Loading...
HomeMy WebLinkAbout14 - Design Report - Cattail Properties - Stormwater 1 yyy��WW ENGINEERING Y ''��1 S IS CONSULTING �J PLANNING NGINEERING, INC DESIGN 204 NORTH 11th AVENUE,BOZEMAN,MT 59715 204 N.11"Ave. • BOZEMAN,MT 59715 406-581-3319 www.g-a-i.net Storm Water Management Design Report Cattail Townhomes Corner of Cattail Street and Black Bird Dr. Bozeman, Montana October 2014 Prepared By: Genesis Engineering, Inc. GEI Project#: 1097.001.040 Prepared For: Taylor Properties Bozeman, Montana 204 N. 1 P Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.q-e-i.net Page 1 of 8 �YN ENGINEERING,INC Storm Water Management Design Report Table of Contents I. Project Background.............................................................................................................. 4 1. Introduction............................................................................................................................... 4 2. Soil and Groundwater.............................................................................................................. 4 3. Land Use..................................................................................................................................... 4 II. Existing Conditions.................................................................................................................. 4 1. Drainage Basins and Pre-Development Peak Flows............................................................ 4 III. Proposed Drainage Plan and Post-Development Peak Flows........................................ 5 1. Major Drainage System........................................................................................................... 6 2. Minor Drainage System........................................................................................................... 6 3. Maintenance............................................................................................................................. 7 IV. Conclusion................................................................................................................................ 7 List of Tables Table 1. Estimated Pre-Development Peak Flows................................................................................... 5 Table 2. Estimated Capacity of Existing Drainage Facilities................................................................... 5 Table 3. Estimated Post-Development Peak Flows................................................................................. 5 Table4. Required Pond Volumes.............................................................................................................. 6 Table 5. Proposed Drainage Facility Capacity.......................................................................................... 6 Appendix A—Calculations Grading and Drainage Exhibits Pre/Post Development Runoff Computations Storm Pond Computations Street&Alley Gutter Flow Modeling List of References City of Bozeman Design Standards and Specifications Policy, March 2004,and all addenda. 204 N. 11t'Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.g-e-i.net ' Page 2 of 8 I 'rrJ MMFF NGINEERING,INC _� 14r a.,K..ue°Jo;rm.Sv+.4r1°Jt°.nrw.0 I. Project Background Introduction The Cattail Townhomes Project consists of 50 proposed townhome units on two existing lots(Lots 3&4) within the existing Cattail Creek Subdivision. These existing lots are shaded in green in Figure 1 below and consist of approximately 5.21 acres,more specifically located at the corner of Cattail Street and Blackbird Drive in Bozeman,Gallatin County, Montana. This report outlines the storm water analysis conducted for the site and describes the storm water drainage and management facilities necessary for the Cattail Townhomes by state and local regulations. We also explore the capacity of the existing stormwater facilities already provided for and how runoff from the proposed project fits into this existing infrastructure. The storm water plan follows the design standards set forth by the City of Bozeman in Design Standards and Specifications Policy,March 2004 and three subsequent addenda. Soil and Groundwater The NRCS Soil Survey identifies the major soil types on the site as Enbar and Meadow Creek Loams(509B& 510B). These soils belong to hydrologic soil group B as they are comprised primarily of loams and silt loams with moderately high saturated hydraulic conductivity. Land Use The existing land use is high density multifamily with up to 87 units from the original Cattail Creek Subdivision Phases 2A and 2B in 2003. However,the currently proposed use is for only 50 townhome units. _ u J Ir�wV'• PUT OF CATTAIL CREEK SUBONISION PHASES 2A&YB m _ d e I��= w• t ,��-�I f•.y,�,_,'¢+s f i�vs•� .-- I i mom. - . .. it t•�. — " c F ,� I/�, It—'�Y•Ia'� � ,i`'�rib - I . j S j�._ -- Fg q .��R_ s7' ��1::�. •�•� r � 1 S '�"� ��1� wwmu muu u.ffs _ W UJ 1 UTD& f11 H Ati I/Y.AI i ll(1SK6S A('. ri�l 204 N. 11'h Ave., Bozeman,MT 59715 Cell:(406)581-3319 www,q-e-i.nete-i.net ' Page 3 of 8 NGINEERING,INC Figure 1—Lots 3 and 4 and existing storm pond within the existing Cattail Creek Plat. II. Existing Conditions The Cattail Townhome Project lies south of Cattail Street + / with Blackbird Drive on the east boundary.The existing land slopes generally to the northeast at a grade of j d rr approximately 1.6%. The high point of the property is I located on the south west corner of the property. These '" 5 natural topographic features convey the pre-development runoff overland into the Cattail Steet and Balckbird Drive ' curb and gutter systems. The runoff then flows to the east f along Cattail Street where it is intercepted by two sets of r double"H"storm drain inlets and fed into the existing 8,900 }. N CFT detention pond just north of Cattail Street. This e 3, description of the stormwater path is consistent with the `r `-- storm water masterplan as defined during the Cattail CreekSubarea Subdivision process and as-built plan sheets can be found int�`�•- the appendix. A post development plan for these two lots was already accounted for in the original Plat submittal and design report complete by TD&H in 2002. E Genesis will verify if that the existing stormwater facilities , provide the stormwater management required for the most recent proposed development of the subject lots. V '� Figure 2— e $ Offsite basin A&Regional basin C b' �'7 E'S P"Olk" —t , 1 �. •..w � - ..'� All41 - a ]NIB Figure.1 Y. t Gl,' a _i� ..tt�y"c!'-��S �11• .sa.-._.. Figure 3—Project specific basins B-1 through B-4 and Regional Pond in NE corner. 204 N. 11`"Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.q-e-i.net Page 4 of 8 ENGINEERING INC Drainage Basins and Pre-development Peak Flows As part of our analysis,Genesis identified the existing offsite drainage basin and the onsite drainage basin onsite as shown on drawings GD1 in Appendix A. The 28 acre off-site basin stretches from the south boundary of the subject lots to the south,approximately 2300 feet ending at Baxter Lane. Estimates of runoff and their respective calculations for the existing and subareas were completed using the Modified Rational Method. Our large basin model uses a pre- development runoff coefficient of 0.55 which represents developed ground cover resulting in more conservative calculations of peak flow bypassing around the subject lots. We will also use a pre-development C=0.20 for our onsite drainage basins when calculating pre-development flow rates and detention pond volumes. Genesis looked at many storm events such as the 10-year,25-year and 100-yr in the analysis of the existing storm water conveyance facilities within the site. A summary of estimated pre-development peak runoff rates as well as existing drainage facility capacities can be found in Tables 1 and 2. Detailed calculations are available in Appendix A. Table 1. Estimated Pre-Development Peak Flows Sub Area Description Area Tc Q10 Q25 Q100 (acres) (min) (cfs) (cfs) (cfs) A Offsite Basin 28 70 3.6 4.7 5.7 B-1 Project Specific Basin 1.0 10 0.4 0.5 0.7 B-2 Project Specific Basin 3.1 10 1.3 1.5 2.1 B-3 Project Specific Basin 1.9 10 0.8 0.9 1.2 B-4 Project Specific Basin 0.4 10 0.2 0.2 0.3 c Regional Pond Basin 12.17 20 2.8 3.3 4.4 III. Proposed Drainage Plan and Estimated Post-Development Peak Flows The proposed drainage plan shall utilize the existing drainage systems that are currently in place. Genesis'drainage plan consists of two drainage systems. First,the major drainage system or backbone usually consists of natural streams,site grading,and street conveyance. These facilities are designed to have a much higher conveyance capacity and shall convey the excess runoff from the 100-year storm without inundating any building structures. Secondly,the minor drainage system(s)fit within the major drainage system and are designed to accommodate moderate and relatively frequent storm events without inconveniencing the public. The minor drainage system is comprised of the curb and gutters,inlets,piping,and shallow swales designed to convey runoff from the 25-year event,and retention or detention ponds designed for the 10-year storm event. Table 2 presents a summary of expected post-development peak flow rates passing through the proposed project. Table 2. Estimated Post-Development Peak Flows Sub Area Description Area Tc Q10 Q25 Q300 (acres) (min) (cfs) (cfs) (cfs) A Offsite Basin 28 60 9.9 11.7 15.6 B-1 Project Specific Basin 1.0 10 1.3 1.5 2.0 B-2 Project Specific Basin 3.1 10 4.0 4.6 6.3 B-3 Project Specific Basin 1.9 10 2.4 2.8 3.8 B-4 Project Specific Basin 0.4 10 0.6 0.6 0.9 c Regional Pond Basin 12.17 25 9.8 11.7 15.7 9 204 N. 11"Ave., Bozeman,MT 59715 Cell:(406)581-3319 www.q-e-i.net i*� Page 5 of 8 NGINEERING,INC Major Drainage System The project's major drainage system is comprised of a natural Swale on the south boundary of Lots 3 and 4,the two public streets and alleys,and the existing stream on the east boundary of the park area. Additional grading onsite shall be completed as necessary so that runoff resulting from storm events between the 25-year and 100-year will be conveyed down the Swale,streets,and alleys without inundating any structures or causing significant erosion. Table 3 has the results of Manning Equation flow calculations for open channel flow in swales and streets. Table 3. Drainage Structure Capacities Structure Type of Contributing Depth Slope Q25post Q100post QCap Passes Flow Subareas (ft) W (cfs) (cfs) (cfs) Design Storm South Swale Channel A 1.0 0.5 11.7 15.6 18 y Street A Street B-3 0.5 0.6 2.8 3.8 28 y Alley A&B Street B-2 0.3 1.0 6.3 6.3 10 y Cattail Street A+C 0.5 1.2 13.4 18 66 y Existing HH Inlets Inlets A+C 0.5 1.2 13.4 18 15 y All existing and proposed drainage structures are adequately sized to convey the large event post-development runoff that is generated by the Cattail Townhome Subdivision and contributing adjacent areas. Regional Pond Minor Drainage System (Subarea C) \ The proposed minor drainage system includes inverted alleys and city streets with curb and gutter to direct runoff into the existing detention pond. The existing detention pond is located at the north side of Cattail Drive and will attenuate I runoff generated by the existing and new site development (Subarea C).The design storm event is the 10-year event with discharge from the detention pond limited to the 10-year pre- P �, 1:. ' development peak flow rate as designed by TD&H. The City of Bozeman Design Standards and Specifications Policy requires that detention pond volume be adequate to accommodate the oa difference in peak runoff between the pre-development and �\4e post-development design storm of 10 years,while retention ponds must contain the entire 10-year 2-hour design storm volume. All pond side slopes have been sloped to finished grade at 4H:1V. \ ♦ 1 f h� Figures 4&5—Existing Pond "C"off of ° > Cattail Drive from TD&H as-builts. 1-3319 www.q-a-i.net Page 6 of 8 CGIVE GINEERING,INC The existing detention pond can be seen in Figures 4&5 above. It has an outlet structure comprised of an arch culvert sized and sloped to only convey only the 10-year pre-development flow rate from the design basin. Larger storm events will overtop the weir and safely flow down into the existing drainage way. Genesis used the modified rational method with a basin size of 12.17 acres,a time of concentration of 20 minutes,and a weighted runoff coefficient of C= 0.61. Since the proposed Townhome lots are the last contributing area to develop,we believe the estimate of the weighted runoff coefficient for the entire design basin is very representative of the actual ground cover. Table 4 shows the calculated pond volume compared to the measured pond volume. Table 4. Existing Pond Volumes Pond Type Location Contributing Q10Pre Q10Post Q25Post Volume Subarea (cfs) (cfs) (cfs) (cft) Existing"C" Detention Regional C 2.8 9.8 11.8 8,500 Existing"C" As meas.in the field C 2.8 9.8 11.8 9,200 Therefore the existing detention pond has the available capacity to receive runoff from the proposed Cattail Townhome project as described and still provide the required attenuation before releasing. Maintenance Regular maintenance of storm water facilities is necessary for proper functioning of the drainage system. In general, regular mowing of any grass swales and storage ponds and unclogging of inlets and outlet works will be required to prevent standing water,clogging,and the growth of weeds and wetland plants. More substantial maintenance,such as sediment removal with heavy equipment, may be required in coming decades to restore detention pond volume. All maintenance and repair should be prioritized and scheduled in advance. Inlets&pipes should be visually inspected yearly. Typical maintenance items include removing obstructions,cleaning and flushing pipes, mowing grass and weeds,tree maintenance to prevent limbs from falling and blocking swales,and establishing groundcover on bare ground. IV. Conclusion Our Storm water analysis and calculations indicate that the existing storm water facilities and management plan for the subdivision including the proposed project is adequate to safely convey the 10-year,25-year,and 100-year storm events and to satisfy state and local regulations for 10-year peak attenuation utilizing the existing detention pond north of Cattail Drive. H:\1097\001\DOCS\Design\Storm\StormwaterDR.doc 204 N. 11`h Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.o-e-i.net R Page 7 of 8 �a � �h1G�INEEFtI�, NG Appendix A Calculations 204 N. 11"Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.q-e-i.net Page 8 of 8 OIL 45 -- , Mort mm. �Y} 1 1 Io40ESr \� '\• // 11 10 9 B 7 1 1 \ i51d >mmm 8A06C`a`Be 12M S \s INN 3 IBI cmc s -axo NBC °a1m s ' ? 19 LOT 5 t SGZ'19�L�_ 61lF-- 17 a � \ 14 SEE STORM POND DETAIL FOR OFFSITE FLOW/ \ eon SF �I � % EXISTING REGIONAL STORM -- ? 62 a 3 4 .. �' ! / POND(8,900 CF) 63 1 I10W SF waD Sf 1.IF '.\ _ PHA 3E 2B _-_ w G SWtrW'E .2 ---- ! X 63; $1.° PHA 2A - ' 54_ i� ice' \ '' PARR E -`. r" ir.:%://� - % \� \\ .\,•�•„ \\ p wcwv ��i � r _ \ \ tuortvsIF L o \ \ PARK E CATTAIL CREEK SUB L "--------1 — Altt A g 4 I I R ass eo,aws tV IF Tf1FDlwn iWNR0111t0 FMtTglr(ssz WE N) f„ r f -- — -- — 15 ` 2e,�' , ` t t ' PARR P 3a5e IT A o aK 1 M T 1724.60' U HIC''SOLtR 59 i /, -! I YK.MFED u n II I ItdNtiO D.AAFEDT,trnR 140 p qo 1pD PROJECT BOUNDARY o) \ \ STORM POND DETAIL - \ 11'X17'.1"=200ft 9 2% P \ - ,5 \\,,—� \ 601 I I I \ a\\`- '/ '- 1 v \ � -•aB zh I � `\*I Sa 41 .� �� 44 .\ 1 ,1 }i � \\ � 1 � \ r III 1 A _ I 5=1.0% 22 eSc l \90 I ` , --28 i17 7 2S\ 1 24 J 23i 9 A/ l --- _r✓ 1 r _ ' I 1 --' �� 63 J 4o GRAPFffQ SCAB 40 ��'' ---—---— (>Nmr) ' >.man- 4o M1 /' 6=.PI�,NW:,,` SEC T15, 11"X17":1"=BO ft PROJECT NUMBER REVISIONS "-'-••••t DRAWN BYt JRM CATTAIL PROPERTIES 1097.001 VERIFY SCALE DATE BY / THESE PRINTS MAY BE NO. DESCRIPTION / CHICD.BY;CMW PUD PRELIMINARY PLAN SUBMITTAL SHEET NUMBER REDUCED.LINE BELOW j EnpMMiaQ APPR.BY:CMW BOZEMAN MT MEASURES ONEWING. N sIs 204 N•11D,Ave. ORIGINAL NEINCH. °on' Bozeman,MT 59715 DATE:ta2D14 DRAWING NUMBER F_J io- Phase:(408)5813319 NGINEERING, INC Fleming CIA.REVIEW GRADING AND DRAINAGE BY: -3 MODIFY SCALP ACCORDINGLY H:NOB7W011ACADISHEETSIC•3dw0 Plotled by Jeremy may on Oc1131I2014 '"'`'�?fugt'nniaaaNnvStandardo CaTPItlaltnt CgPVRIQRaDENE56ENWNEEAIND,INC.]011 DATE: p14T'4 W T^r rn lr ltrf v f - t. W N 7 C.1' 1 , + , v ass a;r Ai1 ,t SECTION �. 7 r r ' 00 t ;asn i I — , 1 a r -il r,r f o PLO" Q o 4611 2f3 ,t V 61i 4 ` 1 f � - 1 I f , n r , eNA __ u)fr oil r oww � r ) , ti ® . m N � POND"B" I_ i u w w 29 t of l ; CID , , t t 0. m , 1 i t m m 1 � t } t JJ 11 - ,t r b Hr r I 4 air,s,� I DRAWN mWC f 1 -A; 1—._. = .. - 1 DESIGNED BY: DJC n 1 1 C ' ODAktT1'CF�CK: DJC 1. POND"C" .,Kkil F U h .! „� `v y i OATS: 98N/ 1 I I �1 _. { 408 Na 88847 .l ..ryl, .,•� I FIELDDOOK 8" " 1 Ii i- II , ; , } tt , r r I y -f t ♦/ r � I 1 t �.. 71 � to 1 1 1 I h l 5 S 4l l� 11 t Q' aI r � to t vti r � `t t ,,. � � z ui R, 1 it t e� z f „ 1,� r A 17 � i �,/Z z r t r wo . „ _. �m cry "fItLl U w OD N '7 C q y 1 I tt f 1 All t � I _ _.- r 1, V 1 1 t SECTION A r (1 EC t ( J rr= t 1I 1 ids -1 nIP ry 1I .111. 1.i1 i t il,if„fa AtN GAD NO. B98U7-79.DWO SHEET 2ck OF �� Typical Values for the Rational C Coefficient (McCuen, Richard H., Hydrologic Analysis and Design, 3rd Ed.,Pearson Prentice Hall, 2005. TABLE 7.9 Runoff Coefficients for the Rational Formula versus Hydrologic Sail Group 1A,B,C,al ano Slope Range ._........ land1se €-»:a 2-6:o T 6°ta ()-2`;,, 24,% (+. 02426n G,o (1-»':0 2-61- 6;, .__.. _.... ....._.___ _�_ ,._......... _._............ .......... ..._..__........ ........._. ............. Cultivated larid 0.08' 0-13 66 0.11 OAS 021 0.1.4 0.i9 026 0,18 1.23 0.31 0,o" 0.15 tt 22 Oxi 0.21 0,28 0.70 0.25 €1,34 0,24 0.29 0,11 F'asuare 0,12 0.20 0.30 0.15 US 0.37 0,24 0,34 0.44 0.30 6.40 0.5ft 0.15 0,25 0.37 0.23 (134 0.45 030 0.42 0152 ().3'7 0.50 0.6' Meadow 0.10 0.16 0.25 (M4 (3,22 0_IG 0,20 €?28 0.30 0.24 030 0,401 0.14 0,22 0,30 d1.20 0.28 037 0.26 0.35 OA4 0.30 0.40 0..5o 1°wtq 9.05 0.08 0.11 0118 0,11 0.14 0.10 0.13 G.16 0.12 OA6 0.20 t0S 0.11 0,14 0,10 0.14 43.18 O.C: 0:16 0.20 0l15, O,Wt 0.25 ROSi Ilk lral lot 0.25 0.28 (7 31 0-7 0.30 035 030 033 0.3S t13:i 0.36 0.42 size 118 acre 0-3 3 0.37 QAO 0.35 0:34 0,114 0.38 0,42 0.49 0.41 0.45 0.S4 Rcsidcatinl lot 0.22 0,26 0,29 0.24 0.29 033 0.27 0.31 036 0.30, 034 0.40 size 114 atele 0.30 0.34 037 0.33 0.37 0.42 ).3(i 0.40 0,47 0.36 7.42 t1.52 Residential last 0.19 0,23 016 0.22 0.26 0,30 0.25 0.29 0.,4 0:28 0.32 0.39 size 1,3 acre 0.23 0,312 i>.3s 0.30 0.35 0,39 0.33 031S 0.4j 0.3(, 0,4(: 0.50 Resideatcrall &at (),lh 0,20 0;14 O.t9 0.23 02$ 0.22 ().27 0,112 0.26 030. t1.3 size 112 acre 0.?5 0,29 0.32 UR 032 0.36 031 0.35 0.42 034 t1.38, OAS Re-,idcnual lot 0.1-5 i1.19 0,22 0.17 0:21 0.26 0,20 0:25 (0i U4 0.29 0.35 size 1 acre 0,72 0,26 0,29 0.24 0.28 0,34 0.28 032 0.41T 0.34 0.35 0,46 Indusidat 0.67 OAS 0,68 0_6,8 0,08 0.09 0.6,8 0.69 0.69 1169 0.69 0.70 0.55 0.S5 0,86 0.83 0,,R6 OS6 0.86 0.8ti O.S:r O.,S'i> 0.86 11M Cornrtsercial 031 0,71 0.72 0,71 0,72 0.72 0.7w 0.72 0,72 0.7? 0.72 (172 OM v.&i 0189 0. 9 0,89 0.1119 039 €i 9 (.9 U 0:34 0,89 OM) Strocu 0,70 0.71 0.72 0.71 R72 0.?4 €',2 0.73 0.76 OJJ 0.75 0.7,8 {V,7Q 037 0.79 (M 0.S2 0.84 0,81 0.>s (1.89 il.a3 f).91 0.9 0,)enspacr. 0.05 0,10 0.14 0.08 ().13 0.19 0.12 0-17 0.24 0,16 10.Z 0.28 0.11 0.16 6.20 0.14 0.19 0.26 OAS 0.23 (1.32 0.22 0.7.7 0.39 Parking 0.55 fA6 0.37 0.85 O.S6 0,111, 0,115 0.S6 €1.137 0.85 0.86 o"A7 10.95 0.96 0.e- 0.95 0.95 0.57 095 0,96 0.97 W)5 OMI, 0.97 7TEunoff cceffic`nrtit for a ton"-recucrcace intwYA1s lesF that)"5 yea ra 'Runoff cor,[Facwws for storm-recurrcnce intervals of 2>years or longer 1200 714C. I I A I I/ I Iy I A I I I i iv J L/I J I I/ I A Wo L i 8L II/ v I/ A 80 0 loo z Z 1 1 A Y v i uj Joao so uj L) LLJ y v y v A y v 1 A A Al i/ 1A I I I (jr I i I LU 400 I i /i/ l / V 1// / y i Y /,/ VVI IK A A V / IA I <z v AIYI V V iX I 14-1 , , uj LL ui A/ v AIX A I > 200 40 0 VA NIMI 0 20 FIGURE?-1 TIME CF CONCEN'IRA ION nalFormula", 30 GE111: 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea A-10YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60) ° (CITY OF BOZEMAN) BASIN AREA PRE= 28 AC STORM EVENT STORM i COEFF INTENSITY IYR _ A B IN HR PRE-DEV Tc= 60.0 MIN 2 0.36 0.6 0.36 5 0.52 0.64 0.52 PRE-DEV C= 0.20 10 0.64 0.66 0.64 25 0.78 0.64 0.78 STORM A= 0.64 50 0.92 0.66 0.92 B= 0.66 100 1.01 0.67 1.01 STORM INTENSITY= 0.64 IN/HR PRE-DEV Qp= 3.58 CFS POST-DEVELOPMENT BASIN AREA POST= 28.00 AC POST-DEV Tc= 60.0 MIN POST-DEV C= 0.55 STORM INTENSITY= 0.64 IN/HR POST-DEV Qp= 9.86 CFS H:\1097\001\DOGS\Design\Storm\Sub A-10YR.xls 1 OF 1 PRINTED: 11/5/2014 GEI#: 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea A-25YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 25 YR(DURATION=1) i=A*(Tc/60)_e (CITY OF BOZEMAN) BASIN AREA PRE= 28 AC STORM EVENT STORM i COEFF INTENSITY YR A B IN/HR PRE-DEV Tc= 60.0 MIN --Z____..__._ .._.....___ 0.36 0.6 0.36 5 0.52 0.64 0.52 PRE-DEV C= 0.20 10 0.64 0.66 0.64 25 0.78 0.64 0.78 STORM A= 0.78 50 0.92 0.66 0.92 B= 0.64 1 100 1.01 0.67 1.01 STORM INTENSITY= 0.78 IN/HR PRE-DEV Qp= 4.37 CFS POST-DEVELOPMENT BASIN AREA POST= 28.00 AC POST-DEV Tc= 60.0 MIN POST-DEV C= 0.55 STORM INTENSITY= 0.78 IN/HR POST-DEV Qp= 12.01 CFS HAl 097\001\DOCS\Design\Storm\Sub A-25YR.xls 1 OF 1 PRINTED 11/5/2014 GEW 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea A -100YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 100 YR(DURATION=1) i=A*(Tc/60).e (CITY OF BOZEMAN) BASIN AREA PRE= 28 AC STORM EVENT STORM i COEFF INTENSITY YR _ A_ B IN/HR PRE-DEV Tc= 60.0 MIN 2 0.36� 0.6 0.36 S 0.52 0.64 0.52 PRE-DEV C= 0.20 10 0.64 0.66 0.64 25 0.78 0.64 0.78 STORM A= 1.01 50 0.92 0.66 0.92 B= 0.67 100 1.01 0.67 1.01 STORM INTENSITY= 1.01 IN/HR PRE-DEV Qp= 5.66 CFS POST-DEVELOPMENT BASIN AREA POST= 28.00 AC POST-DEV Tc= 60.0 MIN POST-DEV C= 0.55 STORM INTENSITY= 1.01 IN/IiR POST-DEV Qp= 15.55 CFS H:\1097\001\DOGS\Design\Storm\Sub A-100YR.xls 1 OF'I PRINTED: 11/5/2014 GEI#: 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea B-1 -10YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 10 YR(DURATION=1) i=A"(Tc/60)'6 (CITY OF BOZEMAN) BASIN AREA PRE= 0.99 AC STORM EVENT STORM i COEFF INTENSITY YR_ _ A B INMR PRE-DEV Tc= 10.0 MIN 2 0.36 0.6 1..0.5 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 0.64 50 0.92 0.66 3.00 B= 0.66 100 1.01 0.67 3.35 STORM INTENSITY= 2.09 IN/HR PRE-DEV Qp= 0.41 CFS POST-DEVELOPMENT BASIN AREA POST= 0.99 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 2.09 IN/FIR POST-DEV Qp= 1.26 CFS H:\1097\001\DOCS\Design\Storm\Sub B-1-10YR.xls 1 OF 1 PRINTED: 11/5/2014 GEI#: 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea B-1 -25YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 25 YR(DURATION=1) i=A"(Tc/60).g (CITY OF BOZEMAN) BASIN AREA PRE= 0.99 AC STORM EVENT STORM i COEFF INTENSITY YR A B IN/HR PRE-DEVTc= 10.0 MIN 2 0.36 0.6 1.05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 0.78 50 0.92 0.66 3.00 B= 0.64 100 1.01 0.67 3.35 STORM INTENSITY= 2.46 IN/HR PRE-DEV Qp= 0.49 CFS POST-DEVELOPMENT BASIN AREA POST= 0.99 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 2.46 IN/HR POST-DEV Qp= 1.48 CFS H:\1097\001\DOGS\Design\Storm\Sub B-1-25YR.xls 1 OF 1 PRINTED: 11/5/2014 GEI##: 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea B-1 -100YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 100 YR(DURATION=1) i=A*(Tc/60) (CITY OF BOZEMAN) BASIN AREA PRE= 0.99 AC STORM EVENT STORM i COEFF INTENSITY YR) A B IN/HR PRE-DEV Tc= 10.0 MIN 2 0.36 0.6 1..05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 1.01 50 0.92 0.66 3.00 B= 0.67 1 100 1.01 0.67 3.35 STORM INTENSITY= 3.35 IN/HR PRE-DEV Qp= 0.66 CFS POST-DEVELOPMENT BASIN AREA POST= 0.99 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 3.35 IN/HR POST-DEV Qp= 2.03 CFS H:\1097\001\DOGS\Design\Storm\Sub B-1-100YR.xis 1 OF 1 PRINTED: 11/5/2014 GEI#: 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea B-2 -10YR MODIFIED RATIONAL METHOD Qp=CIA PRE-DEVELOPMENT RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60) (CITY OF BOZEMAN) BASIN AREA PRE= 3.1 AC STORM EVENT STORM i COEFF INTENSITY (YR) A B IN/HR PRE-DEVTc= 10.0 MIN 2 0.36 0.6 1.05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 0.64 50 0.92 0.66 3.00 B= 0.66 100 1.01 0.67 3.35 STORM INTENSITY= 2.09 IN/HR PRE-DEV Qp= 1.29 CFS POST-DEVELOPMENT BASIN AREA POST= 3.10 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 2.09 IN/IiR POST-DEV Qp= 3.95 CFS H:\1097\001\DOGS\Design\Storm\Sub B-2-10YR.xls 1 OF 1 PRINTED: 11/.5/2014 GEIM 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea B-2 -25YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 25 YR(DURATION=1) i=A*(Tc/60)'° (CITY OF BOZEMAN) BASIN AREA PRE= 3.1 AC STORM EVENT STORM i COEFF INTENSITY (YR) A B (IN/HR PRE-DEVTc= 1.0.0 ' MIN 2 0.36 0.6 1.05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 0.78 50 0.92 0.66 3.00 B= 0.64 100 1.01 0.67 3.35 STORM INTENSITY= 2.46 IN/HR PRE-DEV Qp= 1.52 CFS POST-DEVELOPMENT BASIN AREA POST= 3.10 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 2.46 IN/HR POST-DEV Qp= 4.64 CFS H:\1097\001\DOCS\Design\Storm\Sub B-2-25YR.xis 1 OF 1 PRINTED: 11/5/2014 GEW 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea B-2 -100YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 100 YR(DURATION=1) i=A*(Tc/60).e (CITY OF BOZEMAN) BASIN AREA PRE= 3.1 AC STORM EVENT STORM i COEFF INTENSITY (YR _ A B IN/HR PRE-DEV Tc= 10.0 MIN 2 0.36 0.6 1.05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 1.01 50 0.92 0.66 3.00 B= 0.67 100 1.01 0.67 3.35 STORM INTENSITY= 3.35 IN/HR PRE-DEV Qp= 2.08 CFS POST-DEVELOPMENT BASIN AREA POST= 3.10 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 3.35 IN/HR POST-DEV Qp= 6.34 CFS H:\1097\001\DOCS\Design\Storm\Sub B-2-100YR.xls 1 OF 1 PRINTED: 1 1/512 0 1 4 GEI#: 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea R-3 -10YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 10 YR(DURATION=1) i=A`(Tc/60)-e (CITY OF BOZEMAN) BASIN AREA PRE= 1.85 AC STORM EVENT STORM i COEFF INTENSITY (YR) A B IN/HR PRE-DF..V Tc= 10.0 MIN 2 0.36 0.6 1.05 S 0.S2 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 0.64 SO 0.92 0.66 3.00 B= 0.66 100 1.01 0.67 3.35 STORM INTENSITY= 2.09 IN/HR PRE-DEV Qp= 0.77 CFS POST-DEVELOPMENT BASIN AREA POST= 1.85 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 2.09 IN/HR POST•DEV Qp= 2.36 CFS H:\1097\001\DOGS\Design\Stone\Sub B-3-10YR.xls 1 OF 1 PRINTED: 11/5/2014 GEM 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea B-3 -2SYR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 25 YR(DURATION=1) i=A*(Tc/60)_e (CITY OF BOZEMAN) BASIN AREA PRE= 1.85 AC STORM EVENT STORM i COEFF INTENSITY (YR) A B IN/HR PRE-DEV Tc= 10.0 MIN 2 0.36 0.6 1.05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 0.78 50 0.92 0.66 3.00 B= 0.64 100 1.01 0.67 3.35 STORM INTENSITY= 2.46 IN/HR PRE-DEV Qp= 0.91 CFS POST-DEVELOPMENT BASIN AREA POST= 1.85 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTEN5ITY= 2.46 IN/HR POST-DEV Qp= 2.77 CFS H:\1097\001\DOCS\Design\Storm\Sub B-3-25YR.xls 1 OF 1 PRINTED: 11/5/2014 GEI#: 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea B-3 -100YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 100 YR(DURATION=1) i=A*(Tc/60)"6 (CITY OF BOZEMAN) BASIN AREA PRE= 1.85 AC STORM EVENT STORM i COEFF INTENSITY YR A B IN/HR PRE-DEV Tc= 10.0 MIN 2 0.36 0.6 1..05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 1.01 50 0.92 0.66 3.00 B= 0.67 100 1.01 0.67 3.35 STORM INTENSITY= 3.35 IN/HR PRE-DEV Qp= 1.24 CFS POST-DEVELOPMENT BASIN AREA POST= 1.85 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 3.35 IN/HR POST-DEV Qp= 3.79 CFS H:\1097\001\DOCS\Design\Storm\Sub B-3-100YR.xls 1 OF 1 PRINTED: 11/5/2014 GEI#: 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea B-4 -10YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 10 YR(DURATION=1) i=A"(Tc/60).e (CITY OF BOZENIAN) BASIN AREA PRE= 0.43 AC STORM EVENT STORM i COEFF INTENSITY iYR A B IN/HR PRE-DEV Tc= 10.0 MIN 2 0.36 0.6 1..05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 0.64 50 0.92 0.66 3.00 B= 0.66 100 1.01 0.67 3.35 STORM INTENSITY= 2.09 IN/HR PRE-DEV Qp= 0.18 CFS POST-DEVELOPMENT BASIN AREA POST= 0.43 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 2.09 IN/HR POST-DEV Qp= 0.55 CFS HA1097\001\DOCS\Design\Storm\Sub B-4-10YR.xls 1 OF 1 PRINTED: 11/5/2014 GEI#: 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea R-4 -25YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 2.5 YR(DURATION=1) i=A"(Tc/60)_e (CITY OF BOZEMAN) BASIN AREA PRE= 0.43 AC STORM EVENT STORM i COEFF INTENSITY YR) _A _ B IN/HR PRE-DEVTc= 10.0 MIN 2 �0.36 0.6 1.05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 0.78 50 0.92 0.66 3.00 B= 0.64 100 1.01 0.67 3.35 STORM INTENSITY= 2.46 IN/HR PRE-DEV Qp= 0.21 CFS POST-DEVELOPMENT BASIN AREA POST= 0.43 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 2.46 IN/I1R POST-DEV Qp= 0.64 CFS H:\1097\001\DOCS\Design\Storm\Sub B-4-25YR.xls 1 OF 1 PRINTED: 11/5/2014 GEW: 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea B-4-100YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 100 YR(DURATION=1) i=A"(Tc/60) ° (CITY OF BOZEMAN) BASIN AREA PRE= 0.43 AC STORM EVENT STORM i COEFF INTENSITY YR _A B IN/HR PRE-DEVTc= 10.0 MIN 2 0.36 0.6 1.05 5 0.52 0.64 1.64 PRE-DEV C= 0.20 10 0.64 0.66 2.09 25 0.78 0.64 2.46 STORM A= 1.01 50 0.92 0.66 3.00 B= 0.67 100 1.01 0.67 3.35 STORM INTENSITY= 3.35 IN/HR PRE-DEV Qp= 0.29 CFS POST-DEVELOPMENT BASIN AREA POST= 0.43 AC POST-DEV Tc= 10.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 3.35 IN/IAR POST-DEV Qp= 0.88 CFS H:\1097\001\DOCS\Design\Storm\Sub B-4-100YR.xis 1 OF 1 PRINTED: 11/5/2014 GEIN: 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea C-10YR MODIFIED RATIONAL METHOD Qp=CIA PRE-DEVELOPMENT RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60) ° (CITY OF BOZEMAN) BASIN AREA PRE= 12.17 AC STORM EVENT STORM i COEFF INTENSITY YR A B IN/HR PRE-DEVTc= 25.0 MIN 2 0.36 0.6 0.61 5 0.52 0.64 0.91 PRE-DEV C= 0.20 10 0.64 0.66 1.14 25 0.78 0.64 1.37 STORM A= 0.64 50 0.92 0.66 1.64 B= 0.66 100 1.01 0.67 1.82 STORM INTENSITY= 1.14 IN/HR PRE-DEV Qp= 2.78 CPS POST-DEVELOPMENT BASIN AREA POST= 12.17 AC POST-DEV Tc= 20.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 1.32 IN/HR POST-DEV Qp= 9.81 CPS H:\1097\001\DOCS\Design\Storm\Sub C-10YR.xls 1 OF 1 PRINTED: 1 1/512 0 1 4 GEM 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea C-25YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 25 YR(DURATION=1) i=A*(Tc/60).6 (CITY OF BOZEMAN) BASIN AREA PRE= 12.17 AC STORM EVENT STORM i COEFF INTENSITY YR A B N/HR PRE-DEV Tc= 25.0 MIN 2 0.36 0.6 0.61 5 0.52 0.64 0.91 PRE-DEV C= 0.20 10 0.64 0.66 1.14 25 0.79 0.64 1.37 STORM A= 0.78 50 0.92 0.66 1.64 B= 0.64 100 1.01 0.67 1.82 STORM INTENSITY= 1.37 IN/HR PRE-DEV Qp= 3.32 CFS POST-DEVELOPMENT BASIN AREA POST= 12.17 AC POST-DEV Tc= 20.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 1.58 IN/I-IR POST-DEV Qp= 11.70 CFS H:\1097\001\DOGS\Design\Storm\Sub C-25YR.xls 1 OF 1 PRINTED 11/5/2014 GEW 1097.001 DATE: 10/24/ 0014 ENGINEER: JRM Subarea C-100YR MODIFIED RATIONAL METHOD QP=CiA PRE-DEVELOPMENT RAINFALL FREQ= 100 YR(DURATION=1) i=A'(Tc/60).a (CITY OF BOZEMAN) BASIN AREA PRE= 12.17 AC STORM EVENT STORM i COEFF INTENSITY YR _ A B IN/HR PRE-DEV Tc= 25.0 MIN 2 0.36 0.6 0.61 5 0.52 0.64 0.91 PRE-DEV C= 0.20 10 0.64 0.66 1.14 25 0.78 0.64 1.37 STORM A= 1.01 50 0.92 0.66 1.64 B= 0.67 100 1.01 0.67 1.82 STORM INTENSITY= 1.82 IN/HR PRE-DEV Qp= 4.42 CFS POST-DEVELOPMENT BASIN AREA POST= 12.17 AC POST-DEV Tc= 20.0 MIN POST-DEV C= 0.61 STORM INTENSITY= 2.11 IN/HR POST-DEV Qp= 15.65 CFS H.\1 097\00 1\DOC S\Design\Storm\Sub C-100YR.xls 1 OF 1 PRINTED: 11/5/2014 GEIN: 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea A+C-10YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 10 YR(DURATION=1) i=A"(Tc/60).e (CITY OF BOZEMAN) BASIN AREA PRE= 30.17 AC STORM EVENT STORM i COEFF INTENSITY YR_ A B (IN/HR PRE-DEV Tc= 60.0 MIN 2 0.36 0.6 0.36 5 0.52 0.64 0.52 PRE-DEV C= 0.20 10 0.64 0.66 0.64 25 0.78 0.64 0.78 STORM A= 0.64 50 0.92 0.66 0.92 B= 0.66 100 1.01 0.67 1.01 STORM INTENSITY= 0.64 IN/HR PRE-DEV Qp= 3.86 CFS POST-DEVELOPMENT BASIN AREA POST= 30.17 AC POST-DEV Tc= 60.0 MIN POST-DEV C= 0.57 STORM INTENSITY= 0.64 IN/HR POST-DEV Qp= 11.01 CFS HAI097\001\ROCS\Design\Storm\SubA+C-10YR.xls 1 OF 1 PRINTED: 11(5(2014 GEIN: 1097.001 DATE: 10/24/2014 ENGINEER: JRM Subarea A+C -25YR MODIFIED RATIONAL METHOD QP=CIA PRE-DEVELOPMENT RAINFALL FREQ= 25 YR(DURATION=1) 1=A+(Tc/60) ° (CITY OF BOZEMAN) BASIN AREA PRE= 30.17 AC STORM EVENT STORM i COEFF INTENSITY (YR) A B IN/HR PRE-DEVTc= 60.0 MIN 2 0.36 0.6 0.36 5 0.52 0.64 0.52 PRE-DEV C= 0.20 10 0.64 0.66 0.64 25 0.78 0.64 0.78 STORM A= 0.78 50 0.92 0.66 0.92 B= 0.64 100 1.01 0.67 1.01 STORM INTENSITY= 0.78 IN/HR PRE-DEV Qp= 4.71 CFS POST-DEVELOPMENT BASIN AREA POST= 30.17 AC POST-DEV Tc= 60.0 MIN POST-DEV C= 0.57 STORM INTENSITY= 0.78 IN/HR POST-DEV Qp= 13.41 CFS HAl097\001\DOGS\Design\Storm\Sub A+C-25YR.xis 1 OF 1 PRINTED. 11/5/2014 GEIN: 1097.001 DATE: 10/24/2014 ENGINEER: 1RM Subarea A+C-100YR MODIFIED RATIONAL METHOD Qp=CiA PRE-DEVELOPMENT RAINFALL FREQ= 100 YR(DURATION=1) i=A*(Tc/60)'B (CITY OF BOZEMAN) BASIN AREA PRE= 30.17 AC STORM EVENT STORM i COEFF INTENSITY YR A IN/HR PRE-DEVTc= 60.0 MIN 2 0.36 0.6 0.36 5 0.52 0.64 0.52 PRE-DEV C= 0.20 10 0.64 0.66 0.64 25 0.78 0.64 0.78 STORM A= 1.01 50 0.92 0.66 0.92 B= 0.67 100 1.01 0.67 1.01 STORM INTENSITY= 1.01 IN/HR PRE•DEV Qp= 6.09 CFS POST-DEVELOPMENT BASIN AREA POST= 30.17 AC POST-DEV Tc= 60.0 MIN POST-DEV C= 0.57 STORM INTENSITY= 1.01 IN/IiR POST-DE.V Qp= 17,37 CFS H:\109'\001\DOCS\DesigMStorm\Sub A+C-100YR.xis 1 OF 1 PRINTED: 11/512014 GE14: 1097.001 DATE: 10/22/2014 ENGINEER: Jeremy May Subarea C - 10Yr Regional Detention Pond NESIS MODIFIED RATIONAL METHOD IIiNEFlC7y INC Qp=CiA Xir d .nAa:: tBr..zna .ti.z 5@9� -x PRE-DEVELOPMENT RAINFALL FREQ= 10 YR(DURATION=1) 1=A*(Tc/60)_a (CITY OF BOZEMAN) BASIN AREA PRE= 12.17 AC STORM EVENT STORM i COEFF INTENSITY YR _ A_ B _(IN HR PRE-DEVTc= 25.0 MIN 2 0.36 0.6 0.61 5 0.52 0.64 0.91 PRE-DEV C= 0.20 10 0.64 0.66 1.14 25 0.78 0.64 1.37 STORM A= 0.64 50 0.92 0.66 1.64 B= 0.66 100 1.01 0.67 1.82 STORM INTENSITY= 1.14 IN/HR PRE-DEV Qp= 2.78 CFS POST-DEVELOPMENT POND VOLUME: CONSTAELEASE (CF)' BASIN AREA PRE= 12.17 AC 644383 POST-DEV Tc= 20.0 MIN TRIANGLE RELEASE DETENTION (CF)' POST-DEV C= 0.61 1054040 STORM INTENSITY= 1.32 IN/HR AVERAGE VOLUME (CF) POST-DEV Qp= 9.81 CFS 8492.12 OUTLET STRUCTURE DESIGN RETENTION (CF) POND: Subarea C-10Yr Regional Detention Pond 2191436 REQUIRED VOL= 8492.12 CF (AVG.R/WCONST.&TRIANGLE RELEASE) DIAMETER= 6.00 IN LENGTH OF PIPE= 20.00 FT QPRE= 2.78 CFS HEAD WATER= 1.50 FT AREA= N/A SF N= 0.012 ORIFICE= N/A IN Ke= 0.50 ORIFICE FLOW= N/A CFS SLOPE OF PIPE= 0.005 FT/FT FLOW OUT= 0.98 CFS *`FLOW GOOD AVE SURF AREA= 4295.89 SF H:\1097\001\DOCS\Design\Storm\Sub C-Regional Storm Pond.xls 1 OF 2 PRINTED 11/5/2014 Subarea C- 10Yr Regional Detention Pond POND VOLUME CALC'S OUTLET STRUCUTRE CALLS Triangle Release Constant Release SLOPE OF ENERGY ORIFICE DURATION INTENSITY Qp POND VOLUME POND VOLUME PIPE FLOW OUT (MIN) (IN/HR) (CFS) (CF) (CF) (FT/FT) (CFS) (CFS) 19.00 1.37 10.15 8321.24 5984.46 0.000 0.936 0.741 20.00 1.32 9.81 8441.49 6052.81 0.001 0.945 21.00 1.28 9.50 8555.13 6114.02 0.002 0.954 22.00 1.24 9.21 8662.68 6168.63 0.003 0.963 23.00 1.21 8.95 8764.58 6217.14 0.004 0.972 24.00 1.17 8.70 8861.24 6259.96 0.005 0.981 25.00 1.14 8.47 8953.02 6297.49 0.006 0.990 26.00 1.11 8.25 9040.24 6330.07 0.007 0.999 27.00 1.08 3.05 9123.18 6358.00 0.008 1.008 28.00 1.06 7.96 9202.11 6381.56 0.009 1.016 29.00 1.03 7.68 9277.25 6401.00 0.010 1.025 30.00 1.01 7.51 9348.83 6416.55 0.011 1.033 31.00 0.99 7.35 9417.04 6428.43 0.012 1.042 32.00 0.97 7.19 9482.06 6436.82 0.013 1.050 33.00 0.95 7.05 9544.05 6441.90 0.014 1.058 34.00 0.93 6.91 9603.16 6443.83 0.015 1.067 35.00 0.91 6.78 9659.53 6442.77 0.016 1.075 36.00 0.90 6.66 9713.30 6438.84 0.017 1,083 37.00 0.88 6.54 9764.57 6432.19 0.018 1.091 38.00 0.87 6.42 9813.47 6422.92 0.019 1.099 39.00 0.85 6.31 9860,09 6411.16 0.020 1.107 40.00 0.84 6.21 9904.53 6396.99 0.021 1.115 41.00 0.82 6.11 9946.88 6380.53 0.022 1.123 42.00 0.81 6.01 9987.22 6361.86 0.023 1.130 43.00 0.80 S.92 10025.63 6341.07 0.024 1.138 44.00 0.79 5.83 10062.19 6318.23 0.025 1.146 45.00 0.77 5.74 10096.97 6293.42 0.026 1.153 46.00 0.76 5.66 10130.03 6266.72 0.027 1.161 47.00 0.75 5.58 10161.43 6238.19 0.028 1.168 48.00 0.74 5.51 10191.23 6207.88 0.029 1.176 49.00 0.73 5.43 10219.48 6175.87 0.030 1.183 50.00 0.72 5.36 10246.25 6142.21 0.031 1.191 51.00 0.71 5.29 10271.57 6106.95 0.032 1.198 52.00 0.70 5.22 10295.49 6070.15 0.033 1.205 53.00 0.69 5.16 10318.06 6031.84 0.034 1.213 54.00 0.69 5.09 10339.32 5992.08 0.035 1.220 55.00 0.68 5.03 10359.31 5950.91 0.036 1.227 56.00 0.67 4.97 10378.07 5908.37 0.037 1.234 57.00 0.66 4.91 10395.64 5864.51 0.038 1.241 58.00 0.65 4.86 10412.04 5819.35 0.039 1.248 59.00 0.65 4.80 10427,31 5772.94 0.040 1.255 HA1 097\001\DOC S\Design\S torm\Sub C-Regional Storm PonclAs 2 OF 2 PRINTED: 11/5/2014 Typha Court Asphalt&Concrete 55119 sf Roofs 28863 sf Total 83982 sf North of Cattail Asphalt&Concrete 5666 sf Roofs 5523 sf Total 11189 sf Cattail L= 837 Road 35991 Sidewalk 4185 Total 40176 sf Blackbird L= 610 Road 20130 Sidewalk 6100 Total 26230 sf Local ROW L= 340 Road 10540 Sidewalk 3400 Total 13940 sf Alley wide 1= 408 Road 12648 Sidewalk 4080 Total 17136 Alleys 19480 Townhomes 62601 sf Drives 22440 sf patio 5737.5 sf back patio 4896 sf Total 95674.5 sf Total Impervious 308557.5 sf 7.083506 Trails 1500 gravel 0.034435 Total Acreage 12.17 C value Impervious 7.0835055 0.9 Grass 5.0864945 0.2 Weighted: Park 3.6 0.2 Total Area 15.77 Weighted 0.61,44232 Alley Worksheet for Irregular Channel Project Description Project File h:11097i0011docstdesignlstormistreetfl.fm2 Worksheet 22'alley Flow Element Irregular Channel Method Manning's Formula Solve For Dischar e Input Data Channel Slope 0.010000 ft/ft Water Surface Elevation 0,33 ft Elevation range; 0.00 ft to 0.33 ft, Station(ft) Elevation(ft) Start Station End Station Roughness 0.00 0,33 0,00 22,00 0,016 11.00 0.00 22.00 0.33 Results Wtd. Mannings Coefficient 0.016 Discharge 10.14 cfs Flow Area 3.63 ft2 Wetted Perimeter 22.01 ft Top Width 22.00 ft Height 0.33 ft Critical Depth 0.35 ft Critical Slope 0.006539 ft/ft Velocity 2,79 ft/s Velocity Mead 0,12 ft Specific Energy 0.45 ft Froude Number 1.21 Flow is su ercritical. 11/05/14 FiowMaster v5.17 06:04:36 PM Haested Methods,Inc. 37 Brookside Road Waterbury.CT 06708 (203)755-1666 Page 1 of 1 32 Street Flaw - one side only Worksheet for Irregular Channel Project Description Project File h:l5109710011docstdesignlstorrntstreetfi,fm2 Worksheet 32' Street Flow Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.006000 ft/ft Water Surface Elevation 100.00 ft Elevation range: 99.50 ft to 100.00 ft. Station (ft) Elevation(ft) Start Station End Station Roughness 0,00 100,00 0,00 16.10 0,013 16,00 99.50 16,10 100.00 Results Wtd. Mannings Coefficient 0.013 Discharge 13.90 cfs Flow Area 4.03 ft2 Wetted Perimeter 16.52 ft Top Width 16.10 ft Height 0.50 ft Critical Depth 100.04 ft Critical Slope 0.003894 ft/ft Velocity 3.45 ft/$ Velocity Head 0.19 ft Specific Energy 100.19 ft Froude Number 1.22 Flow is su ercritical. 11/05114 FlowMaster v5.17 06,05:41 PM Haestad Methods,Inc, 37 Brookside Road Waterbury,CT 06708 (203)7 55-1666 Page 1 of 1 40' Street Flow - one side only Worksheet for Irregular Channel Project Description Project File h:110971001idocsldesignlstormtstreetfl.fm2 Worksheet 40'Street Flow Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.012000 ftlft Water Surface Elevation 100.00 ft Elevation range: 99,40 ft to 100.00 ft. Station(ft) Elevation (ft) Start Station End Station Roughness 0,00 100,00 0,00 20,10 0,013 20.00 99,40 20.10 100.00 Results Wtd. Mannings Coefficient 0.013 Discharge 33.27 cfs Flow Area 6.03 ft2 Wetted Perimeter 20.62 ft Top Width 20.10 ft Height 0.60 ft Critical Depth 100.14 ft Critical Slope 0,003410 ft/ft Velocity 5.52 ft/s Velocity Head 0,47 ft Specific Energy 100.47 ft Froude Number 1.78 Flow is su ercritical. 1 tf05/14 FIowMaster v5.17 D6'07:14 PM Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 South Swale Worksheet for Trapezoidal Channel Pra'ect Description Project File h:\1097\00INdocs\design\stormNstreetfl.fm2 Worksheet South Swale Flow Element Trapezoidal Channel Method Manning's Formula Solve For Dischar e Input Data Mannings Coefficient 0.030 Channel Slope 0,007500 ft/ft Depth 1,00 ft Left Side Slope 4.000000 H :V Right Side Slope 4.000000 H :V Bottom Width 2.00 ft Results Discharge 18.01 cfs Flow Area 6.00 fe Wetted Perimeter 10.25 ft Top Width 10.00 ft Critical Depth 0.83 ft Critical Slope 0.016909 ft/ft Velocity 3.00 ft/s Velocity Head 0.14 ft Specific Energy 1.14 ft Froude Number 0.68 Flow is subcritical, 11/05/14 FlowMaster v5.17 0&07,36 PM Haestad Methods,Inc. 37 Brookside Road Waterbury,GT 06708 (203)755-1666 Page 1 of 1