR0.000.000.000.000.00O.QC0.000,000=000.000.00:.1> TOLERANCE (FT)': 0.010^;:> TOLERANCE (S; : 1,000 i^^•t~ D!-'":: •'.i- 2;-1G;:-;-S:r:- -:iE: 1^31 ;;5F:-E N-"E; :;~E; -2-31-1s0"';','-^RPANL:; :JR!;E =CF: .:J..:E^-E-D- INLET OUTLET-A;3E N?-TER C3N7R2L CQN'^OL ':LON NORR-L CR:"UUTLET-:L^AT:-Oi. E.EV. DEPTH DEPTH HFE CEPTH DEP-" VEL. ^EPTH ^L. DEPTH,rt,^-r :.;fti <F4;'-?-'.: £-^(72£;.'->-i^455450"0:-.492S.0426.4629.352?. 1329.5229.3030.113C,J630.6fcQ. 001,10='::2.012.332.703.1i03.273.53J.754.030,00 0-NF1.:° 2-N2c1=^ 2-K=2.25 2-M;c2>65 2-H2C2. "S 2-N2c2-R2C2-M2s3.323.603.91 2-N2;2-S2c4.164.-2-M2;c.ooi.0iL5:i.SS•". •-"; -A-E--2,522,813,113.4:3.734.20:;?';•;i.431.661,362.0fe2.222,3°2.53:,690,004.^:.2£o."g1=5.SO^,326.737=0i?7.477.773,033.391,43l.obl.862.0fc2.222.5°2.552.63."•-i2.333.994.344.634.8S5.09=. "s5,445.62-2^0;-!-L;:2-1.43-l.:fc-1.12-o.=c-0,S7-0.76-0.26-0.56£-, :-:lst TS=S ^•=^ • 26.20 f:.El. inli- -nroit invs:"t • 0.00 ftoLj-:iat inverti:l= i^lst c'sst;5,UO ft0.00 f-:— 5ITE DATA —- CiJlVER" INUE-T *"**—-—I:vLL- 3T"TIGN ;FT; ^,:-';INLET ELEVATION iFT) . 2=.20^--ET ETfi'ION (FT) '=.»3UTL.ET ELEVATIOh (FT) :3,=CNljWBcR CF BARRELb 15LOFE (V-T/H-f) 0,0039DIVERT -E9GT1- "LGhG ;LG^E T; '6.00I--^T CULVERT DATA SUNMfiRY s——-*""**——*—BARREL SHAPEBARREL DIAMETERBARREL t^TERIALBARREL aANNIN5;3 NINLET TYPEINLE" EDGE "ND «ALL:?<L£~ D£PRE£S:QNCIRCULAR5.00 FTCORRU5ATED STEEL0.024CONVENTIONALMI'ERED TO C2NCORMr-QNE'U SLOPEu 0Ij :'^T SATE? .•3-31-1?^.-KW~ -IHE; l-;-'.^;';LE JiM~E; L:3-32--;!-'i;T-£ -^; 5^C20Jf~^-~A'^—- ^;_^c ^^^ ^FQss siCHjN ^-*—*—^^-c" ..^j- ;Tn5IDE SLOPE -/v !;(;!; ':"-.":" NL ?L2^E ',;.''-; ;:T:r-': T^,...^^i^e'i n {:oi-!j,ii ^."^;-^EL :Ni.E;-rE.i^T;2, ,". .-^:^WT •€.! UUT-E- iN^ER- 5L£VA-:Ch ^ .y-.-. ^TFQRM FLO. RftTINS CURVE FOR DG^STREA^ CHANNELIFLCNfCF5js^o9.M13. OQ2T.OC36.0045.0054.0063,5C"2.0050.0090.30"j.S.E.(FT)23.5024.0324.2924.4724.6424.7824.9125.03:5.1425.24^.y•"=•FRQUDENUMBER0,0000.6880.7050.7130.7170.7:00.7230.7250.7:-0.723Q. 730DEPTH(F7)0.000.530.7bC,=71.141.28'^.-'11 =:•-:...^1.741.8-ivEL.fFPS;0.002,533,^33."4.344^3^385.0C= —c•-•;—.5,^45,o2SHEAR(PSF)0.000.33J.4U.^=10.71G=300.38^,C6:j21. OS1.1;ROfiG^' QVERTOPFiNC Drt^-OADWiSY 5[jfi:»C£crfSANKSENr TOP WID1-H ;=•!CS£=T LENGTH (FT)^ESTOPPISE CREST ELEW-ION (FT);""VE.20.^50.0031, ~0I I!^:.RtNT DtiTE: 03-31-l^-s S~T^ 203-tZ~^.:FS^T T.'E; 1^25:^5^' ^-^fCIL£ Dfr^; ,.3-:l-l9"i:^ ^E: D^;L'3=--";:;" ---••:U5-;;. -..;;"E D-~^—E. ;IH:'E--L. ::.L£7:M-£- QUTLE- CULVERT : SA-RE-iELE1.. ELEV, LENGTH ; EHftPEF^ .FT) ; !<ATE?'IALSP"N =I3E M-I-INING INLET\H} - TY?Ezc.0',c<r;,2i 23.1C-' 100.Q5 . 1Hi."^. 50 -^~.:Qiw£9--.;NA-4 ::-SARY OF CULVERT FLOWS ;C?5i/-!:IL£; B^2Q3P-EV (FT;2=,2':"-. '-12S,;4:8.?1;?.;r2s, 55::;,=4.;c.i.,-1.!.-,.50-OTAL0!S---'3645s-c..-—500;:;IS-:-T2.-^30^:J;--2•:/ij0.;^•;;••-•'...::;yi;<;'..^;'•j;;ui;DATE: 05-31-lcc:^a ROADW"? ITR0 0 10 0 i00.',:.;'••J 10 1^r 1y 1i i •[; 1^^0 OVE?-UFPIW3uiOF ITERATIVE SDLUTION ERRORS FILE: S4C205FDATE: 03-31-1994uHEADEiEvtFi;;,20".^:7.£tf25.1^26.5525,91:9.2529.55;u.diA-,10:0^i"E"DE;-RL;R:FT0.000.'%0.00';.oo0.000.000.00:;.':'.0,00:; , ;'oTOTAL:LUW;CFE=!U";~3c4=54£3s'.9'.;FLONE"RCii-:;;F5;Q,-]'.;0'.J.••,•-••&!;^ FLDs.E""OR0.000.000.000.000,000.000.000,000.00'.:.-'o0.00.1.' TOLERuNCE ;?T) ; O.Olu.2> "CLERANCE ui ^ i.000 ^nwF;ENT'Ei 05-31-;3^:?-=; .4;25;C~FILE DA~E; ;.3-31-;3^?;-E ^E: ;^203F—FOfi^NCE C^VE ^? CUL-.:E:" ^-£E:hJc^545090-E^D-SA'ERE.EV,•,--'^;NL£-;QNTRuLDEFT-(ft;OUTLETCOMTRQL FLQyD£FT-< TrFhiff- (F4;f^^h. CRI~ICi-LDEPTH DE^-iff;tOLT.;".£.. DE^"-:S£: [.r~::TrilLi^TL"VE-. DEPT-i?T3=; \r~:}2B2S,25292-?2?3030,20,145s,14,53.91.25,55,84,10,410,' 0.9-*1=^L?42=352.713,053.353.643.904.2;0.000.?-*1,4S1,°42.352,715.053.353.64J.304.210-NF1-52";l-S2nl-32-l-52nl-S2nl-32nl-32nl-32nl-52n1-S:^0.00'...yi~''?0,951.031.13i.231,33^ f'i;'0,8;- i C1.47L":1.93'2.12'2,302^7i.40 2.&12.49 :.7S•^&c•)M-;7:2,3<:3.6114.2414.7115.1515.5215.86is.200.00: f;30.351.00t.132.261.391.501,5?L"l;,0i.344.^35.165.3s5.896.176.416.6d&.S2~,020.00o.s?!.;.ue^1.371.521.651.771>SS1.972.03^y,'.;-,-t_'--, •'. '\^'\I,^'<-\El, :ni£t f;ce in^'ty. inlet th-yit invi't2i.20 ft0,00 f?El. ou^liT in»srtEl, inls? crest233.10 ft0.00 ft" - . DHTA — CULLER T INVE?" *—""—INLET STATION (FT;INLET £l£VfiTICN (FT)OUTLET STATION (FT;JUTLST ELEVATIUN (FT)I -USBER 3F BARRELS^ 3LUPE (V-FT/K-FTi^CULVER' LENGTH -LJN6 SLOPE i:To.oc:=,;•:•loo.yo-.--; - •-;0.03:;100.0:" SULVEwT DATA SliMSARY^RR£L SHAPEBARREL DIANETERBARREL NATERIALBARREL SftNNINfc;S NINLET TYPEINLET £D£E "N& i-ALLINLET DEPRESSION<•*—*—+*—r^**-^-*---(*4*CISCULAR4.50 FTCONCRETE0.012CCNVENTIOf<ftLSQUARE ECbE yI~H HESD^L-h-GNE'ID n-^" DAFE; ;.;•.;!-:W4-^y TI?i£; -:;^."5-11: 5MTis ;;;-'] ;-;.5-;4:I.E NA"!E; :-^;::';J-I"-^-"i-1":"•*" :;£5JLAS C"" ::. CRQ5; SE;TIGN t^—-——5C~OM .iD"- ^'^ :.•;<•SIDE SLOPE "/'; ; Xslj 2,.;ChWEL SLOPE v/h ^T.'FT} ;.^7INNING S N ^0,-;..; CJ30:"^NEL I-E^ ELEW':^ :::-; -:.^;UL^E-r NC.. CUTLtT INyERT ELEwTIDFi 2:,l0 F-—" UNIFORM FLQN RATIN5 C^RVE FQR DO^STREAM CHANNEL0FLQNiCFSS0.00°.ooIg.QO-27.003c.OO45.0054.00i3.^72.005.;. 00w. wN.S.E.(FT)23.1023.7°24.0824.2924.4724,6224.7;24.372^US25. C72^. ISFRQUGENUMBERO.OQC0.3150.3240.3320.337O.S420,8460.54s0.352O.S550.85EDEPTH(FT;0.000.6?0.981.191.371.521.651.77i,sela-;2.OSv£L.(FFS;O.QQ3.S44.635,1=5,565.E=6.17a,4l4.645.S27.02SHEAS(FSF;0.000.731.041.271.451.3;; ~7^; •-l.;S2.00:.09:.:!•:wRU-LW- :L/E^-frn?N£ D"~^ROADWAY SURFACEEMBANKMENT TOP .IDT- (-T)CREST LENGTH (FT)OVERTCPPIN5 CREST ELEVATION (FT)S?"E,-^. 50.0031.50Iu 0t,-0'. -1.s^gI?§^sgs^TOJ0inIu^uMninin-in<:LPtininiriininu^inu^oooo 00 soooocooooii§1IISl?i"CJJ^-^·'~000000 000 0 00 OC3CXh^oN-rl^oo^<ooc^h-o'ococoinf^-iZMinrdiriw-mLTt^-oj^r ^^ <-<-<• in)oooooo<intninoinooor^.tOr^.r^iTiin'^T-^o'oiri^tinsrin§§§§g8^g§§g§gsg§!OOOOinr^ZLniTiinooininininiM •«—•^-in'^'^'OMO^^-iR!?KSJ!^'3<%ftc8ftK3:'3S:!?i!•^pjfMcONinst^'^-mjo-»-oo<—r^j ^,rrj»-r\j<-T-mv--*-.ugs^SS£S?S%S^^SSgSS?3SSSJioo o o o'oo'o oo o o" o'oo oooo oi3S^-s§5•o<rMtn~for^(Mi<-io-m.»-f^'dNN~»-o~»^oin in<^ z CM ^--<- •«-<-!iIs§5oooooo'ONino-inoo«- nf^ -- in<o MN (\J N^ III!ui a \g g°'SG '"§S%5%? ^^ I8S j~»cg(Mcocpinr^*-l--innl^.{>,^-Min-tf-^-SSfMONininr^r^»-N->O<- r^ ^-ru <-<— r>j;.'"jpm coo a3 t.. o ^ inu? N. 01to^^SP"?'"0'^'*?^'0 »!I13l§l^ I° LOOOOOOGOOOCOOOOOC50000^ SJ^ A^s "I«ILU5^^1oinoooooooinoooooo5SSogP$]§SSg£SSS^^••sa-<4-'4-<4-r^.<i-'4--sT'<d--<d->d--<r<Tsd-•3gKg?3^?5S&RgKSF;g3K^Sg;oj 'S;omooc3^ro^»MoonoooooooooinJQCsiMinnin'oincoN-~»co«-<riJO^oo'r>jr-o".r-^cpt^'op.'o'-T-tninN.inr^.KiO'oo.^ PJ M ITi ITtSS§SP:SS!9o;K.3z^;I0"?" !<3"il,§RiN«{5iinrj^^i-cocMino.tninm F- •- 0 in 0>n^'oo°S"F3^Nolno'~>no"n'~1"'0JLi i:ssS3SA?•??•?mNin?II.^ UJs$•.++++_;{__ o^-sN f^(M ~» in ~:r5<S'S^'S535<S'<SS5|5i5'<555S" g3£? I£ e§s "s!i£=!§ 338 S 82§^>~sisc<DC3cow^rc_s<uN^^II^iins§S- M-"s'sII* I /-'-u..;-;;SS2^SK ^SSg^SSSSS-^^^^^^^••r^^?F^I-^':;<i'3W^;rT^^-."-—.' - -^/»._- <-• ^^l^^fi^ l^ P^-l-^^V^A^^.-^^^-rf.j^ -^^—^S»~^^ny^'^^^ FT— •* ••';NE;B9ts»|s:« .^•"•-;1::^-;:,.---:.:.>. .l:ss:::^s^^e^\ -..^.^^S!^^;- ---:-...;pTn^-s---?-•; TN*—'1 •~."yss^^K-,*;.;'?^.i'.^.'.,^^™Ba;-.-r.••..•:T-?:.'",.-:r:.:;..—.:. . - :--il-.00-00001m^-^^^^^^•^•^•-r-:';-wz:-s^-a'uf—u-e: --->--^ -•--•-••—— ,• 3I;^^YOOQL00-OOOBoo-ooos00-000t-<3L ,^--;--<1~^€00-OOOEf.1 •.a4\,^-.<{^'.1^,.< ^}W^ :1^-.q .?.1-^1 •>:W•iffll-xt•^•{•a^^^;< < -la00-0002w^^c-liEIIEi.a—--S:OO'OOOI00-00600-008c- ^21^KX'-Sa&£'tt00'^socroos00-00froo'ooe•iSbt/-*•;-'-oo-oaz•••^p^&.^^^,s^•\rj3r<§8^'x<-,id^5°1"-%13<7;'0^ ;OOTO '^ioo-osS-Si9iKf?) G3She I ^^S,-, '1>^C^l-ttfl\«n:oo-crt'00'OEZ?hUJoo'oz^.m(nOi.<'.-•' '=)0100-0100-6CO)08•L-9<oo-sUJorOO'fr<~!LOCt»UJ^"50^ Sll^'-j-^<aoo-z<ny^^ca0010106-08'01'09-^59os::Sfr-Ot'srocszoz-sr .sa;^a8g^?g s§8 800008tf mCM0B1c^ll^oos%'-y^5-J§8§S§ 88S^§^ ^ ^,-':.i...^, ...^^sss^--i-S^??'"Si(sjo) aoyvHosiai^K-S':t:''::'::^^^~- ..\-^-^ '•-.•i ^'.^. :'^'^••.=i;<"?"yij^.M.^Q^^^^^. -^ ^^^^^^j^iiiSS^^- ^: '^^iis^l^feE^;K^ •''". i--'' •"^••S^SS'SSS^^SBSaSsS^w^^^^^'»A&?-?/^:..sss.- /•tHYDRAULIC DATA SUMMARY-^STATEUON.TANAPROJECT NUUSERS-PF 50-2!;;,£2SHEET NO.22STATIONSTREAM NAME( IF NAMED )SIZE /IYPESTRUCTURE (l)^A)C4'DESIGNFLOODMASNfTUDEKIS.}FREQUENCr0.!H.W. ELEV.(f.T.1MAGNmjOEIC^^.jBASE FLOOD (1%) | OVERTOPPING FLOOD @ @H.W. B^V.(F.TJMAGNmjDE(C.F^.)APPROX.FREQUENCY IV.}H.W. ELEV.(F.T.IREMARKS(FLOOD OF RECORD, Qp(max), ETC.)/-ir73Cr?)- CP.EEK6' SSWx 3' RISE RCB95•^707. 5954707. 6IS I<•- 2^7 ;0. 007 DIVIDE27-30.JL P--C- CREEK5' S x 6' H WS_ieo_,147 15. c'50_~'7 /-5. 6IR?/47 .'5. ?OT DA//D.rs.F- ?n^y pcCff7iff~i'7Q^MT^'SBy-^pn^, ?-n°r riiv tn^ --\;20-'5554" DP.£5z^757. 575-757. .3/•i 70<- ?^SG I. 507 EO-D;5 ;-POVcD::^D C PEEK45" D".50^_<Q '.°. ICD-5 15. 5/ ;5^.z_'-822. 0OT Oh'iQE1^-r;?i^ i yro ca^F<^^" y ?7" nft^5z_^R9 /. o^_^F.??. 0_2_^fl??. ^or nvin^ZC^'20:-y~ES cPEEK5^" C.c50?^530. is^-530. -f.'Z2_G Z-'5J /. 5OT DViCE^S7-3,5 pr.^2" S_Zi_^^£^<. !£•3--53-:. Scs_^355. C07 AF=-O^C- =r).2 :E- '535" C3z^2^SJc.^535. 57°. 5<S40. QCT l/-WL!'fE - S~A. 2'4+GO2ZO-;56" D=25^^5JS. 65/-:S3C. 755. --5<6-?0. 0DT C'V!U.1C-Z;^-5£36"25^_^£--=. £^5^-. S-^-i'£J5. 0J7 C.'i^DJ_305-235!'/e" x 3;^" KPAL5_7-:cc /. 7^3-^55.;. 5-:-:£?.=::. R• C'~ ~'/f~j:-•r'TCH ^1 OCK 1J20-3336" -?CC;22^£50.5-550. 5e-^<. 2^65^. 507" DA//0£F\JO~[~ES • * H.W. ELEVATK3NS SHOWN ARE BASED UPON PEAK RJ3W ANALYSIS UNLESS NOTED IN REMARKS COLUMM.»tI.il'<B^»s@STRUCTURE SEE OR TYPE AND RELC.TEO HYDFLAUUC OATA MAY NOT REFLECT 04ANGES WADE DUETO RW OR OTHER CONSIDERATIONS (LE. STOCWASS ADDED. STRUCTURE SIZE OS PlTE D-1ANGED.ROAD GRADE CHANGED DURING CONS'TUCTION. ETC.)@9A^ BRDGE LENGTH SHOWN EQUALS THE WATER SURFACE WIDTH IN THE OPENING AT TriE DESIGN K.W.ELEVATION MEASURED NORMAL TO FLOW.@("3).(4)OVEiTTOPPIMS S DEFINED AS P^OW OVER THE ROAD, R-CTW TriROJGH A S1GNIFICAAT REUEF STnUCTU?.EOff F.OW OVER THE &ASIN DMOE VS'HICHEVER IS LOWV{.FOfl THOSE CROSSINGS NOTED BY Qp{mvS IN TOE FtSMA.WS CO^'JMN OVEETOPP'NG DOES NOT OCCUR AMC'THE FLOOD k'AGNmjDE LISTED CORRESPONDS TO T1-IE FLOOD OF SECTION 6oC.^5 |e! 0! (n) OF FEDEFAL-AISroUCY GUIDE; SLBCHAJ-TER G. FART 65C. SUBFAflT A IDEC. 'EW;TOE R.OOD SPECIFIED IS SUBJECT TO STATE-OF-TH&^WT CAPA3.!LT/ TO ESTIh'/.TE TriE EXCEECASCE PRO&ABiLrTt'.I F1"S 0^%; BRIDGE -TXi)t+GH WATER ELEVATIONS MAY VARY SLIGHTLY 3EPENDING UPON THE PIPE OFrPON SELECTCD.EXCEEDANCE PROBABILITIES25 YEAR50 YEAR100 YEAR200 YEAR500 YEAR4'% CHANCE2 % CHANCE1 % ChiANCE.5 % CHANCE.2 % CHANCEBOZEMAN - FOUR CORNERS nnC)u USDAnStatesDbi nent ofAgricultureNaturalResourcesConsen/ationService3710 Fallen Street#BBozeman, MT59718November 8, 2001Paul SanfordAllied EngineeringDear Mr. Sanford,Enclosed please find the soils information you requested for the area surrounding Aajker and Baxter Creeks.Please note that Montana NRCS policy requires that we ask you to include the following statement on alldocuments associated with an analysis or determination completed using NRCS's soils data or map information:This inap and associated information are to be used as a primary reference source and are not intendedfor use in site-specific planning. This is public information and may be interpreted by organizations,agencies, units of government, or others based on needs; however, they are responsible for theappropriate application. Federal, state, or local regulatory bodies are not to reassign to the USDANatural Resources Conservation Service (NRCS) any authority for the decisions they make.If you have any questions related to this information you may contact me at 522-4016. Thank you for yourcooperation and for your interest in the Gallatin County Soil Survey.Sincerely,Katie AlvinNatural Resource PlannerGallatin Conservation DistrictEnclosuresThe Natural Resources Conservation Service works hand-in-hand withthe American people to conserve natural resources on private lands.AN EQUAL OPPORTUNITY EMPLOYER 0Musym,(SffOM448Ai'457A453 B457A509B jl5IOBIII.Z]Z.-537A.,.._..J_542ALr748A!_M_W1^-.-.-._1518210342318c:'u U.S. DEPARTMENT OF AGRICULTURENATURAL RESOURCES CONSERVATION SERVICEPAGE 1 OF 311/8/01WATER FEATURESAll PlanningFloodingIJ-High water table and. pondingMap symbol |Hydro-]and soil name ilogic | FrequencyI groupWaterMaximumDuration | Months | table | Kind of | Months | Ponding | pondingI ] depth |water table].1_I_I_I.duration depthJ_I-448A;Hyalite.Beaverton-453B:Amsterdam-Quagle-457A:'sr-509B:Enbar-510B:Meadowcreek-537A:Lamoose-542A:Blossbei-g-74BA:Hyalite.Beaverton-I IBBI•I B |.1 BJBB I RareIIc IDcB IBFtI --- I 4.0-8.0 [Apparent | May-Aug |Ill III --- I 4.0-8.0 [Apparent | May-AugIII --- I — III IIIll III --- I 4.0-8.0 [Apparent j May-AugI IBriefJAN-JTJL | 2.0-3.5 |Apparent ] Apr-JulII2.0-3.5 |Apparent I Apr-Jun [I I II I1.0-2.0 [Apparent | Apr-JulI III1.0-2.0 [Apparent | Apr-JulFtI II II --- I --- I -- IIIII --- I^|.....^..-...,....-,..-I-.....-...,.....-.,.-.,...,..!_IJ^.-^-.--..--_-.J-_-_.___^t^_-_u U.S. DEPARTMENT OF AGRICULTURENATURAL RESOURCES CONSERVATION SERVICEPAGE 2 OF 311/8/01WATER FEATURESEndnoteWATER FEATURESThis report gives estimates of various soil water features. The estimates are used in land use planning that involvesengineering considerations.Hydrologic soil groups are used to estimate runoff from precipitation. Soils not protected by vegetation areassigned to one of four groups. They are grouped according to the infiltration of water when the soils are thoroughlywet and receive precipitation from long-dura-tion storms. The four hydrologic soil groups are:Group " A". Soils having a high infiltration rate (lowrunoff potential) when thoroughly wet. These consist mainlyof deep, well drained to excessively drained sands orgravelly sands. These soils have a high rate of watertransmlssion-Group "B". Soils having a moderate infiltration rate whenthoroughly wet. These consist chiefly of moderately deep ordeep, moderately well drained or well drained soils thathave moderately fine texture to moderately coarse texture.These soils have a moderate rste of water transmission.Group "C". Soils having a slow infiltration rate whenthoroughly wet. These consist chiefly of soils having alayer that impedes the downward movement of water or soilsof moderately fine texture or fine texture. These soilshave a slow rate of water transmission.Group "D". Soils having a very slow infiltration rate (highrunoff potential) when thoroughly wet. These consistchiefly of clays that have a high shrink-swell potential,soils that have a permanent high water table, soils thathave a claypan or clay layer at or near the surface, andsoils that are shallow over nearly impervious material.These soils have a very slow rate of water transmission.If a soil is assigned to two hydrologic groups in this report, the first letter is for drained areas and the secondis for undrained area.s. Flooding, the temporary inundation of an area, is caused by overflowing streams, by runoff fromadjacent slopes, or by tides, Water standing for short periods after rainfall or snowmelt is not consideredf.J.-ood-i-ng.,. ...no.^- i-s water .±.n. -s.wamps. a.udi--mar.slies..,.....This . r.ep_or.t ..gives the,,freqyency. and._dyratiQn pf flooding .andthe time of year when flooding is most likely. Frequency, duration, and probable dates of occurrence are estimated.FregLiency is expressed as "None", "Rare", "Occasional", and "Frequent". "None" means that flooding is not probable;"Rare" that it is unlikely but possible under unusual weather conditions; "Occasional" that it occurs, on theaverage, once or less in 2 years, and "Frequent" that it occurs, on the average, more than once in 2 years.3r- '-ion is expressed as "Very brief" if less than 2 days, "Brief" if 2 to 7 days, "Long" if 7 to 30 days, and "VeryLi f more than 30 days. The information is based on evidence in the soil profile, namely thin strata of gravel,3anL., silt, or clay deposited by floodwater; irregular decrease in organic mafcter content with increasing depth;?.nd absence of distinctive horizons that form in soils that are not sutoject to flooding. Also considered are localLnformation about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. J.S. DEPARTMENT OF AGRICULTUREMATURAL RESOURCES CONSERVATION SERVICEPAGE 3 OF 311/8/01WATER FEATURESEndnote -- WATER FEATURES--ContinuedInformation on the extent of flooding based on soil data is less specific than that provided by detailed engineeringsurveys that delineate flood-prone areas at specific flood frequency levels.High water table (seasonal) is the highest level of a saturated zone in the soil in most years. The depth to a.seasonal high water table applies to undrained soils. The estimates are based mainly on the evidence of a saturatedzone, namely grayish colors or mottles in the soil. Indicated in this report are the depth tc the seasonal highwater table; the kind of water table, that j-s, "Apparent", "Artesian", or "Perched."; and the months of the year thatthe water table commonly is high. A water table that is seasonally high for less than 1 month is not indicated inthis report.An "Apparent" water teible is a thick zone of free water in the soil. It is indicated by the level at which waterstands in an uncased borehole after adequate time is allowed for adjustment in the surrounding soil.An "Artesian" water table exists under a hydrostatic beneath an impermeable layer. When the impermeable layer has beenpenetrated by a cased borehole, the water rises. The final level of the water in the cased borehole is characterized asan artesian water table.A "narched" water table is water standing above a.n unsaturated zone. In places an upper, or "Perched", watert is separated from a lower one by a dry zone. Only saturated zones within a depth of about 6 feet areinc. ed.Ponding is standing water in a closed depression. The water is removed only by deep percolation, transpiration,evaporation, or a combination of these processes.This report gives the depth and duration of ponding and the time of year when ponding is most likely. Depth, duration,and probable dates of occurrence are estimated.Depth is expresBed as the depth of ponded water in feet above the soil surface. Duration is expressed as "Verybrief" if less than 2 dayB, "Brief" if 2 to 7 days, "Long" if 7 to 30 days, and "Very long" if more than 30 days. Theinformation is based on the relation of each soil on the landscape to historic ponding and on local information aboutthe extent and levels of ponding.u /')u^%?^sKi^«*:&•tif,»11mKSw^^»'^vsf{w%m•gf,«•s,!»••sstE-^.'»<•wasr;St.,rt&-%•fWfrMW•'••3,t-->^;-y»sm•»•asr.A;('.,=fovt:^m&»«sm^Mi&I»^ti£^I;i-I-si'iem£iE^sj^6'Bis•»MiKss*^£]£smm^:&smsesw.£mi£ISSsia^SSitSBSmsRiiS^E-MSs•?•^sI-^tlESSSss-5E;E?•••a^.litmm"f»:«wS3•-s-amsa88«^&iiBaxter Creek andAajker Creek AreaUSDA NRCS SoilsIScale: 1:24000Request AreaWaterwaysSoilsSectionsvUTM ProjectionNAD 1983 Datum™s map is to be used as a primary reference source and Is notintended for use in site-specifc planning, This is^ublte'infonnationand^may be interpreted by organizations, agencies, units of govemment,or others based on needs; ho» ver, they are responsible fof'theaPPi'opnate applteation Federal State, or local regulatory bod^iesare not to reassign to th® Natural Rssources ConservationSeNice any authority for the decistons they make. 0nn0u nnn(u ^rTr§r[s|TslIs!§1s|~oTTlsiwlsiIslIIIslslfflsslS|03';!s|iiiinisiii:[sls]^]e|slgl.lsiIlllsi~[iIll§|S|Soldl oK!|S!|g|Si|H|gg|g|g| |S,|S|S|S|S|5| |g|S|g|S|S|gololol [a)o[old[olol [o|oldlo[o|olsis01s.3s?TgS]KS!?iS!sS!eTssssB5s.^1s.s.ssssco0ll°l|s||s|5?sI5gsafcs?3sss???s]ss'ssssss3sssKsl!lro•\ssslsiWs.s|ss. I s.s\ss.sIs3sLOsss.35.ggSS.3(^s.IIslsiTsl151s.^£se3slslslS5;|!:|S|R|Sd| d| 6i0s|l|§|s|g||§gels.3^sssssIsssgs|sKjsaonIs|;Esslgl?srsi|3£1•e:l\S\3Si§gsngcosIIIEISISssnmEO3s3ss'sII!Isss3tO£sssrs3sEsgs.scKgssKs.fcIslsi1^1;s|SiI?;le|8'Ill5151?e|e|s|S[S§1e;3s?silill[Tslllil;e|§1sl5e§1s\TI?!e(D1§1Ill1§1lsigf)s^Illsslsi^'s|s^le|S|;ls|Is.liss?g^ssseseKseill•1§1;lll§1lsi|g|lsi|s[§1s[s|1§1|£|S|g[S|lsiIlllsiIs!§1s IS|Ills Ilsilsi\s[!-§101lsi1§1Is!1§1|s|lsi!|S|Is!§1§1lsiIs!S|sllsilsig[g|s|lsi[s|lsi|g|Ill<Iglisl<§1?1u.y&1gl51<0IllS131IsIllIllIllN51y&Is!&\51IllI5<5:|i|co|S|^lsiyII|£iI:,glu|'Ill5,\Slli1S151lil:?il1^1Is!Ig'illiS151ft I1^1l!ls\l\1^11^1IF•5]JljlstI s: I:llls-wgl;lsi|B:|B:|S:|B:|s:l|K:|S:1fc|S:8:1 S: Isllgl;II.g[s[w^\tIll?1a:l&l?1Ifcl |fe|8:|fclfc|g:|lsiIll;:181§1;W^\ |fe|s:|a:|fc[£:jB:|;lglglIll;Is!slw|g| nr0u;I1§1[g[§1g'lsIII!S10Es?<o|CTi|tD|-r|uijn| in|in|N[a|rM|di| ]'-|n|p|m[o[i^.| |eol-^|oo|io|r^|iri] linlcolu-ilnl-fjnl Itbl'cofiol-^ltDlsi |IllIflC|E|S|K|E| |S|S|S|S|S|5| |^|,;|s|,;|;:|,;| |g|g|E|E| S|g| | S|5|S|g|S| E| |g|g|g|g|g|g| TS|£|E:|£|£|';| |e|£|"|"|£|"o]o[o|o|o[ |o| oj o[ oj o[o[ | o| ojo[o| o| Q| | o| o| o]o| o|c>[ | o| o]o|o| o| b| ! •r-| •r-| •r-|'-) •r-| •r-| |o| d| i=>| o'| o| d| |Q]a|o|o|s|IllK|R|?:|K|!S| |g|g|g|g|g|S| |§|g|g|g|g|g| |5| ?|5[5| 5|5| | S|S|S|3|S| S| |!;|fc|t|!;|!;|K] |2]s| »|S|S| °|^|"|';|S|;|&| °ci|o|o|djoi |o[o|o|ojo|o| |o)o|o|o|o|o| [o|o]o|o|ci|o[ |o|o|c;|o|d|ci| |d|b|o|o[d|o| [o|61dfci|dldl |d|6|old]ollil;sssKsKssssisssssssc'sEssssss.s?isss,;s's|sg,;ssS|S|3ss.ssssssis'sSiscossssgs11;|E'l\g\3.?!s?!sse^sgsessss.ssgsIsss^n?:s'ssIsgs5IsI10I?ssssss1§11§1S|e|S|S|£|S| |iE|£|£|S|g|£| |5|5|5|S|;|;| |S|!g|iri|io)io[tniio| [r;|n'|n'|n[n'|n| |to|io|to|io|io[>r;( |ri[ns\s\sg|§|g[g|s[ |^[^|5|^|5|^[ |s|5|5|K|s|e| lll^lslsl^lsI "I:1U|Gl £!l ^1§1§sililjlililll IIIIIJIIIIII] |l|l|l|j|j|j| l§|g|§li|i|sl 1111111111111 lllllilllil! ,I "IRn^s3m[uj t3] to[ mo|n|n|n|n[n-5| •?! -5| •?! •5| •?po|5sgsss3.sl!ls!S[E[siss\seles|s|s|se||[s[|"I1 M^',\~s\glsiIRIlsilsiIslsis|slRl[RgR51c|IEIgRRlR|3|Iel£l5KlHlK|slRsiel\K\e|S|g's:el|g|elg|se|0K!|S!sslsS!S!Isesss|s£ SelelelslEle|Is!R|I]K\Ig[|s|Is]slsisias'lss'ls•wl •?!'?|S|lei\s\Ill§1SlS|sls\Sl\\s\:1£1IS|Sls,|sK\sIsr|S|SlCMI'SI|3|lsiI S315|lsisl[s|s|lsi£|ItslsllsiIss|s|S|s1§1slssIs!sslIIs|IIs|£|s|lsilsislelss3|tlBlels]s|IsIs!s|IIs|gle|s|£1Islsis,sS|s|sl;lslsssl&1s\ 3,^•li^:o|aj~Of^d-151flQ]||IKIcfl_<11gl!llilis|i|18:1|S|lsi^.lsiIllIll11§1!IN1^1I K: 18:18:!s|Ill|Silsi:|S|Is!IllIEII a: I|s|§1slS|g'ls\?15:1§1Fs.l5lsi§1illsi|S||g|§1S|lsiII18:1Is.\Slli[sI s: Ifsls:l1°1.s\:lsis\lsi\s\S|s\IS)lsiIs!IIsIsl^1sl!1ssl£1s\§1sl£1sl51;1§1§1§1§1S|I'fclfclfcllllil8:15:18:1II §111lsi|s|1£121|g|w§1s||s|1§1lsi\s\£1Slsl,°ilfcl31s: III3•£i§1^&1i\sli\31s:l;lglsilsi\s\§1§1\s\1§1Isll§1|£|§1IsISIsIfclllgsl!Is£131B::lS:]w§131s:llsi;;|S|;lll§1!|S|i|g|£|lslftl|^|ic|:131SIs|[gjs|lsijs^1£glSl31I s: I: 8:1S.W£|§1IlLj^S|;lsllsi[£|~s\slXlsl§1sls|s\§1|s|CLftl£11?1ly1§1££sfcls|1£1S|c|jMftls:ls ISjlsilsilsiIs!.S|Is!S|S|Sllsilsi|s|l'£lslI^ISIlgl?l15cE:ss|1?1?,1£|£|S|5|Ifel|8:|8:|g:!§1§lis|1£1wS|°11-1 1-1 ^IPIgs|§1£|§1s|ss I§1s|lsiIs!gs§1s|llllllllllil lilllililjlil lilillllljlil l!l!lil£lll!o'l^'.l |n|ir|M|[M[n|r~| |n|t)-|csi|[N|r?|n§lslsl^lS|ES|S|S|S|S| |S|5|lsitt1-SIIlls£££0s;ins0sSi?^Rs?;s.S!s3ssss1§1IllssssSsss.s.s^^s?^S!S!nssssT^;|5seesses.sss1^1slsss\s5|Ss.sss,sss.ssgs.sK.ss§g5cs.s.stKsg2s.ssss.sgsss.ss.s^t111^[IIs!3ssSsssss5sss55ross.sssssssIs3^3ssssssIssssssss11^ilS|S|R]S|S|S[ |!£|K|S|e]S]£] ]n|5[B|E!:;|S| ] g.| ig|g]S|g|gtOllOl [CC3](0](D|(DjlO|tOj I'^l'^l'^l'^l-^l'^l InlNlC^ lnlCMin [g[5|g|g|S| |!S|£|!g|S|S|£| |S|S|S|Sinl>n|to!io|in| |-n-[-^|-<rj-d-11^ss§gsdsgsda§CNss'gNN§s|s|.lslis8sssKsIsssss3s.ss.js.sNssBsIc^3s3sgges.K33^is\"s I•?! -?^1sEs8ss.sessEsssssE|s|sssgsI5sS|5g[SgssjKs3sgs.sIIIllslssIgigsgsgsgssessss,5sss.ss.IK5sI?ssE?sCOlsilsis.£sss.stosss.3SssessRsK|gls|S|£51SgsssIsssessssssgs.EsIssss.sssI!;^seK£IEslsssIsgIgs|s|s|sll'llllIIs?sI5sg£1£ssssssssssssR8sIRssI°ssinKs3is.ii3SIE:3'.Ij^yQlt°tj-Cd^.ofw_<<Oltil3]_gsgs8sgIgg§sgs§sgrgsgeggggIgsgrgg§sgg§ggsIsiIgIIssg"gsg5g£gIgIg§lsi^Is!§1Illssgsg§gsggsgs§sgs§!gIggggsg3§sgsgsgg3gsgssgsgsgsgggsggsgsggsggsgsgsIjlillslsl£^s£|^\mIjliS|5~IN|K:]fc|g:|S:|fclws: I:1§£1s\Is&1s\1.£ls5:1iJB:ls\IsIfcll§iI!8:1&s:!lIsfc§1-1:§Isfclslg^&1^12&sIs:'Iss: Is?8:1'1§1Is£1§1?lp;g|gS|5s: I§1Ns:l§1Igwss^1^?|!s: I^\Is8:1Is2:1i!8:1;lsl2^s18:1lglsls&\ss|?fclfels|s|iss&ls^sl?fclfcl£1g|s|IswlsiIsg5s£'ss8:1 fcl?lsl:lsig8:1^:1?1?>\^\sII II!£s£1?.,S[asl!s£Isslli'2ssw181:18:1§fcls:l£lsl§lsl15:a: IfrlfcIsa:;1?1; ^rol /-.!1111S||s|s.\s [lsiIlls|uII1itinnin) in| ins|s|ftlRIKI^IK5gIIJIi155|Illlsi°|5|o|o|o'»IS151';1'?151 |S|5[S|°|S|£0[s|:*<=1lillillsiI s Iss'£•s-;IS'1;1?1?151 |»|°|°|S|S|SG I 0| 011^S|s\Sllsis3sssssss5s5ss.Ng3s5^ss.sss£Ill\Mlsi|E|IslsiRss;sssRsK|5|'?|B|S|£| |g|S|S[g|g|SB|g|E|S|S|K| |S|S|S|S|£|S1!1^sl\s\ssssg|S|g|g|g|g| |S|'?|S|S|Tf|n|Tr|-<»-ln|ir| |cM[cMic\|cMIll2|§|s|s|g|sggggIll's|lsilsi\'i\jgBesesssK£ssEs.KLOKII*"gsscol\.s\1?1•lsiI?JK£^ssss1^1[il!s.s."s.sss.s5s'5s?I3|e|\s•^s5ssBsgsssessgK5sss5ssBIUJlsi5|•Is!|S|I eli3|sls.psRsss?sssss553sgs's.sssgsg?^s\!§111M'^[Qiiilc.3-l,s|I1!s^11cfl_<1Ijlu|'2[.lsiillsi|£|1§1lsi[s|§1s|§1s|§s§1s Igs§1s Ig§sg.ls I]^1Is!III?1glIIgs1?11ssfs|Is!li[sggsgs§§gsgs'ggs§ggss§s§§o|o|o| )o| o| oj o| o|o| |o|olo[ojoo|ci]o|o| |o|o]o|o|o|ci[ |o]asssssssss's£ss•sssfiKsfissssssss'ss'ssgsgsss|o|s]g|g|s[ |^|s|s|»|s[n[ [5|s|?|s|5gs.5s5ss.s.;ss?I3|gs'!?sss5ssss£IsIss;gs'SIKI£|S|5IllsEEsE5sIs?EI^s5Iss&5ssstOs£5sssS!ss.3ss.sS!sges'sss?e|e§1s|:s||S|IllS|S|s I1§1lsiIs!§1§1Ill§1g|§1lsiIll§1Ill§1glg|g|§|g|g|g| |g|g|g|g|g|g5|?|S|5[5|5[ |5|g|S|S|5|3IsIll§1lsi|s|§1£|§1IIslsl?1W '[^W^Illi\±Wi|§]j|wfe]8:|I5|iti£|?=1g|i|glilII[salillsl!B:s:lI s: Is: Il§lll;Is!8:1S|Is£1glIIsls: Isls)sli\slIIIswlsift;llii^18:1s\&1£'s.ss: I£11| i|?|5|ssls:S|s:|s\IIIswlsiI;slgs8:111s:sjsigI;s.\^1CO3|litI!s;|S||£|§1s\§1I § Ilgls|lsi|s|81|g|S|Ss|s£1Slsl8:18:1g|S|IS:lsi&1?1s58:1slIg|&\?I§1Mc^l!l^wsillIIgwlsia;lsl!g1£ISIsfcg\i[iWi§[§1sslfeSlgsl'sgl§ti- n0( )0 c0IT>Illls'1CL001a.wLLa-5liIIuIguD;co00cmQ-IIi[^in00T—!§I-IOSt'iozei.OESI.OOELOEI.I.021.1.001.1.0001.Iro006£g008§c/5ag ^ooz8£01.9s.0o^sroozsOSt02^8ZZZll'.loi.0..O.D£ooz060g?gg0s^^o-(U) UOBEA913 /•^)^nC1")I? Iuls'1CL"1Ua- , a. jr§1I0<CL1^01inc^cmD-li0"E\sincoT—;§u§"OSt'1.1-0/E1.0££1,OOSI-0£ l.1.OSl.t001.10001.§srm.. •006£s008s."Q§ooz-ss01.9suOVQcoozs^^_OS170^8low0...OQ£ooz-06s?gss9r^^^s.•<3-0(U) UOfteAS|3 ^^0(')u^LLa_CLu-g,gw••£us0LUu0r§^0^\. [OZ£t0££1.ooeiaoe i-i-8021-1-001.1.Q.000 ^uQ;coT006Cslgs008c:^sro.2Q.0§ooz•ss01.9cwu0owCD£3coozsIDco0005170^soof.0O.Q£ooz060£89gg^t^1^.t^r•d-(y) uo!)EA3j3 ^0u-a-ga-a>gs'6-•Ecouu-IUJOSft02-E1.oeei-OOEl.0£ 1.1.[sozn^oonQ-ua:0001-co^1--u<t>U)0060Q.£g0-s008^sa>."£a§ooz0()•u8cs501-9 IxJ=co0coOfrS•rocCDa.ozsc"0OSt7-sosrco_J::OO£L§in03060o.oeooz0609ss^s^gi?gi?h~u^^(y) uofteASig ^n0u r.!suorco00IsCLdLUy- i u-a. l a: j" !^S [0sfc Wg1*|*i(s \~ sIf^rorg-fZ0co0)nCL T-g•V,0)c:w^ingsu££u^ gp.t~^TnI,inI]cocos0;6q1.0-g[s'3-[s-s-s[§.;..:-!. .;.|.:..|- ....------f I I) cogs80sosinnocou-inocoinnocoinnocoicooocooor^.r^rs-h~cDcoco(£)u~)LnLnu~)'<d-r^^-^-r^.r^.r^t^r^.t^~h~i^-(^~N-r^-fs~r^-N.•d-'d-'*'t^''d--^-'!t--^-^f^'-<t-'<"<fd''d'-«tg3m^u SCt: "sl-fnrc Iil-DslII^fe(U II-" "in o;008u->s3IsCL I CLISi5-•tr.0- Jcos0JSw•-^£~iCDm-g\-s0[s-s-sCMCsl-s8sT. I 1 [i|'ifi] i; T-i-i [i I ( |rT"rl 'i' I i) 'i'l 'I'noooLDcooGOLnrooooLOrooooionoa)CDoocooooork-.rs-^-h~.c£)c£icDCDU~itou~)Lnr^r^t^-r^.t^.f^i^i^.f^r^'<t-^t-'^-'^-'^'<t-^-'<t-<d--^t--<t-^'^-0gjg+3sco(y) UOREA913(y) UOHEA913uIsa-uLUCLw: LLa- ^s |5-sI."ri" s<sQ-'5.ugQ:nco03'ss:8m^a.§:ssc:as10cos•J3gu og§:^t-O^t-;1"*LOIIIGOwinscr0LO n o oo in n o oo in co o co LO co o oo LO m o oo incDc^oooooocoh-r^r^-.r^.cDCDcDcDLnLOLnio^t^t-T§-s[s-s-sn-s[s-s-g0cDc^ooooooGOh-r^r^-.r^.cDCDcDcDLnLOLnior^ r~-1~~. r-r>-1~- r~-tt^'<d-^l--<t^^^^'<tTt-^-^-^ r^(U) UOBEA9|3g ^sI^swIsa-"UJy- i"-0- , Q:w IS§ iusIfc Wl^*i" |'= iS<Q-§ucE 2CO Qco^t:£§^§B.Q.c0(DinD.us|?A_:O^fco "~TwIin K | ---:co$600Ts:[s:^g-}s•[srTi] ilI III —00 LO CO CrooooLorooooLOrooooLOcooooLOooGooocois~-r^r^.r^~cDcocDCDLnr^.i^.r^.t^.i^f^.i^r^.r^r^r^-r^-r-h-"^'^^•^••^-•^-'^-'^-'^-'•d-'tt^t'^-^f-'^t-^-'^-tt-[s ss0 W-s-s-g-s0LOLOLO^r^~ r^~?(y) uoi}eA9]3 0uI3^1!1sl^1ni IE 1co^ 00 j^1.s§-6?°"a.a>1^"LUy- i u-CL ; D.w0-sl^w§ei" eg':•10s. 0^)-U-)-§^§n^§-" g^ I§^p^sro 0 ooco co r^. r^-^t--^-^r t ^ •<•o co LD n(^.tOtOCDN~ tsh~C-;-so co in n o co inCD LOLO LO u-) ^ "d-0i^r^-1^ r^ i^^- ^r(U) UOREA913I5^u ^LL£LLU0Q-Mu-<ssw•fs.sII±S!?"s-^ 2^ ^cilws?1coi"!+LO00coIIMD;l,..ij..I. .i.:.. i..|...,l4.i.-.|.--""-- ••_o.^-insA.-„.._;•••!•••"""-""•""•"•""I^D-uLULL | LLD- I Q:w I ^^ 16swff" s|i |i I 1 T-I- 1'T' I' I'l '1 1 I '1' I'l ll'I 'IIIJInoo3LonoooinrooooinrooooinroooOLO01CBC0000003N.l^r~-l~~tD(DCDCOLOU-)lOin^t-^t-h-^1-^t ^t- '4-^t-^-0i»-r~~^l-'d-(y) uoitBAeig•^$uCd00"g,11^Q: S0uTT§:[s:i^-s^}8-^ s[§^-g•^sK>S Iin^ £§5^ 31^3co—Jin00T~60IBl• Otl-§1II • :• !• •:[SI?0^n^-s^-s--?•------••;-•I'r'i ' i ' iinroocoinnoooinmocoinnocoiU~l^0>gggs0(DU1in^^N. r^r^ r^-r^ i^ r^^••<t(y) uo!}EA9]3Is^uLU0- iLW I ^N !uss."s*t" sgu01co".I":§S wslij" ^1^co_JLOco8I :ins. o ^riniII I I [I0 GO LD COIcuw's^s0-^n^tsir^-g' I ' I) 00 LD•^f ^t-0cncoo3Qocor-r~r>-^-cD(DtDr^ r^.tt-^f''d'^)-^^t^i-'3-^i'^l-^t'^l--<fd'^T^-^--^-tt'<t^i-(y) uoffeASisM nuQ-iuLUQ_LL0- j^151swin9f0 r s<a-uD;co00c_roCLi01CO_Jin00^—00sa"§.1'sni0Q:s105IIwQ:^M—Q^...,.-:——10ssr§^s^§[s's^s[s^-gg"]""-"1 [Ij ^-)1 I >1 I II [I I; I I['—[lll))jLnrooooLOcooosLnnocoinnocoLOio)CT)cncooooooo^-.r^r^.N.coccicDCDiOLnLnLn-<t«^-r^f^-r^r^.r^.r^i^.r^.^i^f^.r^r^t^t^.i^•^-•^•^-^t'd--<'^''!l--^--<t'd-^t'-d--^'0(y) uo!»EA9[3I5i D-1 l.9I LUD.wD.•'s0ilte11£u I --sw^-1—i£1u °-Q; Scoco1,:.,,i• }HcJ°Q- t~:.. I"i0I^i §Ill^?S a 2§ s• 0 •<»•"!^UD 00 0 00 LO ro o 00 LO co o 00 in rr) o oo u"> co o oo inoic3iooo3cocor^.i~~i~-r^.tD(DCDu3Lnu-)inin-^^-';t-<t^--^"^-'^-^)-'<t'<t-^'<d"<t-tt<^'^-'^-'<t'ld-'^-(y) uogeA3|3-I-?-g•s•§rr>s8ss0-+=;^sa>CL;"; LUu-D-wQ_^i5sfc Wj^l^0 i~ £<Q.uITcoCOIIc-tog Kgc-°003inCO§'I§niwI-^II^\3•0~!ti^»j -. Il5—^—0 I: : : I1^-1:-1.;..Ur§^0\-st§.lN-8[ssI ' 1'T'I ' ["''p I JT' I 'IT~T"'f J ]IT~Il|i i Jl' I 'InocoLnnoooinnocoint^-h-r^-cDCDCDtDLnLninu")i^.^.i^.i^i^i^.r^.i^t^.i^-r^i^r-^--^•'ct-^t-tt^-^-^Tt-^-^^t^'.t.^-^^tt^-^-^(y) UOBEA813•oIa- ia-" ISuj \ ua.wua=-sOTIi^rfss<Qa.u?or0scoca.cosd••gSy-~-trtTtT1^C D10sJO-cg^Q_§u^=s1 ,cwmw0 '3-0&^^&-£3^coininsCOw(K60Ti i|i|i|;'i |i] i|i |i i—p—-m—i 11 u i| oooLnnoooLOr^oooLnroocoiocooois~.h-is-.h-cD(r)(£)coLnLnioLn^-^f^.r^f^^-r^r^N.i^i^-r'^r^r^r^.r^N.i^•!t'^r^rt^i-^)-'4-^t'-q--a'^t"^-(y) uo!)EA3]3•^sw0ro•rl-s^-s^1Is IIL§ wl(N-s-g u.i§ wE g.ue 8w ^u '„'1^^U~)00§I3d^1S]coCO~£i Ia)CLuQ- i CL" 1:E0^scos*t" s1^3<D_^CO00g•O ^st-insI •ssIsnss§ggg> in in n o co in n oioinnocoi^-i^.r^r^.(DcocDcoLnLniou~)Td-r^^.i^i^r^t^-r^.r^.r^t^i^.f^r^'d-^t-(U) UODBAS130I3D-!2a.wD.uiJ!*i" s;.....I: il'\i.4-J-U-.-.^..lj-1Q-ctwss^ 0u i.I!'s?§}ICOa;i^•0-d--lit'Hi'lT§^\-s-^co-8^8^/ins^-s_._.^s-sLD rr3 o oo in n o co LOI I I j_l) m 0 ooIs; LL: a-:uLUy- IQ-^IsIjI •I0EQ$uQ;coco g^CT"IE .1 §=- i w ^£ Q: S£IswcCsiwocoincr?oooLnrf30oOLnrooooLOrr>ooo0)oooooooois~-rs-r^.r^.cclcocDCDinLOLnLO'^-i^r^.r^.i^.F^.i^-N-r^.•'t'd-'d'^^r^^t'^t'd-^t-^i'0^•^t-(y) uoffEASj^0^ m0 "w"U K-Z3(0—Iincos•O^l-§--.i....,.;-..;--!-!.---..---.....-.--.r§•o--§-snn-s §-" I-§ wM-s-8-s.: ..^ . .. .^ ..[T-I i 1 i|!|i |i| i-j-i-1 i j<fri i [ rj i ( ,j i-j i]r-j-i)iT-ij 0000 LD CO OCOLD^.N.h-(DCDCOCOU~)U~)^-N.t~-(DCDtO(OU-lint^-r^r^.h-r^.r'-t^N.N.i^.^-r^-r^.r-.r^-r^r-.N.r^-s.•d'^t-'fy-^t-'t^t'^-'t^i--^"^-•^-•^-•d-'!f-^t''it^i-^t-"t^f(y) UOHEA013I3ISIDa- ; a:y ; s§ iusm?l<i" t§I ;g°0 0 §:'1|:|;^1 T:::'I^F§ I -.---4-4-4-—----------^^ S •o^'c ,m•ii-!'l;-:l-ji'lfLwU)^K gu03 o0 71^ro'~>I;w ssincoT—60—-Jri^^§•Is[-3[" g-s §CMs0 W-^[s...^§hS-;••!••; "|":I'l 1] I] •—] 'I I !• I 11111]11LnrooooLnrooooinroocoLnroQ)cncncocoGooor^-is-r^.h-cDcocD(DLOLOLni^-r'-.i^t^-^r^i^.t^r'^r^r^i^.^r^.r'^i^.f^1^-^ ^1- '<t -^-^f-585i^-. ^ r^. r<^. i^. r^0t0g(y) uoi}eAe|3^i- uI5iu-! 0-: ui LULL. | LLQ- I a:w^--£ui ^lti" s±<Q_uor0000cmCL^0"co—ILOCO80^cI0a>wI0s.II^.;.... ..insTin§a'"^-L—;^^s[§[sn\-s(N^g-§s7 ' I ''T-r-l ' f ' i i-'i ' i ' r~^i ' i IT-I-1 ' I ' ('Tl ' I 'TLnnoooincooaoinc^ocoioncT)CDcncooococors-^-r^.r^cDCDCDCDu~)LnN-•<t^i--^-^t--<r'*-d-T'i}'^(y) uo!}EA9|30in^ItLLa-I"LUa- I 0- jw^ 0scoiI'i0gorcos!di "ua^ co".0) 0:=sco_JLOco—c§ITTTTjT1iT'pirj'„:..„;....-.;tO^I I II II I I iT^n-i-ilS§ggggStn'.p21ggi81S§glt81Sg?^t-(U) UO[}EA9]3-rl•}s[§-^'[§-s[s-g-s0I3LL0-!utUU. I Q:s i:=? lo?1 ss Ifc wl^i^" r is<"gl0000I-in$I03wc03a;te_^=3...,IsI I' -•],-^1.Wi1-•O^l-c^0^^ 5-I II g"? <5co t^00:;':-111-..;...^....mmrs-s0-sn-sL" g-sl-§ w-s-s?c^ o co LO c^ ocbu^n oroin ^cor--i^.^-t>-.CDCDtO<DininLDLn-d-^-r^-^•^-•!l-ffl-'<l-^-t^l-<Sl'^--^^-^t-^-fl'^t-d--<l--<t(y) UOI}EA3|30?IJ|n-I"UJLL I y_a- | Q:M? i5sI It 55^"•-T3w^" 1~ 1< s!{_Tco S-^- !^j 'r-sH;l:;g ^ § T .....;.-iI!:1^1-£ m^ g's uS Sin "TO ^00_o^rg\IirMB.-T§}s^}g-84CMT^"|i 1 ?'[ij I'[-T| i| 1 I IT"1 I 1^ n ' 1 I'T'I I ij i|ll 'i1no co inncnoocooocof-r^.r^-i^.cocDiocDioioinLnt^-i^r^r^.i^-h-.r^i^^-r^.r^.^t--!t-^-M-^'^f-sf!i'^t'^t'^i--fl-^i-^r^i-'a-^-^i'^tTr(y) uo!)EAS|g8sgs0gs IIinJ <c:mCL^ sjlII^- s1Dc-roQ_ct:Ia-0I-" &li-£3cossgIfcuLUy- i y.D- I D:^ !:=S : 0-sw§11i*f0 r sIQ-11s Ico^iCLKs "u g-^ 6^ §'—i inID IIco w§•o-^r(D°<-g^s0^-^^[s^-sh51:1i ' i '--)^'i ' [ ' i ' i ' i ' i 'i 'TT^ i IIB-I] ' i' iinnoosLoiCTiCDOOCOOOCOI^r^f^i^ r^ Is-r~. r^-1~--M'^t^t-'d-~Sf4--S)''!t-«T<t^--St''St-^'-^'t'^^t"!t^t'gggggssg?r^.f^r»-.r^-r^-^-^-i^~.r^0in?•d-(y) UOREA913I5a.I uUJ^!§LL.Q-U)ssit w^l*f^r ss\1;.0^1-a,<',»--TS}s•^§...,4grr)-^Mr\)0 00cncncocooscoi^.l'-l^f--n-nIs^-g-sCDOi 00 GO 00^t-1—rin•^t- •^t-0r^.j^i^.r^.r^.r^t^i^r^.r^r^f^-r^.f^.r*-•!r-^^)-'d--st'^l-^t--^--a-'!l-^)'-^t-'a-^t--*(U) LJO!}EA9[3ai: Q-id• UJU- i LLCL i a:W I ^$ ios.w^*tsfua:co00-"a:11u0(D_110co0.§in•'sIDwI0§TIIW 0)Q: °•0-vt I :~rs^Li'?ji |i l i]; -;-,-[ , 'i i j r-i-i •|i | i ] T-T^ I'l-l ' I i| i|i|inooOLOnoooLOroooOLTinoooionocoLOCDCTiGocooooQr^-t^.r^r^.cDcDCDCDiniou-iLn^r-t^-i^-t^t^r-N-r-•^^•^•^•^'^-'^•^^-'^--^^•(t^tr§[s0-s-s0-s I0 W-ssg0(y) uo»EAs|gfI3< ^^1® iits'!y-a-0LULLa.w" gmllt E II ~1^ s. I^-0^ sJSii^0^!^ IT"in -c | —!§ §.;:!81 y-:..:..ja .1. •"s?LLwCLsus0•[--i |i i i i i-n i inn--i ij 11 111 |ITI 'ii-n-r i' I'l i icoinroocoinrooooLnnoQoooooco^-r^-i^r^.cD(.ocD(Dinu~)Lnio^tN.^-i^h-.i^N-l^r^^r-.i^-^-r--'<t-^-^-^--<tTf'^-'^-^}-Tt'^--<t'^-(U) UO!}EA9|3Tg^?[s[s|i,[s I\-§ wCM-g-g-g0CD uI5^!2a- I CL J" ^3. ;u-aswIis1s Ic< sQ; |00 IDrol'^-' u1^ ffl5i I0) Q:3 s-^8ins.0:^1-§1Km'^.in-$l§-sn^-g^ss\T) C^ Q COtJT) C^ 0 00\^Cr) Qa3oocoi^-^--i^^-co<DtDCDintnu-)in^•^••^•'il-^t"i)--<t^i-'!tt}"d-^t--<"d'tt'^f-^f<t^''d'^t-(U) UOI}EA9|30•aIuUJLLQ-coCLI^Jsn*t^ r s< Ia- jsu sQ;§;!^,!js §a- •5-ilIIs sin "w^0.1.....§rI;..»-s10-s•§1n•sMCMg8s0C^CDCDCOOOGOaON.h-N.N.in<tfr^.i^.i^i^.r^r'-.f^.r^r^-i^.i^.^.i^-i^i^.i^.r^r^-i^i^^-•d-^'it^t'^--^--<t^t-'d-^t-^l-'d-Ti-^t-'3'^'(y) uo!}EA3|3§>sa-; 0LUQ-sa-OTss lfc -"j^ri" 1- s< sQ_ CD!1oo •£00c& ^cIswgIscoc-a)0£CD_Jin008Ia0s.i0I]warins•o,^--s'<•l§-sns sC^ -^s§ "CM§;•••"••li~A' I*.'I:r-j*Is-§0LnnooQLOrooooLnnoooLnroooouinoooinCDCTiO)oococooor^.N-r^r*h~cD(DCDCDiOLnLOLn'^-'<tf^.r*^-r^(^.i^r^.f^.r^r^i^[s^(s^^^^(^.^^^^..i^.'3-'a-'d-'fl-tTj--<fft^t't-sj-^fd-^t-^)-^t-^f^t^t-'<t(U) uogeAsigI2a: la:uLU15II§g^uda. m0^sc^ur'i'Iff"03-J ^in "co w1033•gwa=a.g-»?•^§w5 ICDJ.iIIi00tt:•;Ti^[s}s^ts I^§ wN-g-gcoooo in ro o:^^?D^Sco r~- rh~- r^ is~-co LO rooin in in50ingIs- r^. r^~^-•^-'^•^-•^'^^^-•<t<<t^t--^^-^t-^(-(y) uosEAa|3 uIs:uLJLLQ-wD-5scoI'i" &<CL^00co §s wn5§u ""D:3co—i u->sinco0.1.:,_^.•Otin^^§nnIs-^hsju-a-;0; LUa- | a:w : s^ !o-s§-wI •I" s^^°?CO 0gc -(uwg D" S? £I "^ ^ °s s0 "Mw a:=iCD_Jinco<t—60w•o'-^-in —•^••- --•• ...---.-1 i] ui|i| u' i:i i| i] i|i|iii 1 iT'i —n—T-Trr>oooooooor^f^-f^^-(Dcoc£?coLnu")u~)ir)'^(y) uoREASig•4"^"";"":" "'I""—'••""•"•-"••": i0^0^s --!Vn--g1^§.^g0-s-s^shsg^=!MI 1 [-r| 1 r-i [ i I'T| i i 'r-i-i | p-i ] F-T-noooLnnoooLonocooor^h-N.f^-cDcocDcoinLOLnu')r^is-1^- i-^i^'<d''<t^t'<ttt'^-<t'^--^-'tt'^^'^-Tt^t<<d-0(U) UOREAS133^?wu-ffiD.a.i^iO-swusuLUu^.8inu•s<<^a.Q-E•<}•u0tO£Q;cr[-§cncoco^0000s%n....._.Lg§bnM?£<%LSmrong•^E SinD-s<u£LS§wuOisssS c 8scL§w QJ; nc^u "" ^LD0-<tco§CDQ:£18£-5_L33s-corosL§$LOLO00co80int0hg0§00wCd0T3Is^uUJLL I y-a- I a. jrs]s§.wr^" s---•j-?1!-,ii';ii;"i'..j..,.Olt-' I I 1-I- I ' [*^T ' i lr-i i)OOOLD ro 0 CO LO-1-1 ( 1-T-T ( 1"[-1-\ 1-7 •(-Tl I I'I-ToooLonooou")rr?oooLDropcpLO0')COCOGQOOf^r~-.r^^.C£)CDCDCDU')U~)h~ l^. ^ r-N: ^-i^r^ j^-r-•<t^r^i-^t-^^t-^f^i-^f<t-o--s)'^f^--sr^t-'!l-(y) uo!}EA8|3_,..^gin^}§...^^g-" gc"[s I[s wF5-s-8-s•-[-i i i ~}~r~{ i | '7 ' I i'|—i [ I'I'-T-I r T-ITi I'1-T-1 I-I—|-TooLonocoLnrooooLOcooaoLnroocoioCDCDCT)OOCODOCON-l^.h~.h~.U3(DCOCDLnLOU~>Ln^-<<t[^-r--.t~~-l^r~.r^-i~-.l^-r~~r^-r-f^-i~'r-is-i^.^'^)"<t^t--^'^-'<t-<t^t-^^-^-^-^^t-'<t'<t'^-0(y) uoffEAS|3co ^->)nuI'DI5: LLQ-uiLua- i D- J|!5^-sSt Wj<"|*^u I ~m<Q_u0^0000c_mQ-c^01co—Iinco8'sIw^(0sDI0istgr§^^§^n-T-•o^sLOs^gCML§Ms§g0I [I [I]1)111IJ 11II IIj IIl]lj—]lllllinnoooLOroocoLOcooooinnocoLnnoooLnLtoicncocoo3cor^i»-r~.[~--cocDtOtomLnLnLn-^-^-r<^i^ r^ r^ r^. N. i^^-^••fl'^t-^-'sl-^t--fl'^t--^'(y) uoREAsigIs! T—lu-a-uIDLLCLco< sQ_ SIIco00."^ ss^£ 0CDLO ""^g•O'sf0010sscofca.^d)••Esuu.§inLS'»^§•d-^sco^8npgCMi^§CMgsi1(Ds'y-0-;u; LUy- i LLa- I a:^|5s§ lte -w^1i*^" 1~ iSguQ;00coIIssgggggggsssggsgggssg?^'h-.r^.^.^r^-r^r'^i^i^.r^.r^.i^.r^.r^.i^.f^.r^-r^r^.r^^i--st-^t--d-^t^t'^i-^t'^fsi''!i-^r^)-^t'^f^'-d-^t--d-^r^r(y) uo.4eA8]30cJOQ_c-a?0i3co_Jin0300Is^ICL§!IgIIwQ;r§[s0n^°^. o-i^-....10-^^^§$$5m 'I'I'i'iiii I'l'i'lrooooLnnocoinnocooooo QO co r*-.•st-^i-^t-.^§PtM Ssco^§(Nsss05roocoi^r^f^^-cDcocDCDtnu-itnin^tr^-•d-^t(y) uo[}eA9|gs^u-wu-teg)Q- ,a-^^•fD.•'Ew0JisuLUu,_.,§LD<^Q_'s•it-0sCd^§w03•<•030.^ssnT35L8c:smng>a.vss0NT3sscw&g^$0£nqD_•O)s8roI]V)8^^..^..,..L..,..i_..._^^^^^KLOT"036ss0qi0' I ' I1 CO LO•^t ^[11 I II [I]! [l[lj I] Ij 111 j I I lllllll[finnoooLnnoooLnr^oooLOrooooLOrooooLOCnCDCnoOOOOOOOh-N-ls~.f^.CDCDCDtDLOinN.i^.i^.r^.r^i^.^-^-^N.i^-r'-.r^-r^.r^.i^h-r^i^i^.r*^'^^^T)"!i"!r^i-^i'^i-'q'^i-^i-'!r^!--^t-^f^-^-^(y) uo!}BA9]3CD N:\5659\005 NWX Phase 1 Major Sub\04 Design\Flood Hazard Analysis\Table of Contents.docx APPENDIX 3.5 VALLEY WEST SUBDIVISION- PUD DRAINAGE PLAN