Loading...
HomeMy WebLinkAboutDesignReportPart4_021221 § o / IL a. }2 z \ / k 7 \ ® N Co Cl) 6 7 7 ! 7 ) ƒ � « n « 6 § 6 \ } E 2 } } \ R I § m 6 \ a § � / 2 a 7 « J P. k \ ) k cu IL 0 CD / 8 ƒ / k § 2 kk / J :E to t 2 o ■ G 7 2 00 o 0 o c o S CL ƒ G ® S � § , - 15 2 ® § < < 2 7 § j \%\ /\k &\\ / o / � § % ° o o® - 2 'ccE 5 :; « » } c /f> k �£ƒƒ co �k { /// { ƒ®k #§2 / $ �M . E \ m� �\ /� /C. � i . \ \ \ i ƒ o J u § � $ ) u / Q / $ a $ ® k � W) nil 250 Soll Survey nonplastic; 10 percent cobbles and 40 percent pebbles;slightly alkaline. Major Component Description Range in Characteristics Surface layer texture:Loam Depth class:Very deep (more than 60 inches) Soil temperature:43 to 47 degrees F Drainage class:Somewhat poorly drained Moisture control section:Between 4 and 12 inches Dominant parent material.Alluvium M01 is epipedon thickness:10 to 15 inches Native plantcovertype:Rangeland Depth to seasonal high water table:24 to 42 inches Flooding.None Depth to the 2C horizon:20 to 40 inches Water table:Apparent A horizons Available water capacity.•Mainly 4.9 inches Hue: 10YR or 2.5Y A typical description with range in characteristics is Value:2 or 3 moist; 4 or 5 dry Chroma: 1 or 2 included, in alphabetical order, in this section. Texture: Loam or silty clay loam Management Clay content: 18 to 35 percent For management information about this map unit, Content of rock fragments:0 to 5 percent pebbles see appropriate sections in Part 11 of this publication. Electrical conductivity(mmhos/cm): 0 to 8 Reaction: pH 6.6 to 8.4 Bg horizons 504A—Meadowcreek silty clay loam,. Hue: 10YR, 2.5Y, or 5Y 0 to 2 percent slopes Value: 3 or 4 moist; 5 or 6 dry Chroma: 1, 2, or 3 Setting Texture: Loam, silt loam,sandy clay loam, or sandy loam Landform:Stream terraces Clay content: 18 to 25 percent Slope:0 to 2 percent Elevation:4,000 to 5,000 feet Content of rock fragments: 0 to 5 percent pebbles Mean annual precipitation:10 to 14 inches Electrical conductivity(mmhos/cm):0 to 4 Frost-free period.,95 to 115 days Reaction: pH 6.6 to 8.4 2C horizons Composition Texture:Sand or loamy sand Major Components Clay content: 0 to 5 percent Meadowcreek and similar soils:85 percent Content of rock fragments:35 to 75 percent-0 to 10 percent cobbles; 35 to 65 percent pebbles Minor Components Reaction: pH 6.1 to 7.8 Bonebasin loam:0 to 5 percent Rivra sandy loam: 0 to 5 percent -� 510B—Meadowcreek loam, Ryell sandy loam: 0 to 5 percent 0 to 4 percent slopes Major Component Description Surface layer texture:Silty clay loam Setting Depth class:Verydeep p(more than 60 inches) Landform:Stream terraces Drainage class:Somewhat poorly drained Slope:0 to 4 percent Dominant parent material:Alluvium Elevation:4,200 to 5,950 feet Native plant cover type:Rangeland Mean annual precipitation:12 to 18 inches Flooding:None Frost-free period:90 to 110 days Water table:Apparent Composition Avai/able water capacity.Mainly 5.1 inches Major Components A typical description with range in characteristics is Meadowcreek and similar soils:85 percent included, in alphabetical order, in this section. Minor Components Management Blossberg loam:0 to 10 percent For management information about this map unit, Beaverton loam moderately wet:0 to 5 percent see appropriate sections in Part 11 of this publication. / 0 I 10 2L) 2 %-�& G w 7 ice` 2 � f �I© o # % % 00 ■ w }' _j[\ �LL _$ / � )0i m 1 ° e a It. U. \ » r ■ A» � § $_ SL�_ 2 II \ 2 %%/u § ) � § ! /ci ) i §� ) 2 ! , „ it OWE Z / � / � � � �` > \� uw t � 2~ a ■ \ \ } / \ } ) \ ` §ƒ \ � $}k § ` & ■ • m / t to: k2 § 2 (LL e 7 7 }£�=k f i { Ja« ! a \ !7 m # ! /\ma / { , E ■ ~° & °a-2- w § C, $ q za7: f /® £ ƒ � I f m {f 5 \ JA88 9/ k) I. \�3� | \ / 2 ) 3 \\/ \ a k �0 \ k �® / ƒ -6 2 76 0 E i �/ 0 / } / 2 J] $ f LL _� k i go }7 ) \ f\ /f \ \ } ! ._._. E J \ ! i X 0 i °° ( , -j 2 $»�bG R j)q ; § Q§ ® ° £ $!/& S ] � f k�® @e ) iU. , 08 m f ��0- k � ®k©k■e �■ f \ edt§j U. 3 / _ a\ � §w§ § i4 � k /oa§ §m § «2 § % + t k3__/ k I 2 # % $ m2�§[ @ �_ Z $ _■ o ! 0 $ J 7 ! ® } / 3 )��� � It ` §/¥ K 2 I § � LL ) - a B � I { k ice \ « - / � m# f \� i - �ƒ k $ - /S--f |k \�cc; k ff { ) 2� | §)} 2 \ \ CO 0: ! " Z I\ t § cy $2/ §a2 k ) of 7 ' 2r2 2 f ƒ 2 �� I� s I ) 2 2 $ / k ) r 2 | I ƒ - Z` � B ® 356 Soil Survey Flooding:None Parent material. Semiconsolidated, loamy sedimentary Available water capacity.Mainly 5.2 inches beds Slope range:4 to 5 percent A typical description with range in characteristics is Elevation range:4,3100 to 5,500 feet included, in alphabetical order, in this section. Annual precipitation:10 to 14 inches Management Annual air temperature:41 to 45 degrees F For management information about this map unit, Frost-free period.•95 to 115 days see appropriate sections in Part 11 of this publication. Taxonornic Class: Fine-loamy, mixed, superactive, frigid A.ridic Argiustolis 457A—Turner foam, moderately wet, 0 to 2 percent slopes Typical Pedon Udecide cobbly sandy clay loam, in an area of Setting Udecide-Cabbart complex, 15 to 45 percent slopes, in an area of native rangeland, 1,600 feet south and Landform:Stream terraces 1,400 feet east of the northwest corner of sec.20, Slope:0 to 2 percent T. 1 N., R. 1 E. Elevation:4,300 to 5,200 feet A-0 to 5 inches; grayish brown (10YR 5/2)cobbly Mean annual precipitation: 15 to 19 inches sandy clay loam, very dark grayish brown (1 OYR Frost-free period.,90 to 110 days 3,12) moist;weak fine subangutar blocky structure; Composition soft,friable, slightly sticky, and slightly plastic; Major Components many very fine and fine and few medium roots; 10 Turner and similar soils: 85 percent percent cobbles and 10 percent pebbles;slightly alkaline;clear smooth boundary. Minor Components Bt1-5 to 7 inches;grayish brown 0OYR 5/2)clay Beaverton cobbly loam: 0 to 5 percent loam, very dark grayish brown (1 CYR 3/2) moist; Meadowcreek loam: 0 to 5 percent moderate fine subangutar blocky structure,hard, Turner loam:0 to 5 percent firm, slightly sticky, and slightly plastic;common Major Component Description very fine and few medium roots;few faint clay films on faces of peds;slightly alkaline;clear Surface layer texture:Loam smooth boundary. Depth class:Very deep (more than 60 inches) Bt2-7 to 12 inches,grayish brown (I OYR 5/2)sandy Drainage class:Well drained clay loam, dark brown (1 OYR 4/2)moist;moderate Dominant parent materia/.•Alluvium medium subangutar blocky structure; hard,firm, Native plant cover type:Rangeland moderately sticky, and moderately plastic; Flooding.None common very fine and fine and few medium roots; Water table:Apparent many faint clay films on faces of peels;slightly Available water capacity.,Mainly 5.2 inches alkaline;clear smooth boundary, Bk-12 to 32 inches; light gray(2.5Y 7/2) sandy clay A typical description with range in characteristics is loam, grayish brown (2.5Y 5/2) moist;weak fine included, in alphabetical order, in this section. subangular blocky structure; hard,friable,slightly Management sticky,and slightly plastic; few very fine and fine roofs;common medium masses of lime;strongly For management information about this map unit, effervescent;moderately alkaline;clear wavy see appropriate sections in Part II of this publication, boundary. Cr-32 to 60 inches; weakly consolidated sandstone. Udecide Series Range In Characteristics Depth class:Moderately deep(20 to 40 inches Soil temperature:43 to 47 degrees F Drainage class:Well drained ) Moisture control section:Between 4 and 12 inches Moliic epipedon thickness:7 to 10 inches Permeability:Moderately slow Landform:Hills, sedimentary plains, and escarpments Depth to the Cr horizon:20 to 40 inches 31 JAN I IF Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 0.41 122 12 110 7 2.5862 0.33 137 17 120 9 2.1964 0.28 150 22 128 11 1.9278 0.24 161 27 134 13 1.7295 0.22 170 31 139 15 1.5759 0.20 179 36 143 17 1.4527 0.18 187 41 146 19 1.3514 0.17 195 46 149 21 1.2663 0.16 202 51 151 23 1.1936 0.15 208 55 153 25 1.1306 0.14 214 60 154 27 1.0755 0.14 220 65 155 29 1.0266 0.13 226 70 156 31 0.9831 0.12 231 75 156 33 0.9439 0.12 236 80 157 35 0.9085 0.11 241 84 157 37 0.8763 0.11 246 89 157 39 0.8468 0.11 250 94 156 41 0.8197 0.10 255 99 156 43 0.7947 0.10 259 104 155 45 0.7716 0.10 263 109 155 47 0.7501 0.09 267 113 154 49 0.7300 0.09 271 118 153 51 0.7113 0.09 275 123 152 53 0.6937 0.09 279 128 151 55 0.6772 0.09 282 133 150 57 0.6617 0.08 286 137 148 59 0.6470 0.08 289 142 147 61 0.6332 0.08 293 147 146 Storage Volume Required= 157 Calculate Minimum Surface Area For Storm Treatment Assume: 1. Non-flocculant particles 2. Settling velocity of 40 micron particles = 0.0069 ft/sec Design Release Rate= 0.04 cfs Minimum Area = 6 sf Criteria is met Basin Sizing (Pond 4) - Detention Water Depth = 1.5 ft Surface Area = 113 sf (From AutoCAD) Volume = 170 cf (From AutoCAD) 0 L� R Ro § LLUl uczUc $ % § U* ■ 1/ 2 f k( ■ ' \«g&iff 2 f kk}\§ § , ■ § � k 2 \ � 2 io e t �oJ� �� $ ILL )§ / \ _� f ƒ a k ; � 2 / CL ! U) 2 U. I ! k ° 2LL � f a g f | 2f/ | 20:w & f \§§ / t u If � 7 � I\a � w_ o m<u ' 2) ;� J ■ 3 k $ \) 3 u \/ t@e�d. } /\Q k ') '> 0 uj \ |�E/\o ! �} $#L/, f \§g/& o i � ) , 0 o= ! i +ate ° « 2 e 2 2 §)§ Q ®� § M j® 2- ( 0 $ a CD i �4 « 15 3 2 \ ! § ) ) & f ! ] - a! ® ® % \ � 1 § Z £ J ƒ / § )ko ©� \\ «Jf a \ 2 E \ \ ))A ! J !//f§ 9 m \ 9 % = � 3:w \ \ ` - °` ^ e ` ® E(/ # \ \ \ \ // \ \fit} & \ } \ } 3 7aCY �W _ / - \/yy ~ e " ` z j \\ / / //m o / / \ 0 7 / ` / / ) / ! =\E / / \ = 7 CE $ J3 \\ 2 \ {{ } ) / \ _ . J §± J o � §§ � U. i §j ■ i to k i�$ 7 ` § §� n ! u0" o ! � Lu ZwU ) <2 a ° Ix i �a I | ]§L , f 92��) $ �o ; o 2 |)§_)[ § J � % // !�\)[ 7 ■ a K `S£ 2 @ # § ■ � J i I ■ �� � 2 2 — }S_aa $ � \�)f§ ) � ��- = a 2 ; §j& , a f ° ! 0 ƒ 22 a «$ k ' ® & & . n �) a■ f 2 2t «— § / k $ ¥ }#.�» $ § f t \\« ' - _ 2 f & k % 7 n i I ■# f 7 7 § � k§) § §m ~ 1 w z\" ! R7/ f § a • i 23&� | 4 k)$ �2 � $a� | N cmi $ )§§ N \ J a E ; w ■ � § k o e $ 7 7 2 % ° I ) ; / / 7 s 2 k!k ! 2 $ } i k k 3 / I 1^ c� I U Y p w O U U a 1w J~ 3 I LL -1In m }uj Iu Ip�F�a J � V J� i0 1 C U' 1 VI (n > is li-pw� � N (3LLzU ci �o O IJ i c LL itl 0 0 O z LL N o U�---� v � oaLL i`3 d (� 'WO q U) UI Iq}O W 4! 0 w.i N 10 p O J LL 10 Y C d t J y = n II II II 11 E� I 3 x �7 d N N J } 10 Ln N z F 1���u:'v L w J O U E o � ttz I LL 0 �u N CD bN }} o p w r E 0 OIL�J� O r a j v1 0 4 H IN It II II II F c, io Jam ? H o ( 0 iZ Ut'II U. 0 U E 5 g c o I- m yyS $ n o yy © p ' ¢Km m n v N F' cL U L V 4 C C C m 1 2 Cc itl N Cp y O W HI_ Q� y p o A 3 (�p QC O N � �ptV �N' N I I 11 C C A N II C a. II ry 11 11 11 II 9 II Uy II II ( O 4 <U o :c yg O "'rs my J H �. m _ G00 v o 0 N V() Ft( LLFF ( J 1 lY m N o N 1 o ry - o _g' m 5 a?i 3 c 5 m U �U Uu i V u_ c y 0 0 o 0 �- w ( F- la a w asi Ci U U W N N d d C Q LL U. U U V I y r--_Y W 0 Y 00 U w �0 W N 1 0 1,^ N tV JR1� 16 S E Im� I& Z I i3 LL Z— a '4 a ) 1,°u.O fl i;a � a ad �v aic 6 O m -2 aN S ' ° r4i rn LL 'OOiV Mc 'S ° tO° d B a N !LLOWG gm 0U C a�'i �Ow2Ucc p 4!EL 4LLa. Sd n iO olf tO� A U) a f�E m Q1 7E2 � ry II II II 11 II 7 rp, tp.N S taps gyp1, g Vl U-�0.' ' � � 3` ZO Q S12 c 4& 1 $ mawm o LL b b 41 N U O O C FF II N U gr leEE A 9 e u u Fu 6 F� o gg11 m_yy W M b ; jGI p Y LL N rn O 1E. �g1 ZQ acT lbS s 2 g b Y N � O Iq0 WC, 2 LL o � c'i QU G e 1[} II �N5 cC� 0 a) :1 11 II II II II Oat II 11 11 • Y«' (CHUB ipNj1 U 8 v2 U�j D U 2 '�"l� u F= '2aa , Y00 1 WOW. Z2 N N [V O 3 C a U "6 4 as u° Z $ IS 1 I N LL y • ,C _ U as C e Td, c c LL v a a an d Cp N C Q N • LL 10 N I uj, a y •Z U E �c LL U U U 1 :' t7 U x Ow xY i ,Too tu w �m0w uw J di `y Z •- y IOw� m cc y N U Ih 1° m j�LL pwLL ¢� E Z�z 3 1$ I0 J yyy LL y CL i �G iw?J uN.. O OM V is OZ�c7 fV <J o IULL ° Lt �aOL N V uJ C) no o ffi .1.. .a p IInn w rt d +yd V I-00{{ 1 76 OwjLL O p 0 �j Q w 0 O fV al c U `[3 LL 03 y �pJi a m S 11 •p CO > �.1 .c c v+i a N mwl + p N n N N t0 I z a 4' ¢¢ Cl Y 3 c �o � wn a pv m $ � pNLL 2Z cay x n n x 4 In o m o 7E. m 7 1" O LL S C II�6 U N N td N ~ O �i I LL U IA O a E E N ' o � 8 _ N� i m 3 v e o �• In m dl m m N y b 3 C K C ♦ ., N C c y N o oQ¢J !: v E U o N��C� .� E a HH ¢ m 1v o 0 0 ai w n c1l a N o 3 m A 3 w aa m v d 3 ° u. of "'o 04 rq m a Q vi I O a J Z Z n In N C b �. 'C w N y O u)Z o y N u+ c 5 o a c It i m n x u n u u a 5 a a u u U y ¢ _¢o5 aS LL � �-+� ' d — —°aal -woo ti� S m Iku�' O`o Nb E ,r a N 2 U c a 11 u- -Fp U IL i.0 o T t_VT j O a .2 a0 $ 10 I� u d o LL --� }) ) , o b§w j wzn »6@w@ § 220 � R k IM§§L@ I � 2 /o btW' _ $ L)■ / 2 ! SILUm 2 �w !G- UU , f & $ \ @ 2 i`�� I !a ! $ 2 2 JJU'j U) # 7 of ��� ° 4 � ■ I B /a. tu ) \ }■QV-/ # ` > � § � ` 2 m_ a. . 00 / -J ■ ■ { _ $ ) & a to i ■ c 3R 4. k \ \SVa/ ! $ §77~° § • I £ ©�©QJ \ 2I\0i � b t k §* f a � ■§ 9 � § ■ f i k \) a 7 Ef �§ | ui I■ ) | Q f ■ �.--- � ■3 h§e § $§2U. //�u � 2 kJ k \ k � §§■ # 2 i7@uo Z e \ \o 2 �GLL i»guw ■ q)- / L§§ A o $ � I ¢§][ § � ` $ k LO � O � / W- ■ I k /I « o to hc� � /I ■ k $ • > & I / ! 02.3 k !y « o / ° U. ■ ® # i t 7§ k � \ ,I §ul § \ « )§ � \ ƒ }2«�/ ) , �� �§7 i zx- `2 \ viU) , | 3 100 | m ® Cc ®\ 2 a § w $ § \ \) ` 0©&3 }\ \ 7 ' § i � v / ( I § k k 2k )� f C /_� k )$ § , u r § %§§/E ) « � k �22k � / ice_ / k 1 a 1,W ru § %0Q I leiU. } IL� k a o i# ASL i \ k % 030 a 2 % m ) a tit ) qg� k $ \ & ( /§ [ § k 00 ¥ . 0w ■ 2 \ » \ k dtu« k. � 0U�. f i ; �u � ' } k / \ / j 13 k k / � # , / ƒ ) \ ! [ # ® k }�ci | { ( #33 / . a\\ � , { | - 2C,0 aA « or- =6 ER $ 3 ,00i aIL t� r e - ' E � §§ A ) 2 k | °2too )� = )/ \ ) § 2 § \ / ) f$ § § }o « \ ! } ) ) t ILL. § _ OL ' \ ' \ /\ \ 2 k )� / } k J) rS' Y f x 0 M Y Y Y Y Y Y Y X Y Y Y Y Y Y Y Y Y Y Y Y Y X Y Y Y Y X X Y Y Y Y Y Y >UA000000000000000000000000000000 cc) 000 of R ��pp tOpD �Opp tOpp 0 V d Oa � � M � et vC07M Oth V cs w to 000 LOp OOi OO MfO) O �ppMMOCO7McOi � �N NN � CD Q� NNNOn On NOnN � Of) OO> lA ifJhOCD ao COOln Nin � � ��yp Ch OM On NOC) tl"C st � ef V' RiA vsY �!' � V � Ori to ao a0 v �f On On �' V' I�: v <l7tp 3 'sic 3 �VA00A Y Y Y Y X Y Y Y Y Y Y Y Y Y Y Y Y X Y Y Y Y Y Y Y Y Y Y Y X Y Y Y Y 00000000000000000000000000000000 U O u' d ONMMMMMMn (n 00000000 1� 000hCV CA0 � . <O V' OOOOOOOu') OOOMMOLLCIO) n � �� NCDco rod. �Or00WNOM co v — r rr rM f� Ln tOM C O N CV N CV CV CV CV N '- Oo O+i tfj N M M 0 CV N M -M M r r N ^ Cvj r N r, r �•; r u) N N y'a CA CA Mfg O co co co M MOOM O On M M O M co N CO MMMOCnMMNM aO0 w 00 W 000 (D ODN OD C00 O00 OD 0 NM � Of100MMOONO�ppMM �Mp a CL U � 10t-: NNNN4 OUP A � V' Ontn1- OANtia MMOnNNOOtDOALLOjtOntn m "CVCVfoCo � tAtoLn000) 0-i DtnChcMm C') TNNMM � CM V)Lo ,O a- m oocor. i. �n ,nu� 00000000000 �nMv �nooau> ao 0000 O. � OtnOrNCD CD COOONOOh001� 001,- 001+ 0000 O r r 0 O r 0 r O r r O r r O O r r 8 O O S 0 0 0 0 .0 ��° $ 00000S00000000000000000000000000 YZ3 � o000000cod000000000000000000000000 OLn u '� Q 73OiI N vN� N MNNM NMMM_ _M � MMtnCnOoof 000 � _ NNN O O N ppOn O 00000NLOn0N � OhLf) 0mM NNMN 1? ONOnNnuNNNNCMNMM CO N On S M IOTO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0006606666 N V d 0 = y MMN Ml� Mh Mt-Ml-MM MNMN Q' h n N Cli 00 N N M NM.N- N MN rN rN rNrNN N v r VN �E NN) drN - 0TTNvTOVVvvM A r CA Cn V MM MM vi f MM Of 60 On M M OO 6 M M CD M CM MMN a m In 1\ r- hI\ n !` NN 'CF MMMMLO N N N N N N r y � � OA ti t` OA On h Or) c).n l(7 On` O NNNNN W;M? 0m NN WOOD W 00006 OD 00 %r T co CD 0000000 Q ti !�• N N N N N N n n h N N n n � � h et n n r 1� n n p- '0 6 O r r r r r " 0 0 r 0 r r 0 0 r 0 0 N N N N O O CM ch O C M O O C O = N LL C M M co M M T O'7 M ` M M M M M M M M M M M M M M M M M M M _M M r r r r r N c c 0 0 0 0 0 p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O C O o 0 o O C o 0 0 0 o O G O O O o 0 0 0 0 0 o O O o o O O o o O O o .0 C ` f0 w O71 E C NN OOn to In In OANN00 NOn On NNODNN rNNNNCyNN 04 N- CNr yr r r r r r r r r N N N N r r D a w J N N 2x (� LLWOUmmm � OaCL CL000z2JYYY � - - - �000U ooF�- sxzxxxssxx � Wsx SxsxSsxsxSxssxLL > f0 2M2 r2 .� m2mmmL = J2 � J � T22r � � � � 4d� 2r � � � gs � x plc o N 0 Z Z wto 0(n cn >o�� '��a a zxZ�x" zwazwsasO O � Yzw�Y�� ` N xwW wW wW W UUUUwO n sti wxw x ww > S »� ww wLLJ z2 m gzz zz w - - - mcnNcn 'O�„, MNrN N c H F- UM N dvvvvvvvv � v 0000 mN n07 N NN v 0 LL JJJJ mmmm Storm Sewer-Serviced Lots Worksheet Meadow Creek Basin 14, 25-Year The following lots will have storm sewer service provided. All the lots are dense residential lots and runoff was calculated using the 25-year storm event. Block,LotffIAI T Tc Intensity at 7c Runoff(Q) Service Location (min.) (in/hr) (cfs) Upstream MH Downstream MH BIk 2.Lot 3 18 1.69 1.70 MHG BIk 2.Lot 2 18 1.69 1.90 i MH F BIk 2.Lot 1 18 MH _1.69 1.65 MHF MH EBIk 4,Lot 5 16 1-1 82 1.35 MH J MHI 1 i i f i. 'A ., .A� $$g�gSSjjrr. r 1 I-C Ns Gutter Capacity Meadow Creek-Phase I Basin 4-S.27th,S.28th,S.29th,Graf St.,Alder Creek Dr.,Goldeneye - 7,5' T O.C. 77 1D 35' T5' o.125• 3%Crown Slope Catch Curh Not to Scale 5.27th 0+00—22+0p [Hydraulic 27th 22+00-26+43 Parameters Parameters Cross Sectional Area(A)• 1 275 SF al Area(A)- 1.275 SF Wet Perimeter= 9.35 FTt Perimeter= Hydraulic Radius(R)= 0.136 FT 8.35 FT Manning's n= 0.036 Radius(R)= 0.138 FTLongitudinal Slope(S)= 0.6112 FT/FTanning's n= 0013l Slope(S)= 0.01a FT/FTGutter Ca ac Mannin 'sE uation ci Mannin 'sE uationQ=(1.49/n)(A)(R^2/3)(S^.5) /n)(A)(R^2/3)(S^.5) 4,09 cis 5.16 cfs Graf 0+0 0.7+0 A id Creak(Worst Case) Parameters Parameters Cross Sectional Area(A)= �1.27768F al Area(A)= 1.275 SF Wet Perimeter= 35 FT Hydraulic Radius(R)- 0.136 FT t Perimeter= .135 FT Manning's n- 0 013 Radius s n- 0.136 FT Longitudinal Slope(S)= O.D05 FT/FT anning's n= D.013 l Slope(S)= 0.005 FT/FT Gutter Ca ac( Mannin 's E uation ct Mannin 's E uationQ-(1.49/n)(A)(R^2/3)(S^.5) ln)(A)(R^2/3)(S^.5)Q= 2.73 cfs 2.73 cis S.28th(all) S.29th(all) Parameters Parameters Cross Sectional Area(A)_ ' 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter- 9.36 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0,136 FT Manning's n- 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0196 FT/FT Longitudinal Slope(S)= 0.0196 FT/FT Gutter Capacity(Manning's E uation Gutter Ca ci Mannin 's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.48/n)(A)(R^2/3)(S".5) Q= 5.41 cfs Q. 5.41 cis Goldeneye(0+30-4+00) PQ oldeneye(4+00-7+00) Parameters Parameters Cross Sectional Area(A)= 1.275 SF ional Area(A)= 1.275 SF Wet Perimeter= 9.35 FTWet Perimeter- 9.35 FT Hydraulic Radius(R)- 0.136 FT lic Radius(R)= 0.136 FT Manning's n. 0.013 Manning's n- 0.013 Longitudinal Slope(S)= 0.0194 FT/FT inal Slope(S)- 0.005 FT/FT Gutter Capacity(Manning's E uation act Mannin 's Equation Q=(1,49/n)(A)(R^2/3)(S^.5) 49/n)(A)(R"2!3)(S".5) Qa 5.38 cis Q= 2.73 cfs Gutter Capacity Meadow Creek-Phase I Basin 14-Enterprise Boulevard T.O.C. �— n T�s• o." .35' -X-- �'� 3%Crown Slope Catch Curb Not to Scale Enterprise Blvd.1+76-7+00 Graf 9+50.25+37 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.36 FT Wet Perimeter- 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)- 0.136 FT Manning's n. 0.013 IV n- 0.013 Longitudinal Slope(Sj= 0.015 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Ca ae Mannin 's E uatlon) Gutter Ca aci (Manning's E uation Q-(1.49/n)(AXRA2/3)(SA.5) Q-(1.49/n)(A)(RA2/3)(SA.5) Q. 4.73 cis Q. 2.73 efs �i t f t 3: Phase I Drainage Basin-14 The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Pre-developed Conditions Area= 16.26 Acre C= 0.2 Open Land Calculate Time of Concentration(T.) Pre-developed Conditions: S=1.90% C=0.20 Open Land Conditions Assume: L=2000 ft. (All overland flow) Using Equation in Section II-E-6 Tc= 61 min,(overland flow) Channel Flow Using Mannings Equation,n=0.035,S=2.00%,calculate channel flow L= 0 ft 1"= ,.9� ft v= ,r8 ft/sec TC= 0,00 min Total T.= min Calculate Pre developed Storm Intensity at T, From Figure 1-3,using the 10 year event, I=0.64T,'o es I= 0.63 in/hr Calculate Pre-developed Peak Runoff Rate Qio= ciA,using the above parameters. 010= 2.06 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C Value Description Area Acras 0.50 Dense Residential 16.26 Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (co (c0 (c0 5 3.2185 26.17 7850 618 7232 7 2.5862 21.03 8831 865 7966 9 2.1964 17.86 9643 1112 8531 11 1.9278 15.67 10344 1359 8985 13 1.7295 14.06 10967 1606 9361 15 1.5759 12.81 11531 1853 9677 17 1.4527 11.81 12047 2100 9947 19 1.3514 10.99 12525 2347 10178 21 1.2663 10.29 12972 2594 10377 23 1.1936 9.70 13391 2841 10550 25 1.1306 9.19 13788 3089 10699 27 1.0755 8.74 14164 3336 10829 29 1.0266 8.35 14523 3583 10940 31 0.9831 7.99 14866 3830 11036 33 0.9439 7.67 15195 4077 11118 35 0.9085 7.39 15511 4324 11187 37 0.8763 7.12 15816 4571 11245 39 0.8468 6.88 16110 4818 11292 41 0.8197 6.66 16394 5065 11329 43 0.7947 6.46 16670 5312 11358 45 0.7716 6.27 16937 5559 11378 47 0.7501 6.10 17197 5806 11391 49 0.7300 5.94 17450 6054 11396 51 0.7113 5.78 17696 6301 11395 53 0.6937 5.64 17936 6548 11388 55 0.6772 5.51 18170 6795 11375 57 0.6617 5.38 18398 7042 11356 59 0.6470 5.26 18622 7289 11333 61 0.6332 5.15 18840 7536 11304 63 0.6200 5.04 19054 7783 11271 65 0.6076 4.94 19264 8030 11233 67 0.5957 4.84 19469 8277 11192 69 0.5844 4.75 19671 8524 11146 71 0.5737 4.66 19868 8772 11097 73 0.5634 4.58 20062 9019 11044 75 0.5536 4.50 20253 9266 10987 77 0.5442 4.42 20441 9513 10928 79 0.5352 4.35 20625 9760 10865 Storage Volume Required s 11396 Calculate Minimum Surface Area For Storm Treatment Assume: 1.Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec Design Release Rate= 2.06 CIS Minimum Area= 298 sf Criteria is met Basin Sizing(Pond 14)-Detention Water Depth= 1.5 ft Surface Area= 8672 sf (From AutoCAD) Volume= 11480 cf (From AutoCAD) Phase Drainage Basin-4 The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Pre-developed Conditions Area= 35.42 Acre C= 0.2 Open Land Calculate Time of Concentration(T.) Pre-developed Conditions: S= 1.90% C=0.20 Open Land Conditions Assume: L= 1780 ft. (All overland flow) Using Equation in Section II-E-6 To= 57 min. (overland flow) Channel Flow Using Mannings Equation, n=0.035, S=2.00%, calculate channel flow L= 0 ft 92 f; v = 5.68 fU`sac T.= 0.00 min Total T.= min Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I=0.64T,o ee 1 = 0.66 in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters. Q,o= 4.69 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C Value Description Area(Acres) 0.35 Low to Medium Residential 35.42 Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 39.90 11970 1406 10564 7 2.5862 32.06 13466 1969 11497 9 2.1964 27.23 14704 2531 12173 11 1.9278 23.90 15774 3094 12680 13 1.7295 21.44 16723 3656 13067 15 1.5759 19.54 17582 4219 13364 17 1.4527 18.01 18370 4781 13589 19 1.3514 16.75 19099 5344 13755 21 1.2663 15.70 19780 5906 13874 23 1.1936 14.80 20420 6469 13951 25 1.1306 14.02 21024 7031 13993 27 1.0755 13.33 21598 7594 14005 29 1.0266 12.73 22145 8156 13989 31 0.9831 12.19 22668 8719 13950 33 0.9439 11.70 23170 9281 13889 35 0.9085 11.26 23652 9844 13808 37 0.8763 10.86 24117 10406 13710 39 0.8468 10.50 24565 10969 13596 41 0.8197 10.16 24999 11531 - 13468 43 0.7947 9.85 25419 12094 13325 45 0.7716 9.57 25827 12656 13171 47 0.7501 9.30 26223 13219 13004 49 0.7300 9.05 26608 13781 12827 51 0.7113 8.82 26983 14344 12640 53 0.6937 8.60 27349 14906 12443 55 0.8772 8.40 27706 15469 12237 57 0.6617 8.20 28054 16031 12023 59 0.6470 8.02 28395 16594 11802 61 0.6332 7.85 28728 17156 11572 Storage Volume Required= 14005 Calculate Minimum Surface Area For Storm Treatment Assume: 1. Non-flocculant particles 2. Settling velocity of 40 micron particles=0.0069 ft/sec Design Release Rate= 4.69 cfs Minimum Area= 679 sf Criteria Is met Basin Sizing(Pond 4)-Detention Water Depth= 1.5 ft Surface Area= 11576 sf (From AutoCAD) Volume= 15510 cf (From AutoCAD) Phase I Northern End of Enterprise (176')-2 ponds The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Pre-developed Conditions Area = 0.133 Acre C = 0.2 Open Land Calculate Time of Concentration (Tj Pre-developed Conditions: S= 1.90% C = 0.20 Open Land Conditions Assume: L= 176 ft. (All overland flow) Figure 1-1 16 min. (overland flow) Channel Flow Using Mannings Equation, n = 0.035, S =2.00%, calculate channel flow L 0 ft R = 0.92 ft v= 5.68 ft/sec Tc= 0.00 min Total T,= 16.00 rni Calculate Pre-developed Storm Intensity at Tc From Figure 1-3, using the 10 year event, I = 0.64TC-'-" I = 1.51 in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters. Q10= 0.04 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C Value Description Area (Acres) 0.95 Impervious 0.133 i Outfall Structure Sizing Used weir equation in Section II-2D of City of Bozeman Design Standards and Specifications Policy Q=CLH'.e L = Q/(CH'.$) Q values from Pre-developed runoff conditions Basin 14 Q = 2.06 cfs Basin 4 Q= 4.69 cfs H = 1.5 FT C = 3.33 FT Weir Lengths Pond 14 L= 0.336733 FT 4.0 Inches Pond 4 L = 0.76664 FT 9.2 Inches k "��1�yyt yy$rWR� 9yq'§fq.' ry�g{', �/p7� }yN� y■® gya 1: 5 F- S-