Loading...
HomeMy WebLinkAbout05 - Design Report - Rosa Subdivision (Traditions) - Stormwater[InnnnnflD[]^^ %f"z^ ^5nDESIGN REPORTSTORM WATERMANAGEMENTROSASUBDIVISIONPrepared for:JJOHN ROSAIPrepared by:IuJjJC & H Engineering and Surveying, Inc.205 EdelweissBozeman,MT 59718(406)587-1115Project Number: 05230June, 2005^^7^°^rr/.^ /';^^-. 0 "••i4..1,TO77 N8/.% nnSTORM WATER MANAGEMENTnnnIIn[]J1JJJJJSummarySTORM WATER mn-offfrom Rosa Subdivision will be directed to several storm water detentionareas located through out the site. Sheet Dl, enclosed in the Appendix, highlights the individualdrainage areas that drain to each storm water pond. The subdivision was divided into fourseparate watersheds, that will be directed to their own detention pond. Drainage area #1 willdrain to a point at the southern boundary of the central park, near the intersection of ParkviewAvenue and Glenwood Drive. Drainage area #2 will drain to a pond on the norther boundary ofthe central park, near the intersection of Annie Street and Rosa Way. Drainage area #3 willdrain to two detention ponds located at the north portion of the parks #6 & 7, by the intersection ofSherwood Way and Rosa Way. Drainage area #4 will drain to a detention pond located near theintersection of Rosa Way and Oak Street. All proposed ponds will have an outlet pipe to BaxterDitch^tb ensure that the ponds drain after storm water events.^/w^Inlets will be placed to intercept the storm water mnoffat intervals to ensure that the curb capacityis not exceeded, and to rout the storm water to the desired storm water detention area. The stormwater runoffrate was calculated with the rational formula as shown. A runoff coefficient (C) of0.35 was used for the lots Zoned R3, and 0.60 was used for the larger R4 and R-0 lots asrecommended by the City ofBozeman Design Standards, and a composite C value was used for theright of way due to the higher percentage of impervious area.COMPOSITE RUNOFF COEFFICIENTThe mnoff coefficient for the R/W Area at 60 ft. wide:C^ = [(0.90x43 ft)+(0.20xl7 ft)]/60 ft = 0.70 n\^ ^^^^•y^''Is\uyi'")/y<yr^. ^c^'i^u'^'^ .'^^-^^•/<^i.7^-^ (^^^if^^f^yit^f ^"~\^S-^f.- ' y^^^^f^^^Z.^-^j /'^ , ^<^/-^<£ -^//<.^f7^rf-i''J>y^^'^^^'^^^-i^^J /'^^-3 ^^.-/ -• ^^^<.fVf.Z^'^^~-^ ^ -7 ^ r ^7 3.S~^fi4^€-/- (^^^'oj-'--^. (2^- ^«^*C-(2^ ^^^^t_^~^ -^)<^" ^y.i^ ^^/ '^ ^ —^^^ C' ^'^^t^^-^ ^ ^<?^.^ ^-?^^ ^^q,. ^r^-.,-/, ^.2.^, ^.^-if>-' /'2 Z^^^f^ 3.^^^.=-» /-?. /i/^ ^^-^ ^ ^^^^^^^•e. - <-i7-v^ -^'4?y^t -74»'-,^<y^ ^cP^^^ ^^- (^7^-<«'/---?<*.^7£-S-^- ^^ ^^^^ //? 2/^c^ ^^^e^/^^c/^ ^^' 5^ ^f^-^ ^^/^-s'^c/^-^ — ^ ^^^V^-^^ ^€»^-G./^^ ^y.€.^ •^'^ '-^e^C^^.e^^ =- ^, S£~^J;-^ - »-< ^ /^^) 7^^/- ^- /«^^ ^ ^i^^L^^£^/_^ly^^. ^ /^~- ^ ^'^/.z^^^zi^—r^^2^ r^rJ~^—e ^-^^ = ^^sT'^'"^CT%<^^<^<<"^/-^ -' ?^'A:f/^^ —- ^^S'J~<=--^=/^s^/^,/^^^ \T^^^0/~^V^3^y^^^-y "- °?.^'y-c!t-i^\^-^<€-o^y^j^z ^ ^^^^-~^~^r^' ^os^ ^/^ —5 ^/e^^^wd^3.3*»t- / -t^>V^3^-y^.G€>(^} '"^.^y ^/^^^^ = /^J-^C. C ^^/^J^^rf• ^ye^^^c^ — 'af jz^/^7^ y0^-^•--^.^^'/^^ .?'.z-^-^^ ^ ^^c-^^^^ '»\~7~^^^ "^£^y^/Jc--z^-^^3^^.^^^^ -'^3.^-/^ic/^ 7^-yf-0z ^ <y.'y^^^-&^£>1._~^^y/_^^^/^-^-^^2<^t/ 7^- ^>^/^^-^^ ^^-^ ^- ^^ ^ ^^^ ^^ ^ •=- ^^_r3^)^ ^^.s-ft. /^)^ f3^3^^^?>77 -- /^3^'^^^^ ^. ^/4^J7--4-^2- ^.^^/^3)^o/w) ~[3^^:^</^ ^^^/-^ ^ ^^^ 7^ ^>^^^r^I' ^/^^ «^^=>-^' ^.. /-J' " 7^ ^-^ "T^57 ^7^' ^^-/^^ ^i- ^2^^^^-^ ^^^-3^Y-> ^^^^^^/Y^^>p T^^r^^.-py^^.y^ . . A/^^ ^z^T^^^^-7r" ^/^ ^ ^<^ ^^t7^^ ^^-yy^cy '-^/ ^=^> ^^ 3. ^^ ^—^ ^ /^^^S-7^ " /4>//c' ' ^2^'7':;z^^> ^- lf^/3^^V^^^^')v3^^^_^7_^^~[u^e <s>^.^/ ^ ^^^ A ^~ ^)U£^7^P7^r/^ CU^J^. t_ '« .r"^I''^i "-^.,...'11 iI SEP 1 3 ^J05 31Rosa Subdivision: Stormwater Addendum-?,9^[..X"" • rr^DRAINAGE AREA #1 (Now includes Durston Road).•-z.-(" -'Drainage Area #1 consist^fa total of 297,279 ft2, with 118,109 ft2 of that being right of way and179,170 ft of Ngh density lots. Drainage area #1 will be divided into three subareas, one for eachcatch basin that will be utilized. The time of concentration for each sub-area needs to becalculated to determine the intensity of storm that will contribute to each catch basin.The time of concentration for sub-area #1-1 is calculated below:Time of ConcentrationOverland flow(l 15 ft @ 1.0%, C=0.60) = 14.3 min.Gutter flow(400 ft @ 1.30% avg. slope on Rosa Way)(n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.114)V=(1.486/n)R2/3Sl/2V=2.51ft/sT= 400 ft/2.51 ft/s/60s/min = 2.66 minTotal Time of Concentration = 16.96 minutes(0.28 hours)For a 25-year stonn event ^ = 0.78X-64 = 0.78(0.28)-64 = 1.76 in/hrQzs Lots = CIA = 0.35(1.76 in/hr)(0.9361 acres) = 0.58 cfsQ25 r/w = CIA = 0.70(1.76 in/hr)(0.5084 acres) = 0.63 cfs (includes Durston Road)Qz5 Total = (0.58+0.63) = 1.21 cfs = Total flow rate entering catch basin #1.^^.^.^ff^.'/-/Capacity of curb and gutter at 0.9% Average slope (Rosa Way &^rs^nRoad^^^j\, o^^4-r^^ '-•Q=(1.486/n)AR2/3Sl/2n= 0.013 for ConcreteA= 1.24 ft2P = 9.23 ftR = A/P = 1.24/9.23 = 0.1343 ftR2/3 = 0.2623 ftS = 0.009 ft/ftSl/2 = 0.09487 ft/ftQ = (1.486/0.013)(1.24)(0.2623)(0.09487)= 3.53 cfs.Total flow in gutter along Rosa Way and Durston RoadQ=1.21cfst1.21 cfs < 3.07 cfs =>• Gutter capacity is adequateThe time of concentration for sub-area #1-2 is calculated below:Time of ConcentrationOverland flow (155 ft @ 1.0%, C=0.35) = 16.7 min.Gutter flow(470 ft @ 0.5% avg. slope on Brookside Lane)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 fl, P=9.23, R2/3=0.2623, Sl/2=0.0707)V=2.12ft/sT= 470 ft/2.12 ft/s/60s/min = 3.7 min Gutter flow (470 ft @ 1.30% avg. slope on Rosa WayV= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.1140)V= 3.42 ft/sT= 470 ft/3.42 ft/s/60s/mm = 2.3 minGutter flow (470 ft @ 0.60% avg. slope on Glenwood Drive ?V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0982)V= 2.32 ft/sT= 280 ft/2.32 ft/s/60s/min = 2.0 minGutter flow (470 ft @ 0.50% avg. slope on Durston RoadV= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0707)V=2.12ft/sT= 470 ft/2.12 ft/s/60s/min = 3.69 minTotal Time of Concentration = 28.4 minutes (0.47 hours)For a 25-year storm event I;5 = 0.78X-64 = 0.78(0.47)-64 = 1.26 in/hrQzs Lots = CIA = 0.35(1.26 in/hr)(3.1770 acres) = 1.40 cfsQz5 r/w = CIA = 0.70(1.26 ip/hr)(1.8373 acres) = 1.62 cfs (includes Durston Road)Q25 Total = (1.40+1.62) =,3.52/cfs = Total flow rate entering catch basin #2"*''The time of concentration for sub-area #1-3 is calculated below:Time of ConcentrationOverland flow (13.5 ft @ 2.0%, C=0.46) = 3.2 min.Gutter flow (300 ft @ 0.60% avg. slope on Glenwood Drive)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0982)V= 2.32 ft/sT= 300 ft/2.32 ft/s/60s/min = 2.2 minTotal Time of Concentration = 5.4 minutes (0.09 hours)For a 25-year storm event 135 = 0.78X-64 = 0.78(0.09)-64 = 3.64 in/hr ^ &^Qz5 r/w = CIA = 0.70(3.64 in/hr)(0.3656 acres) = 0.93 cfs r)_^ji c/ /'^'^/?^-Qz5 Total = 0.93 cfs = Total flow rate entering catch basin #3Qz5 Total for Storm Sewer #1 = (1.21 + 3.02 + 0.93) = 5.16 cfsvDrainage Area #115" PVC from Catch Basin #1 to Catch Basin #2This pipe carries the storm water from drainage sub-area #1-1. As previously calculated weshould anticipate a flowrate of 1.21 cfs from a 25-year storm event. Calculations are enclosed fora 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 0.44 feet with a velocityof3.14ft/sec.15" PVC from Catch Basin #2 to Catch Ba^in #3This pipe carries the storm water from drainage sub-areas 1-1 & 1-2. As previously calculatedwe should anticipate a flowrate of (1.21 + 3.02) = 4.23 cfs from a 25-year storm event.Calculations are enclosed in the Appendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe nnwill flow at a depth of 0.95 feet with a velocity of 4.23 ft/sec.18" PVC from Catch Basin #3 to Pond #1This pipe carries the storm water from drainage sub-areas 1-1, 1-2 and 1-3. As previouslycalculated we should anticipate a flowrate of (1.21 + 3.02 + 0.93) = 5.16 cfs from a 25-year stonnevent. Calculations are enclosed in the Appendix for a 18" PVC pipe at 0.30% slope. The 15-inch pipe will flow at a depth of 1.11 feet with a velocity of 3.68 ft/sec.Detention Pond #1The total area served by Detention Pond #1 is 6.82 acres with a weighted C-factor of 0.489 afterdevelopment. The storage basin can have a release rate equal to the pre-development flow. Thecalculations for the pre-development time of concentration and flows are included in theAppendix. The pre-development flow (acceptable release rate) is 1.192 cfs.Calculations are also enclosed in the Appendix for sizing the detention pond by varying the stormduration and holding the release rate at 1.192 cfs. The required storage for Detention Pond #1 is3,900 cubic feet. The weir must also be sized to insure the discharge never exceeds the allowablerelease rate. The weir in the discharge stmcture for Detention Pond #1 will be 2.34 inches inwidth. These calculations are included with the calculations for sizing the pond. nnDetention Pond #1Rosa SubdivisionPark C= 0.20Area (Ft2) = 0.00Area (ac) = 0.00Total Area (ac) = 6.82Weighted C = 0.489Release Rate (cfs)= 1.192Tc Method10 YearStormlength(min)1015202526272829303545607580R3 Zone C = 0.35 R4 Zone C = 0.60Area (Ft2) = 179170.00 Area (Ft2) = 0.00Area (ac) = 4.11 Area (ac) = 0.00StormIntensity(In/Hr)TotalQ(ft'/s)Total RunoffVolume(ft3)ReleaseVolume(ft3)2.051.581.311.131.101.081.051.031.000.910.770.640.550.536.8465.2604.3633.7743.6793.5893.5063.4273.3523.0322.5752.1361.8481.7724107.354733.635235.075660.325738.565814.865889.355962.136033.296367.756953.237689.808314.458504.39715.141072.711430.281787.851859.361930.872002.392073.902145.422502.983218.124290.835363.545721.11RequiredStorage(ft3)"3392.213660.923804.793872.473879.203883.993886.963888.233887.883864.763735.103398.972950.912783.29Right of Way CArea (Ft2) =Area (ac) =0.70118109.002.71OUTLET CONTROL STRUCTURE SIZINGAllowable Flow Rate Q (cfs) =Head above Weir Notch (ft) =Weir Coefficient =Length of Weir (ft) =Weir Equation = Q = (C)*(L)*(H)(3/2)1.1921.503.33?Required Length (ft)Required Length (in)0.19483092.3380 nnDRAINAGE CALCULATIONSWatershed #1Pre-Developed ConditionsFlow Length = 530.00Slope (%)= 1.13C coeficient = 0.20Cf = 1.00Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 37.19883Storm Return Interval =I (in/hr) for 10 year storm l=0.64t(-065)100.873241RATIONAL METHOD FOR CALCULATING FLOW RATERational Method = Q = C*1*AC coeficientCf =I (in/hr) =2\Area (ff)0.201.000.87297279.00 = Area (AC)6.8246Total Runoff For 10yr Storm (ft3/s) = 1.191897 J^A/ ^/ /- -z,/-/ ^^J-<Ltmp#47Manning Pipe CalculatorGiven input Data:Shape ........................... Circularsolving for ..................... Depth of FlowDiameter ........................ 15.0000 -inFlowrate ........................ 1.2100 cfsSlope ........................... 0.0050 ft/ftManm ng's n ..................... 0. 0130Computed Results:Depth ........................... 5.2707 -i nArea ............................ 1.2272 ft2wetted Area ..................... 0.3848 ft2Wetted Per-imeter ................ 19.0350 inPerimeter ....................... 47.1239 -inVeloc1ty ........................ 3.1441 f psHydraulic Radius ................ 2.9113 inPercent Full .................... 35.1382 %Full flow Flowrate .............. 4.5678 cfsFull flow velocity .............. 3.7221 fpsCritical InformationCritical depth .................. 5.2052 inCritical slope .................. 0.0052 ft/ftCritical velocity ............... 3.1982 fpscnt-ical area ................... 0.3783 ft2Cr-itical perimeter .............. 18.8976-inCnt-ical hydraul-ic rad-ius ....... 2.8829 -incn ti cal top w-i dth .............. 14.2806 1nSpecif-i c energy ................. 0.5929 ftMim mum energy .................. 0.6507 ftFroude number ................... 0.9762Flow condition .................. Subcr-iti'calPage 1 •j^'/^. ^ ^ J^^^ ^n^J'^-tmp#48Manning Pipe calculatorGiven input Data:Shape ........................... d rcularSolving for ..................... Depth of FlowD1ameter ........................ 15.0000 1 nFlowrate ........................ 4.2300 cfsSlope ........................... 0.0050 ft/ftMann-i ng's n ..................... 0. 0130Computed Results:Depth ........................... 11.4026 1 nArea ............................ 1.2272 ft2wetted Area ..................... 1.0009 ft2Wetted perimeter ................ 31.7707 inPerimeter ....................... 47.1239 inVeloclty ........................ 4.2260 f psHydraulic Radius ................ 4.5367 inPercent Full .................... 76.0170%Full flow Flowrate .............. 4.5678 cfsFull flow velocity .............. 3.7221 f psCr-it-ical InformationCn't-ical depth .................. 10.1137 inCritical slope .................. 0.0066 ft/ftCritical velocity ............... 4.7751fp5cr-itlcal area ................... 0.8859 ft2Critical perimeter .............. 28.7894 incnt-ical hydraulic radius ....... 4.4309 incn t1cal top w1dth .............. 15.0000 1nSpecific energy ................. 1.2094 ftMinimum energy .................. 1.2642 ftFroude number ................... 0.8491Flow condition .................. Subcn'ticalpage 1 ^^ ^J7 ^ /^</,-zy/)n^,^J^Ltmp#49Manning Pipe calculatorGiven input Data:Shape ........................... d rcularSolving for ..................... Depth of FlowD1ameter ........................ 18.0000 -i nFlowrate ........................ 5.1600 cfsSlope ........................... 0.0030 ft/ftMann-i ng's n ..................... 0. 0130Computed Results:Depth ........................... 13.3110 -i nArea ............................ 1.7671 ft2Wetted Area ..................... 1.4011 ft2wetted Perimeter ................ 37.2656 -inPerimeter ....................... 56.5487 inVeloc-i ty ....;................... 3.6829 f psHydraulic Radius ................ 5.4139 1nPercent Full .................... 73.9501 %Full flow Flowrate .............. 5.7535 cfsFull flow velocity .............. 3.2558 fpsCritical informationcritical depth .................. 10.5292 InCr-it-ical slope .................. 0.0058 ft/ftcritical velocity ............... 4.8013 fpsCritical area ................... 1.0747 ft2Critical perimeter .............. 31.3327 1nCritical hydraulic radius ....... 4.9392 inCritical top width .............. 18.0000 -inSpecific energy ................. 1-3006 ftMinimum energy .................. 1.3161 ftFroude number ................... 0.6822Flow condition .................. SubcnticalPage 1 nr •i Innn[]IInn^^ ^^y^c'^!L^^(^e^-?jT^'•^^/^DRAINAGE AREA^l,Drainage Area #1 consists of a total of 266,080 ft2, with 86,910 ft2 of that being right of way, and179,170 ft2 of medium density lots. Drainage area #1 will be divided into three subareas, one foreach catch basin that will be utilized. The time of concentration for each sub-area needs to becalculated to determine the intensity of storm that will contribute to each catch basin.The time of concentration for sub-area #1-1 is calculated below:Time of ConcentrationOverland flow(l 15 ft @ 1.0%, C=0.35) = 14.3 min.Gutter flow(400 ft @ 0.95% avg. slope on Rosa Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0982)V= 2.95 ft/sT= 400 ft/2.95 ft/s/60s/min = 2.3 minTotal Time of Concentration = 16.6 minutes(0.28 hours)For a 25-year storm event 135 = 0.78X-64 = 0.78(0.28)-64 = 1.76 in/hrQzs Lots = CIA = 0.35(1.76 in/hr)(0.9361 acres) = 0.58 cfsQz5 r/w = CIA = 0.70(1.76 in/hr)(0.3586 acres) = 0.44 cfsQz5 Total = (0.58+0.44) = 1.02 cfs = Total flow rate entering catch basin #1IJ[1JJJJThe time of concentration for sub-area #1-2 is calculated below:Time of ConcentrationOverland flow(155 ft @ 1.0%, C=0.35) = 16.7 min.Gutter flow(470 ft @ 0.50% avg. slope on Brookside Lane)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0707)V=2.12ft/sT= 470 ft/2.12 ft/s/60s/min = 3.7minGutter flow(470 ft @ 0.95% avg. slope on Rosa Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0982)V= 2.95 ft/sT= 240 ft/2.95 ft/s/60s/min == 1.4 minGutter flow(280 ft @ 0.60% avg. slope on Glenwood Drive)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0775) ^nnn[1nn[]JJJJJV= 2.32 ft/sT= 280 ft/2.32 ft/s/60s/min: 2.0 minTotal Time of Concentration =23.8 minutes (0.40 hours)For a 25-year storm event 1^ = 0.78X-64 = 0.78(0.40)-64 = 1.40 in/hrQzs Lots = CIA = 0.35(1.40 in/hr)(3.1770 acres) = 1.56 cfsQz5 r/w = CIA = 0.70(1.40 in/hr)(1.2709 acres) = 1.25 cfsQz5 Total = (1.56+1.25) = 2.81 cfs = Total flow rate entering catch basin #2The time of concentration for sub-area #1-3 is calculated below:Time of ConcentrationOverland flow(13.5 ft @ 2.0%, C-0.46) = 3.2 min.Gutter flow(300 ft @ 0.60% avg. slope on Glenwood Drive)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.07746)V= 2.32 ft/sT= 300 ft/2.32 ft/s/60s/min = 2.2 minTotal Time of Concentration = 5.4 minutes (0.09 hours)For a 25-year storm event 135 = 0.78X-64 = 0.78(0.09)-64 = 3.64 in/hrQz5 r/w = CIA = 0.70(3.64 in^r)(0.3656 acres) = 0.93 cfsQz5 Total = 0.93 cfs = Total flow rate entering catch basin #3Q25 Total for Storm Sewer #1 = (1.02+2.81+0.93) = 4.76 cfsThe capacity of the curb and gutter, at a 0.60% slope, with a depth of water 0.15' below top ofcurb is calculated as follows:Q=(1.486/n)AR2/3Sl/2n= 0.013 for ConcreteA= 1.24 ft2P = 9.23 ftR = A/P = 1.24/9.23 = 0.1343 ftR2/3 = 0.2623 ftS = 0.0060 ft/ftSl/2 = 0.0775 ft/ft nn^Q = (1.486/0.013)(1.24)(0.2623)(0.0775)= 2.88 cfs.2.81 cfs < 2.86 cfs =>• Gutter capacity is adequate^1[:f]11111[j[IJjJDRAINAGE AREA #2Drainage Area #2 consists of a total of 490,865 ft2, with 79,295 ft2 of that being right of way,263,990 ft2 of park land, and 147,580 ft2 of medium density lots. Drainage area #2 will be dividedinto four subareas, three for each area that contributes to a catch basin that will be utilized, plusthe portion of the park that will drain into the detention pond. The time of concentration for eachsub-area needs to be calculated to determine the intensity of storm that will contribute to the catchbasin.The time of concentration for sub-area #2-1 is calculated below:Time of ConcentrationOverland flow(l 15 ft @ 1.00%, C=0.35) = 14.3 min.Gutter flow(830 ft @ 1.00% avg. slope on Rosa Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.1000)V= 3.00ft/sT= 830 ft/3.00 ft/s/60s/min = 4.6 minTotal Time of Concentration = 18.9 minutes (0.32 hours)For a 25-year storm event 125 = 0.78X-64 = 0.78(0.32)-64 = 1.62 in/hrQ25 Lots = CIA = 0.35(1.62 in/hr)(1.7553 acres) = 1.00 cfsQz5 r/w = CIA = 0.70(1.62 in/hr)(0.6123 acres) = 0.69 cfsQz5 Total = (1.00+0.69) = 1.69 cfs = Total flow rate entering catch basin #4The time of concentration for sub-area #2-2 is calculated below:Time of ConcentrationOverland flow(l 10 ft @ 1.00%, C=0.35) = 14.0 min.Gutter flow(830 ft @ 1.0% avg. slope on Rosa Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.1000)V=3.00ft/sT= 830 ft/3.00 ft/s/60s/min = 4.6 minTotal Time of Concentration = 18.6 minutes(0.31 hours) 1nnn[1IIfl^",[]uII[III\For a 25-year storm event 125 = 0.78X-64 = 0.78(0.31)-64 = 1.65 in/hrQ25 Lots = CIA = 0.35(1.65 in/hr)(1.656 acres) = 0.96 cfsQz5 r/w = CIA = 0.70(1.65 iiVhr)(0.9431 acres) = 1.09 cfsQ25 Total = (0.96+1.09) = 2.05 cfs = Total flow rate entering catch basin #5The time of concentration for sub-area #2-3 is calculated below:Time of ConcentrationOverland flow(13.5 ft @ 2.0%, C=0.46) = 3.2 min.Gutter flow(150 ft @ 0.60% avg. slope on Annie Street)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.07746)V= 2.32 ft/sT= 150 ft/2.32 ft/s/60s/min = 1.1 minTotal Time of Concentration = 4.3 minutes (0.09 hours)For a 25-year storm event 125 = 0.78X-64 = 0.78(0.07)-64 = 4.21 in/hrQz5 r/w = CIA = 0.70(4.21 in/hr)(0.2649 acres) = 0.78 cfsQz5 Total = 0.78 cfs = Total flow rate entering catch basin #6Qz5 Total for Storm Sewer #2 = (1.69+2.05+0.78) = 4.52 cfsDRAINAGE AREA #3Drainage Area #3 consists of a total of 421,020 ft2, with 85,620 ft2 of that being right of way,151,785 ft2 of park land, and 183,615 ft2 of medium density lots. Drainage area #3 will bedivided into three subareas, one for each catch basin that will be utilized. The time ofconcentration for each sub-area needs to be calculated to determine the intensity of storm that willcontribute to the catch basin.uuThe time of concentration for sub-area #3-1 is calculated below:Time of ConcentrationOverland flow(13.5 ft @ 2.0%, C=0.46) = 3.2 min.Gutter flow(l 15 ft @ 0.60% avg. slope on Sherwood Way) 1nnnnIInf]u11uV= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.07746)V= 2.32 ft/sT= 115 ft/2.32 ft/s/60s/min = 0.8 minTotal Time of Concentration = 4.0 minutes(0.07 hours)For a 25-year storm event Izs = 0.78X-64 = 0.78(0.07)-64 = 4.30 in/hrQ25 r/w = CIA = 0.70(4.30 in7hr)(0.1625 acres) = 0.49 cfsQz5 Total = 0.49 cfs = Total flow rate entering catch basin #7 & 8Qz5 Total for Storm Sewer #3 = 0.49 cfsThe time of concentration for sub-area #3-2 is calculated below:Time of ConcentrationOverland flow(l 15 ft @ 1.0%, C=0.35) = 14.3 min.Gutter flow(320 ft @ 1.10% avg. slope on Rosa Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.1049)V=3.14ft/sT= 320 ft/3.1 4 ft/s/60s/min = 1.7minGutter flow(200 ft @ 0.60% avg. slope on Sherwood Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0775)V= 2.32 ft/sT= 200 ft/2.32 ft/s/60s/min = 1.4 minTotal Time of Concentration = 17.4 minutes (0.29 hours)For a 25-year storm event I^s = 0.78X-64 = 0.78(0.29)-64 = 1.72 in/hrQ25 Lots = CIA = 0.35(1.72 in/hr)(0.7118 acres) = 0.43 cfsQz5 r/w = CIA = 0.70(1.72 in/hr)(0.7375 acres) = 0.89 cfsQ25 Total = (0.43+0.89) = 1.32 cfs = Total flow rate entering catch basin #9u']jThe time of concentration for sub-area #3-3 is calculated below:Time of ConcentrationOverland flow(145 ft @ 1 .0%, C=0.35) = 16.1 min.Gutter flow(620 ft @ 0.80% avg. slope on Parkview Avenue)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0894) nnnn[]11nV= 2.68 ft/sT= 620 ft/2.68 ft/s/60s/min = 3.9 minGutter flow(270 ft @ 0.60% avg. slope on Parkview Avenue)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0775)V= 2.32 ft/sT= 270 ft/2.32 ft/s/60s/min = 1.9 minTotal Time of Concentration = 21.9 minutes (0.37 hours)For a 25-year storm event 125 = 0.78X--64 = 0.78(0.37)-64 = 1.47 in/hrQz5 Lots = CIA = 0.35(1.47 in/hr)(3.5035 acres) = 1.80 cfsQ25 r/w = CIA = 0.70(1.47 in/hr)(1.0655 acres) =1.10 cfsQz5 Total = (1.80+1.10) = 2.90 cfs = Total flow rate entering catch basin #10Qz5 Total for Stonn Sewer #3 = (1.32+2.90) = 4.22 cfsDRAINAGE AREA #4f[I[]LIuuuuuDrainage Area #4 consists of a total of 474,050 ft2, with 143,825 ft2 of that being right of way,40,660 ft2 of park land, and 289,565 ft of high density lots. Drainage area #4 will be divided intothree subareas, one for each catch basin that will be utilized. The time of concentration for eachsub-area needs to be calculated to detemiine the intensity of storm that will contribute to the catchbasin.The time of concentration for sub-area #4-1 is calculated below:Time of ConcentrationOverland flow(13.5 ft @ 2.0%, C=0.46) = 3.2 min.Gutter flow(625 ft @ 1.20% avg. slope on Rosa Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.1095)V= 3.28 ft/sT= 625 ft/3.28 ft/s/60s/min = 3.2 minTotal Time of Concentration = 6.4 minutes(0.11 hours)For a 25-year stonn event 135 = 0.78X-64 = 0.78(0.11)-64 = 3.20 in/hrQz5 r/w = CIA = 0.70(3.20 in/hr)(0.5342 acres) = 1.20 cfs nnnn[IIIflnnQ25 Total = 1.20 cfs = Total flow rate entering catch basin #11The time of concentration for sub-area #4-2 is calculated below:Time of ConcentrationOverland flow(280 ft @ 1 .0%, C=0.60) = 13.8min.Gutter flow(262.5 ft @ 0.60% avg. slope on A Street)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0775)V= 2.32 ft/sT= 262.5 ft/2.32 ft/s/60s/min = 1.89 minTotal Time of Concentration = 15.7 minutes (0.26 hours)For a 25-year storm event 125 = 0.78X-64 = 0.78(0.26)-64 = 1.85 in/hrQ25 Lots = CIA = 0.60(1.85 in^)(1.4415 acres) = 1.60 cfsQz5 r/w = CIA = 0.70(1.85 in/hr)(0.47 acres) = 0.61 cfsQ25 Total = (1.60 + 0.61) = 2.21 cfs = Total flow rate entering catch basin #15II[][I11uTime of Co'ncentrationOverland flow(280 ft @ 1.0%, C=0.60) = 13.8 min.Gutter flow(262.5 ft @ 0.60% avg. slope on A Street)V= (1.486/n)R2/3Sl/2 (n=0.013, A-1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.0775)V= 2.32 ft/sT= 262.5 ft/2.32 fl/s/60s/min = 1.89 minTotal Time of Concentration =15.7 minutes (0.26 hours)For a 25-year storm event 1^ = 0.78X-64 = 0.78(0.26)-64 = 1.85 in/hrQz5 Lots = CIA = 0.60(1.85 in/hr)(1.2609 acres) = 1.40 cfsQzs r/w = CIA = 0.70(1.85 in/hr)(0.47 acres) = 0.61 cfsQ25 Total = (1.40 + 0.61) = 2.01 cfs = Total flow rate entering catch basin #12Qz5 Total for Storm Manhole #2= (2.21 + 2.01) = 4.22 cfsThe time of concentration for sub-area #4-3 is calculated below:Time of ConcentrationOverland flow(280 ft @ 1 .0%, C=0.60) = 13.9min.J nnnnnII[Ifl[InnjIIuuLI[J'JJGutter flow(300 ft @ 1.20% avg. slope on Rosa Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.1095)V= 3.28 ft/sT= 300 ft/3.28 ft/s/60s/min = 1.5 minTotal Time of Concentration = 15.4 minutes (0.26 hours)For a 25-year storm event 1^ = 0.78X-64 = 0.78(0.26)-64 = 1.85 in/brQ25 Lots = CIA = 0.60(1.85 in/hr)(1.9050 acres) =2.11 cfsQ25 r/w = CIA = 0.70(1.85 in/hr)(0.6319 acres) = 0.82 cfsQz5 Total = (2.11+0.82) = 2.93 cfs = Total flow rate entering catch basin #13The time of concentration for sub-area #4-4 is calculated below:Timeof ConcentrationOverland flow(280 ft @ 1.0%, C=0.60) = 13.9 min.Gutter flow(300 ft @ 1.60% avg. slope on Rosa Way)V= (1.486/n)R2/3Sl/2 (n=0.013, A=1.24 ft, P=9.23, R2/3=0.2623, Sl/2=0.1265)V= 3.79 ft/sT= 300 ft/3.79 ft/s/60s/min = 1.3 minTotal Time of Concentration = 15.2 minutes (0.25 hours)For a 25-year storm event 125 = 0.78X-64 = 0.78(0.25)-64 = 1.89 in/hrQz5 Lots = CIA = 0.60(1.89 in/hr)(1.7423 acres) = 1.98 cfsQz5 r/w = CIA = 0.70(1.89 in/hr)(0.8160 acres) = 1.08 cfsQz5 Total = (1.98+1.08) = 3.06 cfs = Total flow rate entering catch basin #14Qz5 Total for Stomi Sewer #4 = (1.20+4.42+2.93+3.06) = 11.61 cfsDrainage Area #115" PVC from Catch Basin #1 to Catch Basin #2This pipe carries the storm water from drainage sub-area #1-1. As previously calculated weshould anticipate a flowrate of 1.02 cfs from a 25-year storm event. Calculations are enclosed inthe Appendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of0.40 feet with a velocity of 3.00 ft/sec. 1nrfi[InkI][In15" PVC from Catch Basin #2 to Catch Basin #3This pipe carries the storm water from drainage sub-areas 1-1 & 1-2. As previously calculatedwe should anticipate a flowrate of (1.02 + 2.81) = 3.83 cfs from a 25-year storm event.Calculations are enclosed in the Appendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipewill flow at a depth of 0.88 feet with a velocity of 4.17 ft/sec.15" PVC from Catch Basin #3 to Pond #1This pipe carries the storm water from drainage sub-areas 1-1, 1-2 & 1-3. As previouslycalculated we should anticipate a flowrate of (1.02 + 2.81+0.93) = 4.76 cfs from a 25-year stormevent. Calculations are enclosed in the Appendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 1.08 feet with a velocity of 4.22 ft/sec.Detention Pond #1The total area served by Detention Pond #1 is 6.11 acres with a weighted C-factor of 0.464 afterdevelopment. The storage basin can have a release rate equal to the pre-development flow. Thecalculations for the pre-development time of concentration and flows are included in theAppendix. The pre-development flow (acceptable release rate) is 1.07 cfs. Calculations are alsoenclosed in the Appendix for sizing the detention pond by varying the stonn duration and holdingthe release rate at 1.07 cfs. The required storage for Detention Pond #1 is 3,215 cubic feet. Theweir must also be sized to insure the discharge never exceeds the allowable release rate. Theweir in the discharge structure for Detention Pond #1 will be 2.09 inches in width. Thesecalculations are included with the calculations for sizing the pond.Drainage Area #2LiuuuLiu15" PVC from Catch Basin #4 to Catch Basin #5This pipe carries the storm water from drainage sub-area 2-1. As previously calculated we shouldanticipate a flowrate of 1 .69 cfs from a 25-year storm event. Calculations are enclosed in theAppendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 0.53 feetwith a velocity of 3.44 ft/sec.15" PVC from Catch Basin #6 to Catch Basin #5This pipe carries the storm water from drainage sub-area 2-3. As previously calculated we shouldanticipate a flowrate of 0.78 cfs from a 25-year storm event. Calculations are enclosed in the nnnnAppendix for a 15" PVC pipe at 0.75% slope. The 15-inch pipe will flow at a depth of 0.32 feetwith a velocity of 3.21 ft/sec.15" PVC from Catch Basin #5 to Storm MH #1 to Detention Pond #2This pipe carries the storm water from drainage sub-area 2-1, 2-2, & 2-3. As previouslycalculated we should anticipate a flowrate of (1.69+0.78+2.05) = 4.52 cfs from a 25-year stormevent. Calculations are enclosed in the Appendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 1.01 feet with a velocity of 4.24 ft/sec.nDetention Pond #2The total area served by Detention Pond #2 is 11.270 acres with a weighted C-factor of 0.326after development. The storage basin can have a release rate equal to the pre-development flow.The calculations for the pre-development time of concentration and flows are included in theAppendix. The pre-development flow (acceptable release rate) is 1.801 cfs.[ICalculations are also enclosed in the Appendix for sizing the detention pond by varying the stormduration and holding the release rate at 1.801 cfs. The required storage for Detention Pond #2 is3,610 cubic feet. The weir must also be sized to insure the discharge never exceeds the allowablerelease rate. The weir in the discharge structure for Detention Pond #2 will be 3.53 inches inwidth. These calculations are included with the calculations for sizing the pond.[)[IuuuuDrainage Area #315" PVC from Catch Basin #7-8 to Pond #3This pipe carries the storm water from drainage sub-area 3-1. As previously calculated we shouldanticipate a flowrate of 0.49 cfs from a 25-year storm event. Calculations are enclosed in theAppendix for a 15" PVC pipe at 1.00% slope. The 15-inch pipe will flow at a depth of 0.23 feetwith a velocity of3.IO ft/sec.Detention Poud #3The total area served by Detention Pond #3 is 2.23 acres with a weighted C-factor of 0.367 afterdevelopment. The storage basin can have a release rate equal to the pre-development flow. Thecalculations for the pre-development time of concentration and flows are included in theAppendix. The pre-development flow (acceptable release rate) is 0.367 cfs. nnprn[I1Calculations are also enclosed in the Appendix for sizing the detention pond by varying the stormduration and holding the release rate at 0.367 cfs. The required storage for Detention Pond #3 is525 cubic feet. The weir must also be sized to insure the discharge never exceeds the allowablerelease rate. The weir in the discharge structure for Detention Pond #3 will be .72 inches inwidth. These calculations are included with the calculations for sizing the pond.15" PVC from Catch Basin #10 to Catch Basin #9This pipe carries the storm water irom drainage sub-area 3-3. As previously calculated we shouldanticipate a flowrate of 2.90 cfs from a 25-year storm event. Calculations are enclosed in theAppendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 0.72 feetwith a velocity of 3.94 ft/sec.15" PVC from Catch Basin #9 to Pond #4This pipe carries the storm water from drainage sub-area 3-2 & 3-3. As previously calculated weshould anticipate a flowrate of (2.90+1.32) = 4.22 cfs from a 25-year storm event. Calculationsare enclosed in the Appendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at adepth of 0.95 feet with a velocity of 4.22 ft/sec.uu[JuuuuDetention Pond #4The total area served by Detention Pond #4 is 7.440 acres with a weighted C-factor of 0.3.96 afterdevelopment. The storage basin can have a release rate equal to the pre-development flow. Thecalculations for the pre-development time of concentration and flows are included in theAppendix. The pre-development flow (acceptable release rate) is 1.11 cfs.Calculations are also enclosed in the Appendix for sizing the detention pond by varying the stormduration and holding the release rate at 1.11 cfs. The required storage for Detention Pond #4 is3,340 cubic feet. The weir must also be sized to insure the discharge never exceeds the allowablerelease rate. The weir in the discharge stmcture for Detention Pond #4 will be 2.18 inches inwidth. These calculations are included with the calculations for sizing the pond.Drainage Area #415" PVC from Catch Basin #14 to Catch Basin #13This pipe carries the storm water from drainage sub-area 4-4. As previously calculated we should nnnn[Inanticipate a flowrate of 3.06 cfs from a 25-year storm event. Calculations are enclosed in theAppendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 0.75 feetwith a velocity of 3.99 ft/sec.15" PVC from Catch Basin #12 to Storm MH #2This pipe carries the stonn water from drainage sub-area 4-2. As previously calculated we shouldanticipate a flowrate of 2.21 cfs from a 25-year storm event. Calculations are enclosed in theAppendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 0.61 feetwith a velocity of 3.69 ft/sec.IirIIIu[I[I15" PVC from Catch Basin #15 to Storm MH #2This pipe carries the stomi water from drainage sub-area 4-2. As previously calculated we shouldanticipate a flowrate of2.Gl cfs from a 25-year storm event. Calculations are enclosed in theAppendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 0.58 feetwith a velocity of 3.60 ft/sec.15" PVC from Storm MH #2 to Catch Basin #13This pipe carries the storm water from drainage sub-area 4-2. As previously calculated we shouldanticipate a flowrate of 4.22 cfs from a 25-year storm event. Calculations are enclosed in theAppendix for a 15" PVC pipe at 0.50% slope. The 15-inch pipe will flow at a depth of 1.39 feetwith a velocity of 4.23 ft/sec.18" PVC from Catch Basin #13 to Catch Basin #11This pipe carries the storm water from drainage sub-area 4-2, 4-3, & 4-4. As previouslycalculated we should anticipate a flowrate of (4.22+2.93+3.06) = 10.21 cfs from a 25-year stormevent. Calculations are enclosed in the Appendix fora 18" PVC pipe at 1.00% slope. The 18-inch pipe will flow at a depth of 1.20 feet with a velocity of 6.77 ft/sec.u18" PVC from Catch Basin #11 to Detention Pond #5This pipe carries the storm water from drainage sub-area 4-1, 4-2, 4-3, & 4-4. As previouslycalculated we should anticipate a flowrate of (1.20+4.22+2.93+3.06) = 11.41 cfs from a 25-year nnnnnIIIIstorm event. Calculations are enclosed in the Appendix for a 18" PVC pipe at 1.50% slope. The18-inch pipe will flow at a depth of 1.10 feet with a velocity of 8.22 ft/sec.Detention Pond #5The total area served by Detention Pond #5 is 10.88 acres with a weighted C-factor of 0.596 afterdevelopment. The storage basin can have a release rate equal to the pre-development flow. Thecalculations for the pre-development time of concentration and flows are included in theAppendix. The pre-development flow (acceptable release rate) is 1.61 cfs.Calculations are also enclosed in the Appendix for sizing the detention pond by varying the stormduration and holding the release rate at 1.61 cfs. The required storage for Detention Pond #5 is9,200 cubic feet. The weir must also be sized to insure the discharge never exceeds the allowablerelease rate. The weir in the discharge structure for Detention Pond #5 will be 3.16 inches inwidth. These calculations are included with the calculations for sizing the pond.IIuuuuu IC®BEngineering and Surveying Inc.205 Edelweiss Drive • Bozeman, Montana 59718www.chengineers.com * info@chengineers.comLETTER OF TRANSMITTALfjl .P"nn^!l!! AUG 052005 .i!i:—Y.—^z_jjj-—•<.>£.-U-T5^DATE: July 27, 2005TO:FROM:RE:City ofBozeman EngineeringAttn: Sue Stadolla20 E. Olive St.Bozeman,MT.59715Justin D. WieserRosa Subdivision Plans, Sheet Dl and capacity letter (05230)OTY. DESCRIPTION1Dl - Rosa Subdivision Stormwater Master PlanPURPOSE:•As You RequestedFor Your Information/RecordsFor Your Review & ApprovalFor Design RevisionsFor Your Signature/retum• Other: (See Remarks)U.S. MailFederal Express• Hand DeliveredFor Pick UpREMARKS: Here is Sheet Dl for the Rosa Subdivision showing all of the stormwaterinlets. Also, could you provide me with an adequate capacity letter for Rosa Subdivisionand also provide a copy to Tim Read, MDEQ Permitting and Compliance Division.Copies to: |3IsIssItI!I£i- is3.^ ^S)^n-l(^"E^£^100§*11.1— • •••——— —iri-10y^t^fs^tis-y m|iWS^^°J-/SiWi\! ~-1^ I IT! B135R2pS|3^^P33.N^^^^Jp^^^^P^y§ ^'"1|(l-JtT'W^'A., \' /s^ / III tH^ ^^£'^££lB'S£;CCiS;K'KS's3^! ^™ M--.p-t—^!_4iu.i= / .. I?'- - ^1—— ' - .IG,;;...,.,^-;'; -^.»,^,i^.™^T^.,^—==^^1!•• • •• —••WlB^NN17 asVHdM 1 W | ^ i V)h^ ^ J-A ^>IORi i—s^Ns.zc-w _aAiaas't-00aoaraaaooAs^.ta^^tls..-^1^c^ws-$,^^si5?%tyaM<f(^Av^y.ri,:tO.CO.lOO*[ ^CUOME^(ITrVI 101t-8HoT~ST~ 31 101ai 101 j31 101bS^s101ILIu,s;s'iS',sli^||1§1§1§1^|r&e^3§sIs°'.^ss: s: s-ssBH5¥^rI1^-^.*^^ss§1515s§jbSOOO'J§1§§a?^I8 107icn§.m^£1cf§0;§u^-^^3-xl,ion?co^bSDt,%•os21IIas^IBl°-S,0~\=^3T'vs»6101^s^mst01^^i3^j {'E?!-?|3^?3^tiK-satim1V-t ^5w-u§RI-CT^1Q'in'1".^vc"i0l-1i-S-5gu^1^1---—^(f-.pBEOT-^•*-R^g^o,-IK3S::S)-^s\ ED1,os-•ai§N^1Ij^az13T&1ft's.3saSf3S.g^OOQ'9^ni5§vz"s&1^M_ _w-i>lj^ ^€1SI— ~ iHoTTI^§aI101cuQ»nag^•slS§,s,iSsR£8§§.s^m=Ifs'IsSts1Us,saiS!\S'd^S!^^£»§^ 1°§§33siT-§g3!.,^!s§bs s-s it'sse.1^-Sl§§sIS DOS'U t^a^Cl101EflVI101s2a*. 101IItss'^———s^zz^^—^--N,sss•^WM- «9oy-\- - - — -wi%S3Q:5y-.&--;3s^SSSf^l«1!^s?'^.&'_.K•$a=^.j» ^@i^sm-as^s'•sgs^T-lw~^aaz 101_&wn_y,^,•'^v^^¥•'01r~.c—^nS!X^/§sssn" I§1§!/§.5B^^.§'ss?1BZ 101/s!..»^eBa•—•^—fIKfc-^—::^.-^SC;OZ;9Z.21.10.100[f,,Zl,1.0.LON]^?*s^is0M0s£ 3SVHd93)100-19§ „.„„- jMigz>iooia__ ^/^j ^|^li1'"^l<i°•-. (ADRAINAGE PLANSCALE: 1--200'^I11(1t(20060Scale In Feet0 2000 60Scale In MeterstShart Iof I<J(Oi S/13/OS08/28/OS§st"I5S .I-.3y>§sIIs^•sa«aniGIm^0p-^z03§E0G§1^p8Draatng Date: S/27/OSD1#04770 y--IrrrII.1rf' 1\(^•IIas's^ ^e&/^I^t-€00CTTn*l°n10 Kl^^fufJ^2m(0§§G>Q>^(^&Q^s^-~k-rti!•n-^1860Oi I!5-4ggsu2-co£§^-^s.•s-iDS?! ' =° :s: lw—-ss"; =J&/: IVg^S6££T<-^s,<sN3V.ii@JK\rih=>nEtfS*^S8-SS9St.1.0.c0.l00f.,lO,S:0.lON]^^>n.V^w»sft4A"w\^\CD0(^BW£Ci?3Ni@3 E0^^1LN3n3sn-ss537[3?i8ndK1-^!/)-SA.<<v~tTco-^'-5tQ^-\30)Q;L-•^sG4sa>1U45s-X-lI."-Y^n<»8U IUJ-8.g^s'-?^.?.-?tT^0^?ffl^fiwjt vsoy~s^^. I-JM^l?•s^-flre^5A;-*:^(s^x^^dna) Sce^-s.(saxmdna)Y-:0s<r-?"~1-2?;[—?-^efi^SQ^^r3=?'£^s*•S}63uT;-uAJsHI'S3K?s,swCtg^-In-o^ e»soysgS\M•s-s.^£»"=-gs-w.8S!efli•^Tl9•^a^^i-^^- TTE€^:EJF<iS..yors-^iLs^ssm}— -fS35STdr@)_^~ivH!uLDCOtls.Zl.tO.lOO.[3".,5t,1.0.LON]'s0033KI-DRAINAGE PLANSCALE; T=200'^Scale In Feet200 0 20060 0 60Scale In Metersi?04770Sheet I of I!N;y'y§11111§KIIPl1illIIII"III81is)5/13/OSgIIIfe^Qw^D0§~<s(^Drmmg Dots: 4/IS/OSD1 IrIIIII(I(ILIJIIA.1tenpsy.sP3!abif?"S^ i IIIF=5i^' =^i-I i ^ IN In I o-l^jjj^j^t0I]]Isr -iBsms\^^^^^MS-S^S-E-E^K^tee-^3^E-^&^^^^-y-^.^sw^Si^S^K.«^f^.«^»«^-E^..^C^^t^'?^=a: — ^ g ^,1t-5^|S-S/te-aE-EME\'^S-^S-E-Z-S-S-E-Z-SS-^s^i^-5-^^SS.E3^^nJ^LO.CO.LOOOt,,lO,CO.lON]^-im—sHs§_&3-3^0ieOsn"^fS^e3@3 EB33MTii3n3m-s3537I oBG''3aw'-%I I^^--^LriJ2-3MM3!i^®i-LUE;-Bg IIIinmII•^9,u.(saxa-idna) E^lC^Dia (s^x^^dna)/t5sa•^EM-*w"I^sufrASM^^SUM'ASMm0-,•-is<fSAI.<»i<f^/s,<*s'1&.sseli^s!RCt^ss:—^fusyif^-aseyL5^«^s^^^-^•5i<IssufcfiNaA^•fhsyf--~3SVr/f"I0&H^^••s^-^^s-ss^s-f^'.f-'s-iss^sMS-v^ss-e^^%tO5IZ^OZQZJ.l.tO.iOO[3^1,10.1 ON]E-'S-3-E-a!'-E;-S-*345-iS-12S-°a-a-£i--SS-Si-liS-E.j!^^^^•^^^^^^•^'^'^^^^^^^'^^^ -^Svs-g:li/)os^^gDRAINAGE PLANSCALE: 1"=200'zScale In Feet200 0 20060 0 60Scale In Meters,f04770Sheet I of Iu!N|!ig'l^l^11111§S5JIIlli!JiII1I?2Tig® S/13/Q5IsIs^Iss<^g^s-iIIp—1Q§gc^s~<sPSgc^Drswmg Sale: 4/IS/OSD1 nnnDRAINAGE CALCULATIONSWatershed #1nn[:I.uPre-Developed ConditionsFlow Length = 530.00Slope (%)= ,1.13Ccoeficient= < 0.20Cf = 1.00Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 37.19883Storm Return Interval =I (in/hr) for 10 year storm !=0.64t(-o'65)10^0.873241RATIONAL METHOD FOR CALCULATING FLOW RATERational Method = Q = C*1*AC coeficient:Cf =(in/hr) =»2iArea (ftz) =Total Runoff For 10yr Storm (ft3/s)0.201.000.87266080.00 = Area (AC)6.10831.06681L'JjJjJ nnnDetention Pond #1Rosa SubdivisionPark C=Area (Ft2) =Area (ac) =Total Area (ac)Weighted CRelease Rate (cfs)=Tc MethodI10 YearStorm!ength(min)10152021222324252627282930450.200.000.006.110.4641.067R3 Zone CArea (Ft2) =Area (ac) =0.35179170.004.11R 4 Zone CArea (Ft2) =Area (ac) =Stormintensity(In/Hr)TotalQ(ft3/s)Total RunoffVolume(ft3)ReleaseVolume(ft3)2.051.581.311.271.231.191.161.131.10i.^'.OS;.;.^1.051.031.000.775.8174.4703.7073.5923.4853.3853.2933.2073.1263.0502.9792.9122.8482.1883490.364022,564448.684525.304599.584671.704741.814810.054876.534941.375004.675066.525126.995908.74640.09960.131280.171344.181408.191472.201536.211600.211664.221728.231792.241856.251920.262880.390.60 Right of Way C0.00 Area (Ft2) =0.00 Area (ac) ===0.7086910.002.00RequiredStorage(ft3)"2850.283062.433168.513181.123191.393199.503205.613209.833212.313213.143212.433210.273206.743028.35OUTLET CONTROL STRUCTURE SIZINGAllowable Flow Rate Q (cfs) =Head above Weir Notch (ft) =Weir Coefficient =Length of Weir (ft) =Weir Equation = Q = (C)*(L)*(H)(3/2)Required Length (ft) =Required Length (in)0.17438372.09261.0671.503.331.00JJJ nnnnflnflnnA ppi^.Mniv"^.-A 1- lLiL^.i^JL^\.u[Iu:JJJJ nnnr[I[1rIIfDRAINAGE CALCULATIONSWatershed #1-1Flow LengthSlope (%) =C coeficient:Cf =115.001.000.351.10Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 14.34wu[IIIuL.jJJ nnn(I1111[1nnDRAINAGE CALCULATIONSWatershed #1-2Flow LengthSlope (%) =C coeficient =Cf =155.00^.000.351.10-To = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 15.651](IIIuuuuuu nn[]Ir-llIInnDRAINAGE CALCULATIONSWatershed #1-3Flow LengthSlope (%) =C coeficient:Cf =13.502.000.461.10Tc = (1.87*(1. 1 -C*Cf)(L)(1/2))/(s)(1/3)Tc (m!n)= 3.24u[IuuJJJ nn[;nn[111II[][1L[I/'.•-;,/^-0. ^€6:>^a.^ C^k i^^6h^ ^T^tmp#14Manning Pipe CalculatorGiven input Data:shape ........................... d rcularSolving for ..................... Depth of FlowDt ameter ........................ 15.0000 1 nFt owrate ........................ 1.0200 cfsSt ope ........................... 0.0050 ft/ftManning's n ..................... 0.0130computed Results:Depth ........................... 4.8175 InArea ............................ 1.2272 ft2Wetted Area ..................... 0.3402 ft2Wetted Perimeter ................ 18.0754 inPerimeter ....................... 47.1239 inVeloc-i ty ....;................... 2.9979 f psHydraut-ic Radius ................ 2.7106 InPercent Ful1 .................... 32.1165 %Full flow Flowrate .............. 4.5678 cfsFull f1ow velocity .............. 3.7221 f psCritical informationCritical depth .................. 4.7648 -incn t1cal s1ope .................. 0.0052 ft/ftCritical velocity ............... 3.0437 fpscritical area .."................. 0.3351 ft2Critical perimeter .............. 17.9624 inCritical hydraulic radius ....... 2.6866 inCritical top w-idth .............. 13.96691nSpecific energy ................. 0.5411 ftM-immum energy .................. 0.5956 ftFroude number ................... 0.9790Flow condition .................. subcntical[I[1ijLJPage 1 Hen[Ipi11111.J12a-^n o&^^Yi •7:f ^)TO^'^r^KK^,^ ir^'\tmp#15Mann-ing Pipe calculatorGiven input Data:Shape ........................... d rcularSolving for ..................... Depth of FlowDiameter ........................ 15.0000 inFlowrate ........................ 3.8300 cfsSlope ........................... 0.0050 ft/ftManning's n ..................... 0.0130Computed Results:Depth ........................... 10.5120 -i nArea ............................ 1.2272 ft2Wetted Area ..................... 0.9187 ft2Wetted Perimeter ................ 29.7608 InPer-i meter ....................... 47.1239 invelocity ........................ 4.1690 fpsHydraulic Rad-ius ................ 4.4451 InPercent Full .................... 70.0798 %Full flow Flowrate .............. 4.5678 cfsFull flow velocity .............. 3.7221 fpsCritical InformationCritical depth .................. 9.5688 inCritical slope .................. 0.0064 ft/ftCn'tical velocity ............... 4.6195 fpsCr-i t1cal area ................... 0.8291 ft2Critical per-imeter .............. 27.6995 inCn't-ical hydraulic radius ....... 4.3101 incn t1cal top w1dth .............. 15.0000 -i nSpecif-i c energy ................. 1.1380 ftM-immum energy .................. 1.1961 ftFroude number ................... 0.8652Flow condition .................. Subcn'ticalIIu[Ju[IuuPage 1 nnnnfiuIIn/'.^f-^J/\£)06rnft'-sf;7"Dri-^ ?f^tmp#16Manning Pipe calculatorGiven input Data:Shape ........................... C-i rcularSolv"i ng for ..................... Depth of Fl owDiameter ........................ 15.0000 1 nFlowrate ........................ 4.7600 cfsSlope ........................... 0.0050 ft/ftManning's n ..................... 0.0130Computed Results:Depth ........................... 12.9543 1 nArea ............................ 1.2272 ft2Wetted Area ..................... 1.1267 ft2Wetted Per-i meter ................ 35.7764 inPer-i meter ....................... 47.1239 1 nVelocity ........................ 4.2249 fpsHydraulic Rad-ius ................ 4.5348 inPercent Full .................... 86.3621%Full flow Flowrate .............. 4.5678 cfsFul1 f1ow vel oc1ty .............. 3.7221 f psCritical informationCritical depth .................. 10.8100-incn t1cal s1ope .................. 0.0068 ft/ft.Critical velocity ............... 4.9667 fpsCritical area ................... 0.9584 •ft2Cnt-ical perimeter .............. 30.1819 inCritical hydraul-ic radius ....... 4.5725 incn t1cal top w1dth .............. 15.0000 1nSpecific energy ................. 1.3015 ftMin-i mum energy .................. 1.3513 ftFroude number ................... 0.8291Flow condition .................. Subcrtt-icalu11uuu[jPage 1u nrnDRAINAGE CALCULATIONSWatershed #2nnniIJJuPre-Developed ConditionsFlow Length = 765.00Slope (%)= 1.30Ccoeficient= 0.20Cf = 1.00Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 42.65144Storm Return Interval =(in/hr) for 10 year storm l=Q.S4t(-065)^100.798953RATIONAL METHOD FOR CALCULATING FLOW RATERational Method = Q = C*!*AC coeficient:Cf =I (in/hr) =.2,Area (ff)0.201.000.80490865.00 = Area (AC) =•3/rt\ —11.2687Total Runoff For 10yr Storm (ff/s) = 1.80062711uu;JJJ nnDetention Pond #2Rosa SubdivisionPark C=Area (Ft2) =Area (ac) =Total Area (ac) =Weighted C =Release Rate (cfs)=Tc MethodI10 YearStormlength(min)5101516171819202122232425300.20 R3 Zone C263990.00 Area (Ft2) =6.06 Area (ac) =11.270.3261.8010.35 R4ZoneC= 0.60147580.00 Area (Ft2) = 0.003.39 Area (ac) = 0.00Stormintensity(In/Hr)TotalQ(ft'/s)Total RunoffVolume(ft3)ReleaseVolume(ft3)3.222.051.581.511.45m.4QV.1.351.311.271.231.191.161.131.0011.8197.5325.7875.5495.3355.1404.9634.8004.6504.5114.3834.2634.1523.6883545.554519.025208.075327.055441.295551.245657.295759.775858.975955.156048.526139.296227.646638.00540.191080.381620.561728.601836.641944.6812052.722160.752268.792376.832484.872592.902700.943241.13Right of Way CArea (Ft2) =Area (ac) =0.7079295.001.82RequiredStorage(ft3)"3005.373438.653587.503598.443604.653606.563604.573599.023590.183578.323563.663546.393526.703396.87OUTLET CONTROL STRUCTURE SIZINGAllowable Flow Rate Q (cfs) =Head above Weir Notch (ft) =Weir Coefficient =Length of Weir (ft) =1,312)Weir Equation = Q = (C)*(L)*(H)'Required Length (ft) = 0.2943355Required Length (in) = 3.53201.8011.503.331.00ili11u nnnDRAINAGE CALCULATIONSWatershed #2-1nnnnflFlow LengthSlope (%)C coeficientCf =115.001.00Q.351.10Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 14.3411[J11[][Jjj nn1[I(1I!IIDRAINAGE CALCULATIONSWatershed #2-2Flow Length =Slope (%) =C coeficient =Cf =110.001.000.351.10Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 14.02II11[IuLI[J'[\D n-nr -finf]•!^-.'^./•^^ ^.16/ri -rf "7:II11'7nuf^"C-i^^-^;-'1.r^tmp#17Manning Pipe CalculatorGiven input Data:Shape ........................... d rcularSolving for ..................... Depth of FlowDlameter ........................ 15.0000 -i nFlowrate ........................ 1.6900 cfsSlope ........................... 0.0050 ft/ftManning's n ..................... 0.0130Computed Results:Depth ........................... 6.31661nArea ............................ 1.2272 ft2Wetted Area ..................... 0.4908 ft2Wetted Perimeter ................ 21.1852 inPerimeter ....................... 47.1239 inVelocity ....;................... 3.4431 f psHydraulic Rad-ius ................ 3.3363 inPercent Full .................... 42.1108 %Full flow Flowrate .............. 4.5678 cfsFull flow velocity .............. 3.7221 fpsCritical informationCritical depth .................. 6.1923 1ncritical slope .................. 0.0054 ft/ftCn't-ical veloc-ity ............... 3.5350 fpsCritical area ./................. 0.4781 ft2Critical perimeter .............. 20.9332 inCritical hydraulic rad-ius ....... 3.2887 -inCrit-icat top width .............. 14.77021nSpeci" f1c energy ................. 0.7106 ftMinimum energy .................. 0.7740 ftFroude number ................... 0.9626Flow condit-i on .................. subcn" t-i cal111uuuuuuPage 1 nnnnnnnII[Ifi^<?ar^^/A5;i/1Iy^\•ro • ^a-r^K D ct^^ ^:~~\-rr ^tmp#18Manning Pipe CalculatorGiven input Data:shape ........................... d rcularsolving for ..................... Depth of FlowDt ameter ........................ 15.0000 -i nFt owrate ........................ 0.7800 cfsSlope ........................... 0.0075 ft/ftMann-ing's n ..................... 0.0130Computed Results:Depth ........................... 3.7836 i nArea ............................ 1.2272 ft2Wetted Area ..................... 0.2430 ft2Wetted Per-imeter ................ 15.7855 -inPerimeter ....................... 47.1239 invelocity ...;................... 3.2105 fpsHydraulic Radius ................ 2.2163 -inPercent Full .................... 25.2242 %Full flow Flowrate .............. 5.5943 cfsFull flow veloc-ity .............. 4.5587 fpsCritical informationcn tical depth .................. 4.1492 incr-i tical s1ope .................. 0.0052 ft/ftcritical veloc-ity ............... 2.8206 fpsCritical area .."................. 0.2765 ft2cr-itical perimeter .............. 16.6145 inCritical hydraulic rad-ius ....... 2.3968 InCn't-ical top width .............. 13.41971nSpecif-ic energy ................. 0-4755 ftM"im"mum energy .................. 0.5186 ftFroude number ................... 1.1965Flow condition .................. supercritical[I[jjjjJPage 1 f]nr -(Innf]IIn.^'[•--/•t*-^/? ^^' ^/./N^^H^]'^^.'•;- '^-rtmp#19Manning P-ipe CalculatorGiven input Data:Shape ........................... CircularSot ving for ..................... Depth of FlowDiameter ........................ 15.0000 -i nFlowrate ........................ 4.5200 cfsSlope ........................... 0.0050 ft/ftManning's n ..................... 0.0130Computed Results:Depth ........................... 12.1545 1nArea ............................ 1.2272 ft2wetted Area ..................... 1.0652 ft2Wetted Perimeter ................ 33.6044 inPerimeter ....................... 47.1239 ~\nveloc1ty ........................ 4.2433 fpsHydraul -i c Radi us ................ 4.5646 -i nPercent Full .................... 81.0297 %Full flow Flowrate .............. 4.5678 cfsFull flow velocity .............. 3.7221 fpsCritical Informationcn t1ca1 depth .................. 10.4981 1nCritical slope .................. 0.0067 ft/ftCritical velocity ............... 4.8818 fpscritical area .."................. 0.9259 ft2Critical perimeter .............. 29.5581nnCritical hydraul-ic radius ....... 4.5107 inCritical top width .............. 15.00001nSpecific energy ................. 1.2601 ftMi m" mum energy .................. 1.3123 ftFroude number ................... 0.8380Flow condition .................. Subcntlcal:)jJJJJpage 1 nr^DRAINAGE CALCULATIONSWatershed #3-1[In1iIILI[JuuuuPre-Developed ConditionsFlow Length = 625.00Slope (%)= 1.12Ccoeficient= 0.20Cf = 1.00To = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 40.51521Storm Return Interval =I (in/hr) for 10 year storm l=0.64t(-a65)100.826088RATIONAL METHOD FOR CALCULATING FLOW RATERational Method = Q = C*1*AC coeficientCf =(in/hr) =Area (ft2) =0.201.000.8396970.00 = Area (AC)t3/2.2261Total Runoff For 10yr Storm (ff/s) = 0.367794 nDetention Pond #3Rosa SubdivisionPark C=Area (Ft2) =Area (ac) =Total Area (ac) =Weighted C =Release Rate (cfs)=To Method[10 YearStormlength(min)5101112131415161718192025300.20 R3 Zone C51970.00 Area (Ft2) =1.19 Area(ac)=2.230.2700.3670,35 R4ZoneC= 0.6045000.00 Area (Ft2) = 0.001.03 Area(ac)= 0.00StormIntensity(In/Hr)TotalQ(ft'/s)Total Run offVolume(ft3)3.222.051.931.821.73;1.651.581.511.451.401.351.311.131.001.9321.2311.1571.0931.0380.9890.9460.9070.8720.8400.8110.7840.6790.603579.50738.60763.66787.27809.64830.92851.22870.67889.34907.31924.65941.401017.871084.94ReleaseVolume(ft3)110.10220.20242.22264.24286.26308.28330.30352.32374.34396.36418.38440.40550.50660.60Right of Way C= 0.70Area (Ft2) = 0.00Area (ac) = 0.00RequiredStorage(ft3)469.40518.40521.44523.03523.38522.64520.92518.35515.00510.95506.27501.00467.37424.34OUTLET CONTROL STRUCTURE SIZINGAllowable Flow Rate Q (cfs) =Head above Weir Notch (ft) =Weir Coefficient =Length of Weir (ft) =Weir Equation = Q = (C)*(L)*(H)(3/2)Required Length (ft) = 0.0599908Required Length (in) = 0.71990.3671.503.331.00JJJ nnInn11[I[IDRAINAGE CALCULATIONSWatershed #3-1Flow Length =Slope (%) =C coeficient =Cf -13.502.000.461.10Tc = (1.87*(1 -1-C*Cf)(L)<1/2))/(s)(1/3)To (min)= 3.24[j[Iuuuuuu nnr-DRAINAGE CALCULATIONSWatershed #3-2[1nfl[i[IFlow LengthSlope (%) =C coeficientCf =115.001.000.351.10Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc (min)= 14.34II[II)uuu[Ju nnrI[1nI![1(I[1DRAINAGE CALCULATIONSWatershed #3-3Flow LengthSlope (%) =C coeficient:Cf =145.001.000.351.10Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)<1/3)Tc(min)= 16.10Du[IIIuuuuu nn11nnnnII11-^•6-Kf"*"'•'<. / ./ "L?ct6/'nz/^Ti--,'7"~0^QYW;'f?''^rtmp#20Manning Pipe CalculatorGiven input Data:Shape ........................... d rcularSolving for ..................... Depth of FlowDiameter ........................ 15.0000 inFlowrate ........................ 0.4900 cfsSlope ........................... 0.0100 ft/ftManning's n ..................... 0.0130Computed Results:Depth ........................... 2.795iinArea ............................ 1.2272 ft2Wetted Area ..................... 0.1579 ft2wetted Perimeter ................ 13.3904 -inPerimeter ....................... 47.1239 InVeloc-ity ........................ 3.1037 fpsHydraulic Radius ................ 1.69781nPercent Full .................... 18.6342 %Full flow Flowrate .............. 6.4598 cfsFull flow velocity .............. 5.2639 fpsCnt-ical informationcritical depth .................. 3.2687 inCr-i t-i cal s1ope .................. 0.0053 ft/ftCritical velocity ............... 2.4812 fpscr-i t1 cal area ..'................. 0.1975 ft2Critical perimeter .............. 14.5706 InCritical hydraulic rad-ius ....... 1.9517 incn t-i cal top w1dth .............. 12.3849 1nSpecific energy ................. 0.3826 ftMin-i mum energy .................. 0.4086 ftFroude number ................... 1.3587Flow condition .................. supercnticalj;jJJjPage 1 I0nrnIIItI;IIDRAINAGE CALCULATIONSWatershed #3-2Pre-Developed ConditionsFlow Length = 815.00Slope (%)= 1.05Ccoeficient= Q.20Cf = 1.00Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 47.27155Storm Return Interval =I (in/hr) for 10 year storm I=0.64t(-°-65)100.747289RATIONAL METHOD FOR CALCULATING FLOW RATERational Method = Q = C*1*AC coeficient =Cf =I (in/hr) =Area (ft2) =0.201.000.75324050.00 = Area (AC)7.4391Total Runoff For 10yr Storm (ft3/s) = 1.111836uuuuu nnnDetention Pond #4Rosa SubdivisionPark C =Area (Ft2) =Area (ac) =Total Area (ac) =Weighted C =Release Rate (cfs)=Tc MethodI10 YearStormlength(min)51015202526.27^282930354045500.20 R3 Zone C99815.00 Area (Ft2) =2.29 Area (ac) =7.440.3961.1100.35 R4ZoneC= 0.60138615.00 Area (Ft2) = 0.003.18 Area(ac)= 0.00StormIntensity(In/Hr)TotalQ(ft3/s)Total RunoffVolume(ft3)ReleaseVolume(ft3)3.222.051.581.311.131.10t.O&l1.051.031.000.910.830.770.729.4886.0464.6463.8533.3333.2493.1703.0963.0262.9612.6782.4562.2752.1242846.333627.834180.984623.884999.495068.595135.985201.785266.065328.925624.325893.426141.456372.15333.00666.00999.001332.001665.001731.601798.201864.801931.401998.002331.002664.002997.003330.00Right of Way CArea (Ft2) =Area (ac) =0.7085620.001.97RequiredStorage(ft3)"2513.332961.833181.983291.883334.493336.993337.783336.983334.663330.923293.323229.423144.453042.15OUTLET CONTROL STRUCTURE SIZINGAllowable Flow Rate Q (cfs) =Head above Weir Notch (ft) =Weir Coefficient =-ength of Weir (ft) =(3/2)Weir Equation = Q = (C)*(L)*(H)required Length (ft) = 0.1814437Required Length (in) = 2.1773LIu1.1101.503.331.00 ...'" ., I ;11 6-an^-nD&6^-^^)——.',^v./; iu.^t€'??\s'//1^?f •nn[1[I(1[J11IIu11uuLJutmp#21Manning Pipe CalculatorGiven input Data:Shape ........................... c-i rcutarSolving for ..................... Depth of FlowDiameter ........................ 15.0000 inFt owrate ........................ 2.9000 cfsSlope ........................... 0.0050 ft/ftManm ng's n ..................... 0. 0130computed Results:Depth ........................... 8.6776 I nArea ............................ 1.2272 ft2Wetted Area ..................... 0.7357 ft2Wetted Perimeter ................ 25.9269 inPerimeter ....................... 47.1239 inVelocity ........................ 3.9416 f psHydraulic Radius ................ 4.0864 inPercent Full .................... 57.8504%Full flow Flowrate .............. 4.5678 cfsFull flow velocity .............. 3.7221 fpsCritical InformationCritical depth .................. 8.2216 inCnt-ical slope .................. 0.0059 ft/ftcritical velocity ............... 4.2105 fpscr-i t-i cal area ................... 0.6888 ft2critical perimeter .............. 25.00511nCritical hydraulic radius ....... 3.9664 -inCritical top width .............. 15.0000-inSpecific energy ................. 0.9641 ftMinimum energy .................. 1.0277 ftFroude number ................... 0.9063Flow condition .................. Subcnti'catPage 1 nnn/fiunn11[1[Iuy.t'c-1/".;»l6/r•^•&,rV•^£.—^.(/''^ nd/'•^:^ "-'ntmp#22Manning Pipe CalculatorGiven input Data:Shape ........................... CircularSolving for ..................... Depth of FlowDiameter ........................ 15.0000 inFlowrate ........................ 4.2200 cfsSlope ........................... 0.0050 ft/ftManning's n ..................... 0.0130computed Results:Depth ........................... 11.3787 inArea ............................ 1.2272 ft2Wetted Area ..................... 0.9988 ft2Wetted Perimeter ................ 31.7149 inPerimeter ....................... 47.1239 inVelocity ....;................... 4.2250 fpsHydraulic Radius ................ 4.5351 inPercent Full .................... 75.8581 %Full flow Flowrate .............. 4.5678 cfsFull ft ow veloc-i ty .............. 3.7221 f psCnticat Informationcn t1cal depth .................. 10.1003 incritical slope .................. 0.0066 ft/ftCrit-ical velocity ............... 4.7713 f psCritical area .."................. 0.8845 ft2cn'tical penmeter .............. 28.7625 InCritical hydraulic rad-ius ....... 4.4280 inCr-itical top w-idth .............. 15.0000 -inSpec-i f1c energy ................. 1.2076 ftMim'mum energy .................. 1.2625 -FtFroude number ................... 0.8495Flow condition .................. SubcnticaljJjJJPage 1 nr~f:[III1[I[1nI][IIIuLIuuuu0DRAINAGE CALCULATIONSWatershed #4Pre-Developed ConditionsFlow LengthSlope (%) =C coeficientCf =890.001.150.201.00To = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc (min)= 47.92328Storm Return Interval =I (in/hr) for 10 year storm !=0.64t(-°'65)100.740667RATIONAL METHOD FOR CALCULATING FLOW RATERational Method = Q = C*1*AC coeficient:Cf =I (in/hr) =Area (ft2) =0.201.000.74474050.00 = Area (AC)t3(10.8826Total Runoff For 10yr Storm (ff/s) = 1.612084 nnnDetention Pond #5Rosa SubdivisionPark C =Area (Ft2) =Area (ac) =Total Area (ac) =Weighted C =Release Rate (cfs):Tc Method10 YearStormlength(min)10203035404142434445505560so0.20 R3 Zone C40660.00 Area (Ft2) =0.93 Area (ac) =10.880.5961.6120.350.000.00R 4 Zone CArea (Ft2) =Area (ac) =StormIntensity(In/Hr)TotalQ(ff/s)Total RunoffVolume(fty)ReleaseVolume(ft3)2.051.311.000.910.830.820.810.790.780.770.720.680.640.4913.3048.4786.5145.8935.4035.3175.2345.1555.0795.0054.6744.3934.1513.1907982.3910174.0411725.3412375.3312967.4313079.9913190.7713299.8513407.3013513.1714020.7914496.3914944.6517223.36967.251934.502901.753385.383869.003965.734062.454159.184255.904352.634836.255319.885803.508705.250.60 Right of Way C= 0.70289565.00 Area (Ft2) = 143825.006.65 Area (ac) = 3.30RequiredStorage(ft3)7015.148239.548823.598989.959098.439114.269128.329140.689151.409160.55&184.549176.519141.158518.11OUTLET CONTROL STRUCTURE SIZINGAllowable Flow Rate Q (cfs) =Head above Weir Notch (ft) =Weir Coefficient =Length of Weir (ft) =Weir Equation = Q = (C)*(L)*(H)'^(3/2)Required Length (ft)Required Length (in)0.26351573.16221.6121.503.331.00JjJ nnnn[]f][1nnnDRAINAGE CALCULATIONSWatershed #4-1Flow LengthSlope (%) =C coeficient =Cf =13.502.000.461.10Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc (min)= 3.24[I[I11[juuuu nnnn[j11f]nDRAINAGE CALCULATIONSWatershed #4-2Flow LengthSlope (%) =C coeficient --Cf =280.001.000.601.10:Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(m'n)= 13.77DIJJJJ nnn[ln[1II[I[IfirDRAINAGE CALCULATIONSWatershed #4-3Flow LengthSlope (%) =C coeficient:Cf =285.001.000.601.10Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 13.89L.JJJjjJ nrnnflflIIIIflnDRAINAGE CALCULATIONSWatershed #4-4Flow Length =Slope (%) =C coeficient =Cf =285.001.000.601.10Tc = (1.87*(1.1-C*Cf)(L)(1/2))/(s)(1/3)Tc(min)= 13.89(I1.1[jijJJJJ .-'J-,^. (.'.^^J^-.'1 ~^•A.:t\5-;"./^^cy'rc,i'--*<rf .^ _^^•^^•'e •'nf'/y^nn0nn[I[I[Itmp#23Manning P-ipe CalculatorGiven Input Data:shape ........................... CircularSolving for ..................... Depth of FlowDiameter ........................ 15.0000 -i nFlowrate ........................ 3.0600 cfsSlope ........................... 0.0050 ft/ftManm ng's n ..................... 0. 0130Computed Results:Depth ........................... 8.9831 1 nArea ............................ 1.2272 ft2Wetted Area ..................... 0.7671 ft2wetted perimeter ................ 26.5479 inPerimeter ....................... 47.1239 inVet oci ty ...................... 3.9892 f psHydraulic Radius ................ 4.1607 -inPercent Full .................... 59.8875 %Full flow Flowrate .............. 4.5678 cfsFull flow velocity .............. 3.7221 f psCr-itical Informationcn t1cal depth .................. 8.4626 incr-it-ical slope .................. 0.0060 ft/ftCritical velocity ............... 4.2865 fpscn t1cal area ................... 0.7139 ft2Critical per-imeter .............. 25.4872 incnti'cal hydraul-ic radius ....... 4.0333 incn tical top w1dth .............. 15.0000 inSpecif1c energy ................. 0.9950 ftMinimum energy .................. 1.0578 ftFroude number ................... 0.8988Flow condition .................. SubcnticalJJJJJPage 1J .'^/ch /S^S^ "U ^ftSYar^ /%^ ^-Inr-nnf:[iIIntmp#36Manning Pipe CalculatorGiven Input Data:Shape ........................... d rcularsolving for ..................... Depth of FlowDiameter ........................ 15.0000 i nFlowrate ........................ 2.2100 cfsSlope ........................... 0.0050 ft/ftManm ng's n ..................... 0. 0130Computed Results:Depth ........................... 7.3567 -inArea ............................ 1.2272 ft2wetted Area ..................... 0.5987 ft2wetted Perimeter ................ 23.2753 -inperimeter ....................... 47.1239 invel oc-i ty ....................... 3.6915 f psHydraulic Radius ................ 3.70381npercent Full .................... 49.0447 %Full flow Flowrate .............. 4.5678 cfsFull f1ow veloc1ty .............. 3.7221 fpsCritical informationcritical depth .................. 7.1236 Incn t1cal slope .................. 0.0056 ft/ftcritical velocity ............... 3.8475 fpscnt-ical area ................... 0.5744 ft2critical perimeter .............. 22.8088 incritical hydraulic rad-ius ....... 3.6264 -incr-i t1 cal top w1 dth .............. 14.9811 inSpecific energy ................. 0.8248 ftMinimum energy .................. 0.8904 ftFroude number ................... 0.9403Flow cond-it-ion .................. Subcn'tlcalII[JuuuuuuPage 1 ^L'^fCh ^e-S)^ ^/J- /^ ^/^^^ f'^0nr'r-nJ[J1)[juuu[Juutmp#41Manning P-ipe CalculatorGiven input Data:shape ........................... d rcularSolv1ng for ..................... Depth of FlowDiameter ........................ 15.0000 1 nFlowrate ........................ 2.0100 cfsSlope ........................... 0.0050 ft/ftManning's n ..................... 0.0130Computed Results:Depth ........................... 6.9642 inArea ............................ 1.2272 ft2wetted Area ..................... 0.5578 ft2Wetted Perimeter ................ 22.4894 inPerimeter ....................... 47.1239 invelocity ........................ 3.6033 fpsHydraulic Radius ................ 3.5718 InPercent Full .................... 46.4280 %Full flow Flowrate .............. 4.5678 cfsFull flow veloc-ity .............. 3.7221 fpscritical informationCn't-ical depth .................. 6.7789 -incnt-ical slope .................. 0.0055 ft/ftCritical velocity ............... 3.7320fp5Critical area ................... 0.5386 ft2Critical perimeter .............. 22.1175 inCnt-ical hydraulic radius ....... 3.5066 1nCritical top width .............. 14.93051nSpecific energy ................. 0.7821 ftM-immum energy' .................. 0.8474 ftFroude number ................... 0.9497Flow condition .................. Subcn't-icalPage 1 rj>/^r/"7 nn ^. Tv ^^/^ 43 ^^/-^GJnnnnrtmp#42Manning P-ipe CalculatorGiven input Data:Shape ........................... d rcularSolving for ..................... Depth of FlowD-i ameter ........................ 15.0000 1 nFlowrate ........................ 4.2200 cfsSlope ........................... 0.0050 ft/ftManning's n ..................... 0.0130Computed Results:Depth ........................... 11.3787 inArea ............................ 1.2272 ft2Wetted Area ..................... 0.9988 ft2Wetted Perimeter ................ 31.7149 inPerimeter ....................... 47.1239 inVelocity ........................ 4.2250 fpsHydraulic Radius ................ 4.5351 inPercent Full .................... 75.8581%Full flow Ffowrate .............. 4.5678 cfsFull flow velocity .............. 3.7221 fpsCritical informationCr-itlcal depth .................. 10.1003 incn t-i cal s1ope .................. 0.0066 ft/ftCritical velocity ............... 4.7713 fpscritical area ................... 0.8845 ft2Critical perimeter .............. 28.7625 inCritical hydraulic rad-ius ....... 4.4280 incn t1 cal top w-i dth .............. 15.0000 inSpecific energy ................. 1.2076 ftM-immum energy .................. 1.2625 ftFroude number ................... 0.8495Flow condition .................. Subcnti'calu[JuuuuuPage 1 f. L.^c'nlUf-S^ 'YJr^ c^»7c-^ xj^s^ //Inrnnnrrtmp#43Manning P-ipe CalculatorGiven input Data:Shape ........................... d rcularSolving for ..................... Depth of FlowD-i ameter ........................ 18.0000 1 nFt owrate ........................ 10.2100 cfsSlope ........................... 0.0100 ft/ftManm ng's n ..................... 0. 0130Computed Results:Depth ........................... 14.3184 I nArea ............................ 1.7671 ft2Wetted Area ..................... 1.5073 ft2Wetted Perimeter ................ 39.6542 -inPerimeter ....................... 56.5487 1nVeloc-ity ........................ 6.7735 fpsHydraulic Radius ................ 5.4738 1nPercent Full .................... 79.5466%Full flow Flowrate .............. 10.5043 cfsFull flow velocity .............. 5.9442 f psCritical informationcn tical depth .................. 15.4824 1nCnt-ical slope .................. 0.0071 ft/ftcritical velocity ............... 6.0276fp5critical area ................... 1.6939 ft2Critical perimeter .............. 41.2390 inCritical hydraulic radius ....... 5.9147 incn t1cal top width .............. 18.0000 1nSpecific energy ................. 1.8876 ftMln-imum energy .................. 1.9353 ftFroude number ................... 1.2260Flow condition .................. supercr-iticalu[]uuuuPage 1 nnnf]GnnflIII]L^^TC^i 0^^ ^// //» ^eX^-^/^^ fff^c/ 1*^-tmp#44Manning Pipe calculatorGiven input Data:Shape ........................... d rcularSolving for ..................... Depth of FlowDiameter ........................ 18.0000 inFlowrate ........................ 11.4100 cfsSlope ........................... 0.0150 ft/ftManm ng's n ..................... 0. 0130computed Results:Depth ........................... 13.1883 -i nArea ............................ 1.7671 ft2Wetted Area ..................... 1.3875 ft2Wetted perimeter ................ 36.9871 -inPerimeter ....................... 56.5487 inVelocity ........................ 8.2232 fpsHydraul-ic Radius ................ 5.4020 inPercent Full .................... 73.2682 %Full flow Flowrate .............. 12.8651 cfsFull flow velocity .............. 7.2802 fpsCritical informationcritical depth .................. 16.5243 -inCritical slope .................. 0.0074 ft/ftCritical velocity ............... 6.2551 fpsCritical area .."................. 1.8241 ft2Critical perimeter .............. 43.3230 inCritical hydraul-ic radius ....... 6.0631 -inCritical top width .............. 18.00001nSpec-i f1c energy ................. 2.1481 ftM-im'mum energy .................. 2.0655 ftFroude number ................... 1.5287Flow condition .................. Supercn'tical[J[Juu'jPage 1