Loading...
HomeMy WebLinkAbout08 - Design Report - Norton East Ranch Ph 1 - Stormwater ENGINEERING INC . C,5�f cl A Consulting Engineers and Land Surveyors !1� In Stormwater Management Design Report For Norton East Ranch Subdivision, Phasel Bozeman, Montana Januar Y 2008 \``�\\\N 0N7'rt/N� ' REVISED 4/30/08 R oo E.I. No. BOZ-07004.01 = oA is • - �•, . 13975PE .w 0,�..�� Prepared for: Norton Properties, LK inn►► 63020 Lower Meadow Road, Suite A Sf b 08 Bend, OR 97701 705 Osterman Drive, Suite F Bozeman, MT 59715 Phone 406.522.9876 Fax 406.922.2768 info.bozeman@enginc.com www.enginc.com Norton East Ranch Subdivision, Phase 1 Bozeman, Montana Stormwater Management Design Report Table of Contents I. INTRODUCTION.......................................................................................................................... 1 II. EXISTING SITE CONDITIONS..............................................................................................2 III. PROPOSED SITE CONDITIONS............................................................................................2 IV. HYDROLOGICAL METHODOLOGY...................................................................................3 V. STORMWATER ANALYSIS AND DESIGN......................................................................... 3 VI. CULVERT DESIGN....................................................................................................................... 5 VII. MAINTENANCE CONSIDERATIONS................................................................................ .6 VIII. CONCLUSION................................................................................................................................. 7 REFERENCES List of Tables Table 1 1O year, 2 bour Pre-Developed Peak Flow Calculations .............................................................4 Table 2 Detention Pond Storage Calculations........................................................................................... 5 Appendices AppendixA Vicinity Map Drainage Basin Map Storm Seaver Layout Appendix B Detention Pond Calculations Inlet&Gutter Calculations Pipe Suing Calculations Culvert Suing Calculations Gutter Capacity Calculations Outfall Structure Suing Sidewalk Chase Si.Zing P:BOZ-07004.01 1 A A ENGINEERING, INC. Consulting Engineers and Land Surveyors January 2008 REVISED 4/30/08 E.I. No.BOZ-07004.01 STORMWATER MANAGEMENT DESIGN REPORT FOR NORTON EAST RANCH SUBDIVISION, PHASE 1 BOZEMAN, MONTANA I. INTRODUCTION The Norton East Ranch Subdivision—Phase I is a proposed residential development situated on approximately 39.386 acres in Bozeman,Montana. The development is located in Section 9, Township 2 South,Range 5 East,Principal Meridian Montana, Gallatin County,Montana, as shown on the Vicinity Map in Appendix A. It is generally bounded by Babcock Street to the north, Fallon Street to the south and Laurel Parkway on the west. The development is planned for 314 residential dwelling units. The subject property is currently owned by: °le Norton Properties 63020 Lower Meadow Road, Suite A Bend, OR 97701 The purpose of this report is to analyze the stormwater drainage characteristics for the site and determine the appropriate stormwater management facilities required for the development,as required by state and local regulations. This analysis is being completed for the road and utility design submittal. The design standards governing this project are found in City of Bozeman Design Standards and Specifications Policy,March 2004, and any addenda thereto. P:BOZ-07004.01_STORM_REPORT_NORTON 1 705 Osterman Drive,Suite F • Bozeman,Montana 59715 ■ Phone(406)522-9876 ■ Fax(406)922-2768 ■ www.enginc.com II. EXISTING SITE CONDITIONS Site Features and Vegetation Currently, the property consists primarily of pasture land for grazing. The land is not being used for agricultural production at this time. The topography across the site slopes to the northwest at an approximate grade of 1-3%. There are approximately 4.02 acres of delineated wetlands situated on the northwest part of the property. Soils and Groundwater The Natural Resources Conservation Service (MRCS) Soil Survey had identified four soil types for the property:: Hyalite-Beaverton Complex (448A), Enbar Loam (509B),Meadowcreek Loam (510B), and Hyalite-Beaverton Complex (748A). These soils correlate to hydrologic group C (clay loam, shallow sandy loam, soils low in organic contents, soils usually high in clay). According to a Geotechnical Investigation,prepared by Ri izrock Engineering, Inc. in April 2007, the following soil horizons were observed on the subject parcel. The top one foot was comprised of topsoil and vegetation. This horizon was underlain by a layer of lean clay and sandy lean clay ranging from 1.5 feet to 3 feet below the existing grades. Beneath the clay layer was gravel with sand and cobble that extended to the explored depth of 14.5 feet. Information obtained from Montana's Ground-Water Information Center (GWIC) website indicates that the static water level in the area of the proposed development ranges in depth from 50 feet to two feet below existing ground surfaces. The average groundwater depth was 11.24 feet. Six groundwater wells were installed on the project site in December 2006. The wells indicate a static groundwater level of 1.5'below existing ground surfaces in the northwest corner. III. PROPOSED SITE CONDITIONS As previously mentioned, the development consists of a total of 314 dwelling units — including single family, duplex and multi-family units. Proposed site improvements include the construction of water and sewer mains, paved roads with curb and gutter, and storm drainage facilities, where necessary. All roads are proposed to be constructed to a crowned section with a three percent cross slope. Roadway drainage will be collected and conveyed via curb and gutter, curb inlets, and detention ponds. All local interior roads will be paved to a 33-foot wide section to back of curb. Laurel Parkway and Babcock will be paved to a 45-foot wide section to back of curb. Boulevard and sidewalk width vary between the two street sections. In general, the roads running north-south flow to the north at grades ranging from approximately 1% to 2%. The east-west roads vary from running parallel to the contours to a slight grade to the northwest. These roads have a minimum of 0.5% grade with high and low points to maintain minimum grades. Valley gutters are used to convey east-west stormwater across north-south running roads. In some areas, the east-west roads have been designed to flow to the north-south roads with valley gutters utilized to convey east-west stormwater to the north. P:BOZ-07004.01_STORM REPORT NORTON 2 IV. HYDROLOGICAL METHODOLOGY The calculations and recommendations within this report are based on the regulations set forth in the City of Bozeman Design Standards and Specifications Policy,March 2004, and any addenda thereto. Stormwater management will be addressed with the following conveyance facilities: surface flow, drainage swales, curb inlet,pipe conveyance and detention or retention ponds. Both open space within the development and offsite areas will be utilized for detention pond storage. All offsite detention ponds will be located on easements located outside of the public right-of-way. The Rational Method was used to determine the pre-developed release rate and,in turn, the developed minimum required storage volume. All calculations associated with the release rate and required storage volumes were based on a 10-year, 2-hour storm event. The conveyance facilities, described further in this report, are based on a 25-year, 2-hour storm event. V. STORMWATER ANALYSIS AND DESIGN The Rational Method was used to analyze stormwater runoff under conditions which include the property in both a pre-developed and developed state. Runoff Coefficient (C) Runoff coefficients were used from Table I-1 of the City of Bozeman Design Standards and Specifications Policy. A runoff coefficient of 0.20 was used for open land conditions and 0.50 was used for dense residential for developed conditions. Intensity (i) Rainfall intensity values were determined by using the Rainfall Intensity-Duration Curves (IDF) (Figures I-2 and I-3) from the City of Bozeman Design Standards and Specifications Policy. From the curves, specific intensities equal to the time of concentration were determined and used for peak flow calculations (see Appendix B for calculations). Time to Concentration (Tc) Time to concentration for overland flow for each drainage basin was calculated using the Figure I-1 for distances less than 1200 feet. For distances greater than 1200 feet, the TR-55 method for shallow concentrated flow was used (see below). These times were then summed for a total time to concentration for each basin. Shallow Concentrated Flow (Channel Flow) To calculate shallow concentrated flow the TR-55 method assumes that sheet flow becomes shallow concentrated flow after a ma�citnutt�f-300-feet.- The average velocity is derived as a function of water course slope and land use. The relationship is expressed as: V = k(100s)0.5 where: V = average velocity (ft/sec) k = land use parameter (see Table 3-12, McCuen,page 121) s = average land slope (ft/ft) P:BOZ-07004.01_STORM_REPORT_NORTON 3 The travel time for shallow concentrated flow is then calculated as: T, = L / (3600V) where:t, = time of travel for shallow concentrated flow (hours) L = flow length (ft) V = average velocity (ft/sec) Drainage Basins/Peak Flow Calculations Drainage areas which contribute runoff to the proposed development were delineated and analyzed for developed conditions to aid in the sizing of detention or retention ponds, culverts, and storm drainage conveyance facilities. Seven onsite drainage basins were delineated on the property. Each basin contributes storm runoff to a detention pond down gradient of the drainage basin. These basins are identified numerically, 1- 'IX(see Drainage Basin Map in Appendix A of this report). Additionally, three offsite drainage basins (OS-1 - OS-3) were delineated for the extensions of West Babcock Street and Fallon Street. Pre- development peak flow calculations were made for each basin for the 10 year,2 hour storm event. Detailed calculations are provided in Appendix B and are summarized in Table 3 below. Table 1 - 10 Year, 2 Hour Pre-Developed Peak Flow Calculations Area Rainfall Peak Basin Description (acres) C Intensity Discharge in/hour cfs 1 Open Land 5.278\ 0.20 1.00 1.06 2 Open Land �.10.386`' 0.20 0.96 2.00 3 Open Land 2.116 0.20 0.82 0.35 4 Open Land 18.576 ! 0.20 0.73 2.71 5 Open Land 0.992 0.20 ! 0.41 i 6 Open Land f 3.057 0.20 A76 0.60 7 Open Land W.917) 0.20 0.41) OS-1 Open Land 1.436 0.20 1.13 0.32 OS-2 Open Land 1.06 0.20 0.82 0.17 OS-3 Open Land 1.01 0.20 1.93 0.39 i Detention Pond Sizing a Ac �'��Ac(�,�,�} J 45, 39�c ✓s 41,71 Ac The City of Bozeman Design Standards and Specifications Policy requires that detention basins be designed to accommodate the difference in peak runoff between the pre-development and post- development 10-year design storm while limiting the release rates to pre-development runoff rates. The required storage is determined by subtracting the total basin release volume from the runoff volume at different storm intervals. The pond locations are shown on the attached Drainage Basin Map. A minimum basin area of 145 square feet per 1 cfs release rate is required for sediment control. Each detention pond will have an outlet pipe with an orifice plate sized to convey the pre- development flow from the 10-year, 2-hour storm event. The volumes of the ponds are shown in Table 2 below. The pond depth totals 2.5 feet-allowing for 1.5 feet of storage, as acceptable by City design standards, and one foot of freeboard. Due to high static groundwater levels in the northwest corner of the subdivision,Ponds 3, 4, 6, any 7 ere designed with an overall depth of 1.5 P:BOZ-07004.01 STORM REPORT NORTON 4 feet by eliminating the one foot of freeboard. The ponds were intentionally oversized, as shown in Table 2, to account for the lack of freeboard. The bottom of the outlet control structures on the shallow ponds will be sunk down below the pond bottom,with the inlet grate being located at the pond bottom elevation,to allow for the "T" fitting to be included. The sides of the ponds will be sloped to finished grade at 4H:1V slope. Detailed calculations are provided in Appendix B. Table 2—Detention/Retention Pond Volumes Pond Min. Required Pond Volume Pond Min. Required Pond Volume Storage Vol. c (c Storage Vol. c c 1 2,885 2,903 6 1,941 3,415 2 5,807 6,071 7* 1,353 Vs o 3 2 2,156 3 1,291 2,985 OS-1 1,819 1,952 4 12,058 16,288 OS-2 1,597 1,736 5* 1,440 1,482 OS-3 960 1,130 Ponds 5 and 7 are retention ponds. Roadside Drainage and Gutter Capacity Calculations The impact of storm water runoff on roadways is also an important design consideration. The City of Bozeman Design Standards and Speczfzcations Policy provides that for city streets, the flow in the gutters shall not be greater than 0.15 feet below the top of curb. Using this criteria, the available gutter capacity was calculated using Mannines Formula for the roadways running north-south and east-west (see Appendix B for Calculations). A 3%pavement crown slope was used as required by City design standards. Inlet Spacing and Capacity Calculations The proposed roadway design for the local streets includes 33-feet to back of curb,boulevard and sidewalk. Laurel Parkway and West Babcock Street will be paved to a 45-foot wide section to back of curb with a boulevard and sidewalk on each side of the road. Storm water runoff will be captured from the local streets through the use of storm drain inlets and direct it to the proposed detention ponds draining on-site basins. The location of curb inlets and storm sewer mains are shown on the Storm Sewer exhibit located in Appendix A of this report. Similarly, storm drain inlets will be used to capture runoff from West Babcock Street and Fallon Street (basins OS-1 - OS-3). The runoff will then be directed to the offsite ponds. Inlet spacing calculations were performed to determine minimum?,pacing requirements throughout the development. The analysis included determining allowable capacity of both gutter and curb inlets. VI. CULVERT DESIGN Culverts will be installed in four locations along West Babcock Street and in one location along Fallon Street. Two 40" x 65" arch RCP culverts will e,installed across Fallon Street and West Pik- Babcock Streets to convey water from Baxter Creek. -Tlte culverts ve a design capacity of 150 cfs which exceeds the 25-year storm flow of 148 cfs from Baxter Creek. A second 40" x 65" arch RCP culvert will be installed in both locations to provide 100% overflow protection. P:BOZ-07004.01 STORM REPORT NORTON 5 In addition to the Baxter Creek culvert on West Babcock, a 12" RCP culvert was installed to provide connectivity to the wetlands near the northwest corner of Phase 1. The culvert has a design capacity of 3.57 cfs, which is more than adequate according to Barbara Vaughn, who prepared the wetland study for this project. There is natural swale, with no apparent beginning or end, that is currently passed under the existing two track road via an 18" CMP culvert. This culvert will be removed and replaced with an 18" RCP culvert with a design capacity of 10.03 cfs. Finally, a 36" RCP arch equivalent culvert will convey water from Baxter Ditch under West Babcock Street, just west of the intersection with Cottonwood Road. The culvert size matches the existing culvert immediately upstream from the crossing and a crossing into the soccer park just south of Durston Road. This culvert has a design capacity of 26.51 cfs. Detailed calculations are included in Appendix B of this report. VII. MAINTENANCE CONSIDERATIONS The storm drainage system within the Norton East Ranch Subdivision—Phase 1 is defined as a private and public system. The storm drainage facilities that he within the publicly dedicated right- of-ways are defined as public systems. The public systems shall be maintained by the City of Bozeman. The private system, those facilities that do not he within the publicly dedicated right-of- way,including the retention and detention ponds, will be maintained initially by the developer and then the Homeowner's Association, once established. Due to sediment in the storm runoff and other variables,regular maintenance will be required by the City to maintain proper performance of the conveyance network. The following steps are minimum requirements for the maintenance of the storm facilities. Inspection Program—On an annual basis, the following elements of the stormwater facilities should be inspected for excess sedimentation: 1) Curb Cut Openings 2) Drainage Swales d 0 A 3) Detention Ponds 4) Catch Basins Maintenance Program—The following maintenance measures should be completed based on the inspection program: 1) Curb Cut Openings—excess sedimentation should be removed manually. 2) Drainage Swales—swales should be mowed when necessary and any excess sedimentation 1 removed. 3) Detention Ponds—a stake should be set six inches above the original bottom of the basin. If sediment is over the stake,it should be removed and the basin should be re- vegetated according to the original landscape plan. 4) Catch Basins—excess sedimentation should be removed either manually or with a vacuum truck and flushed. P:BOZ-07004.01_STORM REPORT NORTON 6 VIII. CONCLUSION The included analyses and calculations show that the proposed storm water management system for the Norton East Ranch Subdivision,Phase 1 development will adequately handle the 10-year and 25-year storm events. Available inlet capacity will limit encroachment of runoff on pavement surfaces to acceptable levels. REFERENCES 1.City Engineering Division. (2004). Design Standards and Specifications Policy and any addenda thereto. Bozeman, MT:Author. 2.Lindeburg, Michael R.,PE. (2003). Civil Engineering Reference Manual for the PE Exam, Ninth Edition. Belmont, CA:Professional-Publications,Inc. 3.McCuen,Richard H. (1998).Hydrologic Analysis and Design.Second Edition.Upper Saddle River,NJ:Prentice Hall. 4.Montana Department of Transportation. (1998).AASHTO Model Drainage Manual.Chapters 7,9-10 5.United States Department of Agriculture. Natural Resources Conservation Service. Conservation Engineering Division. (1986).Urban Hydrology for Small Watersheds:TR-55.Washington,DC:Author. P:BOZ-07004.01_STORM REPORT NORTON 7 Appendix A Vi6inlo and Drainage Basin Ma ps NORTON RANCH SUBDIVISION — PHASE 1 GALLATIN COUNTY, MONTANA _ --4- g T 3 T III7p 1 6 i9 U $- btmsrcwewn — 178 T ITE000 Ulu ' 1 I 1 4786AT IN BABCQCK $ ITE g is 01 _ie ,lV i WJ Ho 49 1 � .I• Q 9 191 • •1 ra: t VQ n ds t I I �luu p As n — _ VICINITY MAP 4691 .�: .• •. . "o' ENGINEERING, INC. w Consulting Engineers and Land Surveyors BILLINGS ■ BOZEAIM 2000 1000 0 2000 c� NORTON VICINITY MAP.DWG 801 0/004 0 1 06/07/07 RDH NORTON RANCH SUBDIVISION - PHASE 1 BOZEMAN, MONTANA DETENTION POND RETENTION DETE T — — POND 7 PO D f ................... :::::::;::: :•::....:::.:.:....................................................... — OFF SITE BASIN 3 _.. w .;....::::•::...:.:...::.. ::::::::: -�_ ABCOCKST ;•:OFFSITEBASIN2;.::::..::: ................................................................................ ::_:-.:Sh .,,� --—`�� 1.01 ACRES c.......:..::..............• 06ACRES : :::•; ""BASIN ' 3.06 ACRES{•;•......... -- POND OS 3 DETENTION DETENTION f ` 9 .......... 2 ta>r1eN.+;� _ I f POND OS-2 . .... . .;..;• :.� - . .... ... .............. . .... . .................. —-' BSTREET— . OPEN SPACE/ BASIN 3 BASIN 4 2.12 18,58 ACRES BASIN 7 WETLANDS AREA I BA(TERCREEK :. 0.91 ACRES 4.02 ACRES I 100-YR FLOODPLAIN WETLAND W WUp BOUNDARY Y) U) DETENTIO I [] Z LU UL 11i { DETENTION POND 1 s I I M r.................. .................. .• .... BASIN 1 BASIN 2 5,28 ACRES Iw } . 10 39 ACRES ... 7.7 RETENTION 1 POND 5 DETENTION�ril,�,ll I % - f �Z,r POND OS-1 i ............................................ .:• :::::: ::•:.:::.•::::•:•::::..:.:::::•• _ _ OFF SITE BASIN ..• ... 1.44 ACRES .. --- BASIN 5 1 0.99ACRES 2r DRAINAGE BASIN MAP LEGEND BASIN 1 E BASIN 6 —4.9.' — EXISTING CONTOUR � ENGINEERING, INC. C' '1 BASIN 2 BASIN 7 OFF STREET DRAINAGE ARROWS A Consulting Engineers and Land Surveyors L BASIN 3 OFFSITE BASIN 1 STREET DRAINAGE ARROWS MILUIM ■ SOMMAN F BASIN 4 OFFSITE BASIN 2 NOT TO SCALE t� ��>-:::1 BASIN 5 OFFSITE BASIN 3 XXXXX.UWG 80Z-07004.03 09/13/07 BDS Appendix B Peak Flow, Detention Pond, and Gutter Capacity Calculations DETENTION POND CALCULATIONS , a / w 1 i r " -------------------- I -••___i r a / x r __ r - I � Q j �3 � gi ` v W ------------- . I I , H II C ■ D v REQUIRED SHOWN- 288 C CF f` o x v STORAGE SHOWN 16,288 CF F" 4:1 SIDE SLOPES " ' ex ------------- I1...-- POND 8 '� _ ,/ •\`• POND 7 _._' _ _. _" •1 REOUI RED STORAGE=1941 CF ='- REQUIRED STORAGE-7353 CFI ;' ,a ■ STORAGE SHOWN=3415 CF ' 56 Cf 4;1 SIDE SLOPES I - - - - __. ___ - ___»_-. 4:1 SIDE SLOPES f -- _ STORAGE SHOWN 21 , c I I - _ -� - STORM DRAIN INLET ------------- -GRAIN ---. '` ---------------- Jf _ STORM INLET -CB-BC - " CO-4D •, STORM DRAIN INLET STORM DRAIN INLET -• _—_—_—_—_______—_—_____—_—_—_—_ �■ , voox _ _ STORM DRAIN .... - \.A I' xerwmrwv MH 12 _—_—_—_—_---_- _-.� ;:., .'-A �r _—_— ,.?...-_fir—_�..r —_—_— —_ _ Iw■rew wtl -- A T RM RAIN INLET _ STORM DRAIN _ - _ •~+'� ____ STORM DRAIN INLET -- - MH •--" --"' STORM DRAIN INLET• ST M GRAIN INLET CB-4C - STORM DRAIN INLET / STORM DRAIN INLET STORM DRAIN INLET CB-053B 4 CB-052B -......I ....-.- CB-4B�� I I CB-4A _ POND J I. - STORM DRAINPOND OS- - REQUIRED STORAGE=1291 CF I -_-,............. M i 10 �•, ; ( POND OS-2 1 ~ STORAGE SHOWN 2985 CF REQUIRED STORAGE 960 CF '- --- 4:1 SIDE SLOPES I j' STORAGE SHOWN-1130 CF REQUIRED STORAGE- 9CFCF E _..... .r 4:1 I E$ _ 17,36$ 4:1 SIDE SLOPES � DE SLOP _—_—_— STORM DRAIN__ STORM DRAIN_- ----_�STORM DRAIN M. --_ -- STORM DRAIN INLET ' STORM DRAIN INLET STORM GRAIN INLET STORM DRAIN INLET CB-4L r CB-4N CB-4J p■ 4I \ • f , I I I / I y — I - I - f' I - ----- y` ,1 I BOO-YR FLEOOD PLAIN , I , .._.-' •u I.. - POND 2 i REQUIRED STORAGE-5807 CF STORAGE SXOVM= I 4:1 SIDE SLOPES ' I _• 1 ______ - , i --------------- REQUIRED I POND 1 ' .. STORAGE. I - 2885 ,-�.. __.______ _ TOR SHOWN-2903 CF ' 'I --------- AGE """ -- co - - .7 SIDE SLOPES I I ;„ -I r Z , kk w STORM DRAIN INLET '' CB-1B STORM DRAIN INLET STORM DRAIN INLET ' '" -." • I , STORM DRAIN INLET STORM DRAIN INLET __ Z -_- CB-21 I CB-2C "' - CB-2A - ____ __ STORM DRAIN INLET STORM DRAIN INLET • - 29 • x Q _ CB-1D AST $TORN DRAIN STORM DRAIN , STORM DRAIN 'O�Y 0_ CB-7A -_-._1{- _—___ _—_—_�_—_ DRAIN'—_— —_ MX MR 3__ __ MIA 7" _—_—_— _ N z 1 STORM DRAIN INLE MH 8 •- -------- CB-IL _ --- - STORM DRAIN — Q STORM DRAIN INLET STORM DRAIN MX 1 H G CB-2H INLET CB-2 STORM GRAIN INLET $TORN DRAIN INLET'"STORM DRAIN INLET C8-2E,�' CB-2D CB-2C z m ---- ------- �I I I_ - ! _ .- - ._------- _ U w I -I I I, I � o c , I ILL 0 POND 5 " , _ rPONO OS-1 REQUIRED STORAGE-1440 CF _-, _ -' ;:, - i _-_-_-_ _.____.... _i- I �R 1051DED STORAGE 1819 CF STORAGE SHOWN-7482 CF .- - 1 - -- - -- ..------ , ,�- - - STORAGE SHOWN-1952 CF 4:1 SIDE SLOPES.- .,... � - I I I I II " ODES O B I I I I ; STORM DRAIN INLET CB- STORM GRAIN INLET 1 n ______—_____— _—_—_ STORM DRAIN INLET -"--- STORM DRAIN INLETI -"- CB 051A —- DATD 02 0s REVISIONS: _..--.-- APPROVED BY: OUA P ASSURANCE: SCALE: 1•-100' RIF: NORTON—BAS 100 50 0 100 200 PROJECT NO.BOz s70D SHEET?OF i Norton East Ranch Subdivision -Phase 1 Pond Basin 1 T-)4 4" Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 5.278 nk Acre C= 0.2 Open Land Calculate Time of Concentration(Tj loos( L 14193 - ¢78 7) /ti 1,5 70 Existing Conditions: o oK /a 0 K (y3 - u° —� 2 S= 1.85/o d 8S' _ 1,7s�7a C=0.20 v Open Land Conditions Overland Flow: V K i p p _ 3(0 0 Assume: L=481 ft.-(300 ft sheet flow/181 ft shallow flow) r W = 6 0 From Figure 1-1,Tc= 30 min. (overland flow) -b Total T,;= min Calculate Pre-developed Storm Intensity at T. From Figure 1-3, using the 10 year event, I =0.64T,-°•65 oK 1= Calculate Pre-developed Peak Runoff Rate Qio= ciA, using the above parameters o,2 Y- o Y_ Z7oo Ae or Quo= i Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50"K Dense Residential A LVAA .f a< Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 8.49 2548 318 2230 7 2.5862 6.83 2867 445 2421 9 2.1964 5.80 3130 572 2558 11 1.9278 5.09 3358 700 2658 13 1.7295 4.56 3560 827 2733 15 1.5759 4.16 3743 954 2789 17 1.4527 3.83 3910 1081 2829 19 1.3514 3.57 4066 1209 2857 21 1.2663 3.34 4211 1336 2875 23 1.1936 3.15 4347 1463 2884 25 1.1306 :` 2.98 e>< 4476 VK 1590 oK fl/z 27 1.0755 2.84 4598 1717 2880 29 1.0266 2.71 4714 1845 2870 31 0.9831 2.59 4826 1972 2854 33 0.9439 2.49 4932 2099 2833 35 0.9085 2.40 5035 2226 2809 37 0.8763 2.31 5134 2353 2780 39 0.8468 2.23 5229 2481 2749 41 0.8197 2.16 5322 2608 2714 43 0.7947 2.10 5411 2735 2676 45 0.7716 2.04 5498 2862 2636 47 0.7501 1.98 5582 2989 2593 49 0.7300 1.93 5664 3117 2547 51 0.7113 1.88 5744 3244 2500 53 0.6937 1.83 5822 3371 2451 55 0.6772 1.79 5898 3498 2400 57 0.6617 1.75 5972 3626 2347 59 0.6470 1.71 6045 3753 2292 Storage Volume Required= 2885 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using of depth oK 2 1,S, �y X �J Design Release Rate= 1.06 cfs Minimum Area= 154° sf Since 1924 sf> 154 sf, use 1924 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1924 sf oK Volume Required= 2885 ft3 Depth Provided= 1.50 ft(max) or. Side Slopes= 4 :1 ✓ Length= 160 ft Width= 12 ft Norton East Ranch Subdivision - Phase 1 Pond Basin 2 Lw �- Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. o� Area= 10.386 Acre C= 0.2 v Open Land Calculate Time of Concentration(T.) Existing Conditions: /00,x (EI 4i94 - 4799)/370 S= 1.35% 0"- C=0.20 ✓ Open Land Conditions Overland Flow: o 0 Assume: L=491 ft.-(300 ft sheet flow 1191 ft shallow flow) b�oc�Pam, = ;to From Figure 1-1,T,= 32 min. (overland flow) + boo I<5 cc � pw 4601 Est d K / s� �� Tc 9 ;.ems Total T�_ �; min Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I =0.64TC-o.6s I = 0.96 09 in/hr Calculate Pre-developed Peak Runoff Rate Q,o= ciA, using the above parameters Q10= 2.00 Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.5009 Dense Residential Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (CO (cf) - It)-5 3.2185 16.71 5014 600 4414 7 2.5862 13.43 5641 840 4801 9 2.1964 11.41 6159 1080 5079 11 1.9278 10.01 6607 1320 5287 13 1.7295 8.98 7005 1560 5445 15 1.5759 8.18 7365 1800 5565 17 1.4527 7.54 7695 2040 5655 19 1.3514 7.02 8000 2280 5720 21 1.2663 6.58 8286 2520 5765 23 1.1936 6.20 8554 2761 5793 25 1.1306 5.87 8807 3001 5806 27 1.0755 5.58 OK 9047 3241 oK 5807 oK 29 1.0266 5.33 9277 3481 5796 31 0.9831 5.11 9496 3721 5775 33 0.9439 4.90 9706 3961 5745 35 0.9085 4.72 9908 4201 5707 37 0.8763 4.55 10102 4441 5661 39 0.8468 4.40 10290 4681 5609 41 0.8197 4.26 10472 4921 5551 43 0.7947 4.13 10648 5161 5487 45 0.7716 4.01 10819 5401 5418 47 0.7501 3.90 10985 5641 5344 49 0.7300 3.79 11146 5881 5265 51 0.7113 3.69 11303 6121 5182 53 0.6937 3.60 11456 6361 5095 55 0.6772 3.52 11606 6601 5005 57 0.6617 3.44 11752 6841 4911 59 0.6470 3.36 11894 7081 4813 Storage Volume Required= 5807 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 Wsec 3. Surface Area based on minimum volume usin 1 f of depth Design Release Rate= 2.00 o)e cfs Minimum Area= 290 0 K sf Since 3871 sf>290 sf, use 3871 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 3871 sf oK Volume Required= 5807 ft3 Depth Provided= 1.50 ft(max)vK Side Slopes= 4 :1✓ Length= 160 ft Width= 24 ft Norton East Ranch Subdivision -Phase 1 Pond Basin 3 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 2.116 eK Acre C= 0.2 Open Land Calculate Time of Concentration(Tj Existing Conditions: lop )((6/ 4707- ¢779)/L )I °K C=0.20 _ _Open Land_Conditions-- - Overland Flow: � .,. � Assume: L=790 ft.-(300 ft sheet flow/490 ft shallow flow) or� .��H 4 &D ,�/k = 7 S From Figure 1-1,T°= 41 min.(overland flow) boo K 4o Qeh) Esf 4s Total T,= min Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I =0.64TC-o.6s a� 1= Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters Q10= ofL cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 uK Dense Residential Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 3.41 1022 104 917 7 2.5862 2.74 1149 146 1004 9 2.1964 2.32 1255 187 1068 11 1.9278 2.04 1346 229 1117 13 1.7295 1.83 1427 271 1157 15 1.5759 1.67 1501 312 1188 17 1.4527 1.54 1568 354 1214 19 1.3514 1.43 1630 395 1234 21 1.2663 1.34 1688 437 1251 23 1.1936 1.26 1743 479 1264 25 1.1306 1.20 1794 520 1274 27 1.0755 1.14 1843 562 1281 29 1.0266 1.09 1890 604 1286 31 0.9831 1.04 1935 645 1289 1291 35 0.9085 0.96 2019 729 1290 37 0.8763 0.93 2058 770 1288 39 0.8468 0.90 2096 812 1285 41 0.8197 0.87 2133 853 1280 43 0.7947 0.84 2169 895 1274 45 0.7716 0.82 2204 937 1267 47 0.7501 0.79 2238 978 1260 49 0.7300 0.77 2271 1020 1251 51 0.7113 0.75 2303 1062 1241 53 0.6937 0.73 2334 1103 1231 55 0.6772 0.72 2365 1145 1220 57 0.6617 0.70 2394 1186 1208 59 0.6470 0.68 2423 1228 1195 Storage Volume Required= 1291 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.35 OK_ cfs Minimum Area= 50 °K sf Since 860 sf>50 sf, use 860 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 860 sf Volume Required= 1291 ft3 Depth Provided= 1.50 ft(max) oK Side Slopes= 4 :1 ✓ Length= 160 ft Width= 5 ft Norton East Ranch Subdivision - Phase 1 Pond Basin 4 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 18.576 °K Acre C= 0.2 ✓ Open Land Calculate Time of Concentration(Tj Existing Conditions: S= 1.35% oe C=0.20 _QpenLand Conditions Overland Flow: Assume: L=1022 ft.-(300 ft sheet flow/722 ft shallow flow) From Figure 1-1,Tc= min.(overland flow) Total T,_ Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I =0.64TC-0.61 1= 0.73 o K in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters Qio= 2.71 VK- cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 D�- Dense Residential Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 29.89 8968 814 8154 7 2.5862 24.02 10089 1139 8950 9 2.1964 20.40 11016 1465 9552 11 1.9278 17.91 11818 1790 10028 13 1.7295 16.06 12529 2116 10414 15 1.5759 14.64 13173 2441 10732 17 1.4527 13.49 13763 2767 10996 19 1.3514 12.55 14309 3092 11217 21 1.2663 11.76 14819 3417 11402 23 1.1936 11.09 15299 3743 11556 25 1.1306 10.50 15752 4068 11683 27 1.0755 9.99 16182 4394 11788 29 1.0266 9.54 16592 4719 11872 31 0.9831 9.13 16984 5045 11939 33 0.9439 8.77 17359 5370 11989 35 0.9085 8.44 17720 5696 12025 37 0.8763 8.14 18069 6021 12047 39 0.8468 7.87 18405 6347 12058 41 0.8197 7.61 18729 6672 12057 43 0.7947 7.38 19044 6998 12047 45 0.7716 7.17 19350 7323 12027 47 0.7501 6.97 19647 7649 11998 49 0.7300 6.78 19935 7974 11961 51 0.7113 6.61 20216 8300 11917 53 0.6937 6.44 20490 8625 11865 55 0.6772 6.29 20758 8950 11807 57 0.6617 6.15 21019 9276 11743 59 0.6470 6.01 21274 9601 11673 Storage Volume Required= 12058 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 2.71 O"_ cfs Minimum Area= 393 "'_ sf Since 8039 sf>393 sf, use 8039 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 8039 sf o� Volume Required= 12058 ft3 Depth Provided= 1.50 ft(max) a- Side Slopes= 4 :1 v Length= 160 ft Width= 50 ft Norton East Ranch Subdivision - Phase 1 Pond Basin 5 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the retention facilities were sized based on a 10-year 2-hour storm event. Area= 0.992 011, Acre I= 0.41 ✓ In/Hr. C= 0.5 oK Dense Residential Calculate Developed Peak Runoff Rate Qio= ciA, using the above parameters Q� = 0.20� cfs- - Calculate Developed Minimum Required Volume Storage For 10-Year Event V= 7200 x Q,p Dense Residential Norton East Ranch Subdivision - Phase 1 Pond Basin 6 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 3.057 OK Acre C= 0.2 ✓ Open Land Calculate Time of Concentration(Tj Existing Conditions: S=1.35% °" 100 x (EI q 18G -¢776)/76 D' _ 1,32 C=0.20 v Open Land Conditions Overland Flow: °ice ft. ( ft 05 t y0 pFS Assume: L=885 .- 300 sheet flow/585 ft shallow flow) From Figure 1-1,Te= 46 min. (overland flow) �G Total Tc= 1i Calculate Pre-developed Storm Intensity at T. From Figure 1-3, using the 10 year event, I =0.64TC-o.se I = oK Calculate Pre-developed Peak Runoff Rate Qio= ciA, using the above parameters Q10= 0IL Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 W- Dense Residential M Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 4.92 1476 140 1336 7 2.5862 3.95 1660 195 1465 9 2.1964 3.36 1813 251 1562 11 1.9278 2.95 1945 307 1638 13 1.7295 2.64 2062 363 1699 15 1.5759 2.41 2168 419 1749 17 1.4527 2.22 2265 474 1791 19 1.3514 2.07 2355 530 1825 21 1.2663 1.94 2439 586 1853 23 1.1936 1.82 2518 642 1876 25 1.1306 1.73 2592 698 1895 27 1.0755 1.64 2663 753 1910 29 1.0266 1.57 2730 809 1921 31 0.9831 1.50 2795 865 1930 33 0.9439 1.44 2857 921 1936 35 0.9085 1.39 2916 977 1940 '14 L,t7 39 0.8468 1.29 3029 1088 1941 41 0.8197 1.25 3082 1144 1938 43 0.7947 1.21 3134 1200 1934 45 0.7716 1.18 3184 1256 1929 47 0.7501 1.15 3233 1311 1922 49 0.7300 1.12 3281 1367 1913 51 0.7113 1.09 3327 1423 1904 53 0.6937 1.06 3372 1479 1893 55 0.6772 1.04 3416 1535 1881 57 0.6617 1.01 3459 1591 1868 59 0.6470 0.99 3501 1646 1855 Storage Volume Required= 1941 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.47 cfs Minimum Area= 67 sf Since 1682 sf>88 sf, use 1682 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1294 sf Volume Required= 1941 ft3 Depth Provided= 1.50 ft(max) 0/4 Side Slopes= 4 :1 Length= 160 ft Width= 8 ft Norton East Ranch Subdivision -Phase 1 Pond Basin 7 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the retention facilities were sized based on a 10-year 2-hour storm event. Y Avej Area= 0.917 Acre 0 q! /}c I = 0.41 ✓ In/Hr. C= 05 Dense Residential Calculate Developed Peak Runoff Rate C =D,9 Q10= ciA, using the above parameters t bP�►J { ,+��,f a�w G' �,2 Qio= 0.19 uk cfs 2¢c7 Calculate Developed Minimum Required Volume Storage For 10-Year Event v= 7200 x Q10 Dense Residential V= cf V S n32 0k mac. Q�„GwcVc� = zl 56 C� Norton East Ranch Subdivision -Phase 1 Pond Basin OS-1 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. n Area= 1.436 oil- Acre 9`�z'3G/ x ,,0 I Ali 57 14Z s C= 0.2 ✓ Open Land = f,3/ A c Calculate Time of Concentration(Tj Existing Conditions: S= 1.25% 9�4 C=0.20 o iG Open Land Conditions Overland Flow: Assume: L=275 ft.-sheet flow u ' From Figure 1-1,T,:= 25 min.(overland flow) v1` Total Tc= 25.00 mir Calculate Pre-developed Storm Intensity at Tc From Figure 1-3, using the 10 year event, I =0.64Tr-0.61 I= ° In/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters Q10= Gt4 Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.90 °�_ Road and Right-of-Way Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 4.16 1248 97 1150 7 2.5862 3.34 1404 136 1267 9 2.1964 2.84 1533 175 1358 11 1.9278 2.49 1644 214 1430 13 1.7295 2.24 1743 253 1490 15 1.5759 2.04 1833 292 1541 17 1.4527 1.88 1915 331 1584 19 1.3514 1.75 1991 370 1621 21 1.2663 1.64 2062 409 1653 23 1.1936 1.54 2129 448 1681 25 1.1306 1.46 2192 487 1705 27 1.0755 1.39 2252 526 1726 29 1.0266 1.33 2309 565 1744 31 0.9831 1.27 - -23 04-------- 1759 33 0.9439 1.22 2415 643 1773 35 0.9085 1.17 2466 682 1784 37 0.8763 1.13 2514 721 1793 39 0.8468 1.09 2561 760 1801 41 0.8197 1.06 2606 799 1807 43 0.7947 1.03 2650 838 1812 45 0.7716 1.00 2692 877 1816 47 0.7501 0.97 2734 916 1818 .1c4 0 ,J:_i r_ .- :77.l No 1819 51 0.7113 0.92 2813 994 1819 53 0.6937 0.90 2851 1033 1819 55 0.6772 0.88 2888 1072 1817 57 0.6617 0.86 2925 1111 1814 59 0.6470 0.84 2960 1149 1811 Storage Volume Required= 1819 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.32 cfs Minimum Area= 47 �� sf Since 1213 sf>47 sf, use 1213 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1213 sf ok Volume Required= 1819 ft3 Depth Provided= 1.50 ft(max) W- Side Slopes= 4 :1 Length= 160 ft Width= 8 ft Norton East Ranch Subdivision -Phase 1 Pond Basin OS-2 peg"&I Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 1.06 ''� Acre 10 37,91 X 90�= 5 7140�, s C= 0.2 Open Land = 1,32 4a Calculate Time of Concentration(T.) Existing Conditions: S=0.75% °K C=0.20 oK Open Land Conditions Overland Flow: ,V-- Assume: L=523 ft.-(300 ft sheet flow/223 shallow flow) From Figure I-1,Tv= min.(overland flow) Total T,= c Calculate Pre-developed Storm Intensity at Tc From Figure 1-3, using the 10 year event, I=0.64TC-o.61 1= ale Calculate Pre-developed Peak Runoff Rate Qio= c1A, using the above parameters Q10= D(— Calculate Developed Minimum Required Volume Storage For 10-Year Event G= 0.90 Ile- Road and Right-of-Way Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 3.07 921 52 869 7 2.5862 2.47 1036 73 963 9 2.1964 2.10 1132 94 1038 11 1.9278 1.84 1214 115 1099 13 1.7295 1.65 1287 136 1151 15 1.5759 1.50 1353 156 1197 17 1.4527 1.39 1414 177 1236 19 1.3514 1.29 1470 198 1272 21 1.2663 1.21 1522 219 1303 23 1.1936 1.14 1571 240 1332 25 1.1306 1.08 1618 261 1357 27 1.0755 1.03 1662 282 1381 29 1.0266 0.98 1704 302 1402 31 09831 0.94 1744 323 1421 33 0.9439 0.90 1783 344 1439 35 0.9085 0.87 1820 365 1455 37 0.8763 0.84 1856 386 1470 39 0.8468 0.81 1890 407 1484 41 0.8197 0.78 1924 428 1496 43 0.7947 0.76 1956 448 1508 45 0.7716 0.74 1987 469 1518 47 0.7501 0.72 2018 490 1528 49 0.7300 0.70 2048 511 1537 51 0.7113 0.68 2076 532 1545 53 0.6937 0.66 2105 553 1552 55 0.6772 0.65 2132 573 1559 57 0.6617 0.63 2159 594 1565 59 0.6470 0.62 2185 615 1570 61 0.6332 0.60 2211 636 1575 63 0.6200 0.59 2236 657 1579 65 0.6076 0.58 2260 678 1583 67 0.5957 0.57 2285 699 1586 69 0.5844 0.56 2308 719 1589 71 0.5737 0.55 2331 740 1591 73 0.5634 0.54 2354 761 1593 75 0.5536 0.53 2377 782 1595 77 0.5442 0.52 2399 803 1596 79 0.5352 0.51 2420 824 1596 "1 1s.5'1-Ij Ci FC _ i o 83 0.5183 0.49 2462 865 1597 85 0.5103 0.49 2483 886 1597 87 0.5027 0.48 2503 907 1596 89 0.4953 0.47 2523 928 1595 91 0.4882 0.47 2543 949 1594 93 0.4814 0.46 2562 970 1593 Storage Volume Required= 1597 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 fUsec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.17 °Y" cfs Minimum Area= 25 '14 sf Since 1065 sf>25 sf, use 1065 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1065 sf Volume Required= 1597 ft3 Depth Provided= 1.50 ft(max) Side Slopes= 4 :1 ✓ Length= 160 ft Width= 7 ft Norton East Ranch Subdivision -Phase 1 Pond Basin OS-3 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 1.01 �� Acre 3 TO� � -3 C= 0.2 Open Land C Calculate Time of Concentration(TJ Existing Conditions: S=5.00% 2` las 60 {.a C=0.20 , Open Land Conditions Overland Flow: U� Assume: L= 105 ft.-sheet flow From Figure 1-1,Tc= 11 min.(overland flow) Total T,= hill min Calculate Pre-developed Storm Intensity at Tc From Figure 1-3, using the 10 year event, I =0.64TC-0.65 1= OF Calculate Pre-developed Peak Runoff Rate Q,o= ciA,using the above parameters Q10= 0.391A cls Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.90 CK Road and Right-of-Way Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 2.93 878 117 761 7 2.5862 2.35 987 164 824 9 2.1964 2.00 1078 210 868 11 1.9278 1.75 1157 257 900 13 1.7295 1.57 1226 304 922 15 1.5759 1.43 1289 350 939 17 1.4527 1.32 1347 397 950 19 1.3514 1.23 1400 444 956 115 1.1 ,'1 1'. 1 960 23 1.1936 1.08 1497 537 960 25 1.1306 1.03 1542 584 957 27 1.0755 0.98 1584 631 953 29 1.0266 0.93 1624 678 946 31 0.9831 0.89 1662 724 938 33 0.9439 0.86 1699 771 928 35 0.9085 0.83 1734 818 916 37 0.8763 0.80 1768 865 904 39 0.8468 0.77 1801 911 890 41 0.8197 0.75 1833 958 875 43 0.7947 0.72 1864 1005 859 45 0.7716 0.70 1894 1051 842 47 0.7501 0.68 1923 1098 825 49 0.7300 0.66 1951 1145 806 51 0.7113 0.65 1979 1192 787 53 0.6937 0.63 2005 1238 767 55 0.6772 0.62 2032 1285 746 57 0.6617 0.60 2057 1332 725 59 0.6470 0.59 2082 1379 703 Storage Volume Required= 960 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.39 0�- cfs Minimum Area= 56 OIL sf Since 640 sf>56 sf, use 640 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 640 sf of Volume Required= 960 ft3- Depth Provided= 1.50 ft(max) oK Side Slopes= 4 :1 ✓ Length= 160 ft Width= 4 ft Detention Pond Sizinq The following tables were used to determine the detention pond volumes. The volumes were calculated by using the prismoidal method and are based on the detention pond configuration shown on the drainage basin map. All elevations are assumed. DETENTION POND OS-1 POND ELEV AREA I VOLUME VOLUME,,,, Comment DESIG ftZ ft3 ft3 97 9 0 0 97.5 775 144.59 144.59 bottom ❑z 98 1049 454.28 598.86 a 98.5 1350 598.17 1,197.03 ,,� Y�I z 99 1678 755.52 1,952.55 WSE i lBl '" j O 99.5 2033 926.33 2,878.88 z 100 2414 1110.39 3,989.27 top w wLu DETENTION POND OS-2 POND ELEV I AREA I VOLUME VOLUME..,,, Comment DESIG ftz (ft3 ft3 97 9 0 0 97.5 632 119.40 119.40 bottom ❑z 98 918 385.28 504.69 a 98.5 1229 534.86 1,039.55 z 99 1566 697.05 1,736.60 WSE 7 O 99.5 1929 872.17 T.MM z 100 2318 1,060.26 3.669.04 top w F- w ❑ DETENTION POND OS-3 POND ELEV AREA VOLUME VOLUME,,,m Comment DESIG ftZ ft3 ft3 97 9 0 0 97.5 321 63.96 63.96 bottom ❑z 98 570 219.79 283.75 a 98.5 845 351.50 635.25 '4,J 9� z 99 1145 495.60 1,1a<),A,f> WSE 0 99.5 1472 652.54 -1,78:i.4(' z 100 1823 822.19 2,605.58 top w Lu u.i DETENTION POND 1 POND ELEV AREA VOLUME VOLUME,,,,,, Comment DESIG ftl ft3 ft3 97 9 0 97.5 1298 235.85 235.85 bottom z 98 1606 724.64 960.48 0 98.5 1939 884.94 1.845.43Q. 0 99 2298 1,057.98 2,903.41 WSE 7 rg t11� 99.5 2683 1,244.01 4,147.41 z 100 3093 1,442.79 5.590.20 top w w w 0 DETENTION POND 2 POND ELEV AREA VOLUME VOLUMES Comment DESIG ft2 ft' ft' 97 9 0 0 97.5 Z864 50s.88 503.88 bottom z 98 3414 1.564.91 2.068.79 O 98.5 4000 1,851.57 3,920.36 e_ C� z 99 4613 2,151.43 6,071.79 WSE 7 SB�7 U O 99.5 5253 2,464.77 8,536.5 z 100 5919 2,791.34 11,327.90 top w V- w 0 DETENTION POND 3 POND ELEV AREA VOLUME IVOLUME777ment DESIG ft2 ft3 ft3 98 9 0 u 98.5 1157 211.34 211.34 bottom z 99 1608 688.16 899.50 0 99.5 2084 920.43 1,819.94CL z 100 2586 1,165,25 2,985.18 WSE/top l2gl 0 z w w 0 DETENTION POND 4 POND ELEV AREA VOLUME VOLUME... Comment DESIG -- (ftz ft3 ft3 98 9 0 0 98.5 8193 1,412.26 1,412.26 bottom ❑z 99 9332 4,378.16 5,790.42 99.5 10497 4,954.40 10,744.82 Z 100 11687 5,543.34 16,288.15 WSE/top H z w w RETENTION POND 5 POND ELEV AREA VOLUME VOLUME81m Comment DESIG ft2 ft31 ft3 97 9 0 0 97.5 332 65.94 65.94 bottom ❑z 98 732 259.50 325.44 0 98.5 1157 468.21 793.65CL z 99 1608 688.16 1,481.82 WSE 4 4 0 2 99.5 2084 920.43 2,402.25 z 100 2586 1,165.25 3,567.50 top w w a DETENTION POND 6 POND ELEV AREA VOLUME VOLUME,.. Comment DESIG ft2 ft3 ft3 98 9 0 0 98.5 l 5u i 272.08 272.08 bottom a z 99 1886 846.48 1,118.56 0 99.5 2293 1,043.09 2,161.65 z 100 2726 1,253.19 3,414.84 WSE/top > q4 l al '` O F- z w F- w 0 RETENTION POND 7 POND ELEV AREA VOLUME VOLUME.,,. Comment DESIG ft2 ft3 ft3 98 9 0 98.5 827 153.71 153.71 bottom 0 99 1153 492.75 646.46 z 0 99.5 1507 663.03 1,309.49 z 100 1886 846.48 2,155.97 WSE/top 5 3 �7fc 0 rS 1132. c� z w F- w INLET & GUTTER CALCULATIONS kL j k i§2 §a • B ' §§fK f k � z� e § °^ 'oW 0 ° . o k$\� > y $ �CO)�/ \ \ 2 LL 10 LL 00 #cc !& ) �akZu 7 \)�- ` $ a � 00- f 2 to ' le± � = a / 0 $ % ) m IO C) / ) , oozo - E e _ _ � ' ° ' ƒ - 2 § ) U) / q)[� k ' ® - § `/E7b § \ 0 m ME o LL % } |` E U) k _ w § 0 ) j � /\/ < £ k ` � � ^ z t - _ !; _ ) § / 1 Sbf = « i « ) A ® r 3 3 = � " 2 / - 77 f / / / / | §f i /kG 7 § , i 2 \ $ c {f \ Al \ /S �k f { E = §\ / \ §f ] 9 t ® f/ a \ / ( = e & 2 f § 2§m � 0 ( \ r� k @ ) e� - 2 CL�$� ` �� ° $ [ >, § amp as ' k� a ° , . . . _ E % ) ] s aA I ° %2z= !/ E m § $ )#�_ > \ & .1 cm m - »oa ! eue G k Jemq 33 k � & 2 I = $ � � 0 » « § {§ { !/y\ &\ \ f� / a I ƒ J /( ` 2 k « 77 § ; =mo 7{ 3 2 ! _ « / s2 $ ,f � m E % ] 2 | » ) k) « k 0 0 7) § 0 d |_, / § 0 0 1 ` ■� � 8g*�/ { | )§ o \ @A Lo LL§� a k # f �IxzLL {-- - 0 [Eua 2 , o ® U)AtOf ! \ k ¢ |%§ \ § E7 § U. co 0 b° k �)_/ ) k � co ) §i m kco ID E | �b ci to (D IL \ Lo /�§m $ \ 2 ° ° $ ) °- m o u - § 5 � ~°~ k ) /W-i > \ 3w k M ® 0 ���-J > § § k - \m j o - 6 0 ! q < ) 7 m / ) w k m % | da. / j ! §U) \ ca o _ / z 2 f. | LL m / $ ( emu - / \ A t k \ \ f $ , § � k A | 5 \ ( § kt \ ƒ / In / j §/ | §# o \ co ` ) . \ m = k B • 2 � ( §kJ § as E ƒ cr- 7 f \ k 0$«E / \ �\ �(» } kk � \ / Q k f § /m | 00: ( ) *C t a , `= o \ ° 2 - `-If C3 u ® g� a _ s ! ) §kLL ) ( 2, § a - ' { , . . , f j , -f % J §§ f`° S \)® \/ ƒ t � ) }��� , \ \ > % - »oa LU| < g } G k ) ® \ 3%$m ]] 36 = - V \ u 9CL § / c {{ / k ) \\ §\ ) fUL) k ± J / k 2 )] k - _ k § 2 _ _ | I.- cc , \ ( ) ° § § ) Jn ) § \k 7 k ± 0 k k !_�_ ° § k o | ` K f | o , �u @o ) :MzU. ��� 9 b cc e % 32m2 j /tee a LL ca \ b° k ��§( \ \ U) -iw� » � ° -_ a Ci / |40�� \ $ § I}/� - W g ' ■ § Go - \ k je ' & 7 \ oa 1 q__ 16 0 § 1 q % ) $ § 2 to U) E 0 \ -duo E od § $ a U. ) < a) Z _ 7 � m i ` E k w § % co | dW z IL k ) § itz k - o _ ` | z a 70 LL / { i LLca § E @ % Ci { ) cc — � t Cl) 2 / © § \® 2 7 2 \ a § 0 | §� o � � � § m7 a � f \) | \ � ( SJ3 § / \ f - )S��# t ' ) « ) ) E (_ $ § ; ) 2 %/ ■_ » e | 5 0 E 5 I |f \mR c 7 %) \ Lu C;q \ G , a c0. ) §k} � \ e @ �� / jk / k\\� � " /al \ CJ \ \} 7 a\ - ){@ \ƒ / 2 § ] 2 w \ \ W C ) 2 G t 3e@m 36 , ■ » - § | � y % ■ / c Cc,) {(j\ )\ \ /) ) } \ � 2 02 $ ) J f a E \ ) j L G ( f / &) 0 3 00 )) L § 0 §/ > Iu= c • �u |©§� C)I \\§o � 1§ jc � $S)b / / 10 cc o }z §® % \ 1)/-- ^ � 22� § k { 2 j0 Ci ) - $ 0 % k -}-I. / ) _ . ■ $ ` \ %LO ] io�� q % � a) �0 w 0 \ o = E iE = q - § ' cc E 2 J ` § w f 7U) m � ` ■ w 2 tca f ) m � $\\ ) \ Mno r _ ' ® 0 z 2 f (/ g z / { b | �° ` ` § c E § Ci co - \ \ � 4 D a co §5 / / \ kk cc \ $k ~ ° k ! 2 � 0 (k) § / / E k k )S�«) f f ! ) c `« ' « 7 - | E \% k \ ƒ �\mi ) 2 # $ $ � ;2 — \ U)0 Ck § 7 ` ` � �2 | § mw < ( k B% �» c 66 0 e r 3 §/ @/ ƒ ; A / k G \ 2 m \\ //o k ))@ 3\ / ) K 2#t� ! \ / a — �aa � a ] / \ § ) a 2 Gygm ]% J/ / ■ » ] % 7 \ƒ ) \ » / § 10�7 - ) \\_ k j k�u §) \ )ƒ 4 } ` E k } ° C « § § _ a ) e =G � E G j 2 j Z « § ) J\ « 0 kk )) ) k | ow : | �� c lu K § |)2-1 3: Q: z j W ) |)%< 1§ 0 �» 3 / �§�z ca 00 k //\_ ? £ #}b :: 7 Iu 0 � 22[ / k k / §IL 11 $ |) k m 0 - \ k 2 2 \ £ , w } \\)\ \ \ \ o = m @I 2 2 $ L § m � < $ a) ad D 7 0m a kz E k w k 6cc f � 0 MO / cm MO ° 0 cn~ £ z 2 $ , 0 LLzo / emu , J \ � t I ( Cl) = 7 C § > e ( | zwr { 7 k a L 0 9 it: � 0 k \7 §k) \ ƒ §§ f \ } )f ) f f ) / §\ 2)$ 2 2 - m a § �=omq \ & a q 2)A � l )) « k$ f A - ! J U) f cr) E ] m as , _ § § . ) §k §E & t° © I% ' cQi a a \ o . \ $/o G 7 §a 3\ \ k | k ]3\ ! \ / > - aoa � wmn © k � �� 0 �t§\ �{ J3 & _ § )� 5 } E /k k k /3 v (R } !) \ CL ! ] 2 ° « )0 § % f }CL c (/ $ / _ k | 7 \ S k6 k \0 )/ LL § k k �, _ ~ J 0 Y O 2 Y J 0 LL U N �mJ(QOF- O IQLLJfA N 13 K Z LL O y IDW—U :_ 1 0 C Iy 4mru t3LLZ� to IJ G LL (0 v iW O d OLLZ1U m o �U u. m N Y oa ea ( aFO oIII I I E- d) 0 V IF-�j LL CC) Nyl d O N IO OJZU O T7 N N d U LL lC) d OWN y Ia0F �° O �j 3 ILL— U. 3 N N E IO�iU o c° O z 0 �J a alLL v o LL t E od m W d $ Nm Y; z cc cc E C W c :F. lL 2 d w 3 0 m 20 4 a rn 7 La 0 O O U Z Ei d i yy O 3 N C O(AZ C t ' U. d - c U a0 I LL�- � 10 n � M o m o LLI M N � 4 f C� O > O ' U C T O ' —CO 3 [7 II N Lmv °a Q C � C �� N C C " N Cca d€ 0< ~ t o E ° o� �� E j N C G v LLL ' € •L-• Y NNC N C, y mc YI.1 l0 O) ° Qy ZLm o°' a1 CD � ¢rR E yo w o o D — U a3c5 o 0 G a UCi Y LL Y m p >, II II o N U N F C C V II II II II II If .2 d II 2 II II y d 1°In �QU U a c c aUJ� > > > — >00 1 t 3 `7 (gi(p� m m ° Uvc°'•CD °cam° F- UU m H ° V LL Y ( W.I pyWQr U ° fq U C m N c N O f0N .� O W E N ?F- Q O ° rn E oU , n II — 3 c .N 3 o 0 0 1 c m y 3 III. m N 7 ad. CL 00 ccoU �J j LLLL � LL fp W p W W 0 D N LL N IO W I- m Z V U a lL m o D E z d m ° E c J j E N N N N U N > N c O` E. N N I C� LL 7 5 -'N U O 0 LLL 6 LL 0 C> <1 f7 U : d F Ilk 11 O w o 11 cell 11 I `L)tb e► iQ I�o� v M yI�LL�m lzais11 a q 0 I IxZLLi a C3- It Q4 > N 4:25 lyy o = a f Im0:=U o U o io U- �J LL it IW I0:z� I 0 N N 1°dUo_ N, \ m y ,o , Le) 10 0 o LL N Q N CD O M O IO O 2 .y K �1 O If,LL N V � p V xO V i� G II II II II II N 1 >J LL O O W 2 U o LL. v C V J i-J !0 >M ,... a' m d 1 M - � I LLJ E Y rLN c Lu = N IJ I o 2 O � M 11 �ii `' \ � 1 z Q y 0 3 1 >� 3 a r \ ( �Nri rn z `� > 1 o 0 € 1 `_ Z�L O 4 I O LL L t'1 c i cc Il I u V TJ U � W p Iv j1 1 1 O 10 \ jp .'J O cl II 2 1 q Q 8 ry o 11 V -J F= E I z y LM � r_ � FF m o S v V n ae `m � >0 ( mid 8 O b LL C ` O O C T ..� O O 1 o d'Cc, II !1 o a 01 Q = N = N = N 1 3 a¢� : o •E Cc: 'r� •E •E c m °' rn '� 5 �Sqj T2 O N N NLL U G p M N co Ol , N , NLmN O) \ (0L F- nOOp MO O 10 .2 N W O. �] V O =U O W On OM N .O 7 M y I Q(YJ O. NN C O N yy C�' O NLL VI .[OM yy N N¢ ` OrN-? _ C 2) m 6 S a U Y O j� II II p O O W C L. II 11 II II II II II W II II W O N Z m�C'Ic¢U U �. ' 3v a' c m `D mU) > ci m a wdd I W a V c y `o o. po o� or Ia `t o ¢ c� c ro m U N U U C J o w E OI O C O U II II U 11 '�7i ~ O ` O I q N S N 7 W �QU �J 7 LL LL O LL y 1 rJ la0 Ip O m a = a t TL OI N N e0 1 1- U U m a u z d v = E c ! J N N > N = Q z/C N A ? 5 � U U 00 iz LL U 0 0 0 0 \ � p � ` §w0 m | 2 L) � i,§, !co kQ� zLLw \m -u : \ IV) \ow ( N �ERe \ ) � (�\ \ . 4 �jz - 0 \� / }§° \ IL , ) 22��$ { a c !k/W(n - 2 / _ o o LL Ur `S-�° L § CL \/w &= § 25 |0 a } — _ . _ § 7 LL . af � J u ■ I § �§ � w § kLU a \0 z k j / { % 7, LL ) } o \ k ® ) ! cn ) & 7 , �� a) ) 2 \ \ ƒ k \ § > \� §k ` \ e / e § %] ƒ 7 �kƒ § } a� t §2��J ' { § § $$« ' (/ )%e k \ )) , } \ \p � \)( } / \ r\ § } §a - & !»��° ~ - ~ 2}� ` om� - \ k- G , , , , - ,CL i . « a f<\ 2 k §� \/ i § § = 23�a , \ E » - »oat R �� � "6 J§ 2) // I ■ & • ) / j [� ) G 7 k o « /k / k 2 A f) \ ) � 5 k a - kt E a - -i C. $ kk L) k \k I) Z 6 k k J o i 3� i ° 0 Jet i3 OW 3 p�FU �n i �Mo Ug le y g y = 3 l� �E c cOO I... R £ m (=Z W d)o !0.pAVM LA � a II II II II II y� N S O u LL o d � d N -n II d C W sY ° 0 tOpzU o d = y `p O (r LL m c N o ( p� �In `_n N iu a ILL O W LL g to V 1 J U d i O t p E w c `c c on. a is IU) o a w+ m No mNN m 'veetpp m-7 m Q o 0 _d N N Om ON O dtO6N 1i� Y I Z E ¢ C O o d �d)�d Q� lE0 E lil c II u n n a 5 1 It It It n G a o L c z �(� 3 to :;_ Z° !u c 4 OLL m n E y o f t9� LL C N {V N N 1 Q pj II ' O L ! N « N V m O C N C N E < c o �¢x a rLL E o too�xx� E N xx� E E Y 2 S«U tt G aNci d d o m o� N�m _ m m e SZ m r IZ m m t�1 mN mm N C tD a'N� yr ¢ a ml mMo a o @U m 3 w Nomov, v, oo6 Sq m to 'N G iim1�L z E 3N mm c of p�� o dm o mooi d y N 9 m O� o 2 C N N Y C 2 N m C LL N O N O' UZE YUdm UN 7 6 4 O it I I I C It II e > dU C3O LQ U o oa r O H r z LL U UU ?rC7cQ C. E o U CL o G L N Lf in o ' u N o u u z a o e 'u Uc U O O LL LL U U U ,— :L a C7 � Bwo � . ■ \ \ �)SS§ ■ f U. 00 �.k��$ / \§¥Q ■ §( m ® 2 � _ - o . - % k s � ■ « m § E§IU- k ` ° ) 2 ® ® 0§ � «b2 2 « � � � / � M M 2 . f S ] / �k � ) & § no- t 7 o- z ! z f _ E §� » ! 9 U. \ \ � ! C3 t i E12 - k t ƒ \ I { \ & ) > k £ ° 22 ! 2 kof) \tA \ \)N§3 Cl? © \ , }}§ ot; ) \k ()» ! ■ $ . ! � k\ \#3 k 33 �\ ! «At& & / \ \ : lao 2 §ae 77 } k � a £ §) � � { � �\ �\ } \} \ ) ) z E ■ %` « cn ' ! k / / »! t - co { \ - - b,o_ E a ! 3! a k \k !! ! § k § _ 2 ; ) V � M � �i � 1 v' CQ v J o M `� N I � ,p �. � •� N o ,o p � L, ' Y I 3 Y ^^++ OJ uj U= O V Iwow IIpp J I�ofZLL t\ d IQ n. 'CO O LL Z U o .3 1� 'LL '0 0 d W F- 0 7 w LL O rr IaozU a d IQ J � o d m 0 CL ri a pp I gwLL _ Y \ 'Q a) , LL ❑ d E 1 +. ow, O d O a) ,c"NO M 407 O !F-3wLL t-- t US �'V O Io o Z 0 � + LL y y C v O 'a wy� la' II '�j rtd-. 7 N 3 l j U) c �o LL 'N 3N �P � CD '3wzU � o s L �� L _ a ad m m m d I w o C m > E WLU 2 , d o 1 a •C d ' p C) o d O 3 3 J LL o Z _ coJ _ o N d O 2 L V II a) 1 3 a) O\ d d 2 1 Z > Q Q 00 TJ O cy CR J d -4 ra Q' M O > ❑ V r O h N a) in, G' j m Q fn IC N C C ad. 'n F C N I N 0 E o r E E m 2 a'Ld ' N N C C d 7 N n d yd,L U N T (D C C 1 Z H O d moo yL° oL �°U) o 3 W ooE�� m 'y a m� I 3 �w z 3 3 N N� C Ol dC�}} O m O pfM (V 9 N 9Q , �t-Z d 2 y C V C C 10 C LL C O. N N Y j� 11 II p y O y C 'C II II II II II II ` II 11 II W N U �In �QU C.7 c� Uv y �C�pp CO J W > >f7 C7 I QOQ L U V N C '� 00 O� H OL U -Fa~ d Cl d ' W O_ R' f.1 O Q a ro w co cccg0 m UU ~ H E ! z� C� N 01 O OI E p()) II II 0 II 3 C 'y O O O 1 Z d U C N a LL�UU .�ryryJ 7 IL IL 7 LL ' U lya c .0 N C O L d LL N N N , F U U d •�v d > v ai E m 2 I w � z ci o o LL LL ) L) ci �— --- c� � � � � §= `; o � . 6 ƒ Ij § � g � (\_( \ } �� k 1\_ k �)�� ` � lam \ q ` �L� � IL / ©S «k E � � � \19 ; k ` o ° |0 z 0 _ § § S '- i o � & ] -$tom & % � « U. \ � | 10 |2 a CO) C � ( � ��\)_\ \ co LL 2 .U) f SSE § 7 I t �\ ® cc & . f § ` ! z 0 k ■ � °)D co r $ » , | ( \ / co LL | o , \) @ . \ \ — a) _ \ ) �k z< « ~ / k ( 2 ( | k\ ~ §� 2` 2 $ _ �\ _ _ » ` | & ckC4< G { ;ƒ f \ \ \$��k ) f / ) )Z« )§R k � §k r 4 ] Q f S k §\ « \ *t _ s §< § Jet§§® w n 'a 0cr a ~ |° § @ I ek rE 2° © « ! \ /<8 2 kt� 3E \ kk / 77\� ! \ / / w K © 7 \\° ' )@§f }\ )3 co 2 « ! )� \ \ / ( J§�0 �\ \ )) � � m 2 kf ) )\ * § f \ 2 I % k $ f 0 d 00 )< 2 / | ` 0w o LLu i B LL te e »IrzUv § k�° a = . o ) � cc |%owU. U. ( o $ � 0o \\0cc ■ JW § E / )S««) ) °° 3 %� » c o AB]( - - � � ■ § °� ~ J % ��) k3\� ' \ A§ , � e J ■ k FY` E_)\ \ � f . @I a a � � \ } ) w �t > � ca f ' ■ cc ■ � 0 0 E \ o z K _ co/ a / o . LL \ | c ?� E $ ) 0 \ \ a k z , f )) 2 7 J 2 o ■ ƒ ; | �7 /# ka � R\ƒ § \ ;ƒ_ f ) ) k \§ wAG § a) a | § 2 ° k { s Ia'- �) C'4 to\�� � / \/ �} / BCD § % f /f22§) � } §_ . 0o " ' _ `© G � , , # i m a f«/ ) � ■ , 3# \ m § _ _\� ! E & ■ \ ■oal § • < ]2 a % �242 §k » : � £ w� ) G ) § 2 ( 77)f %% w 36 , J ) 7 7 % ` / ° » { °moo §\ } J) ) ± 5 k ) « \o { - \ )� $ \ �/ to / I \ \ - % ! # /7 3 /k )! ƒ § d 3 !_ _ 3 `Y O W O 1 LL U 1 r-10� a� �3LLZLL 3 IO(LFU ni FQ U' ruj Ifn i4 T 1}OJLL > (3LLZU p` ° o L M �0.1' E ILL C. io O c cc +LO (0� co I�Z W to -• O n0 Cl) r= JLL I� .ri O O N O i^ 0 . N W a � 1U LL C U) II II 11 II II , DO > y It oa t - r LL� a cm 1 t O m Oozy U) ICJ— m _U 1 LL C L N ° 12 U) 5 ?� fn C 3 In rLL U. g Ti 0 Z N ° IZU o co {C !C o a N co c lO a > �a E U. o °' eu co U) N N`m I Y..} O x W C ry O N O 1 >> ca E o 2 ` II II II II 1 W r V- 3 3 LL N i ZON� c t O _ 0 1 ca 4� i oLL co)— m �C 10 �O �1 �• r LL U N U F 1 L O N Y O L a W II N— N y (2(� C O F' N E 1 Z N 'N m N ° O Ic oe d I m y .J .� FLO m N ID > 1 II yO N U C3 NN C lO L FN m C C 9 Ctm Of N 'E d�Q 0.N N y €LL ° o O ZY 3O ) C N N L 0 cq CD C'j ON co LL, O OJ U C_ 0 000 Nc�0 a IDu u o ° U� ° u n n u u u ON CQU w C t 00 >+ C ca N LL J > U y ch �00 I H W Q U C f�0 m m ° U�oln °o ~ UU wCL o 0 U O m E 3 O N O LO �' �1c1 ° N E C �_ C S V fA�..� J O ° 7 ~ a li a i 6 ca C 9 •m5m CO ai N �N AN 1 m0 U UNca ° o ° > O so A U O ii LL U U 0 C7 C7 U N C ,*� >= E M M Ay O O N C ` II II 11 11 II 1 y U J K > ( U s a , Ow H ( 2 , LL U 1 Imo, U.W 3 �3y.ZLL ;� (o U �s to _ ca 1� (n C- c imO_jU o 0 13 U. N , Io c va�c � E LL m o ,o O 0 O O mLU 0 0 O I pM,,Z j LL n N O H O cN i Q O Z U Y C> _ R ,U LL ° a II II II II II mCOJ� > j 30a m y ~ I LL h IL 1 0 Gf C 0 I���LL y p m (OOZU y Ny IJi. c •� d io_ £_ O N N 3 v lLLOWN o 1_ m ?� y 0 3wz_c"i 1i c W > o � E loa o O LLJ M N W I-- M I 7 O -W m o 06Om o0 m c E W 2 u u u 11 u 1 w a)N U J > a Zola- c ca 0 cc r r{ O o Z c" 4 3� ca 1 LL O) c. a �op i o v �` Mn 1 \ - d CD Y O O � U V= 3 N (� — M � I O C U F pj N yaw ^J N 8 N N O 0 0 m K N I m a O > Q N LL O U) ID C7 O P N II 'w U = O.0 I N N C = r N C f0 1 U1 y € cwl¢= ~ 2 F o E c �ac � c _ o > j N C d N LL U lA0 ko In O Ol N C ( W O o m� n A O a°�i a, ooMocfl co n (n w 'c,,, a �� , p[w c 3 3 N N CO C Im U) O y a Or OM O 7 r� .OQ i O�1-z Z U7 2et� �3 LL a d 0. o d o ° o n �0 •F u u u u u n ° � ii 0 n u w y � 0 Q u u �N caV w °oo Uv cm a�J� > F y rn - wd0I w ¢ V c �U 0 'N o ODoln � H or F i3 4 LL I ryay 1 0 W U O m E 3 O NO L� S U� N E w 1 ?F N m o U n u U II 3 c •y 0 0 0 I z = 3 N pl LL to U T- J 11 ll IL lL 1 U W •N O l0 .0 A C a L N m o� S= z d E (�pp � z W O > ID N cc f/y� E L ? cc 7 C N U U O o lL a LL U U U !� C7 0 / 0/y i 2\ © B/ 9�Q- | io § /§< \ $ §3oas k 9 i310 !/� : R;--/ f Q o / m Z ieo - a f 2 k 0 0 lu ( . • . - % � � • � k Ln im m i - \ 2 o = | ; r/- � ! 2 ' - \#��# k &�)/ \ � c \ ® ` > { § LU § r ; , 2 ! 0" ! !� z § _ : E k §� $ | ~ 24.1 k , C F { ) 15 \ f - ® • ;E ! CDR �S�«J ! ! j k\ ) / : | )Ee k \ {) \ 7 k§§§; § ; g f « '!; | (2( s ( f ■§ ,w° §- !a «o � ) §,_ \/ , ! § _ � | / / I30j \! ��� ) , _ L` 2 $ 6 k) ) ° °«e _ _ , | ; � / f ! /Aft 3\ § �J f IL , . \\ \ 2#®° \ ƒ 2 CL ! CL \ # �« Ee | � /! a § 00 7) ! 0 § 0 \_ / � 4 | �U0 o , oru | Ix f | /jam ( � k§§2a ! . 0 (2[ § ! §)- 0 ! az k a | )rE w � § k 0 / k -�) ) § k | w 0Lu \ / aMLL m t \ wm | / � m / �) � k & § r . a» k C 0 ) , §) ( ! ! �2 ! §�; \ 12 � _ f � @ ° § ƒ � \\ {/f J { ;/ ° ' )&e § ) }} 22,-�. [r2 ' 2 $§2! f � k\ ! f §{ \ { af§/; § ` � � (}° 2k3 CL k7 2�3 ! § ta ]{ w ! | f �At; | } / 2 \ ! 2GG � c ! ! ] ) E \kf k \\ c ) ; E 2 )b[ LE U $ \k - $I`° )\ ƒ e _ - \ ®� E ° § ! ! - k) 3 k 00 k k ! § ; 0 L_ � ~ w o c \W ® � »3 ° I°0 © !k�_j 2 1o/how } i$ \ � 3§» 4 ) i) / . 00 cc `(xZGm , j//u� � k \)`°za $ \22R 0. tm |/ / 2 - |0 0 o k \ `� / ■ � �` �122; = * © !/Ekb / k � � � | I)ƒ c - . ' ` 2 7 m ) w } 7 m , § 2 ® m LU | ` | oo j auez a)0 CD , | §)( } co \ a 7 | »« m L - / | LL— - w e f / ! t ' f 2 D « « { - ) 7 eA ! � D k - ƒ / / ■ 7/ | }+ ~ _ \k q_ °� ^ ` 0 a - 4) S � | \ #2 E \ 12 ' ( kk2 # ' $ ° ))« E o k 2 , 2 0 ® e k k §k 2 \ / §Ems = k 7 g .LUW & 2 t/ ) f 2 / & t3A�w 2 2 }o� �kCD K ) � £. 2a #<o u e §� % \ ) § f )$tom & \ / ` - ■oaI ) / 2 24 a ) )]j) ®» J/ » 7 cc $ § °( \ \ S / � rL0) §\ \ ƒ) \ s E i �� C / 2 - IL � . C E 2 § ` % r k | f 7 - - Uj § 3 k) 0 0 \k )/ J k k k 1_ _ ` § 0 | ` 0Wo U. IKIL LLI ` 10 � I$� k � k§EtLo ( q LL B 0 Z ` 00 / 0�( [ A� k ■� n $ ) | SUl 0 2 f U. a $ 0 �_ U 0�U. g . % 0 z LL k �U - ■ 0CM � Ge o - ■ � a) LL Ezb # k [Lo � %� c _ � ± 2 I ± k k § / �/ � k w 0 } -z IL JU) k (a 2 § 0 LL R 42 k - cc | -j° ° ` ( k $ \ - % / w ■� %t @ \ ) / a » % § ( | 2� ~ - kk ,�� / 12 \ \ \gam*k f / ) / § �)« � \ @a� m § � E� j �■- 2 §\ )k` �/ - \ I §k0� e r , CO !� ' §)§ > @ - f 0 ƒ §a @� |a§ew CL -0 Of cam@ k \� ( \ _ o �} / ka } �£\� ! \ / � / - �aa | �� } / ) § ) °�\& ]e r oo » 3 I / % /� ° » j 2 �= E J §0 . . A � } ). c w CL 2 I 0 ) 7 » s $ano au , 3 • § 2 - _ & K 2 f ( & ) &) U L) Jk | 7) LL § v ------ 0 0 ! \\\\§ § 7$\ 11 11 ! { 1 ■3 � % LL EB_ 1�_« o 10 ' § q§« � \ � /§W� e / cqdE/b3 S 2 I f kS �# t %2 \ _ //[ § 20 cli �� $� - § oCOu� ! { 2 ` § / � 0E § 2 ILo IL 0 ��� A m 2 _ %)/b \ o ■ 2 ■ 0 N 7 �0 F. a ■ � LL Ezba k Or- m � m ME 4 � t kg*�J $ 16 a ■ ■� J ° I § § I CD°\� a°� , E § ( kcn > \ | a w G §U) j 0 ) R _ \ _j D � \ U. 2 § # $ / \ / m �E , « o \ t » ) / k §« ( | m7 \ � 2 a ƒ 0 k 0 | co � k \2 \ \ §% t ƒ / �#�}J ' t ) § k �f« | 22 % ) 9A = \ w- sc,q § L0 §2§ z \ !\ #® ) $ 2 8 ,- ao j § _ ■ ` ' ' % \ $av 2 )i2E \� / \\ \ �&\� & \ / \ k ± �a\ | k \ §) o� . .( w oo = » ) 3 / % �/ (D 9 } E_ k r ) 2\ 2 f) ) a | 3 k 2 § =2 (D & § ) 2 )f t CL U) ) ) k$ k \ kk )) } L k 0 | ` §$ o LLxo I§\ ID 9 zE $ i w-o - > \ 44\k 3 k q E q co WZ- k b 1 / )SV�# co m \CDW) §ca Of 22[ / $« / §$tom ! $ , & » | oa. r 2 Z | LLu a E � 0 � kB§[ / a 1,_-i_� 2 f § ' ' k ) , $ 2 I§ cv ¥ k LE §)[ ) k L 5 c ■ j - c . §S*�J ' £ a / �_ _ I § � t � - / ~ - w | &\ , }/ ` | § k CD { { —L irm° k / / ° ��� � z _ $ o� = k - L | LL - 5 � ( § -15 � ` ■ � « o �® 7 a } © \ �5 . 2c ■ Cl) » ■ 20 I �¥ / ® § m - ) ° to | kf § / (} E \ \ M -SE f � & r = {\ A / kƒ ° \ k }°Cj / = k § 2/(P §3 k k $§ _ §] k� ' (3 k ` E ° - °m § ; . § I , ~ f , , . , . 06 $/ e \± $<o G ) B@ f} E kf Eo$-i X » \ R - zoo G 2 e ~ ' 3@22 a - )3 / 2 / v | -j/ < k )0 (\ f \ am ) � �� 0 CD k a « %a § ) � \ LL § \ 2 22 $ - _ mE \ c - - | L_ Co a &7 « k \k !) LL k k § �__ _ ° G ) � - iw§ d�§, a | i0 / ] t nw § � ; _ : IQ ` b/ § £ , §\_ - ! °^ _ LU G5J & } | StE] » §» 9 / gzoe - � U) \ _ % & ) ��-- } ƒ �® § ■ « m § mG \ / 2 § B a \§2[f = k LL. - lS��J E ad § ■ \ "a a ! + 0,6 f | �2! $ E § co\ I > , d w % k t } t r » �` §2E � $ ) $ § | ,� � 2 o� � � / \ \ M. !% _ « ! # = y 6 ƒ 7 a k 2/ (] � CC 7 } & / } )\ , 9 E� f _ a m i§ | (7(# / f k ( ! k 2) ` i ) k4 , ■ �° ) , ' �a , §_ R , \ ate„ f 5e� , f/ E - ° ! U) W > } % � co!m {<A :E. , E % Z u 0� k \§ƒ { E ��8\ A \ \§ / k \ 0 ( , . ) . E � �) � \{` \ � / \ \ \ ) � \ \ / ! r, o 0 oc �# = 0 o � �(® /§ q2§e. \ $ / S �\ bam i \)¥bw f | co a / ' 2 ! ogz�® e kk � \\- $ « .0 a , Im: i Q # o , $ . - ■ U) £ c fLL k ; ; 7S--J ! ` a k 2LLI | » ) ) § \ k � | / ; � |m 0 ( § z r a_ ■ \ § | 00) zt : - \ ¥ > La § > § Cc [ | !# 2 k � e)) @ _ �ƒ k / \ ■_ ) ! ! \ }�« | { f )k \ ! , { k )§)7q § - , !m � #)� ! ( ) kw - # k« . k ) \ U. � � �; _ /% f 2 . . ; , - ° e �4 #`° ° ® ®� %/ ƒ ® i ' } $ \ : lGG � t jk)) % A6 ■`� § ! f ! 2\ ( ( �7 \ 2 ! . i ! ƒ/ °° }) ƒ 2 % kCL / | - - | e 2 § 3! ) k \k )! ! 0 k k a ) W | ks■�% | �b� 3� a E ƒk 2 WOO , 80§eg W ) ! ■ ) o.kE 2 � �e 0 § /§9\§ A % C414 ) )o k ! 2 k k ow- EL- ° _ ■ "S� ] E 06 § 2 f ) / ,uj © / Im § � , � 1 § | § ! d■Ec ) $ ) | §kE\ \ §Um ƒ -a/ a | �� « \) 12 ■ m � : | §■ � \ ® - © . - ! ® -) @ $ k � � "S��) f ,§ } §r 4= } / m k ! { 2 �7© ` ■®Q`° \k , - , !a | 00: Z{ ;)��� § CL (4~ , Sg! • k E a � E; . E \\ soC ° °� ® kkf qA«& | / / $ « : $GG | r,U § ! $ - k««, f/ z \ J ® ® k \k)\ / } § / 0 ) | m � 2 k\ &/\ f !f + J 7 , E | | 7 'E A! a k Jk LL ! G o 0 L___ ) 0 ■ Le [;� , % &(D` k J !§rf a ! § j co k ))§) § /\2(� ! � / /\r & k ) , �§ a flu a �,(n ) 2 0Sly, § � � } /ALL o = . Qom! k � _ & ) ! 2 � 2 2 - ' - � ] ( \j§\7 f .§ : ) | 0 | A�1][ £ z k • | ; § $ e # | « ! f f ! ! k(k a? �� � g k 0 w k k/ . # -I \®) $ & CL §/ G32<A \ - \ to� !Jk )!k� $ !a k k= )) # / � k / I A« a }0 !! » 6 \ [� _ o ks��) E d5 7§,aw » ■ ƒ) A b§� 0 L U . /. � kb` ) § E §�_ k#��) ! Z co }��(q . H A k IL ? � \ J/S� § e�- > t - ` ° 2 � ) 0 ` t 2 *§2&f ) o � )P 2 \■--) ! IL § � / | • j I I § § §2 f 0 m qGt; | / �K%a z , SG�§ _ ■ | « 77 � * \ 2 { \ � � | �§ • \k fJ\ - } of ) \ \ \S ) ! \S.�k { { ) / ) W!« � �� \(i § / kw © ( �\§@% ; _ _ - k§ | ff%a f §@ !� -aq=, ,2�/; 2 , ki ke |© CL kf \�3 ) �« } /\ ■A«& % } � } } / \ ! lG3 � ! co A«§S ; £ §!§ ! ]\ 2 . . oo e , e | _�° i ! !A?f 3f { �7 f � £ § E /) { a `° \ ■ ) - e \ f 3. ) k \} !k k 0 j G i _� ) ) ■ �bq■2 s I2§;« o W0 UJ ■ e 2 \ �0 ; 0moo � �5��3 t ! oo ui / §\§§ f }0-- > / | fw ¥ ■ § 44�ruV2 2 § §§/b, 52 % 2 k ' , A 2 m kk�V « , � k \ %�«max ° r iS�r) f � JM - ) � k Icc t 2!\f\ , § § ) @AtJ | / ¥W& % ! 0 | , 66)� 5 f « - § | ■. � D - } ! | ) \! \ _ \ ( | « ) § n cc \ ({ § � - , r � @/ E k - « I« -k! cc / ;/ k \ \ }■��/ t ® ! >q�, (k \ ; c \ ° \ Lu c'i = - \ , �§ | §2§ ¥ f @m !N ; ` ,!_ . _® � _ CL -! § -z . ) )� 2<0 ® ® " . � _, • >aa °� \ k ! 7 �Gt; > / / % | ! goo §22 2a! 7 0 In ! / f °° eo LL \ a a 1.0 ` E E 2 I AE a k J! !) ! 0 0 0 - CD ) | | 1 . ( U� §0§� ! , §m!§ % # |)§# \ � §§§�% ( §!!� : ! /(:ay |[!y& 2 { ) $ j . . ) ° � _ 00F t x f - k m ( i§0—w k _0 © S \#��) E § ad m 0 ' § LU { w # � � § » �3%; \ t ion 2 f i 0 / .2 §§§ 7 { ! \gym = : | k ) ) § | ` # 555 | _0 § � � f) } a/ k / \ \S_�/ ! ! ) \ IE 2 ) § a{ - :, §r | #ƒ� ! ; » kQ� § ° ® mm - ■2 2 f10 3 ` } _ ° \}° � a - kƒ 2;3 k )/® }} \ 0. { )�tW | k00 | gym§ k ! o,Cm _ § gcc 3\ { j) f e 0 E 0 ! /rz » { ! %] « � G E \ \I°` a .. , . Jq?( k {« � k / \ I ! . 3 k a! !! ! 6 0 u _ ; ¥ [ , i �§ o %0�� mk& { | |\\�_. \ `I y) co %!/oa t § § .: ! ee \ tj On C) 0 w� !_ |(oz a � § ) ee!° : a 2 % � ' © ' - o � & § @g e g n @ ilgE-$ k 02 © k \[/&, \ rL © E- ■ ® ` cU) _ �S`°- ) � LU / `� \ § @ § ! alLz z0 0 k � � e | SL2 � - ! k - ! 2 ) f « 2 ) - \ - ` - 7 §! ` \ 0 / I ! o ; \ k ( f k ) k\ ■& ! E k 22§§:w § _ ( _ k - ^ )f #2 . ' >{ {<o @$tom & ƒ \ $ / - ,00 | ) § \ _ ee , ) « M. �; ! \A)\ \} \ !! / _ 3t } \ ! !k ) k \ 0 !! 2 ;�Q | e§ f PK in w�bin \0 L U | (§o < \ � § °� ®S� k ! eR %lLEc \ K§/a b ° \ J2; , , q2 00. k \ E/ ac � 4■�: 9 k oo�o. 2 ° � 2 iwe! k 2 ] � ` "0 @ g k ■ « n , � ■ §zcc /o , § k /c - 7 � 2 I , / • § I mLU § } 0 t � R` | )\[ a ! | 0 k ` \ ƒ / - { \ q{ e & : ! \ \ (#sr-) ! ! { ( ) ce f C, IL � JOM - �! IL - { \ f. , k ) � K® )} f 1 , . . , , k/ k<G e - _ , \& } e � -m�� > / � ! i : $GG ! ) 10 !\ ou ) a * \ J ; ,) f ` N0. i ®` 0 E ! !I { \ �2mo )i t m § E k | ! / 2j 7 /) a k J0 !! ! 6 k k [_�_ w / . i 2\ > Q0 k}b. iW/2 \ ) F— f �§ t § \ §§bay ICL 0 k 0Z k � d° E - � � - 0 2 Ln § i;g k � _ N ® &°�■et tt \ \�«�� k © � | bCL , 4 Q 7 § � i M 0 I ■ k k ) 0 | dL k . (L f 2 | ) | §cn [ z _ \ § %] | # - k � a7 ) \ \ \ 2 Jf« | G ) §f - ! moo, , ! kk % k Ja§�:w - M- 07§# [ f ,! s ! I , { • j k/ ƒ�G kt®2 \} / k) ) �Atw & / / k / �oo ` c/ 0 k f \§ / $ \)\y \_ < }2 f w 2 / « © % { f °° IL CL ) i / - - da w m e 2f t kf | I E ; » ! 3w a J!k §! ! 6 k k i / a ! i )§ » |�k §)§, • om-o , ! / ® 333®® a t /!/b: !m( 0 §C) �& ■ i :\� % . . - E 0 § 00 p U2 % o \ io 22m 2 rA§gy \ ! 02 � jL u \ % 7 § � ; % { � I / E \ § ! ° f J | no- K 2 � 222 \ | _ . \ _ @ 1 d \ )) f e I # mf i §■ ° w _ NW ! ! k § { )!« | k ! }k 7° k° {� lg L) 6: u ° 2 : 3 E ° k $ t f 15s A 5 )� ! ]Qt; | } / $ S : $aC3 �A �`° °= 22 k 7k ! » m j §/ 9 / } { ° co E ���\ �) \ ` ) J i m A !2 § } % - ` | I OR ImO /) 2 - \� k § ) \ - | L - 3! L) k /! !! ! 6 § k ■ Note:When specifying/ordering grates,refer to"Choosing the proper inlet grate"on pages 117-118. For a complete listing of FREE OPEN AREAS and WEIR PERIMETERS of all NEENAH grates, refer to pages 306-311. R-3067 Combination Inlet Era.me,Grate,Curb Box Heavy Duty 39_,,4•-------- curse BoxaorusraBle e•TO B• 35'14• 53/4' r'�\ 17 3/4• 11/4 2R• ��- Curb Plata Available 3. 43' 31' WEIR Standard Grate(shown):Type R-diagonal SO. PERIMETER t G rae CATALOG GRATE FT. LINEAL Alternate (s) NUMBER TYPE OPEN FEET R3067 R 2.0 5.8 i l ll�I�III R-3067 C 1.6 5.8 R-3067 L 2.1 5.6 �oo'ct t JJJ! �OC�r`l Type C Type L Available Curb Boxes:2"Radius Open,3"Radius Open,6"Radius Open,10"Radius Open,Mountable/Barred Enviro-Curb Boxes available,see page 121. For Double and Triple units,refer to R-3295-2 and R-3295-3. R-3067-C Combination Inlet Fkame,Grate Heavy Duty 331/2' 19 1/4' 7yp.•I r-1 3/4•I 4• IF r-11/41 3/4'I 33 1/2' I 16' 43' HI 31' WEIR Standard Grate(shown):Type C SO. PERIMETER Alternate Grate(s): CATALOG GRATE FT. LINEAL NUMBER TYPE OPEN FEET H-3067-C C 2.1 0.8 R-3067-C L 2.1 8.8 71IIPJa�.711 Type L Furnished without curb box for use at driveway locations. R-3067-L Combination Inlet Fume,Grate,Curb Box Heavy Duty CURB BOX ADJUSTABLE TO B•NIGN — 3e3u• 35 1/4• 6 3/4' 17 3/4' xR I '- 63R' Curb Plate Available Vim—33 43— WEIR SO. PERIMETER CATALOG Fr. NUMBER TYPES OPEN LINEAL Available Curb Boxes:2"Radius Open,3"Radius Open. R,3067-L L 2.1 5.8 Enviro-Curb Boxes available,see page 121. NEENAH FOUNDRY 1t Discharge vs Depth On Grate 9 8 7 10 60 < 4 iu so 7 40 L z ad 5 �.: d 3 30 M �- 0 � I t tu 20 Mcah�ln 30(.�-1_ lug uj > h 1t � 1� � z _ LU L .8LU 4 � i .b .' _ \ ,4 .8 2 .3 '�oW .7 b t 46 r�»Ez-�ttis.r• owns ■■■■ am ■■ M.■■ on ■■■ ■■mmo■smm SOME■■■■■■ ■■■ ■ ■ ■IV m■ FBI■ e!E� ME■■E■■am a■�0InumCi 1 0 m i�a ii■1a0 aala:CCCCCE: • KNEE■■■Na■■Ott■Ma■a�KN■■E■.1■4■ MM■r.■EE■M/rr■aNOR R■�C1Q11 a6Ca11swulgaijulfluinum"Mmi=Rmmn man ::��:::.■■■nnamosEM■.a iiiaiapeuaamoa�oi■ ■■ �e■ aa■■■■aEmEEE■=■■aEa■m■■m■ i ■ iK �.uni" : � ■ � �■:i. �:�i��■�mmiai��iCi:aii"=aaimisuivaaiiaaaaa:m ::CC In a► ME E■EEMaaEa:i mom HE n■■ �� "■■�'�--%MR ��r■r■■■■ ■n ■■ dam �■ 0M o■mCs-■■■ ■�■■ifii� ii■i: _mom iameaa ■■M■r!IEGi!■ !t■ OWT m■■■ u W"0ldl'"+� /■Er`.!RiS1■■■■■■lr'�:!Sim!■■■\�i��+ a■■N■■■M■a■�■■i■uo■u■■■■■■■�■ �.� ■ .MMai■i ■ NE ■ �`_ d = NONE EWEEICUVI m■ ■ "NMI ��■n_ .i.s�[!CiaC.i.i■.=.r am I E■■■ ■ Nr■■ ■ ■■ so■■ ' � ■■■E■ ■ ■ Num ■lllilliumumanow N� 0y r AAKKwmmC■ o%a%aaaa\ ■M ■■E■Aa a nn : nom�+V' 1" nin .......... I• 1 1111fA11 r� Zit. ��►..Z� ■■M mama ' Ma■■mmmmmmEs■!as■a■ ■aE■ min'a�CCaa�==C�C�iC�iC■aCi� "C �' as �C �■ aMKaME■■�M■EMa■■■'�C . .. JS am M■ aria a a� . nssmm■■EE C.�■ia■�■aNCaia r�i:Es■ssii■ ■ i is C C ■�m■mongoose" ■■KMIWEJ ■■m■ ■■■■ ■ ■1ta■ K■rnMua ■a■M■E ooa ■s�m�.... CaC■c.aao.:a .a�1■■v"B E E .1:.■�M=ago E",Ii'n anal ■■■■ ■C�i ■■�■ MNM■ ■NMoasssam■mm■m DOSS ■ ■■a■Em■osas SEES■C ■Ems KN ' tmam ■.s■ss■Ems■E■oo■■■ ma■m � "' a ■■.0 sa ■mass " Maa ="'CCaC■a[.�■a■[■uM■ C. N■ ,. s■. ■E■ ■ ■ ■■■ ■ m K ■ smNaam■ ■■ate■ ■���ri. a■ siaWmm■■amK.a. KIN aid iCm ■� s-2ama■ aamr -1 NAZI Ca:sCC■.C■CC■�E■:■:aC■a■N. Ku ■a 100111C::1111111 " =Ea0 u `►■mmm■■ norm■■ma■.■ ■ _0■11 -r r 0G:.�a a■■■N � _41 ■uam■m■■Eon M■■■■■■■■■ ■ .� �u4■�.■e :�=�■ m■■■:i�!►fl� i1rb�4 ■��■�Nmo ■■■■■■E■■N sM inn■.:.,`�!■■ mmmmmm■mmft rr■mimosa N_zm—it 1=4 �gr�,t��+ ��VlN .■■■m■■■■■■■..m■E■mmEEEmmE■K■■ ■�aa■■■En■[■■■■■■■■ s■■ ■■u■t ■m■■■,■■■.■■■/N■a■■ ■ Nrm1 ■m■■■m■o■MaKMa■■■a ■ ■ ■ ■■ CCCCa N�! ■s■ a■�`saMsa'CC rE■ ■■■ ■ammEmma■■i■i■a=a■■ a�� a�Qa 1CCr CC:::S1 ■■NE■�monsooC a����::a�::M�M:m a::: PIPE SIZING CALCULATIONS Pipe Sizing Worksheet Norton East Ranch Subdivision-Phase 1 Pipe Capacity and Velocity Calculated Using Manning's Equation Q=(1.466/n)'A'R� *S'n Pipe Material will be PVC:n=.013 wet Hydraulic Pipe Pipe 25-Year Flow Flow Flow Velocity Pipe Pipe Location Diameter Manning's Area Perimeter Radius Slope Capacity In Pipe Check Velocity Check From To In n (ft2) ft ft ft/ft cfs cfs ca >flow ft/sec vel>3f s 1 INLET OS-IA INLET OS-1B 15 0.013 1.2272 3.927 0.3125 0.00350 3.822 1.980 OK 3,114 OK 2 INLET OS-18 POND OS-1 15 0.013 1.2272 3.927 0.3125 0,00940 6.263 3.970 OK 5,104 OK 3 POND OS-1 OUTFALL 15 0.013 12272 3.927 0.3125 0.06250 16.149 3.970 OK 13.160 OK 4 INLET OS-2A INLET OS-28 15 0.013 1.2272 3.927 0.3125 0.00350 3.822 1.830 OK 3.114 OK 5 INLET OS-28 POND OS-2 15 0.013 1.2272 3.927 0.3125 0.00450 4.333 3.660 OK 3.531 OK 6 POND OS-2 OUTFALL 15 0.013 1.2272 3.927 0.3125 0.00540 4,747 3,660 OK 3,868 OK 7 INLET OS-3A INLET OS-38 15 0.013 1.2272 3.927 0.3125 0.00350 3.822 1.740 OK 3.114 OK 8 INLET OS-3B POND OS-3 15 0.013 1,2272 3.927 0.3125 0.01340 7.478 3.480 OK 6.093 OK 9 POND OS-3 OUTFALL 15 0.013 1.2272 3.927 0.3125 0.00450 4.333 3.480 OK 3.531 OK 10 INLET to INLET 1B 15 0.013 1.2272 3.927 0.3125 0.00350 3.B22 1.240 OK 3.114 OK 11 INLET 113 INLET 1D 15 0.013 L2272 3.927 0.3125 0-00510 4.613 2.420 OK 3.759 OK 12 INLET 1C INLET 1D 15 0.013 12272 3.927 0.3125 0.D0350 3.822 2.880 OK 3.114 OK 13 INLET 1D POND 1 18 0.013 1.7671 4.712 0.3750 0.00570 7.931 6.140 OK 4,488 OK 14 POND 1 OUTFALL 18 0.013 1.7671 1 4.712 0.3750 0.00750 9.097 6-140 OK 5,148 OK 15 INLET2A INLET2B 15 0.013 1.2272 3.927 0,3125 0.00350 3.822 1.480 OK 3.114 OK 16 INLET28 MH 1 15 0.013 1.2272 3.927 0.3125 0.00350 3.822 2.330 OK 3.114 OK 17 MH 1 MH 2 15 0.013 1.2272 3.927 0.3125 0.00480 4.475 2.330 OK 3,647 OK 18 INLET2C MH2 15 0,013 12272 3.927 0.3125 0.00350 3.822 1.370 OK 3,114 OK 19 MH2 MH3 15 0.013 1.2272 3.927 0.3125 0.00510 4.613 3.700 OK 3.759 OK 20 INLET2D MH3 15 0.013 12272 3-927 0.3125 0.00350 3.822 1.570 OK 3.114 OK 21 MH 3 MH 4 16 0.013 1.7671 4.712 0.3750 0-00500 7.428 5.270 OK 4.203 OK 22 INLET2E MH4 15 0.013 1.2272 3.927 0.3125 0.00680 5.327 1,320 OK 4.341 OK 23 MH 4 MH 5 18 0.013 1.7671 1 4.712 0,3750 0,00540 7.719 6.590 OK 4.368 OK 24 INLET2F MH5 15 0.013 1.2272 3.927 0.3125 0.06000 15.823 2.240 OK 12894 OK 26 INLET 2G MH 5 15 0.013 12272 3.927 0.3125 0.00610 5,045 0.700 OK 4.111 OK 26 MH 5 MH 6 21 0.013 2.4053 5.498 0.4375 0,00370 9.638 9.530 OK 4.007 OK 27 INLET 2H MH 6 15 0,013 1.2272 3.927 0.3125 0,06000 15.823 0.520 OK 12.894 OK 28 MH6 INLET21 21 0.013 2.4053 5.498 0.4375 0.00450 10.629 10.050 OK 4.419 OK 29 INLET 21 POND 21 0.013 2.4053 5.498 0.437S 0.00450 10.629 10.150 OK 4.419 OK 30 POND 2 OUTFALL 21 0.013 2,4053 5.496 0.4375 0.00720 13.445 10.150 OK 5.590 OK 31 INLET4A MH 10 15 0.013 12272 3.927 0.3125 0.00875 6.043 1 2.470 OK 1 4.924 OK 32 INLET 4B MH 10 15 0.013 1.22721 3.927 0.3125 0.00350 3.822 1.390 OK 3.114 OK 33 MH 10 MH 11 15 0.013 1.2272 1927 0.3125 0-00400 4.086 3.860 OK 3.329 OK 34 MH 11 MH 12 15 0.013 12272 3.927 0.3125 0.00541 4.751 3.860 OK 3.872 OK 35 INLET41 MH7 15 0.013 12272 3,927 0.3125 0.02500 10.214 1.840 OK 8.323 OK 36 MH 7 MHO 15 0.013 1,2272 1927 0,3125 0.00660 5248 1.840 OK 4.276 OK 37 INLET 4J MH 8 15 0,013 12272 3.927 0.3125 0.02000 9.136 2.380 OK 7.444 OK 38 MH B MH 9 15 0.013 1.2272 3,927 0.3125 0.00678 5.319 4,220 OK 4.334 OK 39 INLET 4K MH 9 15 0.013 1.2272 3.927 0.3125 0.01730 8.497 2.700 OK 6,924 OK 40 INLET 4L MH 9 15 0.013 12272 3.927 0.3126 0.00350 3.822 2,800 OR 1 3.114 OK 41 MH 9 MH 12 21 0.013 2.4053 1 5.498 0.4375 0.00825 IC392 9,720 OK 5.983 OK 42 INLET4C MH 12 15 0.013 12272 3.927 0.3125 0-00522 4,667 3.310 OK 3.803 1 OK 43 INLET4D MH 12 15 0.013 12272 3.927 0.3125 0.00350 3.822 2.890 OK 3,114 OK 44 MH 2 POND 24 0.013 3.1416 6283 0.5000 0.00730 19.329 19.320 OK 6.152 OK 45 INLET 5A INLET 58 15 0.013 12272 3.927 0.3125 0.00340 3.767 1.510 OK 3.069 OK 46 INLET5B POND 15 0.013 12272 3.927 0.3i25 0.00340 3.767 1.510 OK 3.069 OK 47 INLET6A INLET6B 15 0.013 1.2272 3.927 0.3125 0.00400 4.086 2.490 OK 3.329 OK 48 INLET 6B INLET 6C 15 0.013 12272 3.927 0,3125 0,00541 4.751 4.690 OK 3.872 OK 49 INLET 6C POND 6 15 0.013 1.2272 1 3.927 0.3125 0-OOB50 5-956 5.640 OK 4.853 OK 51 POND OUTFALL 15 0.013 1M72 3.927 0.3125 0.00690 5.366 1.050 OK 4.373 OK 52 POND 4 OUTFALL 24 0.013 3.1418 6.283 0.5000 0.00730 19.329 19.320 OK 6.152 OK 53 POND 8 OUTFALL 15 0.013 1.2272 3.927 0.3125 0.00850 5.956 5.840 OK 4.853 OK CULVERT SIZING SCS ' 1 i . Description i8axter Creek_25yr Dimensionless Hydrograph scsdim Edit Distribution tr20t2: Type 2,24 hrs v Edit Antecendent Moisture Condition Type II Runoff Curve Number 175 Select Duration min 160.0000 Drainage Area ac 1700.0000 Select Rainfall in 12.4500 Select Time Increment min 16.0000 Time of Concentration min 188.5000 F Select Peak Discharge,qp cfs 147.9359 Time to Peak min 778.2549 New Load I Save Hydrograph Out ut OK Cancel Help Culvert Calculator Report e o a.a C v,,,,4 Baxter Creek - Culvert Crossing ,t, §- Solve For: Discharge �'x' Tiol07 Culvert Summary Allowable HW Elevation 84.11 ft Headwater Depth/Height 1.76 ¢� r Computed Headwater Elev-, 84.11 ft Discharge 149.94 cfs Inlet Control HW Elev. 84.11 ft Tailwater Elevation 76.00 ft 0 Outlet Control HW Elev. 83.57 ft Control Type Inlet Control Grades Upstream Invert 78.25 ft Downstream Invert 76.00 ft Length 90.00 ft Constructed Slope 0.025000 ft/ft Hydraulic Profile Profile S2 Depth, Downstream 1.94 ft Slope Type Steep Normal Depth 1.68 ft Flow Regime Supercritical Critical Depth 2.84 ft Velocity Downstream 16.09 ft/s Critical Slope 0.007840 ft/ft Section Section Shape Arch Mannings Coefficient 0.013 Section Material Concrete Span 5.42 ft Section Size 65.0 x 40.0 inch Rise 3.33 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 83.57 ft Upstream Velocity Head 2.06 ft Ke 0.20 Entrance Loss 0.41 ft Inlet Control Properties Inlet Control HW Elev. 84.11 ft Flow Control Submerged Inlet Type Groove end projecting(arch) Area Full 141 ft2 K 0.00450 HDS 5 Chart 0 M 2.00000 HDS 5 Scale 0 C 0.03170 Equation Form 1 Y 0.69000 Title: Norton Ranch Subdivision-Phase 1 Project Engineer: Dax Simek p:\...\stormwater\baxter_fallon_xing.cvm CulvertMaster v3.1 [03.01.009.00] 05/05/08 03:44:10 IUJBentley Systems, Inc. Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Baxter Ditch - Babcock Str Solve For:Discharge Culvert Summary Allowable HW Elevation 4,783.84 ft Headwater Depth/Height 1.01 Computed Headwater Elev, 4,783.84 ft Discharge 26.51 cfs Inlet Control HW Elev. 4,783.68 ft Tailwater Elevation 4,780.28 ft Outlet Control HW Elev. 4,783.84 ft Control Type Entrance Control Grades Upstream Invert 4,781.60 ft Downstream Invert 4,780.28 ft Length 89.00 ft Constructed Slope 0.014831 ft/ft Hydraulic Profile Profile S2 Depth, Downstream 0.89 ft Slope Type Steep Normal Depth 0.87 ft Flow Regime Supercritical Critical Depth 1.28 ft Velocity Downstream 9.48 ft/s Critical Slope 0.004588 ft/ft Section Section Shape Arch Mannings Coefficient 0.013 Section Material Concrete Span 3.65 ft Section Size 43.75 x 26.62 inch Rise 2.22 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,783.84 ft Upstream Velocity Head 0.64 ft Ke 0.50 Entrance Loss 0.32 ft Inlet Control Properties Inlet Control HW Elev. 4,783.68 ft Flow Control Unsubmerged Inlet Typ8quare edge w/headwall(arch) Area Full 6.3 ftz K 0.00980 HDS 5 Chart 0 M 2.00000 HDS 5 Scale 0 C 0.03980 Equation Form 1 Y 0.67000 Title:Norton Ranch Subdivision-Phase 1 Project Engineer:Dax Simek p:\...\stormwater\baxter_fallon_xing.cvm CulvertMaster v3.1 [03.01.009.00] 04/30/08 11:35:37 AA/Bentley Systems, Inc. Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Wetlands - Babcock Str Solve For: Discharge Culvert Summary Allowable HW Elevation 4,778.84 ft Headwater Depth/Height 1.34 Computed Headwater Elev, 4,778.84 ft Discharge 3.57 cfs Inlet Control HW Elev. 4,778.84 ft Tailwater Elevation 4,776.50 ft Outlet Control HW Elev. 4,778.82 ft Control Type Inlet Control Grades Upstream Invert 4,777.50 ft Downstream Invert 4,776.50 ft Length 102.00 ft Constructed Slope 0.009804 ft/ft Hydraulic Profile Profile M2 Depth, Downstream 0.81 ft Slope Type Mild Normal Depth 0.83 ft Flow Regime Subcritical Critical Depth 0.81 ft Velocity Downstream 5.26 ft/s Critical Slope 0.010341 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1.00 ft Section Size 12 inch Rise 1.00 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,778.82 ft Upstream Velocity Head 0.41 ft Ke 0.20 Entrance Loss 0.08 ft Inlet Control Properties Inlet Control HW Elev. 4,778.84 ft Flow Control Submerged Inlet Type Groove end projecting Area Full 0.8 ft2 K 0.00450 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 3 C 0.03170 Equation Form 1 Y 0.69000 Title: Norton Ranch Subdivision-Phase 1 Project Engineer:Dax Simek p:\...\stormwater\baxter_fallon_xing.cvm CulvertMaster v3.1 [03.01.009.00] 04/30/08 04:13:23 F&Bentley Systems, Inc. Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Unknown Swale - Babcock Str Solve For: Discharge Culvert Summary Allowable HW Elevation 4,784.83 ft Headwater Depth/Height 1.36 Computed Headwater Elew 4,784.83 ft Discharge 10.03 cfs Inlet Control HW Elev. 4,784.83 ft Tailwater Elevation 4,781.45 ft Outlet Control HW Elev. 4,784.80 ft Control Type Inlet Control Grades Upstream Invert 4,782.79 ft Downstream Invert 4,780.95 ft Length 89.00 ft Constructed Slope 0.020674 ft/ft Hydraulic Profile Profile S2 Depth, Downstream 0.90 ft Slope Type Steep Normal Depth 0.89 ft Flow Regime Supercritical Critical Depth 1.22 ft Velocity Downstream 9.11 ft/s Critical Slope 0.009234 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1.50 ft Section Size 18 inch Rise 1.50 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,784.80 ft Upstream Velocity Head 0.66 ft Ke 0.20 Entrance Loss 0.13 ft Inlet Control Properties Inlet Control HW Elev. 4,784.83 ft Flow Control Submerged Inlet Type Groove end projecting Area Full 1.8 ftz K 0.00450 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 3 C 0.03170 Equation Form 1 Y 0.69000 Title:Norton Ranch Subdivision-Phase 1 Project Engineer: Dax Simek p:\...\stormwater\baxter_fallon xing.cvm CulvertMaster v3.1 [03.01.009.00] 04/30/08 11:52:38 10 Bentley Systems, Inc. Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 GUTTER CAPACITY CALCULATIONS Gutter Capacity Calculation Norton Ranch, Phase 1 West Babcock Street S 1♦ 0.5' —01 1.5' iA 7.5' ►j T.O.C. 0.15, o.�2s 3 0.35'' '_ 3"/'4 Crown Slope Catch Curb Not to Scale W.Babcock St.STA.0+43.93-1+50 W.Babcock St.STA.1+50-6+00 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 t/ Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.73 cfs Q= 2.73 cfs W.Babcock St.STA.6+00-8+47.73 W.Babcock St.STA.8+47.73-12+00 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.006 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.73 cfs Q= 2.99 cfs W.Babcock St.STA.12+00-15+47.73 W.Babcock St.STA. 15+47.73-17+01.62 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Crass Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.006 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.73 cfs Q= 2.99 cfs W.Babcock St.STA.17+01.62-19+13.07 W.Babcock St.STA.19+13.07-21+45 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0195 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 5.40 cfs Q= 2.73 cfs W. Babcock St.STA.21+45-25+50.88 W.Babcock St.STA.25+50.88-End Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0075 FT/FT Longitudinal Slope(S)= 0.007 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 3.35 cfs Q= 3.23 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 Fallon Street IF 0.5' 1014 - 1.5' ►4 7.5' 01 T.O.C. 0.15' fi 0 225' o iz5' 31,,o Crown Slope Catch Curb Not to Scale Fallon Street STA.0+00-3+15.81 Fallon Street STA.3+15.81 -7+25.81 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0058 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.94 cfs Q= 2.73 cfs Fallon Street STA.7+25.81 -7+75.81 Fallon Street STA.7+75.81 -10+18.31 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0123 FT/FT Longitudinal Slope(S)= 0.0065 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.29 cfs I Q= 3.12 cfs Fallon Street STA.10+18.31 -11+50 Fallon Street STA.11+50-12+96.93 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0111 FT/FT Longitudinal Slope(S)= 0 0066 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.07 cfs Q= 3.14 cfs Fallon Street STA.12+96.93-17+00 Fallon Street STA.17+00-18+92.16 Parameters Parameters Cross Sectional Area(A)= 1275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.006 FT/FT Longitudinal Slope(S)= 0.0096 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q- 2.99 cfs Q= 3.79 cfs Fallon Street STA.18+92.16-23+67.47 Fallon Street STA.23+67.47-26+50 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0075 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 3.35 cfs Q= 2.73 cfs Fallon Street STA.26+50-END Parameters Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Longitudinal Slope(S)= 0.0111 FT/FT Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.07 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 Laurel Parkway I♦ 0.5' P — 1.5' 10 4 7.5' ►� T.O.C. o�ts' 0.35 _ �3�.,Crown Slope u Catch Curb Not to Scale Laurel Parkway STA.0+65.04-4+65.26 Laurel Parkway STA.4+65.26-9+14.51 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0103 FT/FT Longitudinal Slope(S)= 0.015 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(S^.5) Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 3.92 cfs Q= 4.73 cfs Laurel Parkway STA.9+14.51 -10+86.16 Laurel Parkway STA.10+86.16-13+25.06 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.01 FT/FT Longitudinal Slope(S)= 0.0121 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(RA2/3)(S^.5) Q= 3.86 cfs Q= 4.25 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 A Street It-- 0.5' 014 1.5' ►I4 7.5' ►� T.O.C. 0.15' 0.225' 0'35 a S25 �3%Crown Slope Catch Curb Not to Scale A Street STA.0+72.24-1+78.96 A Street STA.1+78.96-6+06 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity (Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.73 cfs Q= 2.73 cfs A Street STA.6+06-7+30 A Street STA.7+30-13+7.45 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0075 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity( (Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA213)(SA.5) Q= 3.35 cfs Q= 2.73 cfs A Street STA.13+48.46-End Parameters Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.73 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 B Street 14-0.5' 1014 — 1.5' 1-4 7.5' 1-1 T.O.C. 0..1115' 0,*',1 5 0.35' 0.125 3S Crown Slope Catch Curb Not to Scale B Street STA.0+75-1+22.38 B Street STA.1+28.38-2+6.90 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0051 FT/FT Longitudinal Slope(S)= 0.0056 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity (Manning's E uation Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 2.76 cfs Q= 2.89 cfs B Street STA.2+6.90-3+34.50 B Street STA.3+75.50-6+15 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0107 FT/FT Longitudinal Slope(S)= 0.01 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 4.00 cfs Q= 3.86 cfs B Street STA.6+15-8+86.39 B Street STA.9+29.41-END Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity Mannino's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 2.73 cfs I Q= 2.73 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 C Street N- 0.5'p-- 1.5' ►It 7.5' T.O.C. 0.15' fi 0 229' O.j 5 - 311r�Crown Slope o.izs Catch Curb Not to Scale C Street STA.0+50.50-4+29.50 Parameters Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Longitudinal Slope(S)= 0.0165 FT/FT Gutter Capacity(Mannin 's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 4.96 cis Gutter Capacity Calculation Norton Ranch, Phase 1 D Street N- 0.5' —►f4 1.5' fl4 7.5' �I T.O.C. 0.15' fi 0 225' O.j 5' 3�/�Crown Slope L Catch Curb Not to Scale D Street STA.0+50.50-2+80 D Street STA.2+80-7+05.11 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.018 FT/FT Longitudinal Slope(S)= 0.0105 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(R"2/3)(S^.5) Q= 5.18 cfs Q= 3.96 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 E Street 1 - 0.5' I 1.5' ►I4 7.5' 01 T.O.C. 0.15' 0.225' 5 0.3 1 3°i.Crown Slope Catch Curb Not to Scale E Street STA.0+50.50-1+61.25 E Street STA.1+61.25-4+29.50 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0297 FT/FT Longitudinal Slope(S)= 0.0171 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 6.66 cfs Q= 5.05 cfs E Street STA.4+29.50-7+50 E Street STA.7+50-9+00 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0056 FT/FT Longitudinal Slope(S)= 0.0213 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.89 cfs I Q= 5.64 cfs E Street STA.9+00-11+5.03 E Street STA.11+5.03-13+10.03 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0152 FT/FT Longitudinal Slope(S)= 0.0113 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.76 cfs Q= 4.11 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 F Street 0.5' —N4 1.5' ►{ 7.5' T.O.C. 0.15' 02 O.i 5 3%Crown Slope Catch Curb Not to Scale F Street STA.0+50.50-2+36.19 F Street STA.2+36.19-4+29.50 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0063 FT/FT Longitudinal Slope(S)= 0.0151 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 3.07 cfs Q= 4.75 cfs F Street STA.4+70.50-8+90.51 F Street STA.8+90.51 -11+5.43 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0118 FT/FT Longitudinal Slope(S)= 0.017 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.20 cfs Q= 5.04 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 G Street 14- 0.5' -1014 1.5' ►14 7.5' ►; T.O.C. 0.15, 0 225' 0.35 0 2F �3n•b Crown Slope Catch Curb Not to Scale G Street STA.0+50.52-4+50.20 G Street STA.4+50.20-5+40.48 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0101 FT/FT Longitudinal Slope(S)= 0.0231 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA213)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 3.88 cis Q= 5.87 cfs G Street STA.5+40.43-8+50 G Street STA.8+50-11+26.87 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.015 FT/FT Longitudinal Slope(S)= 0.0066 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA213)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.73 cfs Q= 3.14 cfs G Street STA.11+26.87-13+5.46 Parameters Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Longitudinal Slope(S)= 0.0161 FT/FT Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.90 cfs OUTFALL STRUCTURE SIZING Norton East Ranch Subdivision - Phase 1 Outfall Structure Sizing Used weir equation in Section 11-2D of City of Bozeman Design Standards and Specifications Policy Q=CLH'.S L=Q/(CH'.5) Q values from Pre-developed runoff conditions Basin 1 Q= 1.06 cfs Basin 2 Q= 2.00 cfs Basin 3 Q= 0.35 cfs Basin 4 Q= 2.71 cfs Basin 6 Q= 0.47 cfs Basin OS-1 Q= 0.32 cfs Basin OS-2 Q= 0.17 cfs Basin OS-3 Q= 0.39 cfs H = 1.5 FT C= 3.33 FT Weir Lengths Pond 1 L= 0.173271 FT 2.1 Inches Pond 2 L= 0.326926 FT 3.9 Inches Pond 3 L= 0.057212 FT 0.7 Inches Pond 4 L= 0.442984 FT 5.3 Inches Pond 6 L= 0.076828 FT 0.9 Inches Pond OS-1 L= 0.052308 FT 0.6 Inches Pond OS-2 L= 0.027789 FT 0.3 Inches Pond OS-3 L= 0.06375 FT 0.8 Inches SIDEWALK CHASE SIZING Norton East Ranch Subdivision - Phase 1 Sidewalk Chase SizingUnase 3 h(ft) Rational Capacity Solid Boulevard @1.5% Method Intensity Area 25-Yr w(ft) (cfs) Cover SW Chase Width(ft) min slope "C"Value (in/hr) (Acres) Flow(cfs) (0.5'min.) (Manning's) width (ft) Pond 3 7 1.5 0.50 4.4 2.12 4.64 1.50 4.72 1.71 0�- A=(1.5ftx0.5ft)=0.75sf P=0.5 ft+ 1.5 ft+0.5 ft=2.5 ft 0.5ft R=A/P=0.30ft 1.5 ft Using Mannings Equation, Q=4.72 cfs ov- a = +8 �p1hSYi 0,0�3 Norton East Ranch Subdivision -Phase 1 Sidewalk Chase Sizing Bozeman, MT The following calculations were used to determine the sidewalk chase sizing based on a 25-year 2-hour storm event. Area= 2.116 Acre C= 0.5 Dense Residential Calculate Time of Concentration(Tj Existing Conditions: S=1.15% C=_0.50___ __Dense_Residential Overland Flow: Assume: L=16 ft.-sheet flow From Figure 1-1,T,= 1 min.(overland flow) D Street (0+50.50-2+80) Cul-de-sac S= 0.018 ft/ft S= 0.0094 ft/ft L= 80.34 ft L= 117.64 ft R= 0.136 ft R= 0.136 ft v= 4.06 ft/sec v= 2.93 ft/sec TC(cF)= 0.33 min Tc(CF)= 0.67 min D Street(2+80-7+05.11) S= 0.0105 ft/ft L= 377.73 ft R= 0.136 ft v= 3.10 ft/sec Tc(cF)= 2.03 min Total T,_ Calculate Pre-developed Storm Intensity at T. From Figure 1-3, using the 25 year event, I =0.78TC-°'64 I= d� in/hr Calculate Pre-developed Peak Runoff Rate Q25= ciA,using the above parameters Q25= 4.65 0" cfs G 4,11 c 5 o.,5 /- 4,39 x L Iz