Loading...
HomeMy WebLinkAboutDesignReportPart2_021221 Appendix D • Gran Cielo Subdivision Storm Water Design Report Stormwater Management The modification of the Gran Cielo Subdivision Plat presented with this application (changing Lot 4, Block 14 from dedicated parkland to residential) will alter the circumstances relating to stormwater management reviewed by staff and the commission during the original Preliminary Plat approval. This is because by removing dedicated parkland and replacing it with a residential lot, the impervious area increased and necessitated a slightly larger detention pond in the NW corner of Block 14. An updated stormwater management report is included in this section which reflects the change of Lot 4, Block 14 from parkland to residential. This report and associated calculations and figures were created for the Gran Cielo Subdivision infrastructure design review and was submitted to the engineering department on April 11, 2019. It is included in this section for the completeness of this Preliminary Plat application. Gran Cielo Major Subdivision Preliminary Plat Application STORMWATER DESIGN REPORT FOR: GRAN CIELO SUBDIVISION BOZEMAN, MT Prepared By: MADI SON ENGINEERING Madison Engineering 895 Technology Blvd Ste 203 Bozeman, MT 59718 (406) 586-0262 APRIL 2019 STORMWATER DESIGN REPORT FOR: GRAN CIELO SUBDIVISION BOZEMAN, MT 1 t C4 s4�C. • �tit��t�t Madison Engineering 895 Technology Blvd Ste 203 Bozeman, MT 59718 (406) 586-0262 APRIL 2019 GRAN CIELO SUBDIVISION STORMWATER DESIGN REPORT A. Introduction This design report will give an overview of the stormwater management plan for the proposed 48.75 acre Gran Cielo Subdivision in Bozeman, MT. The site is currently undeveloped and is vacant except for one barn which will be removed prior to development of the site. Stormwater management within the subdivision will be accomplished with the combination of surface/gutter flow, pipe conveyance, and detention facilities. Monolithic curb and gutters and valley gutters will be utilized to transfer stormwater from in the drain inlets which will be connected to the closed conveyance piping collection system. The stormwater basins and flow control structures will control and meter the discharge of the increased flow to the 10-year pre-development flows and will help remove solids, silt, oils grease and other pollutants from the stormwater, with the first 0.5 inches of rainfall from a 24-hour storm event preceded by 48 hours of no measurable precipitation also captured. The collection system will be designed to convey the 25-year storm event. The following references were used in the preparation of this report: a. COB Design Standards and Specifications Policy, 2004. Addendum 46 b. COB Modifications to Montana Public Works Standard Specifications (MPWSS). Addendum 43 c. Bozeman Stormwater Master Plan- 1982 B. Peak Flow (Runoff) Calculations The project area was divided into drainage areas as shown on Sheet SD1.0, provided in Appendix G. These areas were used to determine the stormwater runoff flows, which in turn were used to determine the size of the storm drain pipes, gutter capacities, curb inlet sizes, and retention pond volumes. Temporary retention ponds will capture the stormwater from Phase 1 of the project. Ultimately, once the project is fully built out, the temporary retention ponds will be filled in and the stormwater will flow detention ponds via curb inlets and piping. Peak flow calculations are provided in Appendix B. C. Storm Drain Piping Storm drain piping from the curb inlets to the detention ponds was sized to carry the 25-year storm event peak runoff flow. All pipes are 15" and in Phase 1 are directed into the temporary retention ponds discussed in Part E. In future phases the storm drain piping will be directed into permanent detention basins. All storm drains were sized using Manning's Equation for circular channels to determine the pipes capacity to flow stormwater at specified grades. See attached storm drain piping schedule in Appendix A and calculations in Appendix C. D. Culverts There are two proposed culverts in Phase 1 to pipe a lateral of the Middle Creek Ditch to downstream irrigation users to the north of the subdivision. At the intersection of S. 27th Ave Gran Cielo Subdivision Stormwater Design Report Page 1 of 4 and Graf Street, a 30" PVC pipe conveys the water from the southwest corner of the intersection to the northwest corner of the intersection where it enters a 6-foot diameter manhole. It is then diverted east across Graf Street to the northeast corner of the intersection where it re-enters the existing ditch. The development of Graf Street and S. 27th Ave will require the removal of existing ditch culverts and diversion structures. The diversion structures will be replaced outside of the roadway easement. The proposed culverts will carry a capacity of approximately 36 cfs, replacing the existing 24" CMP culverts which have a capacity of approximately 22 cfs at the existing slope of 0.67 cfs. The second culvert is a 22"x13.5" arch RCP (18" equivalent) culvert under S. 27th Ave at Apex Drive which will replace an existing 12" CMP culvert. The existing 12" CMP culvert has a capacity of approximately 5.8 cfs, while the 22"x13.5" culvert will have a capacity to carry 8.0 cfs. See Appendix D for culvert calculations. E. Stormwater Retention/Detention Ponds Three (3) detention ponds are proposed to accommodate the stormwater runoff of Gran Cielo Subdivision at full build out, minus the pre-development runoff rates. One (1) existing detention pond and appurtenant piping and structures in Meadow Creak Subdivision Phase 1 will be utilized to detain a small amount of stormwater from Graf Street. All of the detention ponds are designed to handle the 10-year, 2-hr storm event. All ponds have a 4:1 side slope and are 1.5 ft deep maximum with 6" depth of freeboard. In addition, a Stormtech SC-740 Infiltration Basin Systems is proposed in a future phase in the boulevards of S. 27th Avenue. The approval of this system will be required by the City of Bozeman prior to installation. See Table 1 below for a summary of the detention pond volumes. Pond calculations are provided in Appendix E. TABLE 1 DETENTION POND VOLUMES 10-yr,2-hr Post Approx. Required Pond ID Volume Contributing Development Proposed Basins* Peak Runoff Volume (C.F.) _ �cf� -- _ ._ (C.F.) 6,,,9, 13 8.30 12,105 14,427 `I 11, 5, 14, 15 6.39 8,753 13,385 (Future 3 base) 2, 12, 16, 17, 18 4.14 7,842 7,846 _ Infiltration Basin 3 1 0.72 487 533 (future phase) 4 (Meadow 11 0.54 450 1,505 Creek Phase 1) _ * See Sheet SD1.0 Storm Drainage Basins There are temporary detention basins proposed at the northern limits of phase 1 as necessary to capture the stormwater runoff from Phase 1. These ponds were sized to handle a 10-year, 2-hr storm event. As the future phases of Gran Cielo subdivision are built, the temporary ponds will Gran Cielo Subdivision Stormwater Design Report Page 2 of 4 be removed and replaced with permanent detention ponds and stormwater infrastructure. See Table 2 below for a summary of the temporary retention pond volumes. Retention pond calculations are provided in Appendix E. TABLE 2 TEMPORY RETENTION POND VOLUMES Pond ID Contributing Basins* Post Required Approx. Development Volume(C.F.) Proposed Peak Runoff Volume(C.F.) A 1, 2, 12 0.47 3,412 4,347 _ 6,. 6,485 7,262 ® ® 9 8,277 9,390 D 17 0.20 1,415 2,045 E Portions of 5 &6 0.06 429 �479 F Portions of 13 0.18 1,284 1,533 G Portions of 10 0.17 1,242 1,253 * See Sheet SD 1.0 Storm Drain Control F. Gutter Flow and Curb Inlets Curb inlets are proposed in the gutter line at intersections as required. A 25-year storm event was used to calculate the runoff flows. Based on these values, the curb inlet capacities are more than adequate for carrying the 25-year storm event. The gutter-flow capacity is also well above the designed runoff values to avoid overflow encroachment into the drive lane. Curb inlets are standard 24"x36" inlets, or double curb inlets. Gutter flow and curb inlet calculations are provided in Appendix F. G. Existing Storm Sewer System Capacity- Meadow Creek Subdivision Phase I ' Basin 11 will drain to an existing inlet on the southwest corner of the intersection of Graf St and S. 27th Ave. This inlet was installed with Meadow Creek Subdivision Phase I and approximately 0.54 cfs will flow into this inlet from Gran Cielo Subdivision. The table below shows the network of pipes and manholes the 0.54 cfs of stormwater from Graf Street will drain through to the outfall at the existing Detention Pond 4 on the north west corner of Graf St. and Enterprise Blvd. There is enough extra capacity in all portions of the existing system to accommodate and additional 0.54 cfs from Graf St. Detention Pond 4 was built with an extra 1,505 cf of storage capacity for a 10-year, 2-hour storm event. The stormwater from Graf Street requires 450 cf of capacity for a 10-year, 2-hour storm event. Therefore, there is adequate capacity in the existing detention pond to detain the additional stormwater from Graf Street. The peak flow calculations for Basin 11 are in Appendix B. Please note, in order to be consistent with the current City of Bozeman design standards,the pipe capacity calculations for the existing system were completed for the 25-year storm event and are in Appendix C. The calculations for the additional pond capacity required are in Appendix E. Appendix H shows the record drawing Gran Cielo Subdivision Stormwater Design Report Page 3 of 4 of the existing storm drain infrastructure in Graf St and Appendix I is the original stormwater design report for Meadow Creek Subdivision Phase I. TABLE 3 MEADOW CREEK SUBDIVISION PHASE I EXISTING SYSTEM Diameter Pipe Pipe Capacity Existing 25- Extra Capacity From To in Slope Year Flow Capacity Check ( ) (ft/ft (cfs) in Pipe(cfs) (cfs) _ (cfs) INLET K2 MH K 12 0.0100 3.828 2.252 1.576 >0.54 OK MH K MH J _ 24 0.0065 19.598 17.639 1.959 >0.54 OK MH J MH I 24 0.0065 19.598 17.639 1.959 >0.54 OK MH I OUTFALL 24 0.0100 24.308 22.165 2.143 >0.54 OK Appendices A. Storm Drain Piping Schedule B. Peak Flow(runoff) Calculations C. Storm Drain Piping Calculations D. Culvert Calculations E. Stormwater Pond Calculations (Detention Ponds, Flow Control Structures, Infiltration Basins &Temporary Retention Ponds) F. Gutter Flow and Curb Inlet Calculations G. Sheet SD 1.0 Storm Drainage Basins H. Record Drawing - Storm Drain Improvements Plan, Meadow Creek Subdivision Phase 1, Sheet 6 of 41 I. Meadow Creek Subdivision Phase I Stormwater Design Report R Gran Cielo Subdivision Stormwater Design Report Page 4 of 4 I f Appendix A: Storm Drain Piping Schedule Appendix A Gran Cielo Subdivision Pipe Schedule MAXIMUM SLOPE CAPACITY ACTUAL PIPE ID SIZE N LENGTH (CFS) CONTRIBUTING BASINS DEMAND(CFS) 1 15 0.50 31 5.8 4 3.26 2 15 0.50 24 5.8 4, 5 5.35 `3 15 0.50 58 5.8 2, 12, 16, 17 3.00 II I i i Appendix B: Peak Flow Calculations Gran Clelo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) _ Post-Constructed Peak Flow Summary(cfs) Area Design Rainfall Freq. (Acre) C 100 Yr 25 Yr 10 Yr Basin 1 0.78 0.67 1.62 0.97 0.72 Basin 2 0.55 0.67 1.14 0.68 0.51 Basin 3 4.46 0.38 2.36 1.70 1.35f Basin 4 6.11 0.49 4.72 3.26 2.55e Basin 5 4.51 0.40 2.94 2.09 1.66 Basin 6 3.65 0.38 2.58 1.84 1.47 Basin 7 1.46 0.56 1.63 1.08 0.83 Basin 8 4.15 0.49 4.00 2.74 2.16 Basin 9 1.63 0.48 1.79 1.22 0.96 Basin 10 0.94 0.67 1.41 0.86 0.63 Basin 11 0.47 0.67 0.90 0.54 0.40 Basin 12 0.41 0.67 0.82 0.49 0.37 Basin 13 10.17 0.46 8.82 6.12 4.82 Basin 14 2.05 0.41 1.66 1.17 0.93 Basin 15 0.33 0.73 1 16 0.62 0.45 Basin 16 0.83 0.67 1.62 0.97 0.72 Basin 17 0.72 0.67 145 0.86 0.64 Basin 18 8.98 0.54 968 6.49 5.03 Storm Information Design Rainfall Freq. I M. 10 OF -.-- - OF coefficient a 1.01 0.78 0.64 OF coefficient b 0.00 0.00 0.00 OF coefficient n 0.67 0.64 0.65 Adjustment Factor Cf: 1.25 1.1 1 _. Weighted C Values 90'Right of Way Width(ft) C Road, Curb&Gutter, Sidewalk 60 0.9 (48'TBC to TBC+6'Sidewalks) Landscaping 30 0.2 Weighted C: 0.67 60'Right of Way Width(ft) C Road, Curb&Gutter, Sidewalk 45 0.9 (35'TBC to TBC+5'Sidewalks) Landscaping 15 0.2 Weighted C: 0.73 _ Page 1 of 7 Gran Clelo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) Peak 0 Values BASIN 1 Area(acre) C 90'ROW 0.775 0.67 Weighted C 0.67 Low-Med.Res, 0 0.35 Average slope: 1.86 percent Open Space 0 0.2 Travel Distance 780.00 feet Total area 0.776 0.67 Design Rainfall Freq. 100 25 10 C'Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total t�: 11.15 15.42 1826 minutes intensity at tc 3.12 1 86 1.39 inlhr peak runoff 1.62 0.97 0.72 cfs BASIN 2 Area(acre) C 90'ROW 0.547 0.67 Weighted C 0.67 Low-Med. Res. 0 0.35 Average slope: 1.86 percent Open Space 0 0.2 Travel Distance 780.00 feet Total area 0.547 0.67 Design Rainfall Freq. 100 25 10 C'Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 11.15 15.42 1826 minutes intensity at t,; 3 12 1.86 1.39 in/hr peak runoff: 1.14 0.68 0.51 cfs Area(acre) C Total Area: 4.457 acres 60'ROW 0.358 0.73 WNW Average slope: 1.50 percent Open Space 0 0.2 Travel Distance 1323.00 feet j Total area 4.457 0.38 t �. Design Rainfall Freq. 100 25 10 C'Cf 0.48 0.42 0.38 (Shall not exceed 1.00) Total t,: 37.10 40.49 4275 minutes 1 intensity at tc 1.39 1.00 0.80 in/hr peak runoff: 2.36 1.70 1.35 cfs Page 2 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) Area(acre) C 90'ROW 0.227 0.67 Total Area: 6.112 acres 60'ROW 1.284 0.73 C: 0.49 /tow-Med. Res. 4.044 0.W Average slope: 1.50 percent 20'Alley 0.557 0.90 Travel Distance '1540.00 feet Open Space 0 0.2 Total area 6.112 0.49 Design Rainfall Freq, 100 25 i3 C'Cf 0.61 0.54 0.49 (Shall not exceed 1.00) Total t.: 31 11 35.83 38.99 minutes intensity at t, 1 57 1.08 085 in/hr peak runoff: 4.72 3.26 2.56 cfs BASIN 5 Area(acre) C 90'ROW 0 0.67 Total Area: 4.510 acres 60'ROW 1.311 0.73 C. 0.40 Low-Med. Res. 0.882 0.35 Average slope: 1.71 percent 20'Alley 0.107 0.90 Travel Distance 976.00 feet Open Space 2.21 0.2 Total area 4.510 0.40 Design Rainfall Freq. 25 C'Cf 0.50 0.44 0.40 (Shall not exceed 1.00) Total t,: 29.31 32.24 34.20 minutes intensity at t. 1.63 1 16 0.92 in/hr peak runoff: 2.94 2.09 1.66 cfs BASIN 6 Area(acre) C 90'ROW 0 0.67 Total Area: 3.650 acres 60' ROW 0,986 0.73 C: 0.38 Low-Med. Res. 0.485 0.35 Average slope: 1.50 percent 20'Alley 0.097 0.90 Travel Distance 568.00 feet Open Space 2.08 0.2 Total area 3.650 0.38 Design Rainfall Freq. 100 25 10 C"Cf 0.48 0.42 0.38 (Shall not exceed 1.00) Total tc: 24.24 2647 2795 minutes intensity at tc 1.85 1 32 1.0: in/hr peak runoff: 2.58 1.84 1.47 cfs Page 3 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) s Area(acre) C 90'ROW 0 0.67 60'ROW 0.798 Total Area: 1.459 acres aloft 20 Alley 0 0.90 Average slope: 1.65 percent €w; Open Space 0 0.2 Travel Distance 1150.00 feet 4 Total area 1.459 0.56 Design Rainfall Freq. 100 25 10 C*Cf 0.70 0.61 0.56 (Shall not exceed 1.00) Total tc: 21.61 26.10 2910 minutes intensity at tc 2.00 133 1.02 in/hr peak runoff: 1.63 1.08 0.83 cfs Area(acre) C 99 ROW 0.495 0.67 Total Area: 4.150 acres 60'ROW 0.66 0.73 y } Average slope: 1.55 percent 20'Alley 0.312 0.90 Travel Distance 792.00 feet Open Space 0 0.2 Total area 4.150 0.49 Design Rainfall Freq. 100 25 10 C*Cf 0.61 0.54 0.49 (Shall not exceed 1.00) Total tc: 22.17 25.51 2774 minutes intensity at t, 1.97 1.35 1.06 in/hr 24c`" peak runoff: 4.00 2.74 2.15 cfs BASIN 9 Area(acre) C 90'ROW 0.101 0.67 60'ROW 0.482 0.73 Total Area: 1.628 acres Low-Med. Res. 1.045 0.35 C: 0.48 20'Alley 0 0.90 Average slope: 1.77 percent Open Space 0 0.2 Travel Distance 538.00 feet Total area 1.628 0.48 Design Rainfall Freq. 100 25 10 C*Cf 0.60 0.53 0.48 (Shall not exceed 1.00) Total tc: 17.82 20.42 22.15 minutes intensity at t, 228 1 55 1.22 in/hr peak runoff: 1.79 1.22 0.96 cfs Page 4 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) BASIN 10 Area(acre) C 90'ROW 0 941 0.67 Total Area: 0.941 acres 60'ROW 0 0.73 C: 0.67 Low-Med. Res. 0 0.35 Average slope: 0.52 percent 20'Alley 0 0.90 Travel Distance 894.00 feet Open Space 0 0.2 Total area 0.941 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total t,: 18 25 25.24 29.90 minutes intensity at tV 2.24 136 1.01 in/hr peak runoff: 1.41 0.86 0.63 cfs BASIN 11 Area(acre) C 90'ROW 0.468 0.67 Total Area: 0.468 acres 60'ROW 0 0.73 C: 0.67 Low-Med. Res. 0 0.35 Average slope: 0.55 percent 20'Alley 0 0.90 Travel Distance 442.00 feet Open Space 0 0.2 Total area 0.468 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total t,: 12.60 17.42 20.63 minutes intensity at tc 2.87 1.72 1.28 in/hr peak runoff: 0.90 0.54 0.40 cfs !i BASIN 12 l Area(acre) C 90'ROW 0.412 0.67 60'ROW 0 0.73 Total Area: 0.412 acres Low-Med. Res. 0 0.35 C: 0.67 20'Alley 0 0.90 Average slope: 0.55 percent Open Space 0 0.2 Travel Distance 400.00 feet Total area 0.412 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 11.98 16.57 19.63 minutes intensity at tc 2.97 1.78 1.32 in/hr peak runoff: 0.82 0.49 0.37 c s Page 5 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) BASIN 13 Area(acre) C 90'ROW 0 0.67 60'ROW 2.8 0.73 Total Area: 10.171 acres Low-Med. Res. 6.8 0.35 C: 0.46 20'Alley 0.251 090 Average slope: 1.50 percent Open Space 0.32 0.2 Travel Distance 790.00 feet Total area 10.171 0.46 Design Rainfall Freq. 100 25 10 C*Cf 0.68 0.51 0.46 (Shall not exceed 1.00) Total tc: 23.91 27 10 2923 minutes intensity at tc 1 87 1 30 1.02 in/hr peak runoff: 8.82 6.12 4.82 c s BASIN 14 Area(acre) C 90'ROW 0 0.67 60'ROW 0.456 0.73 Total Area: 2.046 acres Low-Med. Res. 1.315 0.35 C: 0.41 20'Alley 0 0.90 Average slope: 1.83 percent Open Space 0.275 0.2 Travel Distance 633.00 feet Total area 2.046 0.41 Design Rainfall Freq. 100 25 10 C*Cf 0.52 0.46 0.41 (Shall not exceed 1.00) Total tc: 22.38 24.77 26.37 minutes intensity at t, 1.96 1.37 1 09 in/hr peak runoff: 1.66 1.17 A.93 cfs BASIN 15 Area(acre) C 90'ROW 0 0.67 Total Area: 0.327 acres 60'ROW 0 327 0.73 C: 0.73 Low-Med. Res. 0 0.35 Average slope: 0.84 percent 20'Alley 0 0.90 Travel Distance 240.00 feet Open Space 0 0.2 Total area 0.327 0.73 Design Rainfall Freq. 100 25 10 C*Cf 0.91 0.80 0.73 (Shall not exceed 1.00) Total tc: 5 76 9.12 11 36 minutes intensity at tc 4.86 2.60 1.89 in/hr peak runoff: 1.16 0.62 0.45 cfe Page 6 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) BASIN 16 Area(acre) C 90'ROW 0 831 0.67 60'ROW 0 0.73 Total Area: 0.831 acres Low-Med. Res, 0 0.35 C: 0.67 20'Alley 0 0.90 Average slope: 1.40 percent Open Space 0 0.2 Travel Distance 800.00 feet Total area 0.831 0.67 Design Rainfall Freq. 100 25 10 C"Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 12.41 17.16 2033 minutes intensity at tc 290 1 74 1 29 in/hr peak runoff: 1.62 0.97 0.72 cfs BASIN 17 Area(acre) C 90'ROW 0.719 0.67 60' ROW 0 0.73 Total Area: 0.719 acres Low-Med. Res. 0 0.35 C: 0.67 20'Alley 0 0.90 Average slope: 1.26 percent Open Space 0 0.2 Travel Distance 676.00 feet Total area 0.719 0.67 Design Rainfall Freq. 100 25 10 C`Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total t,: 11.81 1633 1934 minutes intensity at t, 3.00 1 79 1 34 in/hr peak runoff: 1.45 0.86 0.64 cfs 'i i! BASIN 18 Area(acre) C 90'ROW 0 0.67 Total Area: 8.981 acres 60'ROW 1.76 0.73 C: 0.54 High Dens. Res. 7.01 0.5 Average slope: 1.26 percent 20'Alley 0 0.90 Travel Distance 850.00 feet Open Space 0.21 0.2 Total area 8.981 0.54 Design Rainfall Freq. 100 25 10 C"Cf 0.67 0.59 0.54 (Shall not exceed 1.00) Total t,: 21.56 25.65 26.37 minutes intensity at tc 2.00 1.34 1.04 in/hr peak runoff: 9.68 6.49 5.03 cfs Page 7 of 7 it ij i� i II Appendix C: Storm Drain Piping Calculations 15"Storm Drain Pipe Gran Ciao Subdivision CIRCULAR CHANNEL T Appendix C Manning's Eqn. 0=1 n.486 A Rv3 S' n Diameter,do(in)= 15 4-Enter Value $ a, Dlemeter,do(ft)= 1.25 THETA Units= 1.486 -' n m 0.011 PVC Slope,S(ftlft) 0.005 Wetted Hydraulic Hydraulic SOCtIOn knergy, Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,2 Q(gpd-8 a V2I29 Depth,y(ft) Theta(rad) (fe) (ft) (ft) T(ft) (ft) (ftw) 0(cfs) Q(gpm) hour day) V(ft/s) (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.06 0.90 0.02 0.56 0.04 0 54 0.04 0.00 0.0 11.6 5584.4 1.1 0.02 0.13 1.29 0.06 0.80 0.08 0.75 0.09 D.02 0.1 506 242792 1.8 0.05 0.19 1.59 0.12 0.99 0.12 0.69 0.13 0.04 0.3 117.8 565286 2.3 0.08 0.25 1.85 017 1.16 0.15 1 00 0.17 0.07 0.5 212.2 101838.1 2.7 0.11 0.31 209 0.24 1.31 0.18 1.08 0.22 0.11 0.7 331.9 159298.4 3.1 0.16 0.38 2.32 0.31 1.45 0.21 1.15 0.27 0.16 1.1 4744 227735.3 3.4 0.19 0.44 2.53 0.38 1.58 0.24 1.19 0.32 0.22 1.4 6370 305777.0 3.7 0.21 0.50 2.74 0.45 1 71 0.27 1.22 0.37 0.28 1.8 8164 391888.6 4.0 0.24 0.56 2.94 0.54 1.64 0.29 1.24 0.43 0.35 2.2 1009.1 484389.1 4.2 0.27 0.63 3.14 0.61 1.96 0.31 1.25 0.49 0.43 2.7 1211.4 681458.2 4A 0.30 0.69 3.34 0.69 2.09 0.33 1-24 0.56 0.52 3.2 1419.0 681132.8 4.6 0.32 0.76 3.54 0.77 2.22 0.35 1.22 0.63 0.61 3.6 1627.7 781293.9 4.7 0.35 0.81 3.75 0.84 2.34 0.36 1.19 0.71 0.71 4.1 1832.6 879639.7 4.8 0.36 0.88 3.96 0.92 2.48 0.37 1.15 0.80 0.82 4.5 2028.4 973637.3 4.0 O.3e 0.94 4.19 0.99 262 0.38 1.08 0.91 0.94 4.9 2209.2 1060437.4 6.0 0.39 1.00 4.43 1.05 2.77 0.38 1.00 1.05 1.08 5.3 2368.2 1136712.2 5.0 0.39 1.06 4.69 1.11 2.93 0.38 0.89 1.25 1.24 5.6 2496.5 1198316.0 5.0 0.39 1.13 5.00 116 3.12 0.37 0.75 1.55 145 5.8 2582.2 1239433.1 4.9 0.38 1.19 5.38 1.20 3.36 0.36 0.54 2.21 1.79 5.8 2603.3 1249570.5 4.8 0.30 1.25 6.28 1.23 3.93 0.31 0.00 5.4 2423.6 1163309.5 4.4 0.30 7.0 6.0 5.0 ----o(CFS) 40 - -v(W / BEM 30 2.0 ` 1.0 0.0 0.00 0.20 0.40 0.60 080 1.00 120 1.40 Depth(ft) 12"Storm Drain Pipe INLET K2 to MH K CIRCULAR CHANNEL Appendix C Manning's Eqn, 0 1,486 A R'n SIM �- 1 n i Diameter,do(in)= 12 4-Enter Value $ �, � Diameter,do(ft)= 1 THETA Units= 1.466 - n- 0.013 PVC Slope,S(ft/ft) Wetted Hydraulic Hydraulic action Energy, Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z 0(gpd-8 =V/2g Depth,y(ft) Theta(rad) (ft') (ft) (1t) T(ft) (ft) (ftw) 0(cfs) 0(gpm) hour day) V(fUs) (ft) C.00 O.00 0.00 O.Oi; 0.00 OA0 0.00 0.00 0.000 00 0.0 0.0 0.00 0.05 0.90 0.01 0.45 0.03 0.44 0.03 0.00 0.017 7.7 36B5.7 1.2 0.02 0.10 1.29 0.04 0.64 0.06 0.60 0.07 0.01 0.074 33.4 16024.0 1.8 0.05 0.16 1.69 0.07 0.80 0.09 0.71 0.10 0.02 0.173 777 37308.3 2.3 0.09 0.20 1.85 0.11 0.93 0.12 0.80 0.14 0.04 0.312 140.0 67212.2 2.8 0.12 0.25 2.09 0.15 1.05 0.15 0.87 0.18 0.06 0.488 219.0 105135.4 3.2 0.16 0.30 2.32 0.20 1.16 0.17 0.92 0.22 0.09 0.698 313A 150303.1 3.5 0.19 0.35 2.53 0.24 1.27 0.19 0.95 0.26 0.12 0.937 420.4 201809.9 3.6 0.23 0.40 2.74 0.29 1.37 0.21 0.98 0.30 0.16 1.201 538.8 258642.7 4.1 0.26 0.45 2.94 0,34 1.47 0.23 0.99 0.34 0.20 1,484 666.0 3196921 4.3 0.29 0.50 3,14 0.39 1.57 0.25 1.00 0.39 0.25 1.761 799.5 383756.8 4.5 0.32 0.55 3.34 0.44 1.67 0.26 0.99 0.44 0.30 2087. 936.5 449541.1 4.7 0.35 0.60 3.54 0.49 1.77 0.28 0.98 0.50 0.35 2.394 1074.3 515646.5 4.9 0.37 0.65 3.75 0.54 1.88 0.29 0.95 0.57 0.41 2.695 1209.5 580553.8 5.0 0.39 0.70 3.96 0.59 1.98 0.30 0.92 0.64 0.47 2.983 1338 7 642591.3 5.1 0.40 0.75 4.19 0.63 2.09 0.30 0.87 0.73 0.54 3.249 1458,1 699878.6 5.1 0.41 0.80 4.43 0.67 2.21 0.30 0.80 0.84 0.62 3'483 1563.0 7502192 5.2 0.42 0.85 4.69 0.71 2.35 0.30 0.71 1.00 0.71 3.67197 1647.7 790877.1 5.2 0.41 0.90 5.00 0.74 2.50 0.30 0.60 1.24 0.83 3'7 1704.2 8180140 5.1 0.40 0.96 5.38 0.77 2.69 0.29 0.44 1.77 1.02 3.828 1718.1 824704.6 5.0 0.38 1.00 6.28 0.79 3.14 0.25 0.00 3.564 15995 767773.1 4.5 0.32 6 000 5.000 000, 4 000 Ile _ -v(") ,p00 2.000 1.000 0 000 0.00 0.20 040 0.60 0.80 1 00 1 20 Depth(ft) 24"Storm Drain Pipe MHKtoMHJ MHJtoMHI CIRCULAR CHANNEL T Appendix C Manning's Eqn. 1.486 A RL'S'M n I Diameter,do(in) ��.Enter Value y, Diameter,do(ft)= 2 THETA Units - n= ;.+_�^s PVC Slope,S(tuft) 0.0 Wetted Hydraulic Hydraulic ec on E,1-0r Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,2 p(gpd-8 =V'/2g Depth,y(ft) Theta(red) (ft) (ft) (ft) T(ft) (ft) (f&') D(cfs) 0(gpm) hour day) V(f 1s) (ft) U.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.000 00 O.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0 07 0.02 0.080 39.3 18867.8 1.5 0.03 0.20 1.29 0.16 1.29 0.13 1.20 014 0.06 0.381 170.9 82030.3 2.3 0.08 0.30 1.59 0.30 1.59 0.19 1.43 021 0.13 0.887 397.9 190989.4 3.0 0.14 0.40 1.85 0.45 1.05 0.24 1.60 026 0.24 1.597 716.8 344073.6 3.6 0.20 0.50 2.09 0,61 2.09 0.29 1.73 D 35 0.37 2.498 1121.3 538210.7 4A 0.26 0.60 2.32 0.79 2.32 D.34 1.83 0.43 0.52 3.572 16030 769433.9 4.5 0.32 0.70 2.53 0.98 2.53 0.39 1.91 051 0.70 4.796 21523 1033108.2 4.9 0.37 0.80 2.74 1.17 2.74 0.43 1.96 060 0.91 6.146 2758.4 1324047.5 5.2 0.43 0.90 2.94 1.37 2.94 0.47 1.99 069 1.14 7.597 34095 1636572.7 5.5 0.48 1.OD 3.14 1.57 3.14 0.50 2.00 079 1,39 9.119 4092.8 1%4533.5 5.8 0.52 1.10 3.34 1.77 3.34 0.53 1.99 089 1.67 10.683 47944 2301297.4 6.0 0.57 1.20 3.54 1.97 3.54 0.56 1.96 100 1.97 12.2S4 5499.4 26397051 6.2 0.60 1.30 3.75 2.16 3.75 0.58 1.91 113 2.30 13.796 61916 2971979.3 6.4 0.63 1.40 3.96 2.35 3.96 0.59 1.83 1 28 2.66 15.270 6853.3 32895628 6.6 0.66 1.50 4.19 2.53 4.19 0.60 1,73 146 3.05 16.632 7464.2 3582828.5 6.6 0.67 1.60 4.43 2.69 4.43 0.61 1.60 1 68 3.50 17,828 8001.1 3840532 8 6.6 0.68 1.70 4.69 2.85 4.69 0.61 1.43 199 4.02 18.794 8434.7 4046669.4 6.6 0.68 1.60 5.00 2.98 5.00 0.60 1.20 2 48 4.69 19.439 87241 41875891 6.6 0.66 1.90 5.38 3.08 5.38 0.57 0.87 3 54 5.80 19.599 8795.5 4221839.6 6.4 0.63 2.00 6.28 3.14 6.28 0.50 0.00 18.245 8188.3 3930395A 5.8 0.52 25.000 20,000 11.000 --vsati� �• i _EMI 1u,000 5.000 i 0 000 0.00 0.50 1.00 1.50 2.00 2.50 Depth(ft) 24"Storm Drain Pipe MH I to Outfall CIRCULAR CHANNEL T-- Appendix C Manning's Eqn. Q= 1.486 A Rz1 Slrz D)ameter,do(In)= 24 1*-Enter Value Diameter,do(k)= 2 THETA � Units= 1.486 n` 0.013 PVC Slope,S(ft/ft) 0.01 Area,A Wetted HydL=c ec ion 9y Perimeter,P Radtor,Z ne 2 Depth,y(k) Theta(rod) ({t�) ea Q(9Pd 8 =V/2g lftl ( ft ) Q(cfs) q(gpm) hour day) V(ftls) (k) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0 02 0,100 0.00 48 8 23402 6 1.8 0.05 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0 06 0.472 212.0 101746.1 2.9 0.13 0.30 1.59 0.30 1.59 0.19 1.43 0 21 0 13 1,100 493.5 236893 2 3.7 0.22 0.40 1.85 0.45 1.85 0.24 1.60 0.28 024 1.981 889.1 426770.7 4.4 0.30 0.50 2.09 0.61 2.09 0.29 1.73 0.35 037 3.099 1390 8 6675682 5.0 0.40 0.60 2.32 0.79 2.32 D.34 1.83 0.43 052 4.430 1988.3 9543652 6.6 0.49 0.70 2.53 0.98 253 0.39 1.91 0.51 070 5.948 26696 12814131 6.1 0.57 0.80 2.74 1.17 2.74 0.43 1.96 0.60 091 7.623 3421 4 16422788 6.5 0.66 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1 14 9.423 42290 2029918.6 6.9 0.73 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1 39 11.311 50765 24367039 7.2 0.81 1.10 3.34 1.77 3.34 0.53 1.99 0.89 167 13.25D 5946.7 2854408.2 7.5 0.07 1.20 3.54 1.97 3.54 0.56 1.96 1.00 197 15.199 68211 32741513 7.7 0.93 1.30 3.75 2.16 3.75 0.58 1.91 1.13 230 17.112 7679.8 36862867 7.9 0.97 1 40 3.96 2.35 3.96 0.59 1.83 1.28 266 18.90 85004 40802005 6.1 1.01 1.50 419 2.53 4.19 0.60 1.73 1.46 305 20.620 9258.2 4443951 8 8.2 1.03 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3 50 22.113 9924.2 4763594 7 8.2 1.05 1.70 4.69 2.85 4.69 0.61 1.43 1.99 402 23.311 10462.0 50217564 8.2 1.04 1.80 5.00 2.98 5.00 0.60 1.20 2.48 469 24.111 10821.0 5194065.1 8.1 1.02 1.90 5.38 3.08 5.38 0.57 0.87 3 54 580 24.308 10909.5 52365476 7.9 0.97 2.00 6.28 3.14 6.28 0.50 0.00 22.630 10158.4 4875055 0.81 30 000 25.000 20.000 .000 10.000 5000 / T 0.000 0.00 0.50 100 1.50 2.00 2.50 Depth(ft) i i h Appendix D: Culvert Calculations 30"PVC Culvert Appendix D CIRCULAR CHANNEL Appendix E Manning's Eqn. 1.466 A Rw S"2 T n Diameter,do(in)= 30 4-Enter Value $ ' Diameter,do(ft)= 2,g t Units= 1.406 \ THETA n= 0.011 ` Slope,S(ft/ft) 0.005 Wetted Hydraulic Hydraulic ec on T ner Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z 0(gpd-B =V�2g Depth,y(ft) Theta(rad) (ft�) (ft) (ft) T(ft) (ft) (tt° ) 0(cfs) 0(gpm) hour day) V(ft/s) (ft) ).00 000 0 00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 ,)13 0.90 009 1 13 008 L09 0.08 0.03 0.2 739 35459.0 1.8 0.05 J.25 1.29 0 26 1 61 0.16 1.50 0.17 0.11 0.7 321 2 154163.0 2.8 0.12 J.38 1.59 046 1 99 0.23 1.79 0.26 0.23 1.7 7478 3589343 3.6 0.20 SD 1.85 070 232 0.30 2.00 0.35 0.41 3.0 13471 646631 7 4.3 0.29 J.63 2.09 096 262 0.37 2.17 0." 0.64 4.7 2107.3 1011481.6 4.9 0.37 0.76 2.32 1 24 290 0.43 2.29 0.54 091 6.7 3012 6 1446028 9 5.4 0.46 n.88 2.53 153 317 0.48 2.38 0.64 1.23 9.0 4044.9 1941563.1 5.9 0.54 i.00 2.74 1 83 342 0.54 2.45 0.75 1.59 11.6 51840 24883373 6.3 0.62 113 2.94 214 3 68 0.58 2.49 0.86 1.92 14.3 6407.7 3075678 9 6.7 0.69 1.25 3.14 245 393 0.63 2.50 0.98 2.43 17.1 7691 7 3692029.2 7.0 0.76 1.38 3.34 277 4 18 0.66 2.49 1.11 2 92 10.1 90103 43249237 7.3 0.82 .50 3.54 3 08 443 0.69 2.45 1.26 3.45 23.0 10335.2 4960907.3 7.5 0.87 1.63 3.75 338 4 69 0.72 2.38 1.42 4.02 25.9 116362 55853640 7.7 0.91 1.75 3.96 3 67 496 0.74 2.29 1.60 4.65 28.7 12879.6 6182211.6 7.8 0.95 1.88 4.19 396 5 24 0.75 2.17 1 82 5.33 31.3 140278 67333581 7.9 0.97 '.00 4.43 421 554 0.76 200 2.10 6.11 33.5 15036.8 7217672.5 8.0 0.98 2.13 4.69 445 5 87 0.76 1.79 2.49 7.02 36.3 15851 7 7608632.3 7.9 0.98 2.25 5.00 465 6 25 0.75 1.50 3.10 8.20 36.5 16395.6 7869909.8 7.9 0.96 2.38 5.38 482 6 73 0.72 1.09 4.42 1 36.8 165297 79342782 7.6 0.91 2.50 6.28 491 785 0.63 0.00 34.3 153887 7386555.0 7.0 0.76 400 35.0 30.0 l' 250 0(CFS) I -v(") 120.0 16.0 i 10.0 5.0 "1-- - - - - - -- 0.0 z c 0.00 0.50 1.00 1.50 200 250 3.00 Depth(110 Headwater Depth For Circular Culvert Project: Gran Cielo Subdivision-Middle Creek Ditch Pipe ID: S.27th Ave S Graf St culvert x-section D inlet 0 - - --- - - - - - - - - - - - - .. �; L Outlet H edtence, �! los D `� ; tl°t Taiiluvolsr V d ". low LSo- T - - - -- - - - - - - - - - - - - - Sbpe So - Section 1 Sec4a►2 Design Information (input) _ Design Discharge a= 36.8 cfs Pipe Diameter D= 30.00 inches Inlet Edge Type(choose from pull-down list) Inlet Type= Square End Projection Inlet Invert Elevation le = 4971.53 ft Outlet Invert Elevation Oe = 4970.51 It Pipe Length L = 189.0 It Manning's Roughness n-value n = 0.013 Bend Loss Coefficient Kb = 0.50 Exit Loss Coefficient KX = 1.00 Tailwater Water Surface Elevation El, Y,= 4976.31 It Calculations out ut Pipe Cross Sectional Area Ao= 4.91 sq ft Culvert Slope So= 0.0054 ft/ft Normal Flow Depth Y„= 2.50 ft Critical Flow Depth Y,,= 2.06 ft Headwater Depth by Inlet Control Headwater Depth by Inlet Control HW4nlet= 3.94 ft Headwater Depth by Outlet Control Tailwater Depth for Design d= 5.80 ft Friction Loss Coefficient over Culvert Length K, = 1.73 Sum of All Loss Coefficients K•,= 3.43 Headwater Depth by Outlet Control HW-outlet= 8.65 ft Design Headwater Death HW= a.65 ft HW/D Ratio= HWID= 3.46 Headwater Depth Calculator-Graf&27th Ave, HW-Pipe 8/1/201 B,9:39 PM 18"x 29"Arch RCP Culvert Appendix D CIRCULAR CHANNEL Appendix E Manning's Eqn. 0 6 1.486 A R-Si" T n Dlameter,do(In)= 24 ♦-Enler Value 18"rise x 29"span equivalent Diameter,do(it)= 2 Units 1.486 THETA n= 0.013 Slope,S("1 0,0154 Wetted Hydraulic Hydraulic ec 0n k1w,gy,c Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z 0(gpd.6 =V'/2g DaPth,y ft1) Theta(rod) (n'1 (ft) (fl) T(ft) 00 (fe") 0(da_) 0(gpm) hour day) v(f1/s) (ft) U.UU U 00 0.00 0.00 0.00 0.00 0.00 0.00 9.0 0.0 0.0 0.0 0.00 0 10 0.90 0.06 0.90 0,07 0.87 007 0.02 0.1 62.4 29970.0 2.4 0.09 0.20 1.29 0.16 1,29 0.13 1.20 0.14 0.06 0.6 271.5 130298.6 3.7 0.21 0.30 159 0.30 1.59 0.19 1.43 0.21 0.13 ILA 6320 3033713 4.8 0.35 0.40 1 as 0.45 1.85 0.24 1.60 0.28 0.24 2.6 1130.6 546533.2 5.7 0.50 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 4.0 17811 854904.4 6.5 0.05 0.60 2.32 0.79 2.32 0.34 1,83 D.43 0.52 5.7 2546.2 1222183.8 7.2 0.00 0.70 2.53 0.98 2.53 D.39 1.91 0.61 0.70 7.6 34188 16410D9 4 7.8 0.04 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 9.8 4381.5 2103143.0 8.3 1.07 0.90 294 1.37 2.94 0.47 1.99 0.69 1.14 12.1 5415.8 2599564.2 8.6 1.20 1.00 314 1.57 3.14 0.50 2.00 0.79 1,39 14.5 65010 3120503.5 9.2 1.32 1.10 3 34 1.77 3.34 0.53 1.99 0.99 1.67 17.0 76165 3655426.0 9.5 1.43 1.20 3.54 1.97 3.54 0,56 1.96 1.00 1.97 19.6 87353 4192959.5 9.9 1.52 1.30 3.75 2.16 3.75 0.59 1.91 1 13 2.30 21.9 9834M 47207503 10.1 1.60 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 2C3 10885.8 5226206.2 10.3 1.66 1.50 4.19 2.53 4A9 0.60 1.73 1.45 3.05 29A 118563 56910351 10.5 1.70 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3,50 22.3 12709.1 6100377.7 10.5 1.72 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 29.9 133979 6430986.0 10.5 1.71 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 30.9 13857.6 685160.8 10.4 1.57 1.90 5.38 3.08 5.38 0.57 0.67 3 54 5.80 31.1 139709 6706052.9 10.1 1.60 2.00 6.2B 3.14 6,28 0.50 0.00 1 29.0 130065 62431173 9.2 1.32 35.0 30.0 25.0 200 -vM.) �E Rt 16.0 100 // \ I 5.0 0.0 0.00 050 1.00 1.50 2.00 250 Depth(ft) Headwater Depth For Circular Culvert Project: Gran Cielo Subdivision-Middle Creek Ditch Pipe ID: S.27th Ave&Apex Drive culvert x-section D Inlet 0 L Outlet H ion ask UMMAW V lox LS°..�V------ - - - - - - - - - - - - -- - - -- Slope So Sedien i Secdcn 2 esittn Information_(input) __- Design Discharge Q= 25.0 cfs Pipe Diameter D= 24.00 inches Inlet Edge Type(choose from pull-down list) Inlet Type= Square End Projection Inlet Invert Elevation �— IB = 4945.12 ft Outlet Invert Elevation OB = 4942.88 ft Pipe Length L = 228.0 ft Manning's Roughness n-value n = 0,013 Bend Loss Coefficient Kb= 0.00 Exit Loss Coefficient K. = 0.00 Iailwater Water Surface Elevation El.Y,= 4943.88 ft Calculations (output) i1 Pipe Cross Sectional Area Ao= 3.14 sq ft f Culvert Slope So= 0.0098 ft/ft Normal Flow Depth Y = 2.00 ft Critical Flow Depth YC= 1.78 ft Headwater Depth by Inlet Control Headwater Depth by Inlet Control HW-inlet= 3.88 ft Headwater Depth by Outlet Control Tailwater Depth for Design d= 1.88 ft Friction Loss Coefficient over Culvert Length Kr = 2.82 Sum of All Loss Coefficients Ks= 3.02 Headwater Depth by Outlet Control HW-outlet= 3.59 ft Design Headwater Depth HW= 3.88 ft HW/D Ratio= HWID= 1.94 Headwater Depth Calculator-Apex& 27th Ave, HW-Pipe 8/1/2018, 9:20 PM i u Appendix E: ►S'torinwater Pond Calculations (Detention, Flow Control, Retention) i 1 Detention Ponds Oren Clete Subdivision Detention Pond 1 Calculations Celculatlon of Reoulred Vg)ume for Storm Datendon Pond (Reference: Bozeman Stormwater Master Plan-1982) Design Rainfall Freq year(see page III-5 of master plan) IDF coefficient a 0.64 IDF coefficient b OF coefficient n 065 Pre-development Calculations Post-devekVmonl Calculahons C Area(AC) C Areas(R'):open space 5n 32i- 0.20 Areas(AC):Basin 6 3.66 038 Basin 7 1,46 0.56 Basin 4.15 049 Basin 1.63 048 Basin 13 10.17 0.48 Total: 958,320 Total: 21 DO total area: 22,DO acres total area: 21.06 acres composite C: 020 composite C: 046 Overland 4 Overland tz average slope: 160 percent average slope: I' percent travel distance: 1346 feet travel distance: I BaF feet to: 62 minutes 4 43 minutes Channel t, Channel tc channelta, minutes channel minutes Total t,: 62 minutes Total 4: 43 minutes Intensity at I.(fig 23): 0.70 irVhr intensity at 4(fig 23): 0.79 inmr pre-devel peak runoff: 3.09 ds post-devel peak runoff: 7.72 cis Storm Duration Intensity Future Runoff Runoff Rates" Required (minutes) (INhr) Rete(cis) Voiotia(Cf) Volume(Cry Storepe(cry 25 1.13 11.01 18520 4628 11891 27 1.08 1048 15971 4899 11972 29 1.03 10.00 17400 5389 12032 31 0.98 9.58 17811 5739 12072 33 0.94 9.19 18205 8109 12D96 35 0.91 8.85 18584 6480 12105 37 0.88 8.54 18949 am 12099 39 085 8.25 19301 7220 12D81 41 0.82 7.98 191442 7590 12052 43 0.79 774 19972 7961 12012 45 0.77 7.52 20293 8331 11962 47 076 7.31 20604 8701 11903 49 0.73 7.11 209D7 9071 11835 51 0.71 6.93 21202 9442 117W 63 0.89 6.76 21489 9812 11677 55 D.68 6.60 21769 10182 11587 57 0.86 6.45 22043 1o652 11491 requlred detention storage(R') 12.1D5 Detention Pond Calculations: 0.5Inch Stormwater hi Roadways Calculations: C design depth of pond 1.50 feet Areas(R=):asphalt 2D9,337 0.90 max side slope 400 horizontal to 1.OD vaflf:al Mng#Vmdlh ratio 300 A= 4.81 acres min.particle removed 40 mkrons(1 micron-1 x 101 meters) 1= 0.021 lnlhr (0.5'in 24 hrs) Settling velocity of particle 0.0009 feat/second C= 090 a= 0.09 cis min pond to settle particle 1119 square feet Volume- 7,7a5 rf = pond tlimentions assuming vertical side elopes(actual pond footprint will be larger) bottom weir h 0.92 It width 52 length 156 Volume held between contours: Cumulative Contour Area fit') Delta V(ft') Volume(tl') 4963,50 8,472 4904.0 9= 4,424 4,424 4954.6 9,90 4,905 9,229 4955,0 10,797 5,199 14,427 Design storage at 1.6'depth(ft) 14,427 Gran Clelo Subdivision Detention Pond 2 Calculations Calculation of Reaulmd Volume for%Qm DalaMlon Pond (Reference: Bozeman Stormwater Maslar Plan-I W) Design Rainfall Freq. 10 year(Bee page III-5 of master plan) IN cooftlerd a 064 OF coefficient b OF coefficient n 0.85 Pre-davolopment Calculations Posl-develo went Calcufali0ns C Aces tACI C Areas(fe):open space 855.176 0.20 Ames(ACI: Basin 3 4.46 0,38 Basin 4 611 0.49 Basin 5 4.51 0,40 Basin 14 205 041 Basin 15 0.33 0.77 Total. 057,696 Total: 17.45 total area: 19.69 acres total area: 17.45 acres conwstie C: 0.20 composite C: 0.44 Ovedandte Overlandt, average slope: 166 percent average slope: I W percent travel distance: 1315 feet travel distance: IBM teat t,: 52 minutes 4 45 minutes Channel% Channel It. channel F minutes channel 4: minutes Totalk: 52 minutes Totslt�: 45 minutes intensity at 4(fig 23): 0.71 inner intensity at t�(fig 23): 0.77 inlhr pre-deval peak runoff: 2.77 efs post-level peak runoff: 5.87 ds Storm Duration IMenaHy Future Runoff Runoff Rslosse Required Imlrlutes) (In)hr) Rats(eft) Volume(cf) Volume( _Storage_ct 25 1.13 8.58 12877 4146 8730 27 1.06 SA7 13229 4479 8749 29 1.03 7.80 13564 4811 8753 31 0.98 7.48 13SM 5143 8741 33 0.94 7.17 14191 5475 8716 35 0.91 6.90 14487 5807 am 37 0.80 685 14771 8139 8633 39 0.65 6.43 15046 6470 11.575 41 0.82 6.22 15311 "M 8509 43 0.79 603 15589 7134 B435 45 0.77 586 15819 7486 8353 47 0.75 5.70 16061 7798 8264 49 0.73 5.54 16297 0129 8168 51 0.71 5.40 16527 MI 8088 53 0.69 5.27 18751 8793 79M 55 0.08 5.14 169S9 9125 7645 57 0.66 5.02 17183 9457 7728 required detention storage(fe)• 9,751 DotsMlon Pond Calculations: 0.61nch Stormwater In Roadways Cafculatlons: C design depth of pond 150 feel Areas(le):asphalt 21'',t 4 0.90 max side slope 4.00 horizontal to 1.00 vertical IangftWdthratio 3,00 A= 4.99 acres min.panicle removed 40 microns(1 micron=1 x 104 meters) 1= 0 021 irllhr (0.5"in 24 hro) setting velocity of particle 0.0089 feellsecond C= 0.90 O= 0 09 cfs min.pond to settle particle 850 square feet Volume• 8,004 cf bottom weir In= 1.08 R Pond dimentions assuming vertical side slopes(actual pond footprint will be larger) width 44 length 132 Volume held between contours: CUML4etive Contour Ares 1h'1 Delta V Ifl'1 Volume Ift) Overflow Retention Pond Calculations: 4956 ..4 4955.E 6,425 3.974 3,974 Q-CIA 4M.0 9,404 4,457 8,431 C• 0.44 (poet-development) 49565 10.410 4,954 13.385 1• 0.41 ir1R1r(10-yr,2-hr storm) A- 1745 acres 0= 3.15 ds Design storage at 1.6'depth(fl')• 13 366 required retention storage(fl')• 22,666 ft� minus detention volume 113,386 it' Overflow Design storage at 1.6'depth(R')-1 9,261 ft' Retention Gran Clelo Subdivision Detention Pond 3 Calculations Calculation of Reaulred Volume for Storm Detention Pond (Reference: Bozeman Slormwater Master Plan-1982) Design Rainfall Fraq' 19 year(see page III-5 of master plan) IDF coefficient a 064 IDF coefficient b IDF Coefficient n 065 Pre-development Calculations Post-development Calculations C C Areas(ft):open space 3%614 0.20 Areas(ac): Basin 2 0,55 067 Basin 12 0.41 067 Basin 16 083 067 Basin 17 072 067 Basin 18 898 054 Total: 398,138 Total: .19 total area: 914 acres total area: 11 49 acres composite C: 020 composite C. 057 Overland 4 Overland 4 average slope: 1 25 percent average slope: 1 2i percent travel distance: 7Cxj feet travel distance: 4C42 feet t<: 41 minutes t,: 30 minutes Channel 4 Channel 4 channell,. minutes channel�. minutes Total 4: 41 minutes Total 4: 30 minutes intensity at 4(fig 23): 081 infhr intensity at 4(fig 23): 1.01 iNhr predevel peak runoff: 1.48 cfs post-devel peak runoff: 6.56 cis Storm Duration Intensity Future Runoff Runoff Release Required (minutes) (INhr) Rate lots) Volume(cf) Volume(cf) Storage let) 34 093 603 12300 3027 9272 36 089 581 12548 3206 9343 3B 0.86 561 12788 3384 9404 40 0.83 542 13020 3562 9458 42 081 5.26 13244 3740 9504 44 0.78 5.10 13461 3918 9544 46 0.76 4.95 13672 4096 9577 48 074 482 13876 4274 9604 50 072 469 14077 4452 9625 52 070 4.57 14272 4630 9642 54 069 4.46 14462 4808 9653 56 0.67 4.36 14647 4986 9661 58 0.65 426 14828 5164 9664 60 0.64 417 15005 5342 9662 62 0.63 4 08 15178 5520 9658 64 0.61 4.00 15346 5699 9649 66 0.60 392 15514 5877 9637 required detention storage(ft') Detention Pond Calculations: 0.6 Inch Stormwater In Roadways Calculations: C design depth of pond 150 real Areas(ft'):asphalt U&IM 0 90 max side slope 400 horizontal to 1 00 vertical lengthlwidth ratio 3,00 A= 1.28 acres min.particle removed 40 microns(1 micron=1 x 10a meters) 1= 0.021 inlhr (0 5"in 24 hrs) settling velocity of particle 0.0065 feeuseoond C= 0.90 Q= 0.02 cis min.pond to settle particle 950 square feet Volume= 2,082 cf bottom weir h= 0.37 it pond dimentions assuming vertical side slopes(actual porldfoolprintwill be larger) width 46 length 139 Volume held between contours: Cumulative Contour Aron(rt') Dolls V(rt') Vnlumn(rt') 4945,50 5.613 4946.0 6.199 2,953 2,953 4946.5 6.810 3.252 6,205 49470 7.446 3,564 9,769 Design storage at 1.5'depth(ft')= 9,768 Meadow Creek Subdivision Phase 1 Detention Pond 4 Calculations Additional Stomtwater from Graf Street Calculation of Reoulred Volume for Storm Detention Pond (Reference: Bozeman Stormwater Master Plan-1982) Design Rainfall Freq. iC year(see page III-5 of master plan) IDF coefficient a 0.64 IN coefficient b IDF coefficient n 0.65 Pre-development Calculations Post-development Calculations C C Areas(fie):open apace 20.473 0.20 Areas(ac):Basin 11 0.47 0.67 Total: 20,473 Total: 047 total area: 0.47 acres total area: 0.47 acres composite C: 0.20 Composite C: 0.67 Overland t. Overland t. average slope: 0.55 percent average slope: 0.55 percent travel distance: 413 feet travel distance: 413 feet tc: 42 minutes t,: 20 minutes Channel tc Channel 4 channel t,; minutes channel lo; minutes Total 4: 42 minutes Total to: 20 minutes Intensity at t,(fig 23): 0.81 infix intensity at I,(fig 23): 1.31 In/hr pro-devel peak runoff.. 0.08 cis post-devel peak runoff: 0.41 cis Storm Duration Intensity Future Runoff Runoff Release Required minutes INhr Rate(cfs) Volume(cf) Volume(cf) Storage(cf) 25 1.13 0.35 532 114 418 27 1.08 0.34 546 123 423 29 1.03 0.32 6ti0 133 428 31 0.98 0.31 573 142 432 33 0.94 0.30 586 151 435 35 0.91 0.26 598 160 430 37 0.88 0.27 610 169 "1 39 0.85 0.27 621 178 443 41 0.82 0.25 632 187 445 43 0.79 1125 643 196 446 45 0.77 0.24 653 206 448 47 0.75 0.24 663 215 "ll 49 0.73 0.23 873 224 449 51 0.71 0.22 682 233 449 53 0.69 0.22 692 242 450 55 0.68 0.21 701 251 449 57 0.66 0.21 710 260 449 required detention storage(fe). ss: r l Ij Flow Control Structures Flow Structure Calculations-Pond 1 (Reference: City of Bozeman, Design Standards and Specifications Policy, March 2004, II.D.2, page 24) Note: see Figure A-2 in above reference. Rectan ular weir_Q=3 33LH"z Determine Outlet Slot Width needed Pre-development flow rate= 3.09 cfs Vertical Slot Height= 18 inches Req'd Outlet Slot Width= 050 Meet or 6 2/32 of an inch Determine Outlet Flow: Outlet Slot Width= 6.06 inches stage ft Q cfs Q(gpm) 0.25 0.210 94 0.50 0.595 267 0.75 1.092 490 1.00 1.682 755 115 2.350 1055 1.50 3.089 1387 Flow through outlet Stage vs. Discharge 3.50 r77777 3.00 »� 2.50 `. m 2.00 r� i 1.50 N 1.00 Y 0.5 F. -- 0 0.5 1 1.5 Stage(ft) Flow Structure Calculations-Pond 2 (Reference: City of Bozeman, Design Standards and Specifications Policy, March 2004, II.D.2, page 24) Note: see Figure A-2 in above reference. Rectangular weir•Q=3.33LH"' Determine Outlet Slot Width needed Pre-development flow rate= 2.77 cfs Vertical Slot Height= 18 inches Req'd Outlet Slot Width 045 feet or 514132 of an inch Determine Outlet Flow: Outlet Slot Width= 5.43 inches sta e ft cfs Q(qgm) 025 0.188 85 0.50 0.533 239 0.75 0.979 439 1.00 1.507 676 1.25 2.106 945 1.50 2 76t 1242 Flow through outlet Stage vs. Discharge 3.00 2.50 "v 2.00 r 3 ( x �� t T Lm 1.50 -- . 1.00 to - : 0.00 0 0.5 1 1.5 Stage(ft) Flow Structure Calculations-Pond 3 (Reference: City of Bozeman,Design Standards and Specifications Policy, March 2004, 11.0.2, page 24) Note: see Figure A-2 in above reference. Rectangular weir-Q=3.33LH... Determine Outlet Slot Width needed: Pre-development flow rate= 1.48 cfs Vertical Slot Height= 18 inches Req'd Outlet Slot Width = 0 24 feet or 229132 of an inch Determine Outlet Flow: Outlet Slot Width= .; A13`'., inches stage ft cfs Q(qpm) 0.101 45 0.50 0.285 128 0.75 0.523 235 1.00 0.805 361 1.25 1.125 505 1.50 1.476 664 Flow through outlet Stage vs. Discharge 1.60 I 1.40 w 1.20 ' —�- 1.00 j E, 0.80 '` 0.60 N 0.40 0.20 0.00 0 05 1 1.5 Stage (ft) II it 5 Retention Ponds Gran Cielo Subdivision Appendix E Temporary Retention Basin A Stormwater Calculations Design Rainfall Freq..:';;;...1.0 S'::` year(see page III-5 of master plan) OF coefficient a 0.64 OF coefficient b IDF coefficient n 0.65 Post-development Conditions Areas(fe): Acres C Basin 1 0.78 0.87 Basin 2 0.55 0.67 Basin 12 0.41 0.67 Total: 1.73 acres total area: 1.73 acres composite C: 0.67 Retention Pond Calculations: Q=CIA C= 0.67 (post-development) 1= 0.41 inthr(10•yr,2-hr stone) A= 1.73 acres Qpost= 0.47 cfe Gran Clelo required retention storage(fe)a 3,412 ft' (10-yr,2-hr stone) pond dimentions assuming vertical side slopes(actual pond footprint will be larger) width 28 length 83 Volume held between contours: Cumulative Contour Area(fe) Delta V(ft) Volume(ft') 4966.00 1.659 4966.5 2,429 1,022 1,022 4967.0 3.300 1,432 2,454 4967.50 4,272 1,893 4,347 Design storage at IN depth(fe)- 4,347 Gran Cielo Subdivision Appendix E Temporary Retention Basin B Stormwater Calculations Design Rainfall year(see page III-5 of master plan) OF coefficient a 0.64 IN coefficient b OF coefficient n 0.65 Post-development Conditions Acres C Areas(W): Basin 6 3 65 0.38 Basin 7 1 46 0.56 Total: 5.11 acres total area: 5.11 acres composite C: 0.43 Retention Pond Calculations: Q=CIA C= 0.43 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 5.11 acres Qpost= 0.90 cis Temporary Retention Pond B storage(ft')= 6,485 ft3 (10-yr,2-hr storm) Pond dimentions assuming vertical side slopes(actual pond footprint will be larger) design depth of pond 1.50 feet max side slope 4.00 horizontal to 1.00 vertical length/width ratio 3.00 width 38 length 114 Volume held between contours: Cumulative Contour Area(ft') Delta V(ft'') Volume(ft') 4960.0 —^— 3.300 4960.5 4,272 1,893 1,893 4961.0 5,344 2,404 4,297 4961.5 6.516 2,965 7,262 Design storage at 1.5'depth(ft) Gran Cielo Subdivision Appendix E Temporary Retention Basin C Stormwater Calculations Design Rainfall Freq. ,:,;'; 0';='`'„ year(see page III-5 of master plan) OF coefficient a 0.64 OF coefficient b OF coefficient n 0.65 Post-development Conditions Acres C Areas(ft): Basin 8 4.15 0.49 Basin 9 1 63 0.48 Total: 5.78 acres Composite C 0.49 Retention Pond Calculations: Q=CIA C= 0.49 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 5.78 acres Qpost= 1.15 cfs Tempoary Retention Pond C storage(ft')=_ 8,277 ft' (10-yr,2-hr storm) Pond dimentions assuming vertical side slopes(actual pond footprint will be larger) design depth of pond 1.50 feet max side slope 4.00 horizontal to 1.00 vertical length/width ratio 3.00 width 43 length 129 Volume held between contours: Cumulative Contour Area(ft) Delta V(ft) Volume(ft) 4959.3 4.530 4959.8 5,628 2,540 2,540 4960.3 6,825 3,113 5,653 4960.80 8,123 3,737 9,390 Design storage at 1.5'depth(ft')= 9,390 Gran Cielo Subdivision Appendix E Temporary Retention Pond D Stormwater Calculations Design Rainfall Freq. `t ;y year(see page III-5 of master plan) OF coefficient a 0.64 OF coefficient b OF coefficient n 0.65 Post-development Conditions Acres C Areas(ft): Basin 17 0.72 0.67 Total: 072 acres total area 0.72 acres composite C 0.67 Retention Pond Calculations: Q=CIA C= 0.67 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 0.72 acres Qpost= 0.20 cfs Temporary required retention storage(ft)= 1A15 W (10-yr,2-hr storm) Volume held between contours: Cumulative Contour_ Area(ft) Delta V(ft') Volume(ft') 49640 456 4964.5 989 361 361 4965.0 1,659 662 1,023 4965.5 2.429 1,022 2,045 Design storage at 1.5'depth(ft)= O i;. Gran Cielo Subdivision Appendix E Temporary Retention Pond E Stormwater Calculations Design Rainfall Freq. 0 year(see page ill-5 of master plan) IDF coefficient a 0.64 IDF coefficient b IDF coefficient n 0.65 Post-development Conditions_ Acres C Areas(ft): Local ROW 020 0.73 Total: 020 acres total area: 0.20 acres composite C: 0.73 Retention Pond Calculations: Q=CIA C= 0.73 (post-development) 1= 0.41 inlhr(10-yr,2-hr storm) A= 0.20 acres Qpost= 0.06 cfs Temporary required retention storage(ft)= 429 rya (10-yr,2-hr storm) Volume held between contours: Cumulative Contour Area(ft') Delta V(ft') Volume(ft) 49580 126 4958.5 446 144 144 4959.0 895 335 479 4959.5 Design storage at 1.5'depth(ft)= 479 Gran Cielo Subdivision Appendix E Temporary Retention Pond F Stormwater Calculations Design Rainfall Freq. 10 year(see page III-5 of master plan) OF coefficient a 0.64 OF coefficient b OF coefficient n 0.65 Post-development Conditions Acres C Areas(ft): Asphalt 0 22 0.73 Low-Med.Dens.Res. 0 7�i 0.35 Total: 1.01 acres total area 1.01 acres composite C 0.43 Retention Pond Calculations: Q=CIA C= 0.43 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 1.01 acres Qpost= 0.18 cfs Temporary required retention storage(ft')= 1.284 Ift3 (10-yr,2-hr storm) Volume held between contours: Cumulative Contour _ Area(ft) Delta V(ft') Volume(ft') 4958.0 362 49585 746 277 277 4959.0 1,231 494 771 4959.5 1.817 762 1,533 Design storage at IN depth(W)= 1,533 Gran Clelo Subdivision Appendix E Temporary Retention Basin G-Graf Street Stormwater Calculations Design Rainfall Freq. 1 r year(see page III-5 of master plan) OF coefficient a 0.64 IDF coefficient b IDF coefficient n 0.65 Post-development Conditions Areas(W): Acres C Basin 10 047 0.90 Total: 1147 acres total area: 0.47 acres composite C. 0.90 Retention Pond Calculations: Q=CIA C= 0.90 (post-development) 1= 0.41 inthr(10-yr,2-hr stone) A= 0.47 acres Qpost= 0.17 cfs Gran Cialo required retention storage(ft)a 1,242 ft3 (10-yr,2-hr stone) pond dimentions assuming vertical side slopes(actual pond footprint will be larger) width 17 length 50 Volume held between contours: Cumulative Contour _ Area(ft') Delta V(ft') Volume_(ft'I 4973.9 - 7yt1 4974.4 1.250 508 508 4974.9 1 730 745 1,253 4975A Design storage at IN depth(fe)- 1,253 Appendix F: Gutter .Flow and Curb Inlet Calculations Gran Cielo Subdivision -Phase 1 Gutter Capacity Calculations --- -- Appendix F Allowable Pavement Encroachment Given: T= 9 feet(max per city) T- _-__. W= 1.6 feet w t9 Ts= 7.5 feet SW= 0.08 ft/ft _ Sx= 0.03 ft/ft a= 0.96 inches a s. d = 3.24 d n= 0.015 0 Sw/Sx= 2.67 ----- - TAN= 6 Capacity for Gutter equations: Q=Qw +Qs Where: Qs= Discharge within the Roadway Qw = EoQ above the depressed section (cfs) QS Qw= Discharge within the depressed Q 1—E (gutter)section (cfs) ° Cf= 0.56 for English units QS _ C� SX3TS3So2 Sx= Pavement cross slope (ft/ft) n Ts= Width of flow in the roadway above depressed section So= Gutter longitudinal slope (ft/ft) S",/Sx Sw= Gutter depression cross slope(ft/ft) Eo - 1+--- W - T= Spread (ft/ft) I+ S"/S. _1 W= Width of gutter depression (ft/ft) (T/W)-1 Capacity solution Minimum Gutter Capacity Gutter Capacity-Basin 4& 5(S.28th Ave) So= 0.005 So= 0.0164 Qs= 1.65 cfs Qs= 2.98 cfs Eo= 0.4' cfs Eo= 0.44 cfs Q= 2.a-' cfs -i L_ Q --.36 cfs �l Gutter Capacity-Basins 2, 12, 16, 17(S. 27th Ave) So= 0.0082 Qs= 2.11 cfs Eo= 0.44 cfs F_ Q= 3.79 cfs Page 1 of 2 Basin 25 Yr Design Flow 1 0.97 3 1.70 4 3.26 (S. 28th Ave, east half) 5 2.09 6 1.84 7 1.08 8 2.74 9 1.22 10 0.86 11 0.54 12 0.49 13 6.12 Future Phase 14 1.17 15 0.62 18 4.96 Future Phase 2, 12,16, 17 3.00 (S. 27th Ave, west half) Summary The gutter capacity in Baisn 4(S. 28th Ave) is 5.36 cfs, based on a slope of 1.64%,which provides adequate capacity for the 25 yr design flow of 3.26 cfs. The gutter capacity in Baisns 2, 12, 16, 17(S. 27th Ave) is 3.79 cfs, based on a minimum slope of 0.82%,which provides adequate capacity for the 25 yr design flow of 3.00 cfs.The minimum gutter capacity, based on a 0.5%, slope is 2.96 cfs,which povides adequate capcity for the 25 yr design flow for all other basins. Therefore, the pavement encroachment will be less than the allowable(9-feet) by the City of Bozeman.Baisns 13 and 18 are part of future phases of the subdivision. Curb and gutter capacity will be analyzed at the time of design of those phases. Page 2 of 2 Gran Cielo Subdivision Inlet Capacity Calculations Gutter Section Appendix F Given: T= 9.0 feet T - _ W= 1.50 feet Ts= 7.50 feet w Ts Sw= 0.08 ft/ft Sx= 0.03 ft/ft a= 0.96 inches ' d= 3.24 inches S. n= 0.015 So= 0.016 i Where: S.a Qs= Discharge within the Roadway above the depressed section(cfs) Qw= Discharge within the depressed (gutter)section(cfs) Capacity for Inlets on Grade Cf= 0.56 for English units (Standard 24x36 Curb inlet) Sx= Pavement cross slope(ft/ft) Ts= Width of flow in the roadway above S.28th Ave depressed section From Gutter Capacity-Basins 4&5 So= Gutter longitudinal slope(ft/ft) Qw= 2.38 cfs Sw= Gutter depression cross slope(ft/ft) Qs= 2.98 cfs T= Spread(ft/ft) Cross-sectional area of flow W= Width of gutter depression(ft/ft) A= 1.22 ft2 Gutter Velocity V= 4.42 ft/sec Fraction of side flow intercepted Rs= 0.15 Total flow capacity intercepted by the inlet [— Clint= 2.80 cfs Qbypass= 2.56 cfs Design Q for inlet#1 025= 3.26 cfs Basin 4 Double Inlet Required Q25= 2.09 cfs Baisn 5 Design Inlet OK S. 27th Ave From Gutter Capacity-Basins 2, 12, 16, 17 Qw= 1.68 cfs Qs= 2.11 cfs Cross-sectional area of flow A= 1.22 ft2 Gutter Velocity V= 3.12 ft/sec Fraction of side flow intercepted Rs= 0.24 Total flow capacity intercepted b the inlet Qint= cfs Qbypass= 1.61 cfs Design Q for inlet#1 Q25= 3.00 cfs Basins 2, 12, 16, 17 Double Inlet Required (S.27th Ave,west half) Page 1 of 1 Appendix G. Sheet SDI. 0 - Storm Drainage .Basins X DRIVE _ --- ILI I I, II rn S m mrnO Dv <v rc m?ommz r �moo z;0< o o CmD I tII� O� �0� �m mz� I Ij �vz �....� v �'m� �z m v I Ii . v w �W m m 0r ' I O w / v� no* III : Z 56=a 1 II m 0 aovz z I !I v<v II wr-z Y cv II 'nmm I I I — - - - - _ - - - - - BASINI5 s —�BENNETT BLVD_,--- -- �,, —— - r. ., .. it Ii ,I i fl m I z c' _z �� f I <� I I DO i 0� Cm Nmm - tI Iimz- f �z -imz f E n C M II I I �p Q ? ?- I m I z -mj mcn-z 2 m� z �I II ' Oz _ �� om c ' O 21 Z I .�_AI I II r v� i �' O N r�*lv CD __,m \ p� C rO —i CZ \ DOS J L. x � MD 7,U � I — — — — ,-.=0 m 1 , r ` cn z �Z m r . .-. cu iI �� _2rir� t mVW mz�. � � �-I� . .J L. . J "oz �- �� i I cnZ� mZ00 Oz -_ _ -0 O Ma D r r-Cn Z Cl}iLUW:11' I I I I I : I {z I v m m I i J L . . J CD I I C D Y J CIIiLU 11'A1' LA z Z m v r� mz0 D z� :lob 0 _z>Z TIIERRA LANT. <z v > v, r. . _ . . —. D Z > > I � e J L. G .= * P\r I BASIN 12 BASIN 10 m m om mOx I , mz OXO T v;u 0 < < a cm Mmv 3ir-4 �mz T r m� 20 i N O Z �Z T z I T �wyvn.r ....wa\u.y\c.rl4nuUw,.,= ,.y.Ucau.u.•y r p��C.J.Ji MADISON ENGINEERING GRAN CIELO SUBDIVISION '°"s DRAM BY DATE 895 TECHNOLOGY BLVD,SUITE 203 STORM DRAINAGE BASINS 3 BOZEMAN,MT 59718 ' c C (406)586.0262(406)586-5740 FAX BOZEMAN,MT Q E 70 Appendix H: Record Drawing - Meadow Creek Sub Ph I Storm Drain Improvements