Loading...
HomeMy WebLinkAboutDesign Report - 12 06 2019 JOB NO. B19-063 MONTANA | WASHINGTON | IDAHO | NORTH DAKOTA | PENNSYLVANIA OCTOBER 2019 406.586.0277 tdhengineering.com 234 East Babcock Street Suite 3 Bozeman, MT 59715 CLIENT ENGINEER JoeArchitect Joe Church 1422 Delgany St., Suite LL1 Denver, CO 80202 TD&H Engineering 234 East Babcock Street, Suite 3 Bozeman, MT 59715 YELLOWSTONE ORTHODON TICS BASIS OF DESIGN REPO RT Image from JoeArchitect B19-063 YELLOWSTONE ORTHODONTICS Page 1 of 2 YELLOWSTONE ORTHODONTICS DESIGN REPORT OCTOBER 2019 Purpose and Introduction The purpose of this report is to explain how water, sanitary sewer, and storm drainage improvements will be designed to meet the City of Bozeman requirements and Montana Public Works Standard Specifications (MPWSS) to provide service to the new Yellowstone Orthodontics building on Garfield Street. The report will provide information on the detailed design of the above mentioned infrastructure. The project is located off of West Garfield Street and is described as Lot 4 of Block 7 of Bozeman Gateway PUD Phase 3. It is located in the southeast quarter of the northwest quarter of Section 14, Township 2 South, Range 5 East, Gallatin County, Montana and is 0.655 acres in size. The lot is presently vacant. The proposed improvements include the construction of an orthodontics office building with associated parking, landscape, and hardscape. Design Report Water The project site has two existing water services, one 8-inch and one 2-inch, extending off West Garfield Street. The existing 8-inch service will be abandoned and plugged at the main. The existing 2-inch service will be used to service the property. A new ¾-inch water service (to be verified by mechanical) will be extended to the new building from this service stub. The service will be Type K copper pipe and will be installed per the City of Bozeman Design Standards and Modifications to Montana Public Works Standard Specifications (MPWSS). Construction of new water main is not anticipated with this project. The estimated demands for the project are summarized in Table 1 and calculations are provided in the Appendix. These calculations will be verified by the mechanical designer. Table 1. Estimated Water Demands Average Day Max Day Peak Hour New Building 101 gpd 233 gpd 0.21 gpm Sewer The project site has one existing 4-inch sewer service extending to the project site according to as-builts. A new 4-inch PVC sewer service will be extended to the proposed structure from this existing sewer stub. The sewer service will be installed per the City of Bozeman Design Standards and Modifications to MPWSS. B19-063 YELLOWSTONE ORTHODONTICS Page 2 of 2 Construction of new sewer main is not anticipated with this project. The anticipated demands for the project are summarized in Table 2 and calculations are provided in the Appendix. Table 2. Estimated Sewer Demands Average Day Peak Hour New Building 1,354 gpd 4.12 gpm Storm Drainage The existing project site is vacant and undeveloped. The proposed site development includes one new building, new concrete sidewalk, new asphalt parking lot, and landscaping. The project site is part of the Bozeman Gateway PUD. Pre-determined flows from the site have been accommodated for in the overall storm drainage system for the PUD. The Bozeman Gateway PUD’s design report shows the project site in two separate parts of the report. In one section of the report, the 18-inch storm main which collects runoff from the project site was designed with an estimated runoff coefficient (c) of 0.77. Later on in the report, the project site is shown within Minor Basin 3.2 with an estimated runoff coefficient of 0.55. The actual runoff coefficient for the property upon development will be 0.54. Since this is below either of the two estimated runoff coefficients, the site will discharge less storm water volume to the system than it was designed for. Therefore, the existing storm drainage system has the capacity for this project and no additional storm water detention is required on the site. Storm drain calculations are provided in Appendix B. The proposed site grading requires two area drains to be connected to the PUD’s storm drainage system in order to allow for positive drainage away from the proposed building on all sides. The transport piping from these areas drains to the PUD’s storm drainage system were sized using a 25-year storm event and the rational method per the City of Bozeman design standards. Calculations are included in the Appendix. The 100-year storm overflow path will convey water north and west into existing parking lot access drives then onto South 29th Street. Also, the project site is not located within an area of minimal flood hazard according to FEMA Panel 30031C0812D. APPENDIX A Water & Sewer Calculations Yellowstone Orthodontics Date: 9-19-19 Water Demand Calculation Orthodontics Office: Commercial Space = 3,700 sf Commercial Demand = 101.37 gpd 10,000 gal/year/1,000 sf per CILWR calc Avg. Day Demand = 101.37 gpd commercial demand Max. Day Demand = 233.15 gpd 2.3:1 max day to avg day ratio Max. Hour Demand = 0.21 gpm 3:1 max hour to avg day ratio Yellowstone Orthodontics Date: 9-19-19 Sewer Demand Calculation Orthodontics Building Commercial Space =3,700 sf Landscape Area =10,000.00 sf # of Dental Chairs =8 chairs Sewer Design Flow Rate =1,320.00 gpd (chairs)*(165 gpd/chair) Per DEQ 4, Table 3.1-1 Equivalent Population =13.20 people DEQ-2 requires 100 gpcd; Design flow (gpd) ÷ 100 gpcd Infiltration Rate =34.44 gpd (landscape area)*(150 gpd/acre) Avg. Day Demand =1,354.44 gpd flow rate + infiltration rate Peaking Factor =4.38 Peak Demand =5,926.61 gpd (avg. day demand)*(peaking factor) Peak Demand =4.12 gpm (peak demand)/(24 hrs/day)/(60 min/hr) π‘„π‘šπ‘Žπ‘₯ π‘„π‘Žπ‘£π‘” =18 +π‘ β„Žπ‘›π‘ π‘ π‘Žπ‘›π‘‘π‘ π‘›π‘‘π‘›π‘‘π‘›π‘›π‘™π‘‘1/2 4 +π‘ β„Žπ‘›π‘ π‘ π‘Žπ‘›π‘‘π‘ π‘›π‘‘π‘›π‘‘π‘›π‘›π‘™π‘‘1/2 Yellowstone Orthodontics Date: 9-19-19 4" Sewer Service Capacity Check Input Values d =0.33 ft =4" y =0.167 ft Calculated Values (Equations from Fluid Mechanics by Chow) Theta (Θ)3.14 rad 2*arccos(1-y/(d/2)) Area (A)0.04 ft2 (1/8)*(Θ-sinΘ)d2 Wetted Perimeter (P)0.52 ft 0.5Θd Hydraulic Radius (R )0.08 ft (.25)*(1-(sinΘ)/Θ)d Top Width (T)0.33 ft (sin 0.5Θ)d Mannings Equation (Equation from Fundamentals of Mechanics by Munson) n =0.013 (For PVC per COB Design Standards) S0 =0.02 ft/ft Q =0.13 cfs Q = 1.49/n*A*R2/3*S00.5 Q =60.40 gpm Q gpm = (Q cfs)(7.48 gal/ft3)(60 sec/min) V =3.09 ft/s V = Q/A Results A 4" diameter sewer service at 2% slope flowing half full has the capacity for 60.4 gpm. J:\2019\B19-063 Yellowstone Orthodontics\DOCUMENTS\REPORTS\B19-063 Water & Sewer Calcs.xls 1 OF 1 Commercial (2012 IBC) City of Bozeman Water Service Calculation Worksheet Project Address: ___________________________________ Property Owner: ______________________________ General Contractor: _______________________________________________________________________________ Permit Number: _______________ Proposed Water Meter Size: _______________ Standard Design Water Supply Fixture Units Appliances and Fixtures Fixture Units # of Fixtures Total Bathtub/Combination Tub/Shower 4.0 X ________ = ________ Soaker Tub 10.0 X ________ = ________ Shower (per head) 2.0 X ________ = ________ Clothes washer 4.0 X ________ = ________ Dishwasher 1.5 X ________ = ________ Hose Bibb 2.5 X ________ = ________ Additional Hose Bibb (each) 1.0 X ________ = ________ Drinking Fountain 0.5 X ________ = ________ Service / Mop Basin 3.0 X ________ = ________ Lavatory Sink 1.0 X ________ = ________ Kitchen Sink 1.5 X ________ = ________ Laundry Sink 1.5 X ________ = ________ Water closet (1.6 GPF) 2.5 X ________ = ________ Water closet (1.6 GPF – Flushometer tank) 2.5 X ________ = ________ Water closet (flushometer valve) Table Values ________ = ________ Urinal (flushometer valve) Table Values ________ = ________ Total Number of Fixture Units ________ Fixture Unit Tables for Determining Water Pipe & Meter Size Pressure Range – Over 60 PSI Circle the length in feet to the farthest fixture & applicable service, meter & branch sizes below based on the total number of fixture units detailed above. Maximum Allowable Length in feet Meter & Supply & 60’ 80’ 100’ 150’ 200’ Service Branches ¾β€ ¾β€ 20 20 19 17 14 ¾β€ 1” 39 39 36 33 28 1” 1” 39 39 39 36 30 ¾β€ 1¼β€ 39 39 39 39 39 1” 1¼β€ 78 78 76 67 52 1½β€ 1¼β€ 78 78 78 78 66 1” 1½β€/2” 85 85 85 85 85 1½β€ 1½β€ 151 151 151 151 128 2” 1½β€ 151 151 151 151 150 1½β€ 2” 370 370 340 318 272 2” 2” 370 370 370 370 368 If count is over 370 fixtures, water demand does not meet table 6.10.4 and has to be engineered by a registered Montana mechanical engineers design, signed and stamped. 12.20.17 Appendix B Storm Water Calculations Overall Project Area Hard Gravel Undeveloped Landscaped Total Hard Gravel Undeveloped landscaped Weighted Surfaces Area Area Area Area Coeff. Coeff. Coeff. Coeff. Average C (sf) (sf) (sf) (sf) (sf) C C C C CAVG Existing 389 4,749 22,319 1,063 28,520 0.9 0.8 0.2 0.1 0.31 Proposed 14,801 1,123 0 12,597 28,520 0.9 0.8 0.2 0.1 0.54 Total Lot Area 28,520 sf Total Lot Area 0.655 acres Yellowstone Orthodontics C Value Determination - 09-18-19 J:\2019\B19-063 Yellowstone Orthodontics\DOCUMENTS\REPORTS\B19-063 Storm Drain Calcs w_StormTech.xls TD & H S t o r m D r a i n C a l c u l a t i o n s Pr o j e c t : Y e l l o w s t o n e O r t h o d o n t i c s 25 - y e a r F l o w C a l c u l a t i o n s 9/ 1 9 / 2 0 1 9 Ha r d G r a v e l Co e f f . C o e f f . C C 0. 9 0 . 8 0. 9 0. 8 Tc * T c *25 yr Flow Slo p e D i s t a n c e C t1 Slo p e k V e l o c i t y D i s t a n c e t2 Ve l o c i t y D i s t a n c e t3 To t a l C A r e a T o t a l i Q % ft min % fp s ft min fp s ft min mi n ac min in/hr cfs 2. 0 0 9 0 0 . 9 0 1. 5 0 3 5 0 . 1 0 2. 0 0 3 5 0 . 1 0 8 . 7 8 0. 7 0 0. 6 1 9 1. 7 0 0 0. 0 0 3 0 0 . 0 0 8 . 7 8 0 . 1 0 0 . 0 1 8 . 7 8 2 . 6 6 8 0.00 Es t i m a t e a v e r a g e f l o w o f 3 f p s *T _ c m i n i m u m = 5 m i n . C f = 1 . 1 f o r 2 5 - y e a r s t o r m e v e n t F H W A H E C 2 2 , E q n 3 - 4 K= 0 . 4 5 7 G r a s s e d W a t e r W a y ( R o a d s i d e D i t c h ) K= 0 . 6 1 9 P a v e d A r e a K= 0 . 4 9 1 U n p a v e d s h a l l o w c o n c e n t r a t e d f l o w TI M E O F C O N C E N T R A T I O N 25 YEAR FLOW CALC Ov e r l a n d F l o w S h a l l o w F l o w P i p e F l o w 0.18 So u t h A r e a D r a i n 12 . 4 8 0. 8 8 3 0 0 . 0 0 1. 0 0 0 . 4 5 7 1 . 5 0 No r t h A r e a D r a i n 13 . 3 6 0 . 4 8 0 . 1 9 1 3 . 3 6 2 . 0 4 0 79 So u t h A r e a D r a i n No r t h A r e a D r a i n Ha r d Su r f a c e s (s f ) 3, 9 0 2 0 Gr a v e l Ar e a (s f ) 0 0 Un d e v e l o p e d L a n d s c a p e d Ar e a (s f ) 0 0 Ar e a (s f ) 4, 3 4 3 57 4 To t a l Ar e a (s f ) 8, 2 4 4 57 4 Un d e v e l o p e d Co e f f . C 0. 2 0. 2 la n d s c a p e d W e i g h t e d Average C C AVG 0.48 0.10 Coeff. C 0.1 0.1 3 1 1 1 8 7 1 / f c S D ) CC . ( . T - = A i C Q = S k V = 28 . 3 64 . 25 78 . 0 - = c T i TD&H Storm Drain Calculations Project: Yellowstone Orthodontics Area Drain Storm Pipe Sizing 9/19/2019 Input Values d = 0.50 ft = 6" y = 0.375 ft Calculated Values (Equations from Fluid Mechanics by Chow) Theta ( Θ) 4.19 rad 2*arccos(1-y/(d/2)) Area (A) 0.16 ft 2 (1/8)*( Θ-sin Θ)d 2 Wetted Perimeter (P) 1.05 ft 0.5 Θd Hydraulic Radius (R ) 0.15 ft (.25)*(1-(sin Θ)/ Θ)d Top Width (T) 0.43 ft (sin 0.5 Θ)d Mannings Equation (Equation from Fundamentals of Mechanics by Munson) n = 0.013 (For PVC per COB Design Standards) S0 = 0.01 ft/ft Q = 0.51 cfs Q = 1.49/n*A*R 2/3 *S 0 0.5 Q = 230.25 gpm Q gpm = (Q cfs)(7.48 gal/ft 3)(60 sec/min) V = 3.25 ft/s V = Q/A RESULTS: The 25-year event produces flows of 0.18 cfs from the areas contributing to storm water to the two area drains. A 6" pipe at 75% full has the capacity for a flow of 0.51 cfs at a minimum slope of 1%. Therefore, a 6" pipe is sufficient to carry the 25-year storm event. J:\2019\B19-063 Yellowstone Orthodontics\DOCUMENTS\REPORTS\B19-063 Storm Drain Calcs w_StormTech.xls 5 OF 5 F E M A S o u r c e s : E s r i , H E R E , G a r m i n , I n t e r m a p , i n c r e m e n t P C o r p . , G E B C O , U S G S , F l o o d H a z a r d Z o n e s 1 % A n n u a l C h a n c e F l o o d H a z a r d R e g u l a t o r y F l o o d w a y S p e c i a l F l o o d w a y A r e a o f U n d e t e r m i n e d F l o o d H a z a r d 0 . 2 % A n n u a l C h a n c e F l o o d H a z a r d 9 / 2 0 / 2 0 1 9 , 1 0 : 1 7 : 5 8 A M 0 0 . 1 0 . 20 . 0 5 m i 0 0 . 1 5 0 . 30 . 0 7 k m 1 : 9 , 0 2 8 T D H G I S M o n t a n a S t a t e U n i v e r s i t y , B o z e m a n G I S , B u r e a u o f L a n d M a n a g e m e n t , E s r i C a n a d a , E s r i , H E R E , G a r m i n , I N C R E M E N T P , I n t e r m a p , U S G S , M E T I / N A S A , E P A , U S D A | B o z e m a n G a t e w a y - P h a s e 1 2 5 - y r P i p e F l o w s - S o u t h 2 9 t h A v e n u e M M I # : 3 6 3 8 ; 0 0 3 . 0 @ 1 . 0 3 1 0 1 ^ D A T E : 6 / 2 7 / 0 6 E N G I N E E R : M i K e H i c k m a n E β€” M O D I F I E D R A T I O N A L M E T H O D Q p = C i A S t a . 1 + 9 8 , S t u b t o E a s t R A I N F A L L F R E Q = y r B A S I N A R E A ( # 1 4 ) = i g | 2 i ^ , - a c r e s T c = | | » . 0 ? ' : ' : \ m i n . c = w y ^ . S T O R M A B S T O R M I N T E N S I T Y - Q p 0 . 7 8 - 0 . 6 4 3 . 8 3 I N / H R 8 . 6 3 C F S i = A * ( T c / 6 0 ) B S T O R M E V E N T _ ( Y R L S T O R M i C O E F F A B 2 5 1 0 2 5 5 0 1 0 0 0 . 3 6 0 . 5 2 0 . 6 4 0 . 7 8 0 . 9 2 1 . 0 1 - 0 . 6 0 - 0 . 6 4 - 0 . 6 5 - 0 . 6 4 - 0 . 6 6 - 0 . 6 7 I N T E N S I T Y ( I N / H R ) 1 . 6 0 2 . 5 5 3 . 2 2 3 . 8 3 4 . 7 4 5 . 3 4 ( S o u r c e : C i t y o f B o z e m a n D e s i g n S t a n d a r d s , M a r c h 2 0 0 4 ) S t a . 3 + 2 1 , P i p e f r o m W e s t R A I N F A L L F R E Q = i g i a W u y B A S I N A R E A ( # 1 3 ) = i i @ . 8 2 i ^ , a c r e s T c = ^ f s S - Q β€’ m i n . c = " S K S - I , S T O R M A = 0 . 7 8 B = - 0 . 6 4 S T O R M I N T E N S I T Y ' Q p - 3 . 8 3 I N / H R 8 . 3 1 C F S i = A * ( T c / 6 0 ) B S T O R M E V E N T ( Y R ) S T O R M i C O E F F A B 2 5 1 0 2 5 5 0 1 0 0 0 . 3 6 0 . 5 2 0 . 6 4 0 . 7 8 0 . 9 2 1 . 0 1 - 0 . 6 0 - 0 . 6 4 - 0 . 6 5 - 0 . 6 4 - 0 . 6 6 - 0 . 6 7 i N T E N S i r y ( I N / H R ) 1 . 6 0 2 . 5 5 3 . 2 2 3 . 8 3 4 . 7 4 5 . 3 4 ( S o u r c e : C i t y o f B o z e m a n D e s i g n S t a n d a r d s , M a r c h 2 0 0 4 ) ( )uu ^ 1 r - ? ^ I N S T A L L 1 5 L F O F 3 0 " C L A S S I I I R C P 1 . 0 0 7 . I STALL'/^ 18" PVC OF 0 i .00% S T A 1 0 + 4 3 1 7 . 5 ' L T =J S T A 5 + 4 1 2 3 . 2 ' L T N E W G R A T E I N L E T I N V . E L . = 4 8 4 6 . 8 6 1 . 1 ' ) [ - ; : N E W i A T E I N L F T r 1 = 4 8 4 1 . 6 2 I N V . L . .(IT 4 6 21 3 4 . 0 ' L T 4 i n i F O F I N S T A ) STA 2+86 113-jlO'RTNEW GRATIE INLETINV. EL. =^8Bo.76 STA 3NEW CINV. E - > 1 5 " P V C ^ . 0 0 7 . <ATE I N L E T =48 5 0 . 4 3 S O U C T H 2 9 T H A ( 3 5 ' T B C - T B C ) A . O ' L T STA 1+7J 17.5'RTNEW GRATE IMETINV. £L.=4552..i4 S T A I N S T A L L 4 6 L F O F 1 2 ' P V C 8 1 . 7 8 % N E W I N L E T 4 0 L F O F S ' 1 . 0 0 7 . L O T r i I N S T A L L 1 2 " P V C i - o r : o 1 , . ' £ L n S T A 5 + 8 7 2 0 . 7 ' L T N E W G R A T E I N L E T I N V . E L . = 4 8 4 7 ; INSITALL 45LF OF18"FTC r a 0 ^ - ^ \ H A V S N U E T7UIv r 0 ^ z ^ r = = Cs/ E T > I N S T A L L 4 Q L F O F 1 8 " P V C © 1 1 . 7 8 % INSTALL 25LF OF12-PVC C 2.35-:^a ^ 0 I N S T A L L 2 8 L F O F 3 0 - C L A S S I I I R C P I . O O Z S T A 5 + 6 1 1 1 . 0 ' R T N E W S D M H ^ 7 S T A 8 + 3 9 1 1 . 0 ' R T N E W S D M H | ? B £ ; ^\STA 3+21 11.0'RTNEW SO MHj!6 5 § S T A 5 r l - 5 4 2 0 . 7 ' R T N E W [ G R A T E I N L E T I N V . E L . = 4 8 4 6 . 3 5 STA ;+gs i I.O'RTM'EW S: MHj.\ ^ T O I! ' ^ 0 S T A 1 0 + 5 0 1 7 . 5 ' R T N E W G R A T E I N L E T I N V . E L . = 4 8 4 2 . 0 0 II 1 0 + 4 3 1 1 . 0 ' R T N E W S D M H C 9 S T A 3 0 NOi INSTALL 25LFOF f < s -(^2"p^&^=^°%ITO -fflJTURE >lMI ]?,5"ALL β€’5-F OFIS" P/C e 0.73%TO FUTURE MMI GRACING I N S T A L L 1 2 L F O F 1 2 " P V C 8 5 . 0 0 7 . ^ITO -fflJTURE >lMI GRADING j I N S T A L L 9 L F O F 1 2 ~ P V C S 1 . 0 0 % 8 \ S T A 1 2 + 4 0 1 7 . 5 ' R T N E W G R A T E I N L E T I N V . E L . 4 8 3 9 . 4 0 s STORM BRAIN COORDINATE TABLE;llnNORTHINGEASTING C O N ' T S T O R M D R A I N C O O R D I N A T E T A B L E ^GRATE INLET !9422.230369.17 S T R U C T U R E N O R T H I N G E A S T I N G aMH^59446.7110562.59-98 G R A T E I N L E T 5 + 8 7 9 8 3 5 . 2 6 1 0 3 2 9 . 7 0 ^ \ GRATE [NL£"369534.4810317.32 a M H ^ a B + 3 9 1 0 3 6 0 . 6 8 GRAT; INLC710317.21 H O R I Z : 1 " = 5 0 ' V E R T ; 1 " = 5 ' 1 1 x 1 7 H O R I Z : 1 " = 1 0 0 ' 1 1 x 1 7 V E R T : 1 " = 1 0 ' frl M H j j i g 1 0 + 4 3 MH(1695G9.730362.22 G R A T E I N L E T 1 0 + 4 3 i 0 . 5 3 1 . 5 7 9789.5010327.37GRA7S INLCT |41 G R A T E I N L E T 1 0 2 9 8 . 7 5 0 . 3 6 6 . 5 5 GRATE INLE75-549802.6310371.26 G R A T E I N L C T 1 2 + 4 0 1 0 4 8 8 . 7 9 1 0 3 6 5 . 9 8 Unf710361.51 G R A T E I N L E T 1 0 4 8 8 , 6 8 1 0 3 2 5 . 4 9 All-L-51s?tl-S'l?§"¥l:?!5^1!IJLJI.^! S O U T H 2 9 T H A V E I--β€” i - ?i-5 K l ' ? ¥ ¥ -S\G - t T Y P E A T R E N C H B A C K F I L L T Y P E 1 P I P E B E D D I N G 4 - . . - . - . . . . - . . - . - } - . . - . i . . - . . . - . - | - (Is<ES60 i I 4 8 6 0 B O ( C O 0 0 ° 0 ( ' i @g-^5y|tt§ 5 i -^i^^tig--^.el^llgr. ^ I ^ M j i . : 3 | t i t i ] : r : ; i i 4 - -!β€’ s n ^..!.. ^- β€’ s -^1 ? f g _ - . . . L x f c g - s \ s " s " ^55 4 8 5 5 - " i S , . _ . 4 . . , . _ s - 9 £ - ? β€’ V ) : : t § l & . - ^ β€’ ~ EXISTING GROUND i 5 <ao s 4 8 5 0 e tt-..^ / - | - . A S P H A L T , C ( - _ Ip4" fPVC -3DR-35 e0.7e%<e(5 4 8 4 5 pvc ; s u i L I r β€” C L A S S . - I N S T A L L 1 9 9 . : L F ' a o - s 8 x tSfO 4 8 4 0 «36 4 8 3 5 1_ S l 0 β€’r g l : . ^ -i ^ I<ao β€’ 5 ] 4 8 3 0 ^ ^ ~ ' s s ::£ § 1 y <E5 4 8 2 5 ° ' ; 3 lr)\I^ s§ ^g T? ^s ^g ^g ^is ^i[| 1|1111| II 1811I II ilS »g β€’"|g ;;? "|g s'g ^[g s g - ' I ? " S I ii | i | 1| i|| ! | | 1 | | 1 | | S ^ . s ] 5 s ! § ^ | ? ^ S S K ? | s ? ^ 5 ^ ^ : i n ! £ 1 s | ! i l s | l £ 1 s | " , s l i s : l s i 5 5 | S d 1 ^ ] < ° a " i s » : £ " i ? i " ! 2 ^ i ^ C T o l . ! 3 l o . S l ^ . l o i C O . S c o ] ? j ^ j £ C N | i ? i C O C T r / l l S c n : 5 ? 5 ? ! ? ^ 5 ^ 1 $ 5 1 ? ^ f S ' S ^ 5 ¥ | s 5 i ? I ? | | $ | $ | S ? | $ 1 1 5 1 5 ^ i ^ $ ] S $ S ( D [ I " ! : S - I ? - ; S β€’ ^ - i r i s i i I s : l s | B ^ s ! ' ? s : ? s l s ~ ; ^ ^ . ' i ' 2 ' ? ; 2 S l s S 2 ; l 2 ? 2 $ ¥ l 5 ¥ | $ ? [ 5 ¥ | ? 5 ? S i p ? z : 0+001+002+003+004+00 5 + 0 0 6 + 0 0 7 + 0 0 8 + 0 0 9 + 0 0 1 0 + 0 0 n + o o 1 2 + 0 0 1 3 + 0 0 VEfflFy SCALE!THESE PRWffS MAr BEREOIEEO. UME BELOWMEASStES OWE INCH ONOafB»U,LORAW!NG.MODIFYSCALE ACCORUNGL^REVISIONSNO.DESCRIPTIONDATEBYHA36381i06\ACADlPLANS'SHEETSlSD-2.d»g Plotted Dy jl>err>! on Jun;30,2006 M O R R I S O N M A I E R L E , I N C . A n E n v p l o y c e - O w n v d C o m p a n y 9 0 1 T e c h n o l o g y B l v d . E n g h B a r a B o z e m a n . M T 5 9 7 1 8 S u r v e y o f s S c i e n t i s t s P l a n n e r s P h o n e : ( 4 0 6 ) 5 S 7 < 7 2 - F a x : ( 4 0 6 ) 5 8 7 - 1 1 7 6 D R A W N B Y : J C P / J C H C H K - D . B Y : N J H C O P Y R I G H T C - M O f t R I - ^ % ^ ^ i f & i i - B : ; i : O A T E ; 2 / 0 1 / 0 6 " i \ v & ^ = s ^ / j Q . A . R E V I E W M ® ^ o ^ - S . E R L E I N C . , 2 0 0 6 ^ D A T E ; B O Z E M A N B O Z E M A N G A T E W A Y S T O R M D R A I N A G E I M P R O V E M E N T S M O N T A N A P R O J E C T N U M B E R 3 6 3 8 . 0 0 6 . 0 4 0 S H E E T N U M B E R 2 2 S O U T H 2 9 T H A V E S T A 0 + 0 0 - E N D D R A W I N G N U M B E R S D - 2 Bo z e m a n G a t e w a y - P h a s e 1 Su b - B a s i n 3 . 2 - P e a k F l o w s f o r 2 5 - y r a n d 1 0 0 - y r S t o r m s MO D I F I E D R A T I O N A L M E T H O D Q,p C i A PO S T - D E V E L O P M E N T , B A S I N 3 . 2 , 2 5 - Y E A R P E A K R U N O F F : RA I N F A L L F R E Q = Y ' ' 2 5 ^ 1 h r . BA S I N A R E A P O S T = 1 3 . 7 2 a c r e s PO S T - D E V T c = 1 7 . 4 m i n . PO S T - D E V C = 0 . 5 5 S T O R M A = 0 . 7 8 B = - 0 . 6 4 ST O R M I N T E N S I T Y = 1 . 7 2 I N / H R PO S T - D E V Q p = 1 3 . 0 0 C F S i = A * ( T c / 6 0 ) B ST O R M E V E N T (Y R ) ST O R M 1 C O E F F A B 2 5 1 0 2 5 5 0 10 0 0. 3 6 0 . 5 2 0 . 6 4 0. 7 8 0 . 9 2 1. 0 1 -0 . 6 0 -0 . 6 4 -0 . 6 5 -0 . 6 4 -0 . 6 6 -0 . 6 7 IN T E N S I T Y (I N / H R ) 0 . 7 6 1. 1 5 1. 4 3 1. 7 2 2. 0 8 2. 3 1 (S o u r c e : C i t y o f B o z e m a n D e s i g n S t a n d a r d s , M a r c h 2 0 0 4 ) PO S T - D E V E L O P M E N T , B A S I N 3 . 2 , 1 0 0 - Y E A R P E A K R U N O F F : RA I N F A L L F R E Q = L f : 4 @ 0 , : : y r , 1 h r . BA S I N A R E A P O S T = 1 3 . 7 2 a c r e s PO S T - D E V T c = 1 7 . 4 m m . P O S T - D E V C = 0 . 5 5 S T O R M A = 1 . 0 1 B = - 0 . 6 4 ST O R M I N T E N S I T Y = 2 . 2 3 I N / H R PO S T - D E V Q p = 1 6 . 8 3 C F S i = A * ( T c / 6 0 ) B ST O R M E V E N T (Y R ) ST O R M i C O E F F A B 2 5 1 0 2 5 5 0 1 0 0 0. 3 6 0. 5 2 0 . 6 4 0. 7 8 0. 9 2 1. 0 1 -0 . 6 0 -0 . 6 4 -0 . 6 5 -0 . 6 4 -0 . 6 6 -0 . 6 7 IN T E N S I T Y (I N / H R ) 0. 7 6 1. 1 5 1. 4 3 1. 7 2 2. 0 8 2. 3 1 (S o u r c e : C i t y o f B o z e m a n D e s i g n S t a n d a r d s , M a r c h 2 0 0 4 ) <,^...,UMs;/.--Li-r"'\HiU11^-iyi'^ L E G E N D S U B - B A S I N B O U N D A R Y 3 1 ±mi E X I S T I N G 3 6 " S T O R M D R A I N iliaQ^ H;iAi:i 1 . 0 2 a c y ii.-.^ 2 1 POND #2(DISCHARGE TOSTORM DRAIN) 2 2 ^ ^ C T R E E I _ 2 . 6 0 0 a c 0 . 9 5 a c C O L L E G E S T f R E E T D E T E N T I O N P O N D - ^ ..._ / . . ^ P O S T - D E V E L O P M E N T S U B - B A S I N D E S I G N A T I O N y * " β€” - - β€” β€” - . β€’ ^ β€’ - S " P O N D ^ 4 - C E ) l s e H A K G E : ^ J - & - - H A R M O N S T R E A M ) r / 3 1 t r % I P O N D # 6 u \ ^ ^ : ¥ 1 . 0 2 a c p / β€’<9 / / ( D I S C H A R G E T O ~ ' ~ " R O A D S I D E D I T C H ) \ S U B - B A S I N A R E A ( A C R E S ) \ A { \ r . P O N D # . 5 N5>11^21 β€’ ^ 9 -RON'D^I-...-β€’ (DISCHARGE "||\-^-,iSTOR^B.RAir®^' ( D I S C H A R G E - J 0 : . . " - . . - - ' P Q N D ^ ' H A R M O N S T R E A M ) - . ( D I S C H ' A R ' G E % i . . . . . . . ^ " " s i 4.30ac,6- ( R O A D S J D E ^ f f e - H ^ ) I s - r P O N D ^ ( D ^ S C H A I ^ G E T O - " - - f l A R M O N { " S T R E A M ) Ji ^ β€” ^ / - f \ i ^ v - o ^ ^ :^i rfl,^,1111\ '.Sll ^ F ^ R M B R S . . . C A N A U 4^ ^ 1 --^,/g s " w/mi ^ "β€’% 2 5 . 5 : 1IW.I/U^ ? /'!/ <. li '.. ^ - 5 . 2 ? -\ "\ \&w^ r / \ ~Q.x J - V . \ \KMi! . 1 3 . 7 2 m 0:-u,\^. a ® 1 1 ^ , 91:'iw;II(^ a-11~~SiMi 0 2 . 5 < t - \ - < N ^ 1 3 . 0 0 < - A ~ t i ^ s \ " \ \ Q / " ^ ^ S y ' % . ' » u ; \ I I SCHEDULE 3 3 RECT,DRIFICEDIMENSIONS(IN.) P O N D # 8 ( D I S C H A R G E T O U N - N A M E D T R I B U T A R Y ) 0 . 6 2 a c 2 0 0 0 6,41 ( I N F E E T , ; ) I /_\_PONDND,/DETENTION PDNDMAXIMUM10-YRRELEASERATE(CFS)MINIMUM10-YRSTORAGEVOLUME(CU, FT.)CIRCULARDRIFICEDIAMETER<IN,)/1_2_^1,05_g,84 3,8915,2545,715,11 4,00 x3,50 x 5,873A.1,200,12 9139006,111,94 5,00 x 5,861,5Q,_>; 2,005_&_1,67_0,40_5,5455297,203,52 5,00 x 8,163,00_^<, 3,25T__8_2,660,40 9,2942669,103,52 7,00 x 9,283,00 x 3,25 i t i M O R R I S O N M 3 y M A I E R L E , l N C . E n g i n e e r s S u r v e y o r s S c i e n t i s t s P l a n n e r s 9 0 1 T e c h n o l o g y B l v d . B o z e m a n M T S 9 7 1 8 P h o n e : ( 4 0 6 ) 5 8 7 - 0 7 2 1 F a x : ( 4 0 6 ) 5 8 7 - 1 1 7 6 A n E m p f o y e c - O w n e d C o m p s i n y C O P Y R I G H T 0 M O R R 1 S O N - M A I E R L E . I N C . . 2 0 0 6 D R A W N B Y : C H K ' D . B Y : , A P P R , B Y ; M G H D A T E : O f N ; \ 2 2 0 0 \ 0 2 3 V \ C A D \ E x h i b i t s \ P H A S E 1 _ D R A I N A G E _ P O S T . d w g P l o t t e d b y j h o c k a d a y o n J u n / 1 6 / 2 0 0 6 B O Z E M A N G A T E W A Y , P H A S E 1 B O Z E M A N M O N T A N A P R O J E C T N O . 2 2 0 0 . 0 2 3 P O S T - D E V E L O P M E N T D R A I N A G E B A S I N S F I G U R E N U M B E R F I G . 3