Loading...
HomeMy WebLinkAboutL_Bridger Peaks Town Center 1998 Report M Revised Drainage Design Report for Bridger Peaks Town Center BOZEMAN, MONTANA October, 1998 Prepared by: !Vote: Bid form shall riot be reinoved from this bound copy. NIORRISON L7❑ MAIERLE,mc. ❑ Bid Form Signed ❑ Addendums Acknowledged ❑ 10% Bid Security Enclosed Bozeman, Montana Name of Bidder Address Telephone Number Montana Contractor Registration Project No. 3121.001.040.0310 Set No. i i i i i i i BRIDGER PEAKS TOWN CENTER DRAINAGE CALCULATIONS October 16, 1998 , 1.0 INTRODUCTION Preliminary hydrologic and hydraulic design for the Bridger Peaks Town Center was included as Appendix J of the Preliminary Plat/PUD application dated June 1998. Revisions to the site plan were made after the June 1998 submittal to address city review comments. These revisions and additional survey information were used in preparing the following revised calculations. The project site's building arrangement and flat terrain make grading difficult. A system of storm drain pipes will be used to collect runoff. The majority of the site will be graded to drain through the storm drain and surface ditches to a large detention basin at the northeast corner of the site (Pond 2). The storage and outlet elevations for Pond 2 were designed to be as low in elevation as possible. Lower basin storage elevations will allow lower pavement surface and building elevations in Phase IV of the project, thus minimizing import fill requirements. Lower outlet elevations will allow adequate slopes and cover for on-site storm drain piping and ditches. 2.0 DESIGN FLOWS Design flow estimates were calculated using the culvert capacity charts in the Concrete Pipe Design Manual (American Concrete Pipe Association). Normal flow depths were obtained using Manning's equation. Design flow estimates are based on existing pipe capacities using Manning's n= 0.012. This is conservative for estimating the capacities of existing pipes, as compared ton= 0.013 which is often used in designing new concrete pipes. To be consistent, proposed concrete pipes were also designed using n= 0.012. Similar results would occur using n= 0.013 for both existing and proposed structures. As discussed in Appendix J of the Preliminary Plat/PUD application for this project, complexities of the contributing basins forced a simplistic, conservative approach to estimating design flows. The same assumptions, described below, were used in these calculations to estimate design flows. Design flows for storm "run-on" from culverts were estimated based on the assumption that the existing culverts and storm drains were sized to convey the 25-year peak ninoff with zero freeboard to the road overtopping elevation. Design flows for the Farmers Canal pipeline were estimated based on full flow conditions. To determine the 10-year design flows, the method used in the Preliminary Plat/PUD application will be applied. This method uses the intensity-duration curves from Bozeman's 1982 Stormwater Master Plan to develop a multiplier based on the estimated time of concentration for the Farmers Canal basin. To obtain a conservatively high estimate, the time of concentration for the Farmers Canal basin was estimated to be one hour, yielding a multiplier of 0.82. In equation form, Qio /Q25 = 0.82 2.1 60" RCP (Farmers Canal) Using Manning's Equation with n= 0.012 and the surveyed slope (s) = 0.41 percent, full-flow capacity of the existing 60".RCP is Q25 = 181 cfs For the 10-year storm, it is conservative to assume a base flow prior to applying the 0.82 multiplier to the 25-year peak flow(Q,;). During June and July of 1998, base flow was observed at less than one foot depth in the pipe. Assuming a conservative normal depth of 1.5 feet, Manning's Equation estimates base flow to be approximately 35 cfs. Therefore, Q10 = 35 + 0.82 (181 - 35) = 155 cfs See Appendix 1, pages 1 and 2 for calculations. 2.2 30" RCP Crossing Oak Street on East Side of North 17th Avenue The 25-year storm flow was estimated to be equal to the culvert's capacity with zero freeboard to the overtopping elevation(low point) on Oak Street. To arrive at a conservative higher value for the pipe capacity, estimates of maximum headwater available and minimum tailwater values were used as inputs to the culvert capacity charts for circular concrete pipe. Maximum headwater available is Max. HW = 34.38 - 29.44 = 4.94 feet Based on an 8-foot-wide trapezoidal outlet ditch with 4H:1 V side slopes, n= 0.030 and channel slope s = 1.0 percent, Manning's equation gives Min. TW = 0.77 feet Using the culvert capacity charts for circular concrete pipe to calculate the pipe capacity (Q,;) and applying the 0.82 multiplier to estimate Q,o, Q25 = 43 cfs and Q,o = 36 cfs See Appendix 1, pages 3 through 8 for calculations. 2.3 18" RCP Crossing Oak Street on West Side of North 17th Avenue Similarly to the 30" RCP above, the 25-year storm flow was estimated to be equal to the culvert's capacity with zero freeboard to the overtopping elevation (low point) on Oak Street. Maximum headwater available is Max. HW = 34.38 - 30.12 = 4.26 feet Based on a 4-foot-wide trapezoidal outlet ditch with 3H:1V side slopes, n= 0.030 and channel slope s = 0.010 ft/ft, Manning's Equation gives Min. TW = 0.74 feet Using the culvert capacity charts for circular concrete pipe to calculate the pipe capacity (Q25) and applying the 0.82 multiplier to estimate Q10, Q25 = 15 cfs and Q,o = 12 cfs See Appendix 1, pages 3 through 9 for calculations. 2.4 On-Site Design Flows During a 25-year, 24-hour storm event, the effect of the proposed on-site detention basins in attenuating peak flows is assumed to be zero (i.e., it is assumed the ponds will be full before the 25-year peak flow arrives). Therefore, from Appendix J of the Preliminary Plat/PUD application, the peak runoff from the project site is Q25 = 53 cfs In a 10-year, 24-hour storm event, on-site detention basins will be designed to limit overall peak flows to pre-development values. From Appendix J, the pre-development peak runoff is Q,o = 6.4 cfs 2.5 Farmers Canal - Storm Drain Extension The three existing pipe outfalls near the eastern Oak Street entrance road (60", 18" and 30" RCP) will be connected to a large concrete vault. An outlet conduit for this vault will convey the runoff north to a new outfall approximately 500 feet north of Oak Street. A triple 42" RCP is proposed as the most economical outlet conduit that will minimize the height of the conveyance structure so the entrance road will meet site grading constraints. The design flow for the triple 42" RCP is estimated by adding the peak flows from the 60", 30" and 18" pipes, which conservatively assumes that the peak flows coincide in time. Q25 = 181 + 43 + 15 = 239 cfs Use Q25 = 240 cfs Qio = 155 + 12 + 36 = 203 cfs 2.6 Farmers Canal -Tschache Lane Culvert When Tschache Lane is extended across Farmers Canal, a culvert will be required. Total design flows for this culvert are estimated by adding the peak flows from the Farmers Canal Storm Drain Extension (calculated above) to on-site runoff. Almost all of the site will drain to the Tschache Lane culvert, so if on-site detention effects are ignored in,a 25-year storm event, the peak runoff from the site will be 53 cfs. Assuming the peak flows coincide in time, Q25 = 240 + 53 =293 cfs In a 10-year storm, on-site flows will be routed through the on-site detention basins. The entire site will be graded to drain to the Tschache Lane culvert. The total peak runoff from the site, routed through the on-site detention basins,will be equal to or less than the pre-development peak runoff rate of 6.41 cfs (see the Preliminary Plat/PUD application). Assuming the peak flows coincide in time, Q10 = 203 + 6.41 =209.41 cfs Use Q,o =210 cfs 3.0 FARMERS CANAL - STORM DRAIN EXTENSION (Preliminary Design) Due to traffic safety considerations, an entrance drive to the site will be located directly above the existing 60" RCP outfall. Site grading requires a low-profile extension of this culvert; otherwise, the ability to pass the 100-year flood east over the entrance drive into Farmers Canal without inundating buildings may be compromised. A multiple-pipe storm drain is proposed as the most economical way to minimize the height of the storm drain. Structurally, the pipes will be designed to handle H-20 (highway) loading with one foot minimum cover. Using Manning's Equation with Q =240 cfs, n= 0.012 and slope (s) = 0.005 ft/ft, a triple 42" RCP is required. Other conveyance structures with comparable flow capacities, such as round pipes of different materials, arch pipes, box culverts and structural arches, were also considered. The triple 42" RCP was selected based on cost, durability and ease of installation. See Appendix 1, pages 10 through 15 for calculations. 4.0 FARMERS CANAL - TSCHACHE LANE CULVERTS (Preliminary Design) As discussed in Section 1.0, the basin storage and outlet elevations for Pond 2 (to be located in the northeast corner of the site) will be designed to be as low in elevation as possible. The outlet pipe for Pond 2 must gravity drain to the Farmers Canal waterway; therefore reducing the 10-year water surface elevation of Farmers Canal at this connection point is critical to reducing site grading and detention storage elevations. A multiple storm drain pipe is proposed as the most economical way to minimize the 10-year water surface elevation of Farmers Canal at the Tschache Lane crossing. Using Manning's Equation with Q = 240 cfs, n= 0.012 and slope (s) = 0.005 ft/ft, a triple 48" RCP is required. Other conveyance structures with comparable flow capacities, such as round pipes of different materials, arch pipes, box culverts and structural arches, were also considered, The triple 48" RCP was selected based on cost, durability and ease of installation. In addition, high tailwater depths in the existing channel downstream of the Tschache Lane culverts negate the hydraulic advantages of some of the other conveyance structures that were considered. Calculations for a triple 40" x 65" RCP Arch (equivalent to a circular 54"-diameter pipe) are included to demonstrate this. To minimize elevations of the detention basin and its outlet structure, the proposed design will connect the detention basin's outlet pipe to the western 48" RCP with a manhole located 20 feet downstream of the inlet end of the 48" RCP, thus allowing adequate distance for normal flow depth to develop in the 48" RCP. Since the 48" RCP's normal flow depth (2.46 feet) is significantly lower than its headwater depth (3.90 feet), the detention basin can be constructed at a lower elevation and still have adequate head to drive the flow out into the Tschache Lane culverts. Because the detention pipe connects to the western 48" RCP only, the normal depth in this pipe will be greater to account for the additional inflow from the detention basin. In conclusion, a triple 48" RCP culvert system (each pipe 140 feet long at 0.50 percent slope) is proposed for the Tschache Lane crossing. The culverts are designed to convey the 25-year peak runoff with a one-foot minimum freeboard to the overtopping elevation (low point) on Tschache Lane. Structurally, the pipes will be designed to handle H-20 (highway) loading with one foot minimum cover. See Appendix 1, pages 16 through 30 for calculations. 5.0 POND 2 DETENTION BASIN OUTLET STRUCTURE The detention basin outlet structure for Pond 2 will be located under the berm which impounds Pond 2, and will consist of 15-inch inlet and outlet pipes connected to a 24-inch riser within a concrete manhole. The pipe and riser will be made of corrugated outer wall, smooth interior High Density Polyethylene (HDPE) pipe. The control structure's inlet and outlet pipes were sized to convey the maximum allowable site release rate (equal to the pre-development release rate of 6.41 cfs, as calculated in the the Preliminary Plat/PUD application) under maximum tailwater conditions, as detailed in the Appendix. The orifices on the riser will be placed such that the maximum release rate will not be exceeded during periods of low tailwater. Pond 2 will be constructed in two phases. The first phase of construction will coincide with the construction of Phases I and II as detailed in the Preliminary Plat/PUD application. When the remainder of the site is developed, Pond 2 will be modified as needed to control runoff under fully developed conditions. Elevations critical to site grading and Pond 2 performance, for both phases of pond construction, are as follows: Requirements - Phase I/II Conditions: Minimum Bottom of Pond/Inlet Pipe Elevation: Farmers Canal conveys a base flow, estimated conservatively high at 35 cfs in this analysis. To keep the assumed maximum Farmers Canal base flow from backing up into the detention basin, Minimum Bottom of Pond/Inlet Pipe Elevation (Phase I/II) = 4716.2 Bottom Elevation of Available Detention Storage: Farmers Canal will convey runoff past the detention basin outlet pipe and ditch. To keep the assumed"worst-case" (10-year) tailwater from backing up into the area (air space) reserved for detention storage, Bottom Elevation of Available Detention Storage = 4718.5 Maximum Detention Basin Storage Elevation: Based on the use of a 15" HDPE pipe projecting from a fill slope, the maximum detention basin storage elevation is 4718.28, which would provide only 1.18 feet (4718.28 - 4717.10) of depth for detention. However,this maximum storage elevation can be increased by designing a release structure with an orifice sized to increase the headwater depth for a given maximum release rate. Requirements - Fully Developed Conditions: Minimum Bottom of Pond/Inlet Pipe Elevation: The Tschache Lane culverts will convey a base flow, estimated conservatively high at 35 cfs in this analysis. To keep the assumed maximum base flow from backing up into the detention basin from the western 48" RCP, Minimum Bottom of Pond/Inlef Pipe Elevation (Phase I/II) = 4715.7 Bottom Elevation of Available Detention Storage: The Tschache Lane culverts will convey Farmers Canal runoff past the detention basin outlet pipe. To keep the assumed "worst-case" (I 0-year) tailwater from backing up into the area(air space) reserved for detention storage, Bottom Elevation of Available Detention Storage = 4717.1 See Appendix 1, pages 31 through 37 for calculations. 6.0 PHASE I/II DRAINAGE CALCULATIONS Hydrologic calculations for construction of Phases I and II are provided in Appendix 2, pages 1 through 24. These calculations were used to size proposed on-site conveyance structures (ditches, pipes and catch basins). All on-site storm drain is proposed to be corrugated outer wall, smooth interior High Density Polyethylene (HDPE) pipe. A Manning's "n" value (roughness coefficient) of 0.012 was used in the calculations. The SCS unit hydrograph (TR-55) method was used to estimate peak flows and runoff volumes for the 10-year, 24-hour design storm. The site was broken into several drainage basins (See Figure 2). Computer printouts are from WaterWorks HMS, a program which creates event hydrographs for each basin, then routes the runoff through pipe/ditch networks. The program accounts for time lags between basins, structure losses, and backwater effects to determine the resulting hydraulic grade line through the system. Reaches (conveyance structures such as pipes and ditches) and Nodes (connecting points between reaches such as curb inlets, grade breaks and pipe outfalls) are identified in Figure 2, and correspond to the computer output. The program selects the minimum pipe size for each pipe reach; some pipe sizes were increased to provide a minimum 15-inch diameter and to reduce the number of different sizes used on the project. See Appendix 2,pages 1 through 24 for Phase I/II post-development drainage calculations used in sizing drainage conveyance structures. 7.0 DETENTION CALCULATIONS (Phase I/H and Fully Developed Conditions) As described in the Preliminary Plat/PUD application dated June 1998, the project will be constructed in phases. Phases I and II will be constructed per the plans included with this submittal. The remaining phases will be constructed sometime in the future; detailed detention calculations for future phases will be provided during the design review for these future phases. The project site is situated on a drainage divide. Referring to Figure 1, Basin H-1 (HAA and H-1B combined) currently drains to the roadside ditch along North 19th Avenue/Simmental Way. Basin H-2 (H-2A, H-2B and H-2C combined) currently drains to the northeast corner of the site and eventually into the Walton Ditch/Farmers Canal drainageway (referred to herein as Farmers Canal). Basin H-3 currently drains directly to Farmers Canal via roadside ditches along Oak Street. 7.1 Basin H-1 Typically, city design standards allow a maximum post-development release rate equal to the pre-development peak runoff for the same drainage basin, based on a 10-year design storm. For this project the above criteria will be met. However, Basin H-113 will be re-graded to drain to Farmers Canal rather than to the North 19th Avenue ditch, for both the 10-year storm and for larger storms. This basin transfer will help to minimize the nuisance flooding that now occurs in the vicinity of the North 19th Avenue/Baxter Lane intersection. Using the Rational Method, peak release rates from Basin H-1 to the North 19th Avenue ditch are: 10-year peak release (existing conditions) = 2.18 cfs 10-year peak release (Phase I/II post-development conditions) = 2.03 cfs Because the post-development release rate is less than that for existing conditions, detention is not necessary. Treatment will be provided by biofiltration through grass-lined ditches as it is now. Detention and treatment for Basin H-113 will be provided along with Basin H-2. 7.2 Basin H-2 The "filly developed" detention calculations in this submittal show that Pond 2 can be enlarged to provide adequate detention for Phase IV. Detention for Basins H-113 and H-2 is provided by Pond 2 (See Figure 2). All the detention requirements for Basins H-113 and H-2 can be met with the use of Pond 2 exclusively. Pond 1 will be used primarily to attenuate peak flows in order to reduce pipe sizes in the on-site storm drain system. Detention storage in Pond 1 is neglected in the Pond 2 design; therefore no detention calculations are provided for Pond 1. Pond 3 exists for sediment retention during construction of Phases I and 11, and may be modified in the future for use as a permanent detention pond. Pond 2 will limit the combined 10-year release rate of Basins H-113 and H-2 to a peak rate less than or equal to the pre-development rate for Basin H-2 alone. This requirement will be met for Phase I/II construction and also under future, fully developed conditions. Pond volumes were first estimated on a spreadsheet using the mass balance (time step) method for a triangle and for a constant release rate,then averaging the two results. Next, a conservative maximum pond volume was estimated by iterating on the storm duration to maximize pond volume. Using the Rational Method, the following results were obtained: Results - Phases I and II: 10-yr. peak release rate (pre-development) = 3.80 cfs 10-yr. peak release rate (post-development) = 3.80 cfs Required Detention Volume = 41,400 cubic feet Pond Outlet Elevation = 16.4 Detention Storage Elevation Range = 18.5 to 20.6 Control Structure: Top of Riser Elevation = 20.6 min. (use 20.7) Dewatering Orifice = 2.0" diameter, center elev. 15.00 Primary Orifice = 8.6" square, center elev. 18.50 Emergency Spillway Crest Elevation = 21.0 Top of Pond Dike Elevation = 22.0 (1 ft. freeboard) Results - Fully Developed Conditions: 10-yr. peak release rate (pre-development) = 4.08 cfs 10-yr. peak release rate (post-development) = 4.08 cfs Required Detention Volume = 63,800 cubic feet Pond Outlet Elevation = 16.4 Detention Storage Elevation Range = 17.1 to 20.7 Control Structure: Top of Riser Elevation = 20.7 Dewatering Orifice = 2.0" diameter, center elev. 15.00 Primary Orifice = 8.0" square, center elev. 17.10 Emergency Spillway Crest Elevation = 21.0 Top of Pond Dike Elevation = 22.0 (1 ft. freeboard) 7.3 Basin H-3 Basin H-3 covers a portion of the Oak Street right-of-way and entryway corridor. A retention pond (Pond 4) will be used to fully contain the 10-year, 2-hour storm runoff from this area. Using the Rational Method, 10-yr. peak release rate @ Tc (pre-development) = 1.51 cfs 10-yr. peak release rate (post-development) = 0.00 cfs 10-yr., 2-hr. peak rainfall = 0.41 cfs Required Retention Volume = 3,120 cubic feet Retention Storage Elevation Range = 31.5 to 34.0 I7 fl Il Il APPENDIX I DESIGN FLOW CALCULATIONS i i i i i i i i i i i i Farmers Canal - Exist. 60" RCP Capacity Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal - Exist. 60" RCP Capacity Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Capacity Input Data Mannings Coefficient 0.012 Channel Slope 0.410000 % Diameter 60.00 in Results Depth 5.00 ft Discharge 180.65 ft3/s Flow Area 19.63 ft2 Wetted Perimeter 15.71 ft Top Width 0.00 ft Critical Depth 3.85 ft Percent Full 100.00 % Critical Slope 0.004647 ft/ft Velocity 9.20 ft/s Velocity Head 1.32 ft Specific Energy FULL ft Froude Number FULL Maximum Discharge 194.33 ft3/s Full Flow Capacity 180.65 ft3/3 Full Flow Slope 0.004100 fUf' Aug 24, 1998 Morrison-Maierle,lnc. FlowMaster v4.1 16:49:52 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Farmers Canal - Exist. 60" RCP Base Flow Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal - Exist. 60" RCP Base Flow Flow Element Circular Channel Method Manning's Formula Solve For Discharge Input Data Mannings Coefficient 0.012 Channel Slope 0.410000 % Depth 1.50 ft Diameter 60.00 in Results Discharge 35.38 ft3/s Flow Area 4.95 ft2 Wetted Perimeter 5.80 ft Top Width 4.58 ft Critical Depth 1.66 ft Percent Full 30.00 % Critical Slope 0.002805 ft/ft Velocity 7.14 ft/s Velocity Head 0.79 ft Specific Energy 2.29 ft Froude Number 1.21 Maximum Discharge 194.33 ft3/s Full Flow Capacity 180.65 ft3/s Full Flow Slope 0.000 157 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:49:34 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 PROJECT: = MORRISON BY: DATE PROJ.NO. ■�'MAIERLE INC. � CNK: DATE PAGE: j OF 37 j]E S/ GN rL O w GA l_G vG.A 77o Nj CX75 T l NG 39 " )zc P IJX L_F 3VN ACP C@ 0, 36 /o� «rc!- FE.S_ �� ecrr4 cm) r E. C«) = 2-7.vv I.F. = Z��. by - z�. ©z =- C. yZ 150 fr f Cc�;✓r� = Hw��x = v.9y D 2, ---� Tr R = c/y c-F5 fl = 3,1 d` t D 2_zst 2.,5= 2..3 2 Z 7T w = 0,77 N w = N -F 3,I + 2. - O vz = 5,od > v�y ,l�61� .. Q < VV cis d,+ D 2.23+2,5 > � = 3, D z = 2 lbw = 3,0 t 2.37 - 0-yZ = y,c `/. 7q av,,,-/a�l� 6� < `l3 �fs PIPE 15 ovrLET co/,/T20L - Use = V3 .J5 Q s Q = �z (pry) = 36_ l USE Quo = 36 � s �o M7 PROJECT: OM= y' SO `N BY: DATE PROD.NO. ■■I MMERLE,INC. CHK: DATE PAGE: OF y 37 Fxl/ TNG /F" F-ct fZCf ew C qZ �� io c!- !=C_ 5 ,f e�IJ 30-12 .l. E_ �o�t� = 29. 72 30. 12 - 2%72 1,1&f Cc,,4k-g/ HU/ ) ; y-26 p 1. 5 Du7'let nn-�vol -�Tr/ (9 = /5 fs > N = 3-6 Z = 2 Tw = o-7y �w = ,y t do - Aso v 1. V?' - o.yo = y.6 ? > v,)6 a / 6/� -- S? < --� lv y , _ /1/ off H = 3,! d` D�f = l-y2 5 = 1.yS = k I Nam = 3,1 t /,qS " 0,,/0 y-l 5 < t1,Z6 �A b�e. Q > /y J-S :. f l PE 15 OUTLET e'rlu R OL- — U56 Q = l5" fs I z� 230 CONCRFTF PTPF, DFSTGN MANTTAT 1 FIGURE 33 i i HEADWATER DEPTH FOR CIRCULAR CONCRETE PIPE CULVERTS WITH INLET CONTROL i 180 10000 168 8000 EXAMPLE (1) (2) (3) 156 6000 D=36 inches (3.0 feet) 6.0 144 5000 Q=66 cfs -4000 6.0 6 p 5.0 132 Hw� Hw 5.0 120 3000 D feet 5.0 4.0 4.0 2000 (1) 1.8 .5.4 108 (2) 1.55 4.7 - u--r 3.0 102 (3) 1.6 4.8 3.0 96 1000 .D in feet 3 Fy _,� 3.0 90 1800 884 600 198 0 - 2.0 w 500 2.0 72 400 Q = y��fs 2.0 z 66 Cn 300 1.5 z 60 2: I 200 � qK `n 1.5 1.5 54 Ld 2 60 ? w / � p ��� 1.0 1.0 Hw O 36 40 To use scale(2)or(3) w 1.0 - � 30 draw a straight line 0 .9 9 D UJ 33 through known values 0 of size and discharge tY .9 //I✓= 3 %D w w 25 30 to intersect scale(1). F- .8 e w 3-�/+ y.7 Q From point on scale(1) 8 $ N (e1 = 0 27 1 project horizontally to 0 solution on either scale Q 24 g (2)or(3). w 7 = 7 .7 6 = lbc�s - 211 5 4 HW/D ENTRANCE 3 SCALE TYPE fl.5 .6 18 (1) Square edgelF C 5 '6- 2 (2) Groove end with headwall 15 (3) Groove end 1.0 Projecting ---.5 - - 5 .5 12 BUREAU OF PUBLIC ROADS JAN. 1963 HEADWATER SCALES 2&3 REVISED MAY 1964 FIGURES 235 FIGURE 38 6 37 f HEAD FOR CIRCULAR CONCRETE PIPE (3) CULVERTS FLOWING FULL 10 n = 0.012 8 j 2000 g i = — — —J 5 i w HW — --; Z Z o 4 1000 132� J Slope So -► .4 800 12a~ SUBMERGED OUTLET CULVERT FLOWING FULL 5 3 114 HW=H+ho-SoL 6 600 108 For outlet crown not submerged, compute HW by 500 962 methods described in the design procedure 8 2 400 84 1.0 .5 300 78 1.5 72 cn 66 O LL 200 60 `� O�� w v O �i'J, UJ 00--L-L 2 z w 54 �. V _ � / ,L00 �J li — 0 1.0 0---z 3.0 w 42 00 T 9 0 80 0' — 4 8 60 M 36 O EXp,MPLE 30� ,�00 = 5 y3 ifs cn 50 ,;� 00 500 6 —� 40 7 2 27 �� 500 8 30 o 24 �`O\N 10 .6 I �s I 20 2L 15-A, — ) 18 5 20 10 15 8 4 6 12 5 .35 5 4 project I 4), then i ine through i everse as I - JAN 1963 I i 224 CONCRETE PIPE DESIGN MANUAL 7�3 FIGURE 28 FI CRITICAL DEPTH CIRCULAR PIPE 3 ZZ3 —� 2 ---- —- — 1 .0 ?1* d'c CANNOT EXCEED TOP OF PIPE 0 1.0'" DIA. 0 10 17 20 30 40t43 50 60 70 80 90 100 DISCHARGE Q CFS 6 8 5 w i 7 w 4 — g' 7' 8 9 6 8' � = 3 d CANNOT EXCEED TOP OF PIPE 5 6' 7' c 0 5' ,j 2 4' DIA, w v 0 100 200 300 400 500 600 700 800 900 1000 DISCHARGE Q CFS Q 14 U 12 10 8 6 15' do CANNOT EXCEED TOP OF PIPE 13' 1 1P 4 9' DIA. 0 1000 2000 3000 4000 DISCHARGE Q CFS BUREAU OF PUBLIC ROADS JAN. 1964 �z 7 Oak Street - 30" RCP Outlet Ditch Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Oak Street- 30" RCP Outlet Ditch Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.030 Channel Slope 1.000000 % Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 8.00 ft Discharge 43.00 ft3/s Results Depth 0.94 ft Flow Area 11.01 ft2 Wetted Perimeter 15.73 ft Top Width 15.50 ft Critical Depth 0.83 ft Critical Slope 0.015470 ft/ft Velocity 3.91 ft/s Velocity Head 0.24 ft Specific Energy 1.17 ft Froude Number 0.82 Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:51:49 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 7137 Oak Street - 18" RCP Outlet Ditch ' Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Oak Street- 18" RCP Outlet Ditch Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.030 Channel Slope 1.000000 % Left Side Slope 3.00 H : V Right Side Slope 3.00 H : V Bottom Width 4.00 ft Discharge 15.00 ft3/s Results Depth 0.74 ft Flow Area 4.62 ft2 Wetted Perimeter 8.69 ft Top Width 8.45 ft Critical Depth 0.64 ft Critical Slope 0.017294 ft/ft Velocity 3.25 ft/s Velocity Head 0.16 ft Specific Energy 0.91 ft Froude Number 0.77 Flow is subcritical. Aug 24, 1998 Morrison-Maierle,lnc. FlowMaster v4.1 16:51:32 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 PROJECT: M MOFMSON BY: DATE PROJ.NO. ■ MMERLE,INC. K: PAGE: OF CH DATE �� 37 Fig/z/,l Er25 C-11111A L - 5T0/2/,1 DAAlN Ex - NSI®N FIN. GRADE Ec 36.0 16„ TPIPLE y2-'/ZCF a+ 0_50 7- n PC,- f'pr = zyo e-fs H L MH HGL. I � i EX. 6 0 &C P w L E. ZS.l �I E. 26.zS 2-6.0 -T.C. 23,70 6p� DUT L17" C CAI r2Q- 7T 1-/= 2 d,s y - 73.70 - Z_ gy UsE Tw- 3,0 I d, + D '7.�7 4 3- � 2 _ 2- 3. it > 30 �, 3./y 0 Fri,fior — —r M L Ft,Q� / ��riv`Mc�S �gKC4-OVY1, I P 1.33 (z _ 9 L 5 i o f t, V - Q/ = 9-'3Z- y = 32-Z -F 501z _"-OM S PROJECT: = ON BY: DATE PROD.NO. ■■■MERLE,INC. CHK: DATE PAGE: l r OF 37 Fi4 tz M E/Z S &ANAL - 5 i oRM PgAI N EK r2�-1 `S i oN �ro� QUTLEl Cd/t/r/Z0L 29' (V 12�2 (� 0� S 3Z1 HP = �� 75)/.33 2 (3� F, five 5 h'f = D. 3`/[T�3z.z� = 0,37 ft- = h� yZ�� RCP s?on e, evid iN Aa"d+ :,,, # 2(37- — e- NCc,C�wcr}�e� OeV Vtfi-lel �a�I fare 23.70 4- .3.1t1 4- l.07 + 0.37 + 0. 5y — (Z6.25"- ,?3.7C> = 26, z9 r1VL6T (0it/ T/Z0L N Q/ev. 2 6.2 y 5.I = 3/_y3 e l�v. M PROJECT: = 1 t you""SO``N BY: DATE PROJ.NO. ■IRRT MERLE,INC. CHK: DATE PAGE: OF /2 37 FA/Z.Mt95 64/YAL - �TAOM PA /N Ex i 6ly5l9N HYP)v,A01 IG 6P-APE LINE 'poLAI�j 5 /�, 01 ae:j/C/, 1167L = 26.5-y �f oti f let /16L x �D = Z3.7,P 3./q = 24_8"t/ f IqH H6L = Z6 Yy 1.�9{ = 26.97 (ec6t1d) N61 = 26.97 t 0.37 = 2-7. 3V �ow�n S vC�h, J vo tdil NGL 3, 01 = 251.26 ,jn5j4e 116L 3/. l3 KING COUNTY. WAS HINGTON, SURFACE WATER DESIGN MANUAL FIGURE 4.3.4E* BEND HEAD LOSSES IN STRUCTURES '.4 I I 1.2 1 I I DJ ! I I 1.0 I r I 0.8 I Y � I c r' Bend at Manhole, I i no Special Shaping H t— Deflector 0 -' 0.6 �— Curved I I Bend at Manhole, Y Curved or Deflectorl 0.4 t I K= �- Curved Sewer r/D=2 I I 0.2 I I 1 I Sewer r/D>6 I i I 0.0 00 200 400 60° 800 900 1000 Deflection Angle 7 , Degrees 'From'Modem Sewer Design', copyright 1980,American Iron and Steel Institute 4.3.4-22 1/'90 1V137 Farmers Canal SD Ext. - Trpl. 42" RCP Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Oak St. -Triple 42" RCP Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 42.00 in Discharge 80.00 ft3/s Results Depth 3.01 ft Flow Area 8.79 ft2 Wetted Perimeter 8.30 ft Top Width 2.44 ft Critical Depth 2.79 ft Percent Full 85.87 % Critical Slope 0.005661 ft/ft Velocity 9.10 fus Velocity Head 1.29 ft Specific Energy 4.29 ft Froude Number 0.84 Maximum Discharge 82.90 ft3/s Full Flow Capacity 77.07 ft3/s Full Flow Slope 0.005388 ft/ft Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 t 16:51:10 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Farmers Canal - S.D. Ext. Outfall Ditch Worksheet for Irregular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal - S.D. Ext. Outfall Ditch Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 1.000000 % Elevation range: 24.00 ft to 28.90 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 28.90 0.00 70.00 0.035 8.00 26.25 30.50 25.00 38.50 24.00 40.50 24.00 41.50 25.00 47.50 26.00 63.00 26.25 70.00 28.60 Discharge 240.00 ft3/s Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 26.54 ft Flow Area 56.89 ft2 Wetted Perimeter 57.42 ft Top Width 56.73 ft Depth 2.54 ft Critical Water Elev. 26.35 ft Critical Slope 0.019255 ft/ft Velocity 4.22 ft/s Velocity Head 0.28 ft Specific Energy 26.82 ft Froude Number 0.74 Full Flow Capacity 1787.80 ft3/s Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:50:42 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 PROJECT: AiMORMSON BY: DATE PROD.NO. ■ MERLE,INC. HK: PA C DATE GE. /6 OF J z 7 Sc H Ae He L-A NE c yL. yrl?—7.5 E 1-• 21.3 T,E. i y,7 _ �r�.y' All �j. o � 0,'5-0 25-yr �G✓ ; 3�� , ALT A - Tn1PLE y$" RGP 61,5e f/1,,r TG1= rw�e'f Caniyol = I avoil o I Q zs = 233 fl INLET 60,117-R01- . 3,y I L �C ha L5 z_02 %- 3..5' 0_ 7 = y. gz 5 6 144c,f0V1�vJS �C101-17-1 ICI 1 �,�j uSE � 1c e5vvlo]Ie 0o/{-v,5-" / fJC�j�� 'tOv L-.5'Y`, I Q- 1,� cr.�� �1:.5 E 7""�c�✓ Ccr e"�,x%«':5 = .25 I At r = b97 Cis loe, lo'pc, d` _ 2_3� ff A7 Q�crSC Fie /� �� 7 J-S i [l� :TBY JECT: = O ^'®N DATE PROD.NO, AUERLE,INC. : DATE PAGE: OF l� 37 HACHE L ANC C yL VCj,�),TS 4 L 1. �4 - rnl10LE qK- rzcP Not�wt�l PepA we57- i wt�l ir+c�kde r/o1s c/e e, oh �u5 r �, ��► �e��s �f a/op PC"/ nee y cfs V5iv� t�7S v-n/1"a lid v�c k m N/Vi T'/c"v cn h l �A,4 ire eal'�1,/Rie To c west yY� fLCP = = /P,7 c 7 j ^l ab 0 2- r� r Clcvni� c✓+ at PHeo-f oo P;Pe OtAif 7'hc o<�le"14-;oo p;�e o('4/ef wall be /o �e� 2� feE4. �/oi'-o ft `c-"bll C4 1� weft 11 ZCPs -oleo cod. 7"tie cue evi�iovr Pi/�E`3 I/Wclfed e,kV--iv o -i e-rl/ be crv4er e hov-mml del on/wG, 7Efv elc✓A�i�c� ✓'ec e iv;( f�c.v heh -F X"A it k' le IC, vt'77 G'C n/ iS ✓�,y�GEC•. bcoej VV' hov-w, m / cl ey 4' /0-yam) : /y 7 - zo( ) 2.Ll6 = I7 06 YW (b�fe /�W�= A/,7- Zo(!o��) , /_/Z = 15.72 = 7W basE Pic se. n�1 fk' Yece;v,`41 c 4cr&nyle / c'i fro `lr poc' o;;,;`lc —rh (�o:yr) = 1y,0 z, b6 = 16- �6 < /706 (in TW 4,5e fi,,) L 1 Z = 1 5. 12 z /,5.. 72 (�n C9��rslfl PRO EU JiMORMSON BY: DATE PROJ.NO. ■ MERLE,INC. CHK: DATE PAGE: OF l � � 7 Njf� cvL vc ALT Pj - TIz I PLE [/0„�65 Cf' �RC l-1 (e��ti,�A�e�� ��0 5q�` e-�YC� cl�O'l�vo Q s = 3 3 = 97 7 H� = l,17 OLidef P/(.,r s APE 0,7 2—5 5 6 ✓ OUTLt % 69,VT12 L.. 1 1�/e � rtwe s l y0X 65 X c p F`-°vl' f' z6� ���1� - 122 ifs !22- QfN ll l2 Z Fv c� �,. 2.7 , (l 0-y,�) crJ. 52 (Z°-) = 1.7.3 T 1, Tar/(✓Gt�2� Cl6Vgj°yi al %�fer,�r`ch I iQ- tnivr�16f = T 12e�eiv;� Crl T-,oC, G 1 den, /VoVe�ol- t/e��� �!`W 7W ELEVfiTOti I Tw(la yY� 1y,7-Zo(oo5)+-1.73 = /6-3 l6:n6 7"W(b-5e Tk,) IV,7-20 0o5)-r 0.60 = l5, 1/0 I S,/Z base L l 7rLC APV14NTX6;E 611/NAP �Y l/S/NG 71l 01 IPC c�5c- 7o�L yg`' /2CP �-- ' �I�37 Tschache Lane - Triple 48" RCP (25-yr) Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane -Triple 48" RCP (25-yr) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 48.00 in Discharge 97.70 ft'/s Results Depth 2.93 ft Flow Area 9.88 ft2 Wetted Perimeter 8.23 ft Top Width 3.54 ft Critical Depth 3.00 ft Percent Full 73.34 % Critical Slope 0.004755 fUft Velocity 9.89 ft/s Velocity Head 1.52 ft Specific Energy 4.45 ft Froude Number 1.04 Maximum Discharge 118.36 ft3/s Full Flow Capacity 110.03 ft3/s Full Flow Slope 0.003942 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierle,lnc. FlowMaster v4.1 16:56:26 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Tschache Lane - Triple 48" RCP (10-yr) Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane-Triple 48" RCP (10-yr) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 48.00 in Discharge 70.00 ft'/s Results Depth 2.32 ft Flow Area 7.55 ft2 Wetted Perimeter 6.92 ft Top Width 3.95 ft Critical Depth 2.53 ft Percent Full 57.93 % Critical Slope 0.003831 ft/ft Velocity 9.28 ft/s Velocity Head 1.34 ft Specific Energy 3.65 ft Froude Number 1.18 Maximum Discharge 118.36 ft3/s Full Flow Capacity 110.03 ft3/s Full Flow Slope 0.002024 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:56:54 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Zl1i Tschache Lane -West 48" RCP (base flow) Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Ln. -West 48" RCP (base flow) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 48.00 in Discharge 11.70 ft'/s Results Depth 0.88 ft Flow Area 2.05 ft2 Wetted Perimeter 3.91 ft Top Width 3.32 ft Critical Depth 1.00 ft Percent Full 22.02 % Critical Slope 0.003032 ft/ft Velocity 5.70 ft/s Velocity Head 0.50 ft Specific Energy 1.39 ft Froude Number 1.28 Maximum Discharge 118.36 ft3/s Full Flow Capacity 110.03 ft3/s Full Flow Slope 0.000057 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:59:44 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Tschache Lane -West 48" RCP (base flow) 22-37 Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Ln. -West 48" RCP (base flow) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 48.00 in Discharge 18.10 ft3/s Results Depth 1.10 ft Flow Area 2.80 ftZ Wetted Perimeter 4.41 ft Top Width 3.57 ft Critical Depth 1.25 ft Percent Full 27.43 % Critical Slope 0.003014 ft/ft Velocity 6.47 ft/s Velocity Head 0.65 ft Specific Energy 1.75 ft Froude Number 1.29 Maximum Discharge 118.36 ft3/s Full Flow Capacity 110.03 ft3/s Full Flow Slope 0.000 135 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:59:17 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 ter. FIGURES 233 FIGURE 3fi Z31 57 HEADWATER DEPTH FOR CONCRETE ARCH CULVER TS WITH INLET CONTROL r 169 x 106 154 x 97 3,000 138 x 88 2,000 (1) (2) (3) - 4.0- 122 x 78 EXAMPLE F 4.0 { 115 x 72 1,000 Size: 44" x 27" 4.0 3.0 ' 3.0 800 Q = 30 cfs HW* HW o 3.0 102 x 62 500 D (feet) = 2.0 2.0 v 88 x 54 400 (1) 1.02 2.30 w 2.0 j 300 (2)0.99 2.23 1'5 1.5 w 200 (3) 1.01 2.27 1.5 U 'D in feet Cn cn Z 73x45 w x 0 80 1-17 1.O 1.0 1.0 n- c 60 PLC Z � 58 x 36 w 50 EXPM / _ .9 r.9 .9 U- 40 / f- o a._ �.8 .8 8 -�- w 51 x 31 = 30 To use scale (2)or(3) p cn U draw a straight line �- 7 .7 Of Cn 20 through known values w .7 in of size and discharge F- x 44 x 27 to intersect scale (1). Q _ Z From point on scale (1) � 6 .6 10 project horizontally t0 ¢ 6 8 solution on either scale LLJ I' w 36 x 22 (2) or(3). 2 6 t , 5. .5 5 -�.5 4 HW/D ENTRANCE 3 SCALE TYPE 29 X 1$ (1) Square edge 1.4 L.4 .4 2 (2) Groove end with headwall B (3) Groove end L�- 22 x 13 pro)ectIng D � FIGURES 237 FIGURE 40 L /�7 HEAD FOR CONCRETE ARCH CULVERTS FLOWING FULL n = 0.012 — H 5,000 HW I - -- n 4,000 - Slope So 4 3,000 SUBMERGED OUTLET CULVERT FLOWING FULL Z W HW H+ho-SoL 5 '2,000 Z z For outlet crown not submerged, compute HW by ,6 J methods described in the design procedure 7 F- 8 9 1,000 FLU. 4 0 I 800 169 x 106 F� �JOcF� 6 500 138 x 8s �GgA r� �P .8 122 x 78 OF/J/�0�/ \ CF/L 1.0 U 400 � 115 x 72 � �� •��� OO �/j/�T�, � Z 300 = 102 x 62 e OS ti OO AFT�� W 200 Z 88 x 54 Z 2 U z 73 x 45 ~O ��� r� �QQ = 3 I Q N sxao ��� ^� h6Q, = 4 10 58 x 36 ' Q Of D� w_ 5 co 80 X 51x31 6 60 z 50 c- aaxv $ "' 10 40 W 36 x 22 30 N 20 28x18 120 � 22 x 13 1 10 D 8 I 5 i FIGURES 227 FIGURE 31.1 25157 CRITICAL DEPTH ARCH PIPE 2.0 1.8 w 1.6 LL = 1.4 _ a. 0 1.2 J C) 1.0 d A 0 X E 0 PP s= U 0.8 DO 3 ,r 0.6 i 1 v� ' 2 RISE X SPAN 0.40 10 20 30 40 50 DISCHARGE Q CFS 60 3.4 3.2 3.0 w 2.8 w 2.6 -0 2.4 2.2 w 2.0 � 1.8 Q 1.6 B A N TEX E DT P FPI E 1.4 1.2 1.0 4 6 ,r 0.8 s „RISE X PAN 2 5/8' x 3 a" J00 i 0'60 20 40 60 80 100 120 140 160 180 20 0 220 240 DISCHARGE Q CFS BUREAU OF PUBLIC ROADS,JAN.1964 I FIGURES 203 FIGURE 16 FLOW FOR ARCH PIPE FLOWING FULL BASED ON MANNING'S EQUATION n 0.012 5000 4000 I j 1 3000 Numbers in parentheses indicate oo I approx. equivalent circular size 2000 I 1000 - i ; 800 ol I I 4 I 600 I I 500 \�o< - 400 Z 300 ,irk; 0U u) 200 �\ I 26 w 100 —tom v 2; l 24 D 80 i v 60 2 z 50 N — 2 20 of 40 18 30 i 3 20 I l I - j 16 i o i 8 4 QE I Q� i , I & i P !,.0 � .01 .02 .03.04.05 .1 .2 .3 .4.5.6 .8 1 2 3 4 5 6 810 SLOPE OF PIPE IN FEET PER 100 FEET 212 CONCRETE PIPE DESIGN MANUAL Z 7137 1 FIGURE 23 RELATIVE VELOCITY AND FLOW IN ARCH PIPE FOR ANY DEPTH OF FLOW M ._._..... _.... .. F— ............. _... .. f � ! : N :.... .:... _. ..--- ---- - : i ! 1 O t 0) I LL- co i � f CD o\ i _ i 6- i i I I �\ i LL LL- Ld LL - - . -- - i _ ,.. In ! ; Nil ' 1 1 ; t i f ! I 3 I i i O..- --� --� - rl� l0 to M N r O O r+ O O O O O O O N O O MOIJ d0 Hld3a i I S/37 Tschache Lane - Outlet Ditch (25 yr) Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane - Outlet Ditch (25-yr) Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 1.000000 % Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Bottom Width 6.00 ft Discharge 293.00 ft3/s Results Depth 3.37 ft Flow Area 42.94 ft2 Wetted Perimeter 21.07 ft Top Width 19.48 ft Critical Depth 3.02 ft Critical Slope 0.015644 ft/ft Velocity 6.82 ft/s Velocity Head 0.72 ft Specific Energy 4.09 ft Froude Number 0.81 Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:52:34 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 z s`3 7 Tschache Lane - Outlet Ditch (10-yr) Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane- Outlet Ditch (10-yr) Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 1.000000 % Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Bottom Width 6.00 ft Discharge 210.00 ft3/s Results Depth 2.86 ft Flow Area 33.60 ft2 Wetted Perimeter 18.81 ft Top Width 17.46 ft Critical Depth 2.54 ft Critical Slope 0.016330 ft/ft Velocity 6.25 ft/s Velocity Head 0.61 ft Specific Energy 3.47 ft Froude Number 0.79 Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:52:16 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Tschache Lane - Outlet Ditch (base flow) Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane - Outlet Ditch (base flow) Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 1.000000 % Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Bottom Width 6.00 ft Discharge 35.00 ft3/s Results Depth 1.12 ft Flow Area 9.26 ft2 Wetted Perimeter 11.02 ft Top Width 10.49 ft Critical Depth 0.92 ft Critical Slope 0.020904 ft/ft Velocity 3.78 ft/s Velocity Head 0.22 ft Specific Energy 1.34 ft Froude Number 0.71 Flow is subcritical. Aug 24,1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:53:08 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 7� [�� PROJECT: = MOFMSO``A�J7 BY: DATE PROJ.NO. AI MMERLE,INC. CHK: DATE PAGE: 5 OF 3 j DE 7"EN7"/ei✓ ���f� PyrL F i ��RUc%URA" MlN. EcEv. vF 60"IgH USEABLE DCTCN�Di✓ = l7_ �V TW/io-yr) = I7W 70 L,r /S,,NAPE c� I,t- /6.`/0 > RA5E FlouV TW K) - 101 @PIPE J`1/,✓C 7701V y?," I.E. 1q. 60 15,97 L7���!o�, vL� lh �Cw ✓'oj`�e- e'-plal �v c,l /� lcL ley lel /0-yv s;�e vdc-1se ,rci/c c 1* 6-�/l cis ��� = 9-C/o Fc�i N DPF /o c- �n = 1.0/ �J• dh �e�e�> _ 15,9$'t /-OJ = J6.97 < IT06 K �uY�ef (.ev�-irel T�,lr �a�e,r deo4z Tt = 17,06- /s 7K = /,pg z = t2S nOle : 69 7 9.2 7 9.y 7 N�It - a l o �f rl C Lc, - pip C.6zS L= 70' j/- l = 2Z © l6 fee-f T� M RRT PROJECT: = MO `�`ISO °N BY: DATE PROD.NO. All MAIERLE,INC. CHK: DATE Z A PAGE: OF D J/ t7E7'EN7T1of✓ 1:h 511v y�V r,�t i S iAVc- t1A i / l i 7"j eve ! S5 �y1 fyGy y cFi z 29 /eaclwor��v �/ems. 0���ef Cc�l�c� H e/t, = 15,77 t /. 25 C,/,0 + Q.16 + 0,2/ - �16.tlO--lS9,$/ I ', elEv_ = 17 2 8 r�ilet Co���ol US;hJ sa�.e c ��v� �s �ov p✓c�eGJ<<�J GMi' v�n�c q5 �`i✓�iIC?v c-cwc�,fi0Y5 i H w = 16.yo t I- �� = I Z ele✓ -- //ALE l CO.v T/znj,_ I C G NC L..U5/0N 1 = l- l"1;in;,-.,UFO, �efe�tfto� e + ✓ b < 7/�,yO / p-p ivt l e el'e ?4°� / , tf� �c keep ys3u�c d //✓hc,k /�N bel C. flow T✓o b v I `��kjoy AlpIkl v CIG�cn�i�Oh ba,. n, Y l�'1;hiwi�rw, ¢ leV01h'oo Q� i0 cc- fc11 ion 3;/0 E. i5 y7/ 7 /O aSSaw,ed Cotser d'OY,, I 6aCk;�n� �cp /tiro , �le�e n�-io� 6gsi.,. f k ,/,Ilor of jalf -�-;on s ov�T�e i� g718: 2 F To /S F/DPE prvjecfl- 7h;, e/e%►�i�� �� e�►sily be i14CreaSE6 by u5c of Cf Ycka;r, 5fv�//c�tiYe for c�Ecv-caSE veleoSe !/plc ✓ A J;✓c�i hCUdv✓a�G'I� �C/ ��• 33137 KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL FIGURE 4.3.4F JUNCTION HEADLOSS IN STRUCTURES 3.4 3.'_ Qi Qt 3.0 = 100% , 8 — 2.6 Typical junction chimber Q1 - 130,lh - 195.Qf ®65 Vt - 13.5, yi-- 12.3 .4 0.50 Q/Q, _ (509a) Head Loss=0.94' ' 0 Qi = 50? 0 1.8 a n 1.6 —- 1.4 Q3 Q I = 307, 1.'_ 1.0 Graphic Example .8 .6 Q3 10`' .4 , 0 , 4 6 8 10 12 14 16 1820 Velocity in upstream pipe, V(fps) Source: Baltimore County Department of Public Works 4.3.4-23 1/90 CHART 5 10,000 180 168 8,000 EXAMPLE 156 6,000 D-36 inches(3.0 feet) 6. 5,000 0=66 cfa (3) 144 4,000 ►tw' tiw 5. 6. 132 3,000 0 (feel) 5. 6. � (I) 1.8 5.4 120 5. F 2,000 (2) 2.1 6.3 4. a (3) 2.2 6.6 108 a .J eD in test a 96 1,000 3• 800 3. r - 84 m 600 2 500' 400 —�--~ 72 2' 2 w 300 3 / _ N /Aw 1.5 ZZ 60 Z200 (r 1. 1.5 w54 ww 100aw 48 eoz_Z) U 601.0 U 42 50F 1.0 tL I.0 40aw �6 30 HE D_w p 9 33 Q20 .8C30 form w i to slope 2 '8 (J 0 27 10 (3) Projecting o ? .7 a Z 24 .7 r 6 5 To use scale(2) or(3) project 21 4 horizontally to scale (1),then ,6 use straight inclined line through •6 3 0 and 0 scales, or reverse as .6 18 — illustrated. 2 15 .5 11.0 .5 12 HEADWATER DEPTH FOR C. M. PIPE CULVERTS WITH INLET CONTROL {{{ � BUREAU OF PUBLIC ROADS JAN.1963 t' 5-�5 is Detention Basin - 15" HDPE Outlet Pipe Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Detention Pond - 15" HDPE Outlet Pipe Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Channel Slope 0.006000 ft/ft Diameter 1.25 ft Discharge 6.41 ft3/s Results Depth 1.01 ft Flow Area 1.06 ft2 Wetted Perimeter 2.79 ft Top Width 0.99 ft Critical Depth 1.02 ft Percent Full 80.68 % Critical Slope 0.005865 ft/ft Velocity 6.04 ft/s Velocity Head 0.57 ft Specific Energy 1.58 ft Froude Number 1.03 Maximum Discharge 7.00 ft3/s Full Flow Capacity 6.50 ft3/s Full Flow Slope 0.005827 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierle,lnc. FlowMaster v4.1 16:48:51 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 F. Canal at Pond 2 Outlet (Base Flow) Worksheet for Irregular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal with Dike - Sta. 14+00 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 2.200000 % Elevation range: 15.00 ft to 20.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 20.00 0.00 40.00 0.035 4.00 15.00 8.00 15.00 10.50 17.00 18.00 18.00 40.00 18.50 Discharge 35.00 ft3/s Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 16.20 ft Flow Area 6.25 ft2 Wetted Perimeter 7.44 ft Top Width 6.45 ft Depth 1.20 ft Critical Water Elev. 16.20 ft Critical Slope 0.021833 ft/ft Velocity 5.60 ft/s Velocity Head 0.49 ft Specific Energy 16.68 ft Froude Number 1.00 Full Flow Capacity 1028.57 ft3/s Flow is supercritical. Oct 16, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 10:38:00 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 3 713;7 F. Canal at Pond 2 Outlet (10-yr) Worksheet for Irregular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal with Dike - Sta. 14+00 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 2.200000 % Elevation range: 15.00 ft to 20.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 20.00 0.00 40.00 0.035 4.00 15.00 8.00 15.00 10.50 17.00 18.00 18.00 40.00 18.50 Discharge 210.00 ft3/s Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 18.41 ft Flow Area 34.82 ft2 Wetted Perimeter 37.16 ft Top Width 34.75 ft Depth 3.41 ft Critical Water Elev. 18.48 ft Critical Slope 0.019494 ft/ft Velocity 6.03 ft/s Velocity Head 0.57 ft Specific Energy 18.97 ft Froude Number 1.06 Full Flow Capacity 1028.57 ft3/s Flow is supercritical. Oct 16, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 10:37:25 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 f.l i Ilj 0 fl Il APPENDIX 2 DRAINAGE SYSTEM AND DETENTION CALCULATIONS i i i i i i i i i i i i i i Project Precips [2 yr] 1.20 in [5 yr] 1.60 in [10 yr] 1.90 in [25 yr] 2.30 in [100 yr] 2.80 in [Other] 1.27 in LAYOUT 1 SUMMARY DATA: ROUTEHYD [] THRU [Layout1] USING TYPE2 AND [10 yr] NOTZERO RELATIVE Reach Area Flow Full Q % Full nDepth Size nVel Wel CBasin/ Hyd ----- ac cfs cfs ratio ft ---- ft/s ft/s ------------ D7 2.1000 1.0230 1.0230 1.00 0.3438 Ditch 1.7315 ----- E2E3 D6 2.1000 1.0230 1.0230 1.00 0.2715 Ditch 3.4700 ----- P10 2.1000 1.0230 12.2868 0.08 0.3906 24"Diam 2.3661 3.9110 D5 2.7000 1.0230 1.0230 1.00 0.3770 Ditch 1.4399 ----- E1 P9 2.7000 1.0230 16.9362 0.06 0.3320 24"Diam 2.9893 5.3909 D4 2.7000 1.0230 1.0230 1.00 0.3809 Ditch 1.7631 ----- ----- ----- Rch App Bend Junct HW Max El/ ----- ----- Loss Head Loss Loss Elev Rim El From Node To Node ft ft ft ft ft ft DN-D4 21.8809 DN-P9 DN-D4 22.4808 --na-- --na-- --na-- 22.4808 24.1000 DN-D5 DN-P9 24.7480 --na-- --na-- --na-- 24.7480 27.0000 DN-P10 DN-D5 29.0680 --na-- --na-- --na-- 29.0680 30.6000 DN-D6 DN-P10 30.1378 --na-- --na-- --na-- 30.1378 32.8000 DN-D7 DN-D6 31.2327 --na-- --na-- --na-- 31.2327 33.2000 DN-D7up DN-D7 37.4726 --na-- --na-- --na-- 37.4726 38.2000 L/ J LAYOUT 2 SUMMARY DATA: ROUTEHYD [] THRU [Layout2] USING TYPE2 AND [10 yr] NOTZERO RELATIVE Reach Area Flow Full Q % Full nDepth Size nVel Wel CBasin/ Hyd ----- ac cfs cfs ratio ft ---- ft/s ft/s ------------ P21 2.6000 4.3294 4.4379 0.98 0.9985 15"Diam 4.1194 3.6163 A7 P20 3.6000 5.8129 7.2165 0.81 1.0195 18"Diam 4.5449 4.0837 A6 P19 5.0000 8.0648 10.8856 0.74 1.1211 21"Diam 4.9551 4.5257 A5 P18 5.8000 8.8462 10.8856 0.81 1.1980 21"Diam 5.0412 4.5257 A2 P17 0.7000 1.4161 1.4379 0.98 0.5417 8"Diam 4.6619 4.1193 A4 P16 1.6000 3.2619 3.4729 0.94 0.5104 8"Diam 11.3746 9.9492 A3 P15 7.4000 12.1081 15.5417 0.78 1.3271 24"Diam 5.4708 4.9471 D9 9.2000 12.1081 12.1081 1.00 1.0364 Ditch 2.8183 ----- Al D8 9.2000 12.1081 12.1081 1.00 0.9331 Ditch 3.4766 ----- P14 0.8000 1.6184 4.5792 0.35 0.4102 12"Diam 5.3352 5.8304 C6 P13 0.8000 1.6184 5.4731 0.30 0.3711 12"Diam 6.1017 6.9686 P12 2.0000 4.0790 5.4353 0.75 0.8081 15"Diam 4.8608 4.4291 C5 P11 3.1000 6.3286 8.5940 0.74 0.7983 15"Diam 7.6483 7.0030 C4 P8 4.7100 9.1643 10.8856 0.84 1.2305 21"Diam 5.0711 4.5257 D4 P7 5.5100 10.6025 10.8856 0.97 1.3945 21"Diam 5.1590 4.5257 D3 P6. 6.7100 12.6401 15.5417 0.81 1.3691 24"Diam 5.5150 4.9471 D2 D3 2.2000 3.2756 3.2756 1.00 0.5273 Ditch 1.8121 ----- DI P5 8.9100 15.9157 18.4262 0.86 1.6139 27"Diam 5.2142 4.6343 P4 8.9100 15.9157 18.4262 0.86 1.6139 27"Diam 5.2142 4.6343 P3 10.8100 19.3218 24.4037 0.79 1.6785 30"Diam 5.5139 4.9715 C7 P2 11.1100 19.6961 24.4037 0.81 1.7029 30"Diam 5.5306 4.9715 C2 P1 14.5100 26.6394 39.6831 0.67 1.7988 36"Diam 6.0205 5.6140 C3 D2 22.5100 26.6394 26.6394 1.00 1.5214 Ditch 2.8774 ----- C1 D1 22.5100 26.6394 26.6394 1.00 1.3931 Ditch 3.4318 ----- P22 31.7100 38.7475 60.6169 0.64 1.7432 36"Diam 9.0944 8.5755 D10 31.7100 38.7475 38.7475 1.00 1.5375 Ditch 4.0980 ----- ----- ----- Rch App Bend Junct HW Max El/ ----- ----- Loss Head Loss Loss Elev Rim El From Node To Node ft ft ft ft ft ft DN-D10 17.2375 DN-P22 DN-D10 17.5374 --na-- --na-- --na-- 17.5374 20.0000 Pond2 DN-P22 19.5601 --na-- --na-- --na-- 19.5601 22.0000 DN-D9 Pond2 23.7180 --na-- --na-- --na-- 22.6000 22.5000 DN-P15 DN-D9 25.6559 --na-- --na-- --na-- 25.6000 25.5000 Pond3 DN-P15 26.4962 --na-- --na-- --na-- 26.4962 30.0000 CB12 Pond3 27.9275 0.3813 0.5074 ------ 28.0537 30.8600 CB13 CB12 29.1988 0.3207 0.4269 ------ 29.3049 30.5000 CB14 CB13 30.3133 0.2635 0.0056 ------ 30.0554 31.1000 CB15 CB14 31.3249 ------ ------ ------ 30.9000 30.8000 CB11 Pond3 31.9388 0.3375 0.4491 ------ 31.2000 31.1000 DN-P17 CB11 33.4677 --na-- --na-- --na-- 33.0000 32.9000 DN-D2 Pond2 20.8720 --na-- --na-- --na-- 20.8720 22.0000 DN-P1 DN-D2 22.9719 --na-- --na-- --na-- 22.1000 22.0000 CB1 DN-P1 23.1119 0.9083 1.2089 0.2111 23.6236 25.4000 CB8 CB1 25.9381 0.3669 0.4883 ------ 26.0595 27.5000 CB9 CB8 28.2987 0.5781 0.7694 ------ 28.4900 29.0000 CB10 CB9 30.4248 0.4420 0.5883 ------ 30.2600 30.1600 DN-P14 CB10 33.6555 --na-- --na-- --na-- 33.0000 32.9000 CB2 CB1 24.6063 ------ ------ ------ 24.6063 25.3000 CB3 CB2 25.6438 0.4222 0.0029 ------ 23.5000 23.4000 CB4 CB3 24.7782 0.4222 0.5619 ------ 24.9179 27.1000 Pondl CB4 25.5812 --na-- --na-- --na-- 25.5812 27.0000 CB5 Pondl 27.7293 0.4133 0.5500 ------ 27.6000 27.5000 CB6 CB5 29.2435 0.3993 0.5315 ------ 28.5000 28.4000 CB7 CB6 29.2590 ------ ------ ------ 29.0000 28.9000 DN-D3 Pondl 27.5011 --na-- --na-- --na-- 25.5000 25.4000 313�r REACH RECORDS: Reach ID: D1 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 164.0000 ft 0.80 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-D2 Pond2 Reach ID: D2 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 420.0000 ft 0.50 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-P1 DN-D2 Reach ID: D3 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 240.0000 ft 0.80 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 10.00h:1v 3.00h:1v Up Node Dn Node DN-D3 Pond1 Reach ID: D4 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 50.0000 ft 1.20 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-P9 DN-D4 Reach ID: D5 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 540.0000 ft 0.80 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 6.00h:1v 4.00h:1v Up Node Dn Node DN-P10 DN-D5 Reach ID: D6 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 15.0000 ft 7.30 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-D7 DN-D6 Reach ID: D7 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 480.0000 ft 1.30 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 6.00h:1 v 4.00h:1v Up Node Dn Node DN-D7up DN-D7 Reach ID: D8 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 297.0000 ft 1.40 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-D9 Pond2 Reach ID: D9 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal -normal 0.0300 Mannings Formula Length Slope Entrance Loss 382.0000 ft 0.80 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-P15 DN-D9 Reach ID: D10 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Mannings n Hyd params By Corr Metal - normal 0.0300 Mannings Formula Length Slope Entrance Loss 30.0000 ft 1.00 % Span Rise ss1 ss2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-P22 DN-D10 Reach ID: P1 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 36" Diam Conc-Steel Form 0.0120 Mannings Formula Length Slope Entrance Loss 148.0000 ft 0.30 % Square Edge w/Headwall Span Rise ss1 ss2 3.0000 ft 3.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB1 DN-P1 Reach ID: P2 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 30" Diam Conc-Steel Form 0.0120 Mannings Formula Length Slope Entrance Loss 90.0000 ft 0.30 % Square Edge w/Headwall Span Rise ss1 ss2 2.5000 ft 2.5000 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB2 CB1 Reach ID: P3 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 30" Diam Conc-Steel Form 0.0120 Mannings Formula Length Slope Entrance Loss 110.0000 ft 0.30 % Square Edge w/Headwall Span Rise ss1 ss2 2.5000 ft 2.5000 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB3 CB2 Reach ID: P4 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 27" Diam Conc-Steel Form 0.0120 Mannings Formula Length Slope Entrance Loss 215.0000 ft 0.30 % Square Edge w/Headwall Span Rise ss1 ss2 2.2500 ft 2.2500 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB4 CB3 Reach IM P5 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 27" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 10.0000 ft 0.30 % Square Edge w/Headwall Span Rise ss1 ss2 2.2500 ft 2.2500 ft 4.00h:1v 4.00h:1v Up Node Dn Node Pond1 CB4 Reach IM P6 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 24" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 360.0000 ft 0.40 % Square Edge w/Headwall Span Rise ss1 ss2 2.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB5 Pond1 Reach IM P7 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 21" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 255.0000 ft 0.40.% Square Edge w/Headwall Span Rise ss1 ss2 1.7500 ft 1.7500 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB6 CB5 Reach ID: P8 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 21" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 40.0000 ft 0.40 % Square Edge w/Headwall Span Rise ss1 ss2 1.7500 ft 1.7500 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB7 CB6 Reach ID: P9 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 24" Diam Corr Metal - normal 0.0240 Mannings Formula Length Slope Entrance Loss 115.0000 ft 1.90 % Mitered to slope Span Rise ss1 ss2 2.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-D5 DN-P9 Reach ID: P10 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 24" Diam Corr Metal - normal 0.0240 Mannings Formula Length Slope Entrance Loss 100.0000 ft 1.00 % Mitered to slope Span Rise ss1 ss2 2.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-D6 DN-P10 Reach ID: P11 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 15" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 187.0000 ft 1.50 % Square Edge w/Headwall Span Rise ss1 ss2 1.2500 ft 1.2500 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB8 CB1 Reach ID: P12 Section Properties: Shape: Circular Routing Method: Travel Time Translation 7;137- Size Material Mannings n Hyd params By 15" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 283.0000 ft 0.60 % Square Edge w/Headwall Span Rise ss1 ss2 1.2500 ft 1.2500 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB9 CB8 Reach ID: P13 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 12" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 55.0000 ft 2.00 % Square Edge w/Headwall Span Rise ss1 ss2 1.0000 ft 1.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB10 CB9 Reach ID: P14 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 12" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 196.0000 ft 1.40 % Square Edge w/Headwall Span Rise ss1 ss2 1.0000 ft 1.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-P14 CB10 Reach ID: P15 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 24" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 50.0000 ft 0.40 % Square Edge w/Headwall Span Rise ss1 ss2 2.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node Pond3 DN-P15 Reach ID: P16 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 8" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 32.0000 ft 7.00 % Square Edge w/Headwall Span Rise ss1 ss2 0.6667 ft 0.6667 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB11 Pond3 Reach IM P17 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 8" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 149.0000 ft 1.20 % Square Edge w/Headwall Span Rise ss1 ss2 0.6667 ft 0.6667 ft 4.00h:1v 4.00h:1v Up Node Dn Node DN-P17 CB11 Reach IM P18 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 21" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 210.0000 ft 0.40 % Square Edge w/Headwall Span Rise ss1 ss2 1.7500 ft 1.7500 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB12 Pond3 Reach IM P19 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 21" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 143.0000 ft 0.40 % Square Edge w/Headwall Span Rise ss1 ss2 1.7500 ft 1.7500 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB13 CB12 Reach IM P20 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 18" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 132.0000 ft 0.40 % Square Edge w/Headwall Span Rise ss1 ss2 1.5000 ft 1.5000 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB14 CB13 Reach ID: P21 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 15" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 202.0000 ft 0.40 % Square Edge w/Headwall Span Rise ss1 ss2 1.2500 ft 1.2500 ft 4.00h:1v 4.00h:1v Up Node Dn Node CB15 CB14 Reach ID: P22 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material Mannings n Hyd params By 36" Diam Plastic 0.0120 Mannings Formula Length Slope Entrance Loss 60.0000 ft 0.70 % Square Edge w/Headwall Span Rise ss1 ss2 3.0000 ft 3.0000 ft 4.00h:1v 4.00h:1v Up Node Dn Node Pond2 DN-P22 NODE RECORDS: Node ID: DN-D2 Desc: D2/D1 Grade Break Start El: 17.7000 ft Max El: 22.0000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 20.8720 ft Node ID: DN-D3 Desc: D3Inlet Start El: 23.4000 ft Max El: 25.4000 ft Contrib Basin: D1 Contrib Hyd: Hgl Elev: 25.5000 ft Node ID: DN-D4 Desc: D4 Outlet Start El: 21.5000 ft Max El: 23.5000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 21.8809 ft Node ID: DN-D5 Desc: D5 Outlet Start EI: 25.0000 ft Max EI: 27.0000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 24.7480 ft Node ID: DN-D6 Desc: D6 Outlet Start El: 29.6000 ft Max El: 32.8000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 30.1378 ft Node ID: DN-D7 Desc: D7lnlet Start El: 30.7000 ft Max EI: 33.2000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 31.2327 ft Node ID: DN-D7up Desc: D7lnlet Start El: 37.0000 ft Max El: 38.2000 ft Contrib Basin: E2E3 Contrib Hyd: Hgl Elev: 37.4726 ft Node ID: DN-D9 Desc: D9/D8 Grade Break Start El: 20.5000 ft Max El: 22.5000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 22.6000 ft Node ID: DN-D10 Desc: D10 Outlet Start El: 15.7000 ft Max El: 20.0000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 17.2375 ft Node ID: DN-P1 Desc: P1 Outlet Start El: 19.8000 ft Max El: 22.0000 ft Contrib Basin: C1 Contrib Hyd: Hgl Elev: 22.1000 ft Node ID: DN-P9 Desc: P9 Outlet Start El: 22.1000 ft Max El: 24.1000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 22.4808 ft Node ID: DN-P10 Desc: P10 Outlet Start El'. 28.6000 ft Max El: 30.6000 ft Contrib Basin: E1 Contrib Hyd: Hgl Elev: 29.0680 ft Node ID: DN-P14 Desc: P14Inlet Start El: 29.5900 ft Max EI: 32.9000 ft Contrib Basin: C6 Contrib Hyd: Hgl Elev: 33.0000 ft Node ID: DN-P15 Desc: P15 Outlet Start El: 23.5000 ft Max El: 25.5000 ft Contrib Basin: Al Contrib Hyd: Hgl Elev: 25.6000 ft Node ID: DN-P17 Desc: P17Inlet Start El: 29.8300 ft Max El: 32.9000 ft Contrib Basin: A4 Contrib Hyd: Hgl Elev: 33.0000 ft Node ID: DN-P22 Desc: P22 Outlet Start El: 16.0000 ft Max El: 20.0000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 17.5374 ft Node ID: CB1 Desc: Curb Inlet Start El: 20.2400 ft Max El: 25.4000 ft Contrib Basin: C3 Contrib Hyd: Hgl Elev: 23.6236 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.9083 ft Bend Loss: 1.2089 ft Junction Loss: 0.2111 ft Node ID: CB2 Desc: Curb Inlet Start El: 17.5700 ft Max El: 25.3000 ft Contrib Basin: C2 Contrib Hyd: Hgl Elev: 24.6063 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.0000 ft Node ID: CB3 Desc: Curb Inlet Start El: 17.9000 ft Max El: 23.4000 ft Contrib Basin: C7 Contrib Hyd: Hgl Elev: 23.5000 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.4222 ft Node ID: CB4 Desc: Manhole Start El: 21.0300 ft Max El: 27.1000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 24.9179 ft Struct Type: CB-TYPE 1-48 Classification Manhole Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.4222 ft Node ID: CB5 Desc: Curb Inlet Start El: 23.4400 ft Max El: 27.5000 ft Contrib Basin: D2 Contrib Hyd: Hgl Elev: 27.6000 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.4133 ft Node ID: CB6 Desc: Curb Inlet Start El: 24.4600 ft Max El: 28.4000 ft Contrib Basin: D3 Contrib Hyd: Hgl Elev: 28.5000 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.3993 ft Node ID: CB7 Desc: Curb Inlet Start El: 24.6200 ft Max El: 28.9000 ft Contrib Basin: D4 Contrib Hyd: Hgl Elev: 29.0000 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.0000 ft Node ID: CB8 Desc: Curb Inlet Start El: 24.0500 ft Max El: 27.5000 ft Contrib Basin: C4 Contrib Hyd: Hgl Elev: 26.0595 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.3669 ft Node ID: CB9 Desc: Curb Inlet Start El: 25.7400 ft Max El: 29.0000 ft Contrib Basin: C5 Contrib Hyd: Hgl Elew 28.4900 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.5781 ft Node ID: CB10 Desc: Curb Inlet Start El: 26.8400 ft Max El: 30.1600 ft Contrib Basin: Contrib Hyd: Hgl Elev: 30.2600 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.4420 ft Node ID: CB11 Desc: Curb Inlet Start El: 28.0400 ft Max El: 31.1000 ft Contrib Basin: A3 Contrib Hyd: Hgl Elev: 31.2000 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.3375 ft Node ID: CB12 Desc: Curb Inlet Start El: 25.4400 ft Max El: 30.8600 ft Contrib Basin: A2 Contrib Hyd: Hgl Elev: 28.0537 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.3813 ft Node ID: CB13 Desc: Curb Inlet Start El: 26.0100 ft Max El: 30.5000 ft Contrib Basin: A5 Contrib Hyd: Hgl Elev: 29.3049 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.3207 ft Node ID: CB14 Desc: Curb Inlet Start El: 26.5400 ft Max El: 31.1000 ft Contrib Basin: A6 Contrib Hyd: Hgl Elev: 30.0554 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.2635 ft Node ID: CB15 Desc: Area Inlet Start El: 27.3500 ft Max El: 30.8000 ft Contrib Basin: A7 Contrib Hyd: Hgl Elev: 30.9000 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.0000 ft Node ID: Pond1 Desc: Detention Pond 1 Start El: 21.0600 ft Max El: 27.0000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 25.5812 ft Node ID: Pond2 Desc: Detention Pond 2 Start El: 16.0000 ft Max El: 22.0000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 19.5601 ft Node ID: Pond3 Desc: Detention Pond 3 Start El: 23.8020 ft Max El: 30.0000 ft Contrib Basin: Contrib Hyd: Hgl Elev: 26.4962 ft l/5F CONTRIBUTING DRAINAGE AREAS: Drainage Area: Al Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 1.8000 ac 61.00 0.33 hrs Supporting Data: CN Data: range/grass 61.00 1.8000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet range/grass 100.00 ft 6.00% 0.1500 10.31 min Shallow range/grass 300.00 ft 1.10% 9.0000 5.30 min Channel grass 490.00 ft 1.20% 17.0000 4.39 min 10 yr Flow Time Volume Summary: 0.7072 cfs 12.17 hrs 4251.92 cf-0.0976 acft Drainage Area: A2 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 0.8000 ac 83.20 0.06 hrs Supporting Data: CN Data: pavement/rooftop 98.00 0.4800 ac grass 61.00 0.3200 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet rooftop 80.00 ft 0.50% 0.0110 2.88 min Shallow pavement 60.00 ft 1.40% 27.0000 0.31 min Channel gutter 80.00 ft 2.20% 40.0000 0.22 min TC of 3.42 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 1.1325 cfs 12.00 hrs 5745.67 cf-0.1319 acft Drainage Area: A3 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 0.9000 ac 98.00 0.06 hrs Supporting Data: CN Data: pave ment/rooftop 98.00 0.9000 ac TC Data: f�r3; Flow type: Description: Length: Slope: Coeff: Travel Time Sheet rooftop 70.00 ft 0.50% 0.0110 2.59 min Channel gutter 205.00 ft 1.00% 40.0000 0.85 min TC of 3.44 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 2.1796 cfs 12.00 hrs 9369.76 cf-0.2151 acft Drainage Area: A4 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 0.7000 ac 98.00 0.12 hrs Supporting Data: CN Data: pavement/rooftop 98.00 0.7000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet rooftop 240.00 ft 0.50% 0.0110 6.94 min Channel pavement 60.00 ft 1.00% 40.0000 0.25 min 10 yr Flow Time Volume Summary: 1.4161 cfs 12.00 hrs 4179.43 cf-0.0959 acft Drainage Area: A5 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 1.4000 ac 92.45 0.11 hrs Supporting Data: CN Data: pavement/rooftop 98.00 1.1900 ac grass 61.00 0.2100 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 35.00 ft 8.30% 0.1500 3.91 min Channel grass 210.00 ft 0.80% 17.0000 2.30 min Channel pavement 46.00 ft 1.00% 40.0000 0.19 min 10 yr Flow Time Volume Summary: 2.2519 cfs 12.00 hrs 5893.05 cf- 0.1353 acft Drainage Area: A6 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 1.0000 ac 90.60 0.09 hrs Supporting Data: /Y3r CN Data: pavement/rooftop 98.00 0.8000 ac grass 61.00 0.2000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 35.00 ft 5.20% 0.1500 4.71 min Shallow pavement 56.00 ft 3.10% 27.0000 0.20 min Channel pavement 105.00 ft 2.80% 40.0000 0.26 min 10 yr Flow Time Volume Summary: 1.4834 cfs 12.00 hrs 3803.30 cf- 0.0873 acft Drainage Area: A7 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 2.6000 ac 92.45 0.06 hrs Supporting Data: CN Data: pave men t/rooftop 98.00 2.2100 ac grass 61.00 0.3900 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 30.00 ft 13.70% 0.1500 2.83 min Shallow pavement 85.00 ft 1.90% 27.0000 0.38 min Channel pavement 153.00 ft 2.80% 40.0000 0.38 min TC of 3.59 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 4.3295 cfs 12.00 hrs 11510.93 cf-0.2643 acft Drainage Area: C1 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 8.0000 ac 61.00 0.61 hrs Supporting Data: CN Data: range/grass 61.00 8.0000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 250.00 ft 3.00% 0.1500 28.32 min Shallow grass 495.00 ft 1.50% 11.0000 6.12 min Channel grass 215.00 ft 0.80% 17.0000 2.36 min 10 yr Flow Time Volume Summary: 0.0574 cfs 13.50 hrs 1585.34 cf-0.0364 acft Drainage Area: C2 Z,012 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 0.3000 ac 86.90 0.03 hrs Supporting Data: CN Data: rooftop/pavement 98.00 0.2100 ac grass 61.00 0.0900 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 55.00 ft 1.30% 0.0110 1.46 min Channel gutter 65.00 ft 0.60% 40.0000 0.35 min TC of 1.81 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 0.3743 cfs 12.00 hrs 939.33 cf-0.0216 acft Drainage Area: C3 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 0.3000 ac 98.00 0.07 hrs Supporting Data: CN Data: rooftop/pavement 98.00 0.3000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 120.00 ft 0.50% 0.0110 3.99 min Channel pavement 30.00 ft 1.00% 40.0000 0.13 min TC of 4.11 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 0.6147 cfs 12.00 hrs 1860.40 cf-0.0427 acft Drainage Area: C4 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 1.1000 ac 98.00 0.09 hrs Supporting Data: CN Data: rooftop/pavement 98.00 1.1000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 160.00 ft 0.50% 0.0110 5.02 min Channel pavement 30.00 ft 1.00% 40.0000 0.13 min 10 yr Flow Time Volume Summary: 2.2497 cfs 12.00 hrs 6691.38 cf-0.1536 acft 2 �158 Drainage Area: C5 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 1.2000 ac 98.00 0.06 hrs Supporting Data: CN Data: rooftop/pavement 98.00 1.2000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 80.00 ft 0.50% 0.0110 2.88 min Channel pavement/gutter 200.00 ft 1.30% 40.0000 0.73 min TC of 3.61 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 2.4606 cfs 12.00 hrs 7515.19 cf-0.1725 acft Drainage Area: C6 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 0.8000 ac 98.00 0.12 hrs Supporting Data: CN Data: rooftop/pavement 98.00 0.8000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 240.00 ft 0.50% 0.0110 6.94 min Channel pavement/gutter 60.00 ft 1.00% 40.0000 0.25 min 10 yr Flow Time Volume Summary: 1.6184 cfs 12.00 hrs 4776.49 cf-0.1097 acft Drainage Area: C7 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 1.9000 ac 94.30 0.08 hrs Supporting Data: CN Data: rooftop/pavement 98.00 1.7100 ac grass 61.00 0.1900 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 155.00 ft 1.30% 0.0110 3.34 min Channel pavement 230.00 ft 1.00% 40.0000 0.96 min Channel grass 60.00 ft 1.00% 17.0000 0.59 min TC of 4.88 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume 2 Z/7 Summary: 3.4061 cfs 12.00 hrs 9206.76 cf-0.2114 acft Drainage Area: D1 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 2.2000 ac 90.60 0.08 hrs Supporting Data: CN Data: rooftop/pavement 98.00 1.7600 ac grass 61.00 0.4400 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 12.00 ft 14.20% 0.1500 1.34 min Channel grass 60.00 ft 1.20% 17.0000 0.54 min Channel pavement 285.00 ft 1.30% 40.0000 1.04 min Channel grass 260.00 ft 1.60% 17.0000 2.02 min TC of 4.93 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 3.2756 cfs 12.00 hrs 8404.26 cf- 0.1929 acft Drainage Area: D2 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 1.2000 ac 93.10 0.08 hrs Supporting Data: CN Data: rooftop/pavement 98.00 1.1400 ac grass 0.00 0.0600 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 200.00 ft 1.20% 0.0110 4.23 min Channel pavement 110.00 ft 0.80% 40.0000 0.51 min TC of 4.74 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 2.0376 cfs 12.00 hrs 5396.71 cf-0.1239 acft Drainage Area: D3 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 0.8000 ac 94.30 0.08 hrs Supporting Data: CN Data: rooftop/pavement 98.00 0.7200 ac grass 61.00 0.0800 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 20.00 ft 10.00% 0.1500 2.32 min Channel grass 190.00 ft 1.10% 17.0000 1.78 min Channel pavement 120.00 ft 1.40% 40.0000 0.42 min TC of 4.52 min < 5 min, program will use a tc of 5 min in computations. 10 yr Flow Time Volume Summary: 1.4382 cfs 12.00 hrs 3900.92 cf-0.0896 acft Drainage Area: D4 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 4.7100 ac 96.11 0.05 hrs Supporting Data: 10 yr Flow Time Volume Summary: 9.1643 cfs 12.00 hrs 26437.41 cf-0.6069 acft Drainage Area: E1 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 0.6000 ac 61.00 0.16 hrs Supporting Data: CN Data: grass 61.00 0.6000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 40.00 ft 12.30% 0.1500 3.72 min Channel grass 540.00 ft 0.80% 17.0000 5.92 min 10 yr Flow Time Volume Summary: 0.0046 cfs 12.83 hrs 118.09 cf- 0.0027 acft Drainage Area: E2E3 Hyd Method: SCS Unit Hyd Loss Method: SCS CN Number Peak Factor: 484.00 SCS Abs: 0.20 Storm Dur 24.00 hrs Area CN TC 2.1000 ac 79.50 0.23 hrs Supporting Data: CN Data: pavement 98.00 1.0500 ac grass 61.00 1.0500 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 38.00 ft 2.00% 0.1500 7.38 min Channel gutter 500.00 ft 0.60% 40.0000 2.69 min Channel grass 460.00 ft 1.40% 17.0000 3.81 min Channel grass 15.00 ft 10.70% 17.0000 0.04 min 10 yr Flow Time Volume Summary: 1.0230 cfs 12.17 hrs 3649.37 cf-0.0838 acft �RT PROJECT: = MOFMSOl tl�T gy; DATE PROD.NO. ■■■MMERLE,INC. CHK: DATE PAGE. 2 5' OF PETEN7"1 oN CAL G5 l ic" o f- Co ce fd",—'; (T L✓ti ecclf .7 ;witi sheo,r J _ -�— _ I_ / T = o/tee✓lah 'f/oH/ �';��/e, (30G ��,�x.� T G _ t o t 5 / r L✓he,e s�la�low �ahceH��/q�ed ��a.✓ r,`� v T = c4anr,e/ 1lcw yiwE 0, tv a ve 5/#PE, J = L w ev-E L — t rave l /e,q A ( � 5 60 V = tr-a v�t 1 ve I ;f y 0/cc)� ;VI P �i o�p����( ,� y;�� I�✓��er� /Wo,/��,� V� cl ed el cl0 Sty S i�H %�',°I e�� ivc, leo'IL /�GT�0h1,0 1` e 4od ev e ff«ie105 or, 5C5✓ ro,.,clf stir 'e v!v,vn vs NorC = For fW -,,,-e (P IV) Jcve./PP was u 5.g d f otv cCIV" ,ev I/Ye Y-0 7A!S /3 e�KiV�lea �G �C " Govv,vv,el/e,"oi� �oL✓l�IoG./Y, e, )(0001f e,,oejf;e;e-f v�5e� i�► �jozewGns ,S-- Al e,v P/,P-A. [� PROJECT: = MOFMSON BY: DATE PROD.NO. ■o MAIERLE,INC. CHK: DATE PAGE: z 6 Of 3 S pE TE IV 1(?,,4.1 CW C- 5 - IJ157"09-i6 e1q.5/N P,47-A I A = 2.7 12, E ,4c_ G 0117 0, 2 ` � ) t0F . I T _ 0L/2�0,17X3�<)° 111.7 1-2)0 (0,V7-�o.y i A - 2, / 4-f� 0. 2,5 o b 0 ` 1 r5 2-19 G z 9 = 0,53 = T = T, 5, 172 (0- ,C} = 2Z 7 + /. 0 + 2y. 3 Ac. C = 0 2-0 o.$ T J O.y2 0,17X 3oG) _ .36.) o r (1,2)o,s(01030)o,y c 5 = Z.3 7F T _ 60(2 y) I I PROJECT: IMOMSON BY: DATE PROJ.NO. ■ AWERLE,INC. CHK: DATE PAGE: �7 OF 3 �E i EN T"/pN CIA L b1151N JA7-11 014 SI N"IeIH 2A ( P� 5, 11T Pc 5 r- de velo�� f) A - 'I2 Zz,7 = 3/, 9 14c. use �✓� e� works ���� fog {/GtS,�S Al--->A7 Cl a C7 �o c0/e, Irlte fr" POVCw4C&l- -0 Fi J) �,v d G7��SS��vdSCG,'L� l otVC� Gtrcai = �.y�; C,90 t 0.70 +- /,l7 i CFO 2_21 3 + 0,21 * 0. 30 + l.Io ; 1.2010-,?0 1.71 4 1-1.76 -P 1,J y f o.72 -- �/,t/6 = �7. A. 3 6r, e7�-ea = 0, 32 t 0.21 f- 0,2 0 f 0.37 0,P7+ 6219 s j-,p,yy * 0,©b f- 0,0 gr 0.2 y = 2.2 2 A, L'' (ltnc�eve%ed ac�err = 9, 3/. 70 ,q� ✓ AdJ,i; povvj ewtM (i3�s;� H-l� N Allif of j51 ACT6 tie, _ 0.20 14 31. %o 9(1?.6F+ o,2c� G'.Z (2.zZ�fc,20(7.Fo�� _ if�,6y = G UOl TG lO.✓ ,��7� :j 7�Iro�t' ln �a�3iJl � �h 4VC44y� rec,[tPl` IDS 1'/7 P6; PS, PLl .3 fi 2, 1�2 <� d P I ;ter S�rcces5 �►�, 60�:,l + I yo + 2S5 � 360 l0 2-t T = 0. DS tips ( l,r ) 60 ( 5 07 5 16 S52 SZ� 5.7� l 110 t 90 } lye q20 4- 16 y 5-51 5.53 6.O z z-�� 3.y3 / 9� t c�- c RRT PROJECT: = MORMSON BY: DATE PROD.NO. ■■■MMERLE,INC. p CHK: DATE PAGE: Z D- OF 3 PE T CN riori e-A1 ( 5 - floT01,2-16 B1q511y PATA (NCO- �) U145/N f/-IV1j12. (F-./lj �le✓e%,Ve4) ,4 = 9. 2 f- 2-2_7 4- 1, 0 Ae- i 5 `/ 60 /.© + vn..� _ �• �� /Qcref. /`}53 u'rtc l G'. four f(�c5e cf4,,e4)s 0.2 5�z, 7-2) 0.rO(l,.y)] = 0,K2- = C 33-5 .A5/N H- 2.8 (Pre -Peve/, ,c t 0 Ac_ ( = 0,2 5-4mI , > U5� l� - 6� resin• ' a e �. 13A SI/J 1 Z 3 (PA s .�/I1 ('95 cue✓e 0 = 0,9 D, _20(0, 0,2 = og 67, z r_17 x 2Of) 10,6 [� N PROJECT: - MOMSO ` BY: DATE PROD.NO. ■■■MMERLE,INC. CHK: DATE PAGE: Z y OF �S �E —IFiNr/0A1 c A L 6 - N 1STOX/c 13,4551N PAr,,4 (mph td) 5A S IN fi - 3 (Pv P -Ave/ an f} [0,9(e,5-) t 0.2 (i, i )� - 0,q2 =G o,yZ (�_l� x �Z�o 8 1WIN //-3 (F.11y _ p,yz (0,17 - 30)"o /_Z. `/ 7 3 HISTORIC BASIN H-1 MODIFIED RATIONAL METHOD QP= CiA PRE-DEVELOPMENT i = a * (DURATION) ^-(b) BASIN AREA PRE= 12.1 ACRES (Basins H-1A and H-1 B) STORM EVENT NTENSIT (YR) (IN/HR) PRE-DEV TC= 43.90 MIN 0.73 HR 2 0.43 5 0.64 PRE-DEV C= 0.23 10 0.78 25 0.95 STORM A= 0.64 50 1.13 B= 0.65 100 1.25 STORM INTENSITY= 0.78 IN/HR PRE-DEV Qp = 2.18 CFS POST-DEVELOPMENT (Basin HAA) BASIN AREA POST= 2.9 ACRES POST-DEV TC= 19.70 MIN 0.33 HR POST-DEV C= 0.53 STORM A= 0.64 B= 0.65 STORM INTENSITY= 1.32 IN/HR POST-DEV Qp = 2.03 CFS < 2.I? D.K' HISTORIC BASIN H-2 Calc for Pond 2 Maximum Release Rate (Phase 1/II Post-Development) MODIFIED RATIONAL METHOD QP= CiA PRE-DEVELOPMENT(Basin H-2) i = a * (DURATION) ^-(b) BASIN AREA PRE = 24.3 ACRES (Basins H-1A and H-1B) STORM EVENT INTENSITY (YR) (IN/HR) PRE-DEV TC= 39.50 MIN 0.66 HR 2 0.46 5 0.68 PRE-DEV C= 0.2 10 0.84 25 1.02 STORM A= 0.64 50 1.21 B= 0.65 100 1.34 STORM INTENSITY= 0.84 IN/HR PRE-DEV QP= 4.08 CFS PHASE 1/11 POST-DEVELOPMENT (Direct runoff from Basin H-213) BASIN AREA POST= 1 ACRES POST-DEV TC= 56.00 MIN 0.93 HR POST-DEV C= 0.27 STORM A= 0.64 B= 0.65 STORM INTENSITY= 0.67 IN/HR POST-DEV QP= 0.18 CFS PRE-DEVELOPMENT (Direct runoff from Basin H-2C) BASIN AREA PRE = 0.6 ACRES (Basins H-1A and H-1 B) PRE-DEV TC= 40.60 MIN 0.68 HR PRE-DEV C= 0.2 STORM A= 0.64 B= 0.65 STORM INTENSITY= 0.82 IN/HR PRE-DEV QP= 0.10 CFS MAXIMUM POND 2 RELEASE RATE = 3.80 CFS J2/3� POND 2 DETENTION (Phase 1/11 Post-Development) POST-DEVELOPMENT BASIN AREA POST= 31.9 ACRES POST-DEV TC= 9.90 'MIN 0.17 HR POST-DEV C= 0.64 STORM INTENSITY= 2.06 IN/HR 10 YR POST-DEV Op= 42.15 CFS DELTA DURATION = MAX VOLUME MAX VOLUME AVERAGE VOL POND VOLUME CALCULATIONS: (CFT) (CFT) (CFT) 47922.94 32315.95 40119.44 Triangle Release Constant Release DURATION INTENSITY Qp POND VOLUME POND VOLUME RETENTION VOL (MIN) (IN/HR) (CFS) (CFT) (CFT) (CFT) 9.41 2.13 43.58 22389.14 20384.32 60268.03 10.41 2.00 40.81 23160.32 21054.83 11.41 1.88 38.44 23877.79 21671.17 12.41 1.78 36.40 24549.12 22240.98 TIME TO PEAK STORAGE: 13.41 1.70 34.61 25180.30 22770.30 Triangle Release 231.41 14.41 1.62 33.03 25776.16 23263.98 Constant release 83.41 15.41 1.55 31.62 26340.67 23726.02 Average 157.41 16.41 1.49 30.35 26877.11 24159.74 17.41 1.43 29.21 27388.27 24567.93 18.41 1.38 28.17 27876.49 24952.97 19.41 1.33 27.21 28343.80 25316.89 20.41 1.29 26.34 28791.94 25661.45 21.41 1.25 25.53 29222.45 25988.20 22.41 1.21 24.79 29636.67 26298.49 23.41 1.18 24.09 30035.77 26593.51 24.41 1.15 23.45 30420.81 26874.32 25.41 1.12 22.84 30792.73 27141.87 26.41 1.09 22.28 31152.37 27397.00 27.41 1.07 21.75 31500.49 27640.49 28.41 1.04 21.24 31837.77 27873.02 29.41 1.02 20.77 32164,83 28095.23 30.41 1.00 20.33 32482.25 28307.67 31.41 0.97 19.90 32790.55 28510.89 32.41 0.96 19.50 33090.19 28705.35 33.41 0.94 19.12 33381.61 28891.50 34.41 0.92 18.76 33665.21 29069.75 35.41 0.90 18.41 33941.38 29240.46 36.41 0.89 18.08 34210.44 29403.99 37.41 0.87 17.76 34472.72 29560.65 38.41 0.86 17.46 34728.52 29710.76 39.41 0.84 17.17 34978.11 29854.57 40.41 0.83 16.90 35221.75 29992.37 HISTORIC BASIN H-2 Calc for Pond 2 Maximum Release Rate (Fully Developed) MODIFIED RATIONAL METHOD QP = CiA PRE-DEVELOPMENT(Basin H-2) i = a * (DURATION) ^ -(b) BASIN AREA PRE = 24.3 ACRES (Basins H-1A and H-1 B) STORM EVENT INTENSITY (YR) (IN/HR) PRE-DEV TC= 39.50 MIN 0.66 HR 2 0.46 5 0.68 PRE-DEV C= 0.2 10 0.84 25 1.02 STORM A= 0.64 50 1.21 B= 0.65 100 1.34 STORM INTENSITY= 0.84 IN/HR PRE-DEV QP= 4.08 CFS POND 2 DETENTION (Fully Developed) POST-DEVELOPMENT BASIN AREA POST= 33.5 ACRES POST-DEV TC= 9.90 MIN 0.17 HR POST-DEV C= 0.82 STORM INTENSITY= 2.06 IN/HR 10 YR POST-DEV Qp= 56.71 CFS DELTA DURATION = MAX VOLUME MAX VOLUME AVERAGE VOL POND VOLUME CALCULATIONS: (CFT) (CFT) (CFT) 73320.08 49748.48 61534.28 Triangle Release Constant Release DURATION INTENSITY Qp POND VOLUME POND VOLUME RETENTION VOL (MIN) (IN/HR) (CFS) (CFT) (CFT) (CFT) 9.41 2.13 58.63 30723.65 28528.58 81091.44 10.41 2.00 54.91 31792.30 29486.24 11.41 1.88 51.73 32788.68 30371.25 12.41 1.78 48.98 33722.98 31193.84 TIME TO PEAK STORAGE: 13.41 1.70 46.57 34603.25 31962.11 Triangle Release 327.41 14.41 1.62 44.44 35436.01 32682.60 Constant release 116.41 15.41 1.55 42.55 36226.58 33360.65 Average 221.91 16.41 1.49 40.84 36979.39 34000.71 17.41 1.43 39.30 37698.17 34606.55 18.41 1.38 37.90 38386.09 35181.34 19.41 1.33 36.62 39045.88 35727.81 20.41 1.29 35.44 39679.88 36248.34 21.41 1.25 34.36 40290.16 36744.99 22.41 1.21 33.35 40878.50 37219.56 23.41 1.18 32.42 41446.52 37673.67 24.41 1.15 31.55 41995.61 38108.73 25.41 1.12 30.74 42527.05 38526.02 26.41 1.09 29.97 43041.96 38926.67 27.41 1.07 29.26 43541.37 39311.71 28.41 1.04 28.58 44026.21 39682.06 29.41 1.02 27.95 44497.29 40038.58 30.41 1.00 27.35 44955.40 40382.02 31.41 0.97 26.78 45401.23 40713.10 32.41 0.96 26.24 45835.42 41032.44 33.41 0.94 25.73 46258.54 41340.64 34.41 0.92 25.24 46671.15 41638.25 35.41 0.90 24.77 47073.75 41925.78 36.41 0.89 24.33 47466.80 42203.67 37.41 0.87 23.90 47850.71 42472.37 38.41 0.86 23.50 48225.91 42732.28 39.41 0.84 23.11 48592.75 42983.77 40.41 0.83 22.73 48951.59 43227.20 HISTORIC BASIN H-3 MODIFIED RATIONAL METHOD Qp = CiA PRE-DEVELOPMENT i = a * (DURATION)" -(b) BASIN AREA PRE = 1.6 ACRES (Basins H-1A and H-1 B) STORM EVENT NTENSIT (YR) (IN/HR) PRE-DEV TC= 8.70 MIN 0.15 HR 2 1.15 5 1.79 PRE-DEV C= 0.42 10 2.25 25 2.68 STORM A= 0.64 50 3.29 B= 0.65 100 3.68 STORM INTENSITY= 2.25 IN/HR PRE-DEV Qp= 1.51 CFS POND 4 RETENTION (Fully Developed) POST-DEVELOPMENT BASIN AREA POST= 1.6 ACRES POST-DEV TC= 10.70 MIN 0.18 HR POST-DEV C= 0.66 STORM INTENSITY= 1.96 IN/HR 10 YR POST-DEV Qp= 2.07 CFS DELTA DURATION = MAX VOLUME MAX VOLUME AVERAGE VOL POND VOLUME CALCULATIONS: (CFT) (CFT) (CFT) 362.52 100.10 231.31 Triangle Release Constant Release DURATION INTENSITY Qp POND VOLUME POND VOLUME RETENTION VOL (MIN) (IN/HR) (CFS) (CFT) (CFT) (CFT) 10.17 2.03 2.14 362.52 100.10 3117.31 11.17 1.91 2.02 360.89 96.10 12.17 1.81 1.91 356.79 88.30 13.17 1.72 1.81 350.54 77.18 TIME TO PEAK STORAGE: 14.17 1.64 1.73 342.41 63.11 Triangle Release 10.17 15.17 1.56 1.65 332.62 46.42 Constant release 10.17 16.17 1.50 1.59 321.33 27.35 Average 10.17 17.17 1.44 1.52 308.71 6.15 18.17 1.39 1.47 294.87 -17.01 19.17 1.34 1.42 279.92 -41.96 20.17 1.30 1.37 263.96 -68.56 21.17 1.26 1.33 247.07 -96.69 22.17 1.22 1.29 229.33 -126.24 23.17 1.19 1.25 210.79 -157.10 24.17 1.16 1.22 191.50 -189.20 25.17 1.13 1.19 171.53 -222.46 26.17 1.10 1.16 150.92 -256.80 27.17 1.07 1.13 129.69 -292.17 28.17 1.05 1.10 107.90 -328.50 29.17 1.02 1.08 85.58 -365.75 30.17 1.00 1.06 62.75 -403.87 31.17 0.98 1.03 39.44 -442.81 32.17 0.96 1.01 15.67 -482.54 33.17 0.94 0.99 -8.52 -523.01 34.17 0.92 0.97 -33.13 -564.20 35.17 0.91 0.96 -58.12 -606.07 36.17 0.89 0.94 -83.48 -648.59 37.17 0.87 0.92 -109.20 -691.74 38.17 0.86 0.91 -135.26 -735.49 39.17 0.84 0.89 -161.64 -779.81 PROJECT: =IMOFMSON BY: DATE PROD.NO. MMERLE,INC. CHK: DATE PAGE: 3 7 OF 3 P�i✓D N0. ELEv,�i��,v ARCf1 �ft��I Avg AR Efi i DEp T// I VOL, {t I C'UM- I/OL, 1 2/.5Z 22,0 y 26 oz l oz Z3.0 `f, M3 2,395 /-o Z, 3-15 21tl9 2q, p Z6.0 I2,Z6D � y73 2.D lS, 9'd 26, 96r 27 v fist.) 15, 7 13 6 Sy l 0 13, 6�y y0, 62 7- 2- (lot M,y o 17.5 11 65o 5 I,1 9oS (N/- L" b-q�cv) 1 l 6 31 -7ro 21 rl5 1-I 3� ®'77 (N/- c>) l9 s j"1, 6z0 /l, S"®0 0.9 /0, �,w /o,�Z0 Zo. © z 727 21,67/ 0.5 /L?, '57 2/ y / Zl.o y/, V7Y 32,do3 I- o 32, 603 rt/0t0 22.0 g-/, 7y0 1Z3� L11,53' IZ31 Y/K 17?y7� 2-(fo y de�e�.� M.V 0 17.1 1,PYO 5-25 0,7 36S -br,c�wukY) /75 12,126 OFF p y 2, 635 2, 63S 17.5 1 GI, 6 zo l5 8 73 2 0 31r 7 v/ 3 y 3?-1 Z0.0 231070 2I1 355, O S /o, 677 V5r 03-9 21.10 30, 2Z F 2�,6 5 7 /• Q 26, 657 7/ 71F 22,0 `1217yo 36 ql rV /,o 36 yS Ll l D S zo z 3 23.7 0 2V.0 566 29-3 0.3 $5 SS �5,0 41v 31 /. o 3,77 2k0 S 938 7 S75 /,© 7 F75 349. /5� `l1 2y, 3s6 �l•Q 9742y /oy, o7,� MPROJECT: = +'`OF""SOS`N BY: DATE PROD.NO. ■■■ RRT MMERLE,INC. CHK: DATE PAGE: �� OF 3 g 7-v✓o o���;ce3 ;// bp- ce �-o /0—Veo- ✓-c,c-I Yo rey,,tve,d vcrttie5 t( c- C = 0,617 12---T- 9 = 32,2 f-f :wc z So/V rt,✓t/o `��Y ,s i d E.yr� C4 t�"�h 5/0{/) a - => 0.5 Cf9A C2.y� (2- z Q = 6 f ( �(tl,q (2 o- - i6 z) = o z z J5 L/5"ovrcET PIPE o zz oS - = p-72 0 SQUAi�E y.t/ (20.6 - le,59 CENr&n- EzE✓ Fv 111 beU& oeE � Coiid;tivr5 OF oP IPICE IDe,,.1611er-w9 A;fi4re (Z 2 (y`/(20-g-- 16.z1) = 0,23 43 L j5-"eV;tee PIPE T-E- I 1' a2-3 �J $,02 SQ�ARF 0 6 6y y (z o-7 -Mq9) I �-- 1NlrY CJnlryLoL oN S"ou7ZE7 P'lP� 1 i • DN—P9 0 g CB4 CB3 C62 CB1 _: — _-- _ DN—P1 DN-D2 DN D10 ............. rP0 Ll ... .._ T _ ._.. NU Z . A f " 3 LC f) � SSC FC H E3 A--` � CULV TS (34$r' RCP) LEGEND / r c DN—D9. / `I lt� !> ;' f ai BASIN NAME BASIN ARE I' ll t10, _. '1 1 1.6 Ac :� / �`'`• ' BASIN BOUNDARY LINE CBS k �j DN—P151 NODE NAME DN.=P1O jl i � I ` t_. � Pi PIPE NAME i '\ c CB10 ' ` y } ? YI Bfi 1 tzAc o f D8 DITCH NAME ^7 . , TENTION L. ♦ POND1 DETENTION/RE q;3 Do_ .' DNJP14 DN—P17 D6 ( '`�♦ POND NAME f f /CB=11 f 00, 1 ii F C)ND if DN P15 II f• � f ' 3;. i rl tea .6'A CoCB-12 a Ae '.7 A ,w ` I1 �UTURE FARMERS CANAL V t ) e �. STORM\DRAIN EXTENSION J � _ r"t _._.—. ? ?` .` o Ae . r As ----7 ( (3-42" RCS} FIGURE ��y ^'1 J ( ,y. ,.,Y .4/k' ;...} II - If7 I�T(�III 71 D N—D 7 u p I � � . �...`� � .-��.�� ,/ ,^,, � � �'•: � iL ll�i.J� WSJ I T - ...._ . PHASE I/II DEVELOPED V, _---- __ ♦ DRAINAGE NLAP - _ .. .. —. .6-Ac RCP - - . ., ❑ MORRISON S � ..EXISTING 3fl GRAPHIC SCALE 2E (FARMERS. CANAL—PTPELINE) f, C� SUERS I RCP.... ... .. ._.... SINCE 19 E� MAIERLE,Irrc. PLANNERS 45 ... .. ._.. _.... ......... ..... .... ysc-0u d C—.—.y EXISTING 18" An 2S pE (IN > RCP CULVERT PA Bo.1111 6m 1.a.�BK L Sulam IR 50771.�(4o6)w-M F-(406)597-1176 1 Inch 200 tt REVISION DATE: REVISION DATE DRAWN BY:KW DATE 10/16/98 CHECKED BY: DRAWING NO.: G3.DWG JOB NO.: 3121.001 010 0310 SHEET 1 OF 1 I � I 1 _ I I _2 POND 1 o A� 1 err r, Ti 1 I POND 2 1 . _y LEGEND �44 `i f � / ' L. ) r / i H , BASIN NAME H—t. 70.6A SIN A (ACRES) 9.2 AC BA AREA (A S BASIN BOUNDARY LINE ZA SUB—BASIN BOUNDARY LINE L tPOND y _ j , 1 I w r F _. IG 2_ POND 4 HISTORIC/DETENTION 1RAIN — vim — — _ — •W ofN an DRAINAGE MAP SCIENTISIS _ f MORRISON �R GRAPHIC SCALE _ YEYM __ MAIERLE,INC. PM im 7-7 . .__ . . ..... _.. .. ...... SINCE 1945 An tmptn -o.—Cm psny (pt TE6T) PA.B.1113 901 T.'. g7 BAd Bm-A WT 597/1•Ph..(406)597-Ml F-(406)W7-1176 1 i—b- 200 R REVISION DATE REVISION DATE: DRAWN BY: KW DATE 10/16/98 CHECKED BY: ORAWING NO.: HISTORIC.DWG JOB NO.: 3121.001 010 0310 SHEET 1 OF 1