Loading...
HomeMy WebLinkAbout023_Design Report - Cattail Creek Ph 3 - STORM ONLY 1 t JAM 0 St 2005 ------------------------ Design Report for Water, Sewer and Pavement Improvements for CATTAIL CREEK SUBDIVISION,PHASE 3 BOZEMAN,MONTANA Prepared for:: Sandan, LLC Prepared by: THOMAS, DEAN AND HOSKINS,INC. 111 N. TRACY AVENUE BOZEMAN, MT 59715 li llff Job No. B03-050 rW►�%ju lat®�'��,pp�� •. rr Cir�� r January 3, 2005 PE cr- •cum •'ivy Ndlhhllhh Purpose The purpose of this report is to explain how water, sanitary sewer, and storm sewer facilities will be designed to meet City of Bozeman Design Standards and provide service to the Cattail Creek, Phase 3, development. This report is to accompany the preliminary plat application. The report will provide information on the basic design. The detailed design will be completed with preparation of the final construction documents. Introduction The Cattail Creek subdivision is located in the northeastern area of the City of Bozeman, Montana. The project is bounded by Davis Lane on the west, Hulbert Road on the north, and Cattail Street on the south. The east boundary is 400' east of North 27th Avenue. The southeast portion of the development was constructed as phase 1. Phase 2 is the southwest portion of the project. Phase 3 lies between Hulbert Road a line 240' north of Catron Street. The subdivision is zoned light manufacturing district (M-1), residential office (R-O), medium density (R-3), R-1 and R-2 as found in the Bozemen Zoning Ordinance. The improvements include extending existing City water and sewer service to the site, construction of on-site water and sewer mains, City standard streets (curb, gutter and sidewalk) and stormwater management facilities. Design Report Water The proposed water system will tie into the existing mains constructed in phase 1 and 2 of the development on Fen Way, Blackbird Drive and Warbler Way. An existing 12" main previously installed along the alignment of North 27th Avenue that services the Bus Barn is going to be utilized. Water usage for each lot within the development is estimated based on the lot size and zoning. The water mains have been modeled using WaterCadd to determine pipe sizes necessary to provide adequate domestic and fire flow to the buildings and the hydrants located throughout the development. The water model was calibrated using a hydrant test that was conducted by the City of Bozeman on April 29, 2004. Water system modeling is based on a 3:1 maximum hour to average day ratio and a 2.5:1 maximum day to average day ratio. Fire flow demands are per 1997 uniform Fire Code criteria. The water model indicates that it is possible to get 3000 gallons per minute throughout the development while maintaining a minimum pressure of 20 psi. New water mains will be 8" diameter minimum, class 51, ductile iron pipe. Hydrant leads will be 6" ductile iron pipe. Water service pipes have been sized based on the number of fixture units estimated for each residential and multi-family lot according to the City of Bozeman Building Division water service worksheet. One worksheet for single-family residential lots and one for multi-family lots can be seen in the appendix. It was determined that single family lots will have a 1" water service line. Multi-family lot services were sized for 4-plexes. It was determined that a 1.5" service is required. Extra services have been added to provide for 4-plex buildings at the maximum density 1 unit per 3000 square feet of buildable space on each multi-family lot. The intent of adding the services is to reduce the number of street cuts that are required as builders develop the multi-family lots. It is possible that not all of the water services will be used. If that is the case, the new owner of the lot will be responsible for digging up the service to the water main. Since it is unknown what use the light manufacturing zones will have, eight- inch mains have been stubbed out to serve the land zoned M-1. Print outs of the average day, max day, max hour and calibration scenarios can be seen in the appendix. The Bozeman 50-year Water Facility Master Plan requires that a 12-inch main be installed in Davis Lane. In Phase II, a 12-inch main was installed in Fen Way one block east of Davis Lane instead. Based on the Water-Cad model scenario, "12-inch in Fen Way max", a 12-inch main installed the length of Fen Way in Phase III could produce a design flow of 3600 gallons per minute at the corner of Fen Way and Hulbert at a residual pressure of 22.42 psi. Installing a 12" water main in Fen Way would require 197 feet of existing 8-inch main be torn out. Consequently, another scenario called "alterative to 12-inch main in Fen Way"was created. This model illustrates the impacts of installing.a 12-inch main the length of Hulbert between the existing 12-inch main servicing the bus-barn and Davis Lane. An 8-inch main is modeled from the south to north property lines on Fen Way. In this model, a design flow of 3600 gpm at the corner of Hulbert and Fen Way results in a pressure of 25.30 psi. This indicates that the system will be adequately served by having the 12-inch main in Hulbert instead of Fen Way. Print outs of these WaterCadd scenarios can be seen in the appendix. Sewer The proposed sewer system will connect to an existing 15" stub in the existing manhole in Hulbert Road at the intersection with North 27th Avenue. This 15" sewer main will be extended the length of Hulbert Road to Davis Lane. New sewer mains will be constructed in each street within phase 3 of the subdivision. All new mains will be SDR 35 PVC, 8" diameter minimum. The mains have been sized two separate ways for the development. The first calculation was done per the design standards utilizing Table V-1 and Table V-2 for establishing population density and a sewer flow rate of 72 gal/capita/day. An infiltration rate of 150 gallons/acre/day was also included in the calculation. A peaking factor of 4 was calculated utilizing the formula from the City of Bozeman Design Standards. The total peak flow for the development was calculated to be 100.9 gallons per minute. Sewer services and mains were sized based on these criteria. The second calculation assumed the following: Flows for • 2.54 persons/unit(assumed) • I unit per 3000 square feet of buildable space. • 72 gallons/ capita/day • 150 gallons/ acre/day infiltration The total peak flow for the development was calculated to be 513.9 gallons per minute. Sewer services and mains were sized based on these criteria. Individual sewer services will be provided for each lot within the development. The sewer service will be 4" minimum and can be seen in the appendix for each lot. Multi- family lots will be provided with additional services to account for the possibility of having more than one building being built on the lot. The number of services was determined by assuming that there buildings would be built in 4-plexes and that there would be 1 unit per 3000 square feet of lot area. This is assumed to be the maximum possible density possible for these lots. PAVEMENT DESIGN AND CONSTRUCTION Design Considerations The performance of the pavement for the proposed Cattail Creek Subdivision, Phase III streets depends upon several factors, including (1) the characteristics of the supporting soil; (2) the magnitude and frequency of wheel load applications; (3) the quality of available construction materials; and(4)the desired period of design life. Based on the near surface materials encountered in the backhoe test pits, the predominant subgrade will be a silty CLAY (CL) soil. Subgrade soil should be compacted to a minimum of 95 percent of AASHTO T-99 Proctor near optimum moisture content. If compaction requirements are not being satisfied, scarifying and re-compacting the upper 12 inches of the subgrade prior to constructing the pavement section may be necessary. The magnitude and frequency of wheel load applications have been estimated based on a 20-year design life, and the following parameters were used along with the AASHTO Pavement Design Method of Analysis to develop flexible pavement sections as detailed below: Reliability(R)= 95% Standard Deviation(So) =0.35 Design Period(N)=20 years 18-kip Equivalent Single Axle Loads (ESAL's) for Collector Streets = 692,000 18-kip Equivalent Single Axle Loads (ESAL's) for Local Streets = 50,000 CBR= 3.0 (Mr=4,500 psi) Design Serviceability Loss= 1.9 n C4 (-n W •+ N V) — 0� cA 7� N C/� �-' C� to 121 _ �.1 W N C O n CAD CD r-L CD SD CD 0 m O p, _ O w !D y O i � CD CDrrA �/] O CD CAD y QQ CD o °, �^ y QG CD CD o r°-n ►O�, aQ CD O " �-h p CD C ~' n r* � CD O t/' O W r* .Or CD O t/' p o C/1 r* 0 O o � `� cn CD CD C°�D ~ CD C �� 7 n b CD '� CD a CCDD b '� CD a CD CD rA Cr Qnas v� ... C� d CD C� CD 'C FD vs ... C� CD o � � < �' � � `�' '� ►� rp rt 0. CD p CD CD CD C/I CD co O CD n CD N' m (D Cp C) p� CD N' W CD CD n CD � ¢• CFD CD , max . ry �d^, O !y ►�+. b; n ° C) CD rn EL CD 0 o . . •� 'CID .. CDCD ° 0 �. ° fit" CD CD o CD z CDGn CD CD CD CDCCDD CCDD :D CD A CCDCD CD � p= xu, CD CD CD . 4 CD r-! En CD (D CD CL CL Qo O O O CD CD cn CD C7 CD 0 CD '•t:� CD CD pCD .r*. Q. A. P- N oW rco o. °. °. CD O ~' CD rn �` En v use a separation/stabilization geotextile between the subgrade and the gravel sub-base course to facilitate compaction and proceed with construction. If this condition occurs, additional expense should be anticipated, and a contingency for the extra costs should be incorporated into the plans and specifications. Specification Requirements The following items should be incorporated into the project plans and specifications: 1. Hot Mix Asphaltic Concrete Surface — Montana Public Works Standard Specifications (MPWSS) Performance Graded (PG) binder having a 58-28 grade in accordance with AASHTO MP 1. 2. Crushed Base Course — Crushed Base Course 1'/z inch Minus Gravel conforming to Section 02235 of the Montana Public Works Standard Specifications (MPWSS) -The material should be compacted to a minimum of 95 percent of AASHTO T-99 Proctor near optimum moisture content. 3. Sub-Base Course - Sub-Base Course 6 inch Minus Pit Run Gravel from site. The materials should be compacted to a minimum of 95 percent of AASHTO T-99 Proctor near optimum moisture content. 4. Separation/Stabilization Geotextile — Mirafi 60OX Woven fabric, or equal, should be used to facilitate compaction of sub-base gravels over saturated, pumping subgrade soils. The geotextile should be specified between the subgrade soils and the sub-base course gravel using the manufacturer's recommendations. GENERAL RECOMMENDATIONS The analysis and recommendations submitted in this report are based upon the data obtained from the backhoe test pits excavated at the locations indicated on the attached Plate 2 in the Appendix to this report. Variations occur between specific sites tested, the nature and extent of which do not become evident until additional exploration or construction is conducted. A re-evaluation of the recommendations presented in this report should be made after performing on-site observations during construction to note the characteristics of any variations. Stormwater Treatment Solids, silt, oils, grease and other pollutants will be removed from the stormwater prior to discharge from the site as required by the City of Bozeman Design Standards. A grass lined detention pond will be designed as part of the stormwater system. Catch basins will collect heavier solids before they are run into the detention pond. The pond will remove much of the grease, oils and silt from the stormwater. Based on technical research, grass lined ponds will trap urban runoff contaminants and provide a high level of treatment. The pond will allow time for solids to settle out of the stormwater. Grease and oils coming in contact with the grass will stick to the grass and biodegrade naturally. Stormwater Conveyance In the pre-developed condition, stormwater from Cattail Creek phase 3 flows to the north. The unnamed creek, running south to north through the center of the development, collects some of the stormwater. Some of the stormwater infiltrates into the ground and some of the stormwater runs off the site to the adjacent property north of the development. After development, stormwater leaving the site will be limited to pre- development runoff rates. The main stormwater system for the development is a stormwater pipe in Hulbert Road. The pipes in Hulbert Road run to the center of the project where they flow to two detention ponds located on the south side of Hulbert Road, on each side of the unnamed creek. The ponds outlet to the creek at pre-development flow rates. There are stormwater pipes in Fen Way, Sora Street, Warbler Way, and North 27th Avenue that connect to the Hulbert stormwater pipe. The Drainage Basin Map, included in Appendix Section 3, shows the pipes, catch basins, manholes and basins draining to each inlet. The 25-year flow to each inlet is calculated using the Rational formula, calculations are in Appendix Section 4. Stormdrain inlets per City of Bozemen Standard Drawing number 02720-1A are used through the project. Inlet capacity is determined using Neenah Foundry Company design program, see program output sheets in Appendix section 5. The width of flow in each street is checked to assure the width does not exceed 9.5' as allowed in the City of Bozemen design standards. Stormwater pipes are designed to handle a 25-year storm event. SewerCadd is used to verify the pipes can handle the 25-year flow without exceeding full pipe flow. The SewerCadd output in Appendix Section 6 includes a plan diagram with pipe data, a profile drawing showing the hydraulic grade line below the top of the pipe, and data tables showing pipe velocities greater than 3fps. The M-1 lots on the east side of North 271h Avenue will be required to mitigate stormwater on a lot-by-lot basis when the lots are developed. Detention facilities will be required as each lot is developed. Stormwater Detention Stormwater ponds are used to provide detention so that the peak outflow from the development after development is less than or equal to the peak outflow from the property before development. Developed property west of the creek will flow to a new detention pond to be located south of Hulbert and west of the creek. The west pond size has been calculated using a design spreadsheet, which models a modified rational method hydrograph with triangular or trapezoidal hydrographs. Detention pond size calculations are shown in the Appendix Section 7. Total detention required for the west pond is 16,588 square feet of area averaging 18" in depth. Developed property east of the creek will flow to a new detention pond to be located south of Hulbert and east of the creek. Total detention required for the east pond is 13,252 square feet of area averaging 18" in depth. See spreadsheet in Appendix Section 7. Culvert Calculations Culverts are located near the north end of the job along Cattail Creek. Three culverts, one 30" pipe, one 36" pipe and a partially filled 42" pipe were sized to carry the 25-year storm flow of 125 cubic feet per second (cfs)underneath Hulbert Road. The 30" pipe has a maximum capacity of 69.59 cfs, the 36" pipe has a maximum capacity of 76.91 cfs and the partially filled 42" pipe has a maximum capacity of 100.55 cfs. Two pipes can easily handle the design flow. The third pipe is required to meet the emergency overflow criteria set out in the City of Bozeman Design Standards. In the event that one of the culverts gets plugged, the other two culverts still have the design capacity to carry the flow without overtopping the road. During a 25-year storm, assuming that none of the culverts are plugged, the 30" culvert will carry 31.25 cfs, the 36" culvert will carry 40.5 cfs, and the partially filled 42" culvert will carry 53.25 cfs. The elevation of the water upstream will be 4638.02. This provides 3.64 feet of freeboard without overtopping the road. The velocities in the pipes will range from 6 ft/sec to 6.5 ft/sec. The Fish Wildlife and Parks requested that one pipe be oversized to provide for fish passage. The bottom 6 inches of a 42"round pipe will be filled in with rock and the flow line will be sunk in 12" below the arch pipe to accommodate this request. During low flow times, the 42 inch pipe will be the only culvert carrying water. Each of the detention ponds has a culvert. The predevelopment discharge rate for Pond F is 3.26 cfs. A 10"pipe will release 3.18 cfs during a 25 year storm. The predevelopment discharge rate for Pond G is 2.60 cfs. A 10"pvc culvert will discharge upstream from the other culvert so that it has a higher tailwater elevation consequently reducing the 25 year discharge rate to 2.6 cfs. An overflow channel has been designed for each of the ponds to allow the full design flow over the spill way in the event that one of the culverts gets plugged. An overflow channel for the east pond (Pond G) has a 50 feet wide by 0.5 feet deep overflow channel and an overflow channel for the west pond (Pond F) has a 60 feet wide by 0.5 feet deep overflow. Irrigation pine The Farmer's Canal section line ditch is located along Davis Lane on the western edge of the subdivision. During Phase II of Cattail Creek, to the south of Phase III, this ditch was originally designed to placed in a 36" pipe based on culverts upstream from this location. Representatives from the Farmer's Canal requested that the line be upsized to 48" pipe. There is currently 442 feet of 48 inch pipe that was installed at 0.56% grade upstream of the Phase III. During Phase III, the 48" pipe will be continued at a minimum grade of 0.69%. As a result this pipe will have more capacity than the existing system. No onsite storm water is collected by this system. Groundwater The groundwater at the site of the proposed Cattail Creek Subdivision, Phase 3 has been monitored in 7 wells from late winter, 2004, to the present time. Monitoring is being performed primarily for design and construction purposes. Test pit locations are shown on Figure 1 in Appendix Section 8. A record of the groundwater elevations measured from the ground surface is provided the appendix. Water levels have varied from 7.75 feet below ground surface (bgs)to 0.15 feet(bgs) during the period of testing. The highest water levels are observed near Davis Lane in test pit#1 and test pit#5. These water levels in these two monitoring wells jumped significantly after water started running in the irrigation ditch along Davis Lane. The location of the ditch is approximately 4 feet above the location of the monitoring wells. Once the irrigation ditch water is placed in a pipe,the ground water levels are expected to come in line with the monitoring in the other locations. The lowest water levels appear to be on the east side of the project in monitoring well#4. Road profiles throughout the development are set above existing ground. Buildings within the development will not have basements. 12/18/2004 17:13 5096222888 TDH SPOKANE PAGE 13/14 ,APPENDIX - Section 3 Drainage Basin Map ,II II CS-E E F B-F CS-H H F10A,p I C - CB-R _ ` '_ Ig13 '%�•\ \ ( i _ I as• 1 � � 7 1 r 1 .� � •�a! � •` ��,�^�' • .. _ ti-`L R I _ -0 II CB K-2 ��� I� ♦\I 1��1 \ \ / ids ` /�,'/� — — — — GB- CB-0 �I .,fig J •�_) ��, � /. / � � \.- '\ ©/' y�'\, N � p � f 4647 `'�'• J % � / �`•� ,��(p � � � 1•` ,���/ �` '� � •`` III I� ;�,�� +a j/•�\' ° peso:'\\ cs— F i Q` M � I '~° '"' '"• ~" ) s DRAINAGE BASIN MAP ' NNN - - - - - - - - - - - - - - 1 - - - - - - - -s pILI- - - - - - - 1 - - - - - - - 0 100' 200' 300' B i l l I I S C A L E 12/18/2004 17: 18 5096222888 TDH SPOKANE PAGE 02/12 APPENDIX - Section 4 Drainage Calculations - Rational Formula 12/18/2004 17:18 5096222888 TDH SPOKANE NA(at b�111 1 2, ,8 A �Z 1 ��$ 14c .�5 �� ►. roc. 5a3 r Q , Z?_ AG . 915 0 . 4V, Art .�� o ✓� } t 8_7 o, of AG .95 0 0(, �L "55 (a7 i 0,24 AC, r95 419� i o, ,i-4' AG , Q 5 D ,o �,c i Lk2- PK, r 1 0,06 A.C. r 4 I K 0 0 L, 0Af A c, .�5 �. 71 Ac ,rjC7 -;5 V�06 15 0 ZU JNG c + Q , ' 0 , l ptG ,�.7 � !�G . 50 a '1 , 1 I � o ►IZ �� ,�}� 0.6�5 Ac 150 0 44.Q- G t'9g5 0 r 1 L A 1 ✓ 1.J • 7• 12/18/2UU4 '1 (:1H bbyb222HHH ILI I 5rUNRIvt rrtU� u�rr i I III i. AREA r-LoW ice fAtl-er'= 5,lo A-ec� i 1 ? ro = d/A - (�� �)��.rol"(' 3. l0� = 2.�Z GF'S � �►� 3r Z� �'�� � �@•\ 1 41 GIA� � Z• G ��5 � /� �' T� � /L{1 Pl ram... 4' ALt I VI 0 j� i . 1 r W a�^ J. T)LJ vt ���:� S►�° C ,°C,� ot� $,45b'd A-2 lol - 320' , M, �t�e��' ->�.L�.��it? �P O r@ fl S!o'!� , AS'yU�►e T� � /.ti� i► �r �L �l N1rN � <,o� l,j I►�/�r AAA - IS.17 A GIA �11 ova' ZUKA Fbr Z6 M 1.4 . /D 1Y •� c i 5)= Z..B'� c � ok Z,$3IFS Vel rh flA& =2,7 = z•5 Arw,�l r 12118/2004 17:18 b0'3bYY1888 I LJH bt UYC(ANt I � i t o �6-r A t--rvA-,k.ut) I { �o r TG — I Il!r/1 , ,l•yam = Z. 1 ( A Ike, � I Gam.��f~• �a5 ,� �n �g c����-4.t - ���1 Or, ac�n,55 , �� - moo' , 7-� - r -7 ,-A f W') p 55u M-e A a / r TG 20 M , r'1 -oz f1R 1 08 Ac O s = G� _ 4-4CwI�L""'kl,, 0 - 4 ,Z,S �f5 p r�K a 1L r �(YL�t� Pf✓��� I n �jfie.� ��CC•,A�d/� = J 4� �S / �;�j �/' I /14 . p sfrse4-� -a W , a6we 5A4 f AA--5 ok4 f✓1 . / r I s� • J J • 1 tt f . i I �1c5DG 1'1/'lti/'1bb4 l 1: ld 5byb'L'1ltititi I VH SruKHNt rF1Ut YJbI lL I I I i 4P-E 0 ;�5Ac s . ro r Tc, z 5 Ntr ni d zS � f � SkVL�L2 %vt1�.T i� y r✓ �S l `1 5 oK AQE = o,25 Ac widA or' a"Zow 6a)d- '40Srm will Iot rcxp+ o.b2 O,Za w��« /Asp -� �g-H G ir"low r v4,,e 7r = d5 AA r h ��z5 � Z✓•O rr 1�,� s 1 (! W l a''f'� of' `'f�o W �•9' L ci��+ �I'� i e i Aar = 0. 40 AC 5 � G 4.,5 r og c Z-�rT 5.4 > 1. 7Z r1 tit; 1 11/ltl/'L17b4 l/: ltl 5byb'L'L'Ltltltl ILI.1 SrUKFIIYt rHut GII1L •- {Z4 A 2� F.0 vU17 70 /Ot l.¢•�' C��' EjIGe_�j = r c�7 Gr 5 � �•`f' C..rQaGi� 'l�j . b 1Ca 1 ; 1.5 o ' , I-C. = 1 .1 r k1,,r\ M I,yr. 3o40 Gas W kJ I S' 5R,5!Al L /./ 0/4 Qc�DS<, .� - 34�' 7rc - / .�-fin• �WW 400 ��i•O � dam. �!v yeJ�v /1M'I rOo- Tr~ 00MfA , AA � 40 AC GA►' r %orr,10 t AA - �,2 ��j Tt M �, ten. . M 1V1 9. 4 ' qi,5 ' Y— /M a4 l,Zpls 5Cd ►r� cop � /I�( I /,?l cry LY i 57pc,ti,5 4' eie ---�-Ozy- 1 1 12/18/2004 17:18 50yb1118138 IUhi 5F UKANt 0011L �A'�Inl S-2 340 ' , 7� I ,j (�,�� �+�ire? � Z�� y yr�/1� � .�•��l� GL�75 U!N-¢ Tc I it re4 A c tz f•)-*ial LOX ���55 - 9.4 ' < 9 .y' oX 1 .,06 WAN 61#5- � ell D 3 T C. = 9V- �u,v� rn All - � "lg � ,g � � 6 ► 9 � � s l /aI�T a4 6, 101%10 cf5 �� �o �g xz Flow , T� = 5+A;r\. a�LI �7�4 em W t bt too 9,6 oK i �41t 4 0 G`?6�0 Ir,m¢ r n�erC�, rod rF5 --:, ! r , 2P� cps w�11 Eby fates -� G8=1�+ 11J 1C1 LbF�4 1 f:lti 5byb'L'L'ldtld I VH 5F'UKHNt I H[at byI1L 4 A< -71 F . ?5d , Tc = 1.1 M+A TG = II M r1 ti �ZS = Z• GF5 I t \ 1 e i !:3 of5 wid 6 ps 7'6 C2l-T1 7 s I� Tc ZI A4 IYj �C�ZS r m 14r 4,r Ac + 4 e,*- �J 12/18/2004 17: 18 5096222888 TDH SHUKANE HAVE 10112 i 1 -!2J ► T !7 MIA 1 4.70 I, o 0 (�'t °�d , �55��.e T�- ,►.�1 rti # J f TG r Z d 1-4 1 fl ► A /11 59 �C Tvfkl Flew -�rDM cF!5 2, o 6 w,1 b y�c .16 Gg -Q , .cam 5 �G - //0 T� - . 67 a ate / .►�.1�, fJr�� b .-1 Z AC i f To fr.I Ffo r.J e t)144 b Ly ha s ' r+ d f-J 1 e z rvI 1l 151A/ �.9°l al,•!`05 5 , off Z9�r� T"C = /'¢ A41 n AL LO r �,��� = 0,70 'f„ Q.7 5U ewe Tc, Z PA 1 r 1 A KEa = �./! /•�C 1 w4L loylaz75 4 M dF-'S 3�3�0 I 12/18/2004 17:18 5096222888 IDH SruKANLTc- rout 11/lL i i ,C Zs = Qz5 - b r7 a4 a,to n ir ct� 6�io l µ55 �� � I _ �,2s � ?7•v t J1 /rim I; U •�{O cf5 GlI l I.Pyf4ll f { i I � i f a_4.—L 1 G!1 tl!LCJG4 1!:l tl �YJ7bLLLtltltl I LI"I bl"UKHIVt r'Hlat 1 Lf 1 L Iv Caftail Creek Phase III Intensity calculations from City of Bozeman Design Standards Figure 1-2 Tc 10- ear Y=0.64X('85 25- ear Y=0.78X7-14 A-1 15 1.6 in/hr 1.9 in/hr A-2 21 1.3 1.5 A-3 26 1.1 1.3 B-1 & 2 13 1.7 2.1 C 20 1.3 1.6 D 5 3.2 3.8 J-1 12 1.8 2.2 J-2 24 1.2 1.4 J-3 11 1.9 2.3 L 20 1.3 1.6 M 21 1.3 1.5 N 20 1.3 1.6 O 9 2.2 2.6 P 16 1.5 1.8 12/19/2004 14:07 5096222888 TDH SPOKANE PAGE 02/20 AppF-NDIX - Section 5 inlet Capacity Calculat6ons N Cat(aH Creek Phase M N Ana"Is of Slerm Drain f41et8 i Slam flows Cakulaled Using Rational Method 'D N CD Pra)sct:BO3-D50 m Prepared by: Thomas,Dean S Hoskins Continuous Grade Inlets 1 2 3 4 5 6 7 6 9 10 11 14 15 •• Q m ur f Flo m Bypass Frow "Total Transverse LongltudInal Water Water Verocity Capadty per it -Ij Basin from previous Flow Siope Stape Depth Top Width over Inlet Neenah Calcs intercepted Bypass Inlet Road anew Qep Q Si S, d W V G Q. Qep Side cfs cfs cfs tUR Wit R ft (ps cfs cfs cfs m Lo m Fen Way ,.. . . N Test 1.50 0.00 1.50 : --0,025 = 0.04 "== 0.120 4.784 5.243 1.349 #FEF! #KEPI N N • - m co GB-A1 west 3.24 0.00 3.24 6.03 6.0088::_ 0.263 8.759 2.815 1.620 1.620 1.620 Bypass to CB,A3(sag) co GB-A2 east 2.83 0.00 2.83 fl.03 ' ;d' - - 0.250 0.320 2.722 1.490 1.490 1_340 Bypas to CB-A3(sag) Hulbert Road 13+00 to 17+50,north side CB F north 0.90- 0.00 0.90 =0.D3 -0.007 0.169 5.0331 1.892 0 620 0.620 0.280 Bypass to CB H(sag) GB-G south 0.33- 0.00 0.33 0.03 0.007 0.116 3.81M 1.472 0.330 ED0.330 0.000 Bypass to CB-H1 (sag) t7 Hubert Road 5+50 to 11+50 and Warbler Way and half of Catalyst Street CB�I1 south 1.8t! 1,42 3.40 = O.a3 0.0069 0.279 9.296 2.624 0.855 5.40D 0.000 Inlet in sag 0 GB-J2 east - 1.81 - 1.71 3.52 = 0.03 0.0069 0.282 9.417 2.646 1.460 1.460 2.96U Bypass to G13J3 D z C1343 east :" :0.41 2.00 2.47 °:. 0.03 0.0069. 0.247 9.245 2.422 1.170 1.170 1.300 Bypass to CB-J 1 r'l CB-Ki west :0.9O 0.00 0-99 0.03--.- _-_0.0089 0.176 5.852 1.927 0.660 0.660 0.330 Bypass to CB-K2 CB-K2 west 0.38: .. 0.33 0.91 ?- " OA3: :='0.0069 = 0.170 5.670 1.887 0.630 0.630 0.260 Bypass to CB-1{3 CB]C3 west 0.33 0.26 0.61 0.03 O.Otl69. 0.146 4.880 1.70E OA90 0.490 0.120 Bypass to CB-3 CB-L east == 3.42:- 0.0D 3.42 -:0. _: O:Ui 0.252 8.397 3.233 1.020 1.710 1.710 Bypass to CB-F2 CB-M atest 9 0.00 3.39 -0.03 :__"=_ D:OD67:: 0.280 9.336 2,593 1.440 1.440 1.950 Bypass to CB-N 3:3 CB-N vrest 1.tr1 1.95 3.56 0,03- _-O.DD57 0.285 9.509 2,625' 1.480 1.480 2.080 Bypass to CB-0 CB-0 west i,l4 2.08 3.22 0_UD67 0.275 9.158 2.560 1.400 1.400 1.820 Bypass to CB-0 CB-P %vest = ':.2s13 "-'- 1.62 3.95 0.00 0.a07. " 0.294 9.606 2.739 0.908 1.480 2.470 Bypass to CB-0 m CB-0 east :_::::1;39 0.00 1.59 ;:0.0'J`" _;. O.00ft7,.:' 0.211 7.028 2.146 0.900 0.900 0.890 Bypass to CB R m ca C&R east 0.43 0.69 1.12 0.03 O U067 0.186 6.163 1.960 0.720 0.720 D_400 Bypass to North N m Cattail Creek m Analysis of Storm Drain Inlets m` Storm Ploys Calculated Using Rallonal Method N m Project:803-050 m cn Prepared by: Thomas,Dean&Hoskins 11312005 Inlets in low point (sag) 2 3 4 5 6 9 10 12 cn m Maximum LO New Bypass Flow from Total Flow Water Depth Grate Capacity Number Q1 N Flow Upgrad lent Inlets Upgradierrt Inlets to Grate Over Invert Per Neenah of Inlets N Intel Road %.W QBP Q HI Calculation CO CO Road 1D Side ats cts cts R cfs CO Hulbert CB-A3 north 4.96 CB-All &A2 2.980 T 920 0.50 5.40 2 Sora CB-B1&2 south 1.50 -- 0.000 Z.500 0.50 5.40 1 Blackbird CB-C. West 4.28 -- 0.000 4.280 0.50 5.40 Blackbird CB-D east 1.40 - 0.000 1.400 0.50 5.40 Hulbedt CB-E north 1.19 0-000 1,190 0.50 5.40 1 = Hulbert CB-H south 1.44- CB-F 0.280 F—T-725-1 0.510 5.40 1 0 0 Hulbert CB-1 north 0.87. 0.000 O.t>G70 -0.50 5.40 m Hulbert CB-J1 saultr CB-J3,C13-K3 IA20 1 3.400 0.50 6.40 1 Hulbert CB-P south =2:13._ CB-0 1-820 3.950 :1)50°:-: 5.40 1 1> G) m �n m 12/19/2004 14:07 5096222888 TDH SPOKANE PAGE 05/20 2 On Grade Flow-Modified P ning Equation Page Z of 1 � On Grade Flow in 'triangular Gutter Sections Where... Q= Channel flow in CFS (calculated) p z Z= Reciprocal of transverse slope (11ST) ' b = Depth in feet S = Longitudinal slope Q _ 0.L6 ZD5�S h N = Roughness coefficient at constant N 0.016 (value for concrete and asphalt) (Modified Manning Equation) instructions Alternate One Alternate Two Altern Thre Depth of flow in feet(D): Transverse Slope in ft./ft. (STY 4 .0"0 3 — Longitudinal Slope In ft./ft. S os M,•"MI,^.^1 � „wl.,.•,•^„^-^-0 _ s 0.016 0.016 0.01 Roughness coefficient (.N): (value for concrete or (value for concrete or (value for cot asphalt) asphalt) asphe Total flow in cfs (Q): Spread of flow in feet: i r Catalog numbers and grate types that have K-charts: Grate Coefficient from K-chart (K): Grate capacity in cfs: U; 1. 119 (Flow captured) (Flow captured) (Flow opt For additional information regarding Neenah Inlet Grate Capacities,please contact our Product Engineer.Steve Akkala, at 920-725-7000 or at sakkalaftfco.com. http://www.neenahfoundy.eom/literatuurelbrocbures/gratecapacities/modified zzxauning.php 12/13/2004 12/19/2004 14:07 5096222888 TDH SPOKANE PAGE 06I20 ' On Grade Flow -Modified Mann Equation Page 1 of 1 �k On Grade Flow in 'Triangular Gutter Sections Where— Channel C! ^ Channel flow in CFS (calculated) z Z= Reciprocal of transverse slope (1/ST) D = Depth in feet S = Longitudinal slope 0.56 Z6,4sx N T Roughness coefficient at constant 1 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Altemate One Alternate Two Altern Thre Depth of flow in feet(D): Transverse Slope in ft./ft. (ST): Longitudinal Slope in ft./ft. (S�): Q 10086 0.016 0,016 0.01 Roughness coefficient (N): (value for concrete or (value for concrete or (value for cot asphalt) asphalt) aspha Total flow in cfs (Q): Lq 2.83 _ Spread of flow in feet: q 8.333 (� Catalog numbers and grate types that have K-charts: l 3067 Grate Coefficient from K-chart(K): 115 _ Grate capacity in cfs: 11.4gs M (Flow captured) (Flow captured) (Flow rapt 1£` t'v; d a i i{h:rax';yY: For additional information regarding Neenah Inlet Grate Capacities, please contact our Product Engineer,Steve Akkala,at 920-726-7000 or at.Gakkala@nfco.com. 6 a Pk- z http://www.neenahfoundry.com/literat.urefbrochures/gcatecapacities/Modified Manning,php 12/13/2004 12/19/2004 14:0! 509b222bbb 111N 51-uKHIVt rHur_ ri II/V Ponding-Weir OriEce Equa Page 1 of 1 � Weir & Orifice Flow Comparison /n$ftcHons: Q - 3,3p(h)t5 Q - 0.6 29h • Either Select catalog number(will (Orifice Flow Equation) automatically fill in Open Area and (Weir Equation) Perimeter)or enter your own values Enter head value Q=Capacity in CFS Q= Capacity in CPS CALCULATE P=Feet perimeter A=Free open area of grate in sq.ft. . Press h=Head in feet g=32.2(feet per sec/see) h=Flead in feet The results will determine automatically if your situation falls into a Weir,Transitional or Orifice flow. Additionally,a pop-up window will $ ,� r� ,cQ. Kbmr,•� offer Neenah grates which fall within Pxg. " �, c;- --•, rn ;F;4 ,r;. 1'n#aF the parameters chosen. >'... ,:.t,:" — Head in feet (h): Catalog number and grate type: I_-3067 Diagonal� ' Feet perimeter(P): Free open area in sq. ft. (A): : Icttlate:; 1 I Weir capacity in cfs: Transitional flow in cfs: Orifice capacity in cfs: 5.4 _. (Results assume no debris reslricGon. NOTE:The above results do not account for the dome height of Beehive-type grate$.Please take note of this when determining the Head(h)value. For additional information regarding Neenah Inlet Grate Capacities, please contact our Product Engineer,Steve Akkalal,at 920-725-7000 or at sakkala,as�nfco_com. G6 A 3 moo', KL L I rJ LEI " 1 rJ 5K-G e_zoN V I T 10 A, http://www.neenahfoundry.comiliterature/brochures/gratecapa,cities/weir orifiice.php?ide... 12/13/2004 12/19/2004 14:07 5096222888 TDH SPOKANE PAUE U8/20 Ott Grade Flow-Modified Mantli 3quation Page 1 of 1 On Grade Flow in Triangular Gutter Sections Where._. Q= Channel flow in CpS (calculated) r Z= Reciprocal of transverse slope (1/ST) 0= Depth in feet Q 66 S = Longitudinal slope Zj] $ N = Roughness coefficient at constant IV 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate One Alternate Two Altern Thre Depth of flow in feet(D): Transverse Slope in ft-ft (ST): Longitudinal Slope in ftJft. (SO: M I 0.016 0.016 0.01 Roughness coefficient(N): (value for concrete or (value for concrete or (value for coi asphalt) asphalt) aspha Total flow in cfs (Q): Q 9 Spread of flow in feet: 5.633 ! „ Catalog numbers and grate types that have K-charts: Grate Coefficient from K-chart (K): 112 -__- Grate capacity in cfs: 0.62 ' T (Flow captured) (Flow captured) (Flow rapt ",T•'`" For additional information regarding Neenah Inlet gate capacities,please contact our Product Engineer,Steve Akkala,at 920-725-7000 or at.r�kkalaftfco,cq►�. t� http://www.neenahfoundry.com/litexature/brochures/gratecapacitieslmodxfied mannigg.php 12/15/2004 12/19/2004 14:07 5096222888 TDH SPOKANE PAGE b'3l20 On Grade Flow- Modified, uiing Equation Page 1 of 1 � On Grade Flow in Triangular Gutter Sections Where... Q= Channel flow in CPS (calculated) Z Z= Reciprocal of transverse slope (1/ST) D = Depth in feet 0.56 S = Longitudinal slope Q = zf) S �N = Roughness coefficient at constant N 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate One Alternate Two Altern Thre Depth of flow in feet(D): [fl .116 Transverse Slope in ft./ft. (STY .03 Longitudinal Slope in ft./ft. (SLY Q oo� �_ _ � . 0.016 0.016 0.01 Roughness coefficient (N): (value for concrete or (value for concrete or (value for oor asphalt) asphalt) aspha Total flow in cfs (Q): M :33 Spread of flow in feet: M 13.861 Catalog numbers and grate types that have K-charts: M.: Grate Coefficient from K-chart K : 12 Grate capacity in cfs: 0.331 _ i , (Flow captured) (Flow captured) (Flow rapt For additional information regarding Neenah Inlet Grate Capacities,please contact our Product Engineer.Steve Akkala,at 920-725-7000 or at sakkalaAnfco.com. http://www.neetiahfoundry_com/literature/brochures/gratec,apaoiti.es/modified manni-n php 12/15/2004 12/19/2004 14:07 5096222888 TDH SPOKANE PAUE 10/20 On Grade Flow- Modified Marta. EquaTion Pagel of x 8 On Grade Flow in Triangular Gutter Sections Where.. Q^ Channel flow in CFS (calculated) D Z Z= Reciprocal'of transverse slope MST) D = Depth in feet S = Longitudinal slope Q F ZD S w - Roughness coefficient at constant 0.o16 (value for concrete and asphalt) (Modified Manning Equation) LLlnstructllons Alternate One Alternate Two Altern Thre Depth of flow in feet(D): ( _282 m �w Transverse Slope in ft./ft. (ST): Longitudinal Slope in ft./ft. (S0: Q _0069 __ ,., 0.016 0.016 0.01 Roughness coefficient (N): (value for concrete or (value for concrete or (value for col asphalt) asphalt) alpha Total flow in cis (Q): Q 13.52 i Spread of flow in feet: ( Catalog numbers and grate types that have K-charts: Grate Coefficient from K-chart (K): 112 ! Grate capacity in cfs: M (Flow captured) (Flow captured) (Flow rapt ,rps,w (rram U US- For additional information regarding Neenah Inlet Grate Capacities,please contact our Product Erigineer,Steve Akkala,at 920-725-7000 or at sakkals4D—fcp1Q-QM-. http://www.neenahfoundry_com/literature/brochures/gratecapacities/modified m=zLinbr.php 12/15/2004 12/19/2004 14: 56 5096222888 TDH SPOKANE PACE 02/23 .APPENDIX - Section 6 SewerCadd plan diagrams, profiles, and data tables SewerCadd model was broken into pieces because of Limitations in the program (10 pipes max.) 01I03/2005 16: 50 5096222888 TDH SPOKANE PAGE 02/16 ct:! ( m o N ._ LL IL N N c m CE4, w y rg J : a o. IT • J CM N O Q ) (� w L W U M C GO cn II r u� u� N N OO �. Z Z �, c� o 'p N. m c C w Qc Q C V1 a 9 .6. NNE °to x d� o x J ~ m N ory ti o 0 If O _ rL Q / —J to N � d eeQQ m aNC-0 �r a LLI c 4� UC'�,/-- Wo� E � o o k q C d �N duo i= . o 01/03/2005 16:50 5096222888 TDH SPOKANE PAGE 03/16 Lo �r F' CO > w � ��� •-O n co� d CD O ec o i m � E Q.CN � can oZcn 0 0 cc Jrncn 0 0 0 0 C � I-Ul) rn In vm CiCi MV- 1 CO m o o tIt ID ~`,CQ t o ate' �o ti JHA] O + > > — o y LLI W r y O. C Mn N N 3 a c*� rr Y Clc�$ cc H �M o d >Q� �' 3 O O co C C O O L IL ('7 I � G.C O m 41 Qy Q J��` I�CA E 'R O �mm o co a_; 0 � co NE •m C Cc,) ! to*f Lo d a vJ o °D M x o N t � O ' l�7('l NN ♦ �'C,z O .M 70 a > >0inO in � C CO �O m 2 11 000) p 0 C.C� N� x Y` J�OJ(1� U1 0 � O U. L) — N ra yW W O �'� LL� w Mn A -- ' cos ry Z JHm Zrr- x a p, a) LL V-t: n!O - e o QNm O �50 -1 n E 0 •Q• Q 4 1 1n (�,^ M J44 MJ F � o h- �O 01/0/2005 IB:se 5096222868 T H SPOKANE PAGE 04/16 � § §z - Sf R � \ § LU w ] e �k R q R m + t 7 k 17 E . o �E2 ■aLD m� $ § m 2 o m + a22R�E cco—q % --nIV /� � G D\ \ )k cr- 2 & e75 _$in I iCl) a $ cmco x 2a /\q0 § � ( o O � � �J p � �R0�2 I� �o ■ a �� Ink22\ / \ Ntk® / � .. .. 2 & § ..LLI L � 0 k + a* § �k C$ 2 CZ)r- x �� k��q oqo £ \0 ==CD40 q q 6clqrN2 �5dJ2� § Q > E � � m ° ° W � wS ƒ � 2�� ®n R � t a «qA - � 2 § �@k2 /� { 22k CL\co « / ID �2 F/m 01/03/2005 16:50 5096222888 TDH SPOKANE PAGE 05/16 / F T JT' o r CIJ O era > o c� CL a� N 4, 00 00 C� cO C~ O U 04 cy) __ o d J tECA N CD 0) 0 m : O00 23 �• > C>L6 + •O Ln ti No O o � 0 �+l N m LO ig ma C CL o ai ti x O CY) CY) Ln cVRR to - a > (D O o o c o v, _ o .� `,��o C J 06 y o0) o � > =' w a] . O cr.! LO w C~7 co IS C� m i � a0� C Q� C� Nd � m N • � a �a ,n � b7 01/03/2005 16:50 5096222888 TDH SPOKANE PAGE 06/16 y 7; Qq � N r m u � m � C � � w � m W p7 �,4j EQ N O N N G t? O Cy N 0 10 a cn m m m p w o ?`5 J r d? SrJ W COf fer)D v � 6 m cp+r U LL1 •J ME N M l0*J m GNO N ca CD t Nr `7 1w vLO cOri �p j `S s ce c o m u� N N [p m10) t}i id" v w r r 0 0 0 J aU 4? at v v m Q 4. N � W 3 (M S�4 .-- 4 VI N N 8N n N 11 Q �- C I M 10 r LL ai O cV i m n m N m �t 41 m .a' O a.G7 LO r T M1 r T mm a/ Q� N O N CO N r t- 'eM C6 O CL a h 4v7 2 N Sal N _ c A 3 � o � 0 0 0 o v v o o b e Y d o0obofo; mtimm1, db N v v m m S'7 1*i Gh M en Q �O I r� '6^9 c C v nco Cb u� N ti cc fo m H a aE 0 r U) 9 W N Lou c V N N W uJ tom] V V 9 �C Ybi di N C K C G N N C C N m m c m 10 m N N y 'ems rW N r M M r r C9 m of q1 @ 0 m W 17 0 m � CCp c C C pCp ppC pap C C Y � d m � m m as m33 m vj y U U U U 4U d 4 v U d `4" O O O 6 O O O O O O ryryy 4 0 0 0 4 0 0 0 W m 4W'i M1 N O LO m m M `i C1 C 5 z q Y c� rr N Cy r r r c c 4 d m a a e � � �� [ri cccyyy N tf! N (7 IL 'm ml i2 �' U U V M2 •U � rL U U � � c� O m r � w a c m M c4 L) k q T 3 C'i 1*7 N N - .- 4 v a a. a aaaa. aaa � % o 01/03/2005 16 so 5886222888 T H S O A E PAGE 07/16 �. Iw .le L ( ON / L5 k \ m A aCL I $ E\$ 7§ � (L (D � D U) o ESA «_ � �@� ° /\ \ \ a � a < OtDI t � ID � Q / � � • � � � } k ® R Q4 § � _ y fit$ E 1p -44 k g � � / � (LkL § g _% 2 § 0 \ £ $ 7 % 280 k � ��� - ƒ § U ) QE 01/03/2005 16:50 5096222888 TDH SPOKANE PAGE 08/16 Scenario: Warbler Ouflet to MH-11 P11 X3 55.00 ft 18 inch PK3-J3 40.00 ft 12 inch CB-K3 CB-J3 PK3-K2 150.00 fit 18 inch PK2,J2 40.00 ft 12 inch CB-K2 CB�2 PK2-K1 340.00 ft 12 inch PK1-L 40.00 ft 12 inch CB-K1 CB-L Title:Storm Drainage from MH6 to Pond Project Engineer:TDH j;120031b03-0501sowercad%warbler rcvised.swr Thomas,Dean&Hoskins,Inc SewerCAD v4.1.1 [4.2015] 01/03/05 03:32:16 PM 0 Haestad Methods.Inc. 37 Brookside Road Waterbury,CT 06708 USA +1.203-755-1666 Page 1 of 1 01/03/2005 16:50 5096222888 TDH SPOKANE PAGE 09/16 15 Scenario: N 27TH Out et to MH-13 P12-O 47.00 ft 18 inch � PaR 40.00 `t 12 inch CB-0 CB-R PO-N 210.00 it 18 inch PN-Q 40.00 ft 12 inch CB-N CB-0 PN-M 200.00 ft 12 inch CB-M `�• Title:Storm Drainage ftm MH6 to Pond Projeat Engineer:TDH JA12003\b03-05M.-ewereadln 27th_revisdd.swr Thomas,Dean&Hoskins,Inc SewerCAD vd.1.1 14.20151 01/03/05 03:30:13 PM 0 Haeskad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA +1-203-755-1666 Page 1 of 1 01/03/2005 lG 5e 5096222888 T H SPOKANE PAGE 10/16 § \0 /® $ � fA ® > \� a �f 2 j # 22E �E/ \\ Q4 ƒ CLkk\/§ r�§ cq MC4$ � > 2 %wm ! � ¥ ■91-- Cp 7 G %%CD (p o A \ CL20)R,to - CNwd + 7 >2 & ..�± o co \ ■ w �� @ £ e ■ �q m - $ x § ] 2 / �JJ4J NT § §CD 4k �J § +m - cc� ..q | e M r—, 0 E 2 § -9�R�n« / ] 2 2 m _La . 7 � k k >> 2 ■ ■ � I zww « cio ] C6R k&$c_ xCl «* tt�k,6k 2k o g2/L6�q /\ 7 ) I > � 2 %w$ E Rf t . 77p k � / ¥w x ® � �mn lu _ £ f c � . F—cs ��t��Q gk/ .. � >ovo 95IN �a 5£gdƒ.o ' £m -0�a� � k/ E � k -9 i ] $ E «o 01/03/2005 16:50 5096222888 TDH SPOKANE PAGE 11/16 � � to x F- 0 N Co ( . N CO ' a � � � J0) �0 jj C) NM #, L- L- a. > > C:> > ' " cam ,_) U. . U ) 17 Cr) O O Lo j r d. ~ O Lo + M +CV) U < Oo w W C„) ul moo on � co0) N Q -2 I _ Lo 0 r + rMM � O r o _ pip s CD NOperjN 4949 � Ord- +o >_c > �jd- o O 2_ m n � Nti � NO ca 0 how O ro moo O Lo JF- CO - + N l O � d- Lf) C CN O � � OMM Xr' L' cc) 0 . . . . Lr Em 0 C> C~ CL 0 CUomCN a N ram C , r r1 J - d- J U) OUa p 5 N ) Qp P a yE 11(f) D o 01/03/2005 16: 50 5096222888 TDH SPOKANE PAGE 12/16 ~ Nr m C P-- Lf) oa I'll � •� Y i2E p EL (D G? ONO LLC/a o o O ' - >c > Orl- o CL N O O + d' O Lo O Lo N ry YNO ,C-� O ((yy * ,e cte U N Lo -- + S "ij- 'LO•�O e M > O >oN O CD CD 14 Lo 0 (n fA C6oco O� a e p w Q s � o• E 2 Nco 0 i N 5Cf)cr) � M Y -C'CO•CGOO Y c� L0a � a) ococo o� titi " g goo Co i o N m . � �0 CL N v CD - + -9D0 ..J ri m E o Q + o �cn CO 1 -2 M VO 3 . . 16 }OQOO m � � O 0 r-- o Oco CLo O _c -0 QCLn Nd o Q- 0 _] � QJfnU1 0 (L) a4 �� � F- a 01/03/2005 16:50 5096222888 TDH SPOKANE PAGE 13/16 IZ = mow ~L N OLLI y �..� (6 m d > o IL � M CO 0 CN O O O O to O d. � Lr) r- 0) N M O � r.��, o+ G V V V O N 0 L L Q '- O + + �- y^ >^ oNo Z O = = 0 jl� O' 6 = U Lfi M ,yr c it,. �1. O Mom^ A G7 _ lqtz co SLL. 11 C 'b Z CL Vd- o 0 v) 0� ; j > � �p ° 0 O CC) - + CN �0 'd' C CL N 00 o a; + J to cn a L6 Co + G r L m co O ct-_,Ct=! CD CO a r' rl 0NCf) NO m ,goo D �; H J �fJ7 � �s 01/03/2005 16:50 5096222888 TDH SPOKANE PAGE 14/16 IL � o L N T G r m G W > O N 0 M Lo N O ,y Q 0 � rn m N. N m � m O v m N Q h ai m mLo d ym� 3 cdp> m V r 0 h C9 M 10r0 ' C? 4r m 7 m Cl) i'�m of c v C a 0Ct, v m m m � m C n 0 C�'i• .r-- � � m � n � m� r r r O pp 4d of ai rn T�J r LD R! 41 e+? m r v U7 c+s N m lf) r O O O O O O O O O O + 0 0 0 0 0 0 a ti v0 N rD ao O N O O u Oi or aO f05 r n aD R f` o Q ~W v O rC! r0 O rCl S$ � hl V) r.r fu to o N m c~G ti v �us O rq . It � rob n 0 N ti tD 'o N ^ N H H V m O 'D 00 00 O r O T q w C Q CL 4� o o m o v N r ,� �N� o o p 8 0 0 0 0 0 0 � o o a o o e o 0 0 0 0 o rj O O G G o 0 0 o m m Or C X1 q of 4 O co ad r; td f1 m a = a C } y ra M M m cq m dJ G P •�' •� err-, of01 OD M 0 � ••V�� m i'A_ c? N n c� of r rn o qCj V M Vo M C in ~ 9 y w c — — C h N t0 O m N N N G y� V U U CL7 q x % rr3 'f k G C C G C N h G m N N dr m M cc c ed mm v m m m m m m m c c c c C 0 a G C C Cg U U U U U U U U U m a m m w w m to CO C] U U C1 U d Q U U d a o a o o $ o o a a o N rn c Lo o a T r o 07 ca y Z 41 yb m N N N 0 0 0 m d W CL a J a1 � m m m � N r o az mimmm = xmmz o` `" N J N "� _ u) C o I � aaa n o. a L 01/03/2005 16:50 5096222888 TDH SPOKANE PAUE 15/lb 1 " N y � � e � � w y o U d m �m CO. ti M f0 N u� N T 67 ro o � W w tn o LD r a Gi gab C1 M m ...1 myv F O N N C 3 y a v Wt m Yrl m b m bUW m N n (M N m o U) v �OJ o pp�� � r m y4 r, 9 4 N p-T N ) CO WCO _ O O O OCD C O �? 1z G- ip M I.- r � ! C h F-� .J r N m m 0 Q m o,u 'Aw LQ Ih uq 16.. p v" cq Cm 0 N m m 7 Q+ m o c,4 O n oCbY + _ o r o � a o R o 0 0 0 0 0 0 c • _ 0 a O O O G) 0 0 m ry •� C O C Ci 0 o m b �, r[ � H N n a m m 2 m o E .72 N to Cb to 0 cwv r m r CL N v C7 C7 l�J U W O m G G G G G N N N O N W r r r- r s- 2 n A ` Gl m m m WN Wm N lC pC U pCp C C G 0 z U U U U U y m f9 m 40 N N 7 a ` V 3 V 2 O O D O pp a O 0 � C P G 0 d m O C C O O b ,rml M t LD 7Lo Q m F = Sa m ID Y Y 1 Y. X w G m m m 6 m ;z m 4 cU 0 0 0 U O c.4 OP7 4m 0 E �y Ul In Goci aZ mmtoImmco Ego CUUUUU U o � �n 0 `m m X + Y Y Y r Gi o 0 a G_ 0. a a a. blI19diLl7btl lb:tlb OU7JbLLLtltltl rHUC. I Wto N O C W U 0 Q a a 'm rn N q v co d r M` M A V Q d; Op M N O o N �' v S. J d 'd Gh Crl @ � r r f• f` r j 13— Oi d3 Cl) m N 4� ?U' J tl A O r (e� � t !b C O '¢ m -04 r �. �UO3 _ � b o b G7 0 0 ti D O It N N WY Q N�N N W coo w � �7 �► � �U Q m M- N � (q OR Nam) VK � C 3 N OV.. m N m g r Q_ x o z o o v o w ° 41 L1 p O r lD o T Q. 9 a� O Nod r oo p mo .` o 0 0 0 �, a oy` p O O O 0 O 41 �° a r- r lV ro` 0) E v y V > G m a di P O LU Co n r to v m r) m 'K Lq dmm W 'Ir N y Cv loq R d V c d� � W � d m C G G •C C O N � 0)t11 N N m N m N C l9 l6 �1 m IP ID N J 73 7 -5 V t L TV.N 22 v1 vUUtUU a v 07 opt C o p o o O go � � on J N N S N m g g rI z7RRav � a mmmm � cm, y� M 60 N� ('� Z Z Q o M �z mmmaom M E M o 000) 00 oau, d 0 1 N o 4s o -�� z a IL IL 12/19/2004 14:56 5096222888 TDH SPOKANE PAGE 18/23 APPENDIX - Section 7 Detention Pond Sizing Calculations Ib1/bJ/Ybbb lb: b4 bU'3b222b8U I UH 5F'UKANt F'Aat b'Lf bL �2�- D�•11�8.��'1����• C,pAI'D J"�/OIyP � -IJJ�ST S I G� O FG EiR��, orw ICA10 , �LQPE, ✓l �,ty -1lUyr D.�9 iA �J�r �J2�-�DEXI��a W,Jf lT10^1 EAST t - I i 64" i . t s a 1 i 1 j 01/03/2005 15:29 5096222888 TDH SPOKANE PAGE 03/07 STORMWATER DETENTION (Phase 3 Pond west) SIZING �'onlU CATTAIL CREEK SUBDIVISION PHASE 3 B03-050 MODIFIED RATIONAL METHOD Walesh, Stuart G_, Urban Surface Water Management" COMM ERCAIURESIDENTIAL John Wiley and Sons, New York,1989 nvi DESIGN STORM: 10 YEAR AREAS(SF) pg� COST ! J•S�Z� r SUM OF CxA 4.736 13.024 V IV, ��Z TOTAL(AC) 23.68 23.68 `,At'r� � � , 0 WEIGHTED C FACTOR 0,20 .55 Tc(MIN) 53.00 26.00 RUNOFF(CFS) 3.29 MAXIMUM VOLUME REQU(RED(CF) 24881.29 TIME TIME 10 YEAR Q VOLUME VOLUME VOLUME MIN SEC i(IN/HR) C"I*A(CFS) IN(CF) OUT(CF) STORE(CI=) 5.00 300.00 3.22 41.92 16851 985.67 15865.04 6.00 360.00 2.86 37,23 17961 1182.81 16778.24 7.00 420.00 2.59 33.68 18967 1379.94 17576.77 8.00 480.00 2.37 30.88 19864 1577.07 18286.63 9.00 540.00 2.20 28.61 20700 1774.21 18925.47 10.00 600.00 2.05 26.71 21477 1971.34 19505,91 11.00 660.00 1.93 25.11 22206 2168.48 20037.31 12.00 720.00 1.82 23.73 22892 2365.61 20526.83 13.00 780.00 1.73 22.52 23543 2562.74 20980.10 14.00 840,00 1.65 21.47 24161 2759.88 21401.60 15.00 900.00 1.58 20.52 24752 2957.01 21795.01 16.00 960.00 1.51 19.68 25317 3154.15 22163.35 17.00 1020.00 1.45 18.92 25860 3351.28 22609.16 18,00 1080.00 1.40 18.23 26383 3548.42 22834.58 19.00 1140.00 1.35 17.60 26887 3745.55 23141.46 20.00 1200.00 1.31 17.02 27374 3942.68 23431.38 21.00 1260.00 1.27 16.49 27846 4139.82 23705.71 22.00 1320.00 1.23 16.00 28303 4336,95 23965.67 23.00 1380.00 1,19 15.55 28746 4534.09 24212.31 24.00 1440.00 1.16 15.12 29178 4731.22 24446.59 25.00 1500.00 1.13 14.73 29598 4928.35 24659.33 26.00 1560.00 1.10 14.36 30007 5125.49 24881.29 27.00 1620.00 1.08 14.01 30120 5322.62 24797.41 28.00 1680,00 1.05 13.68 30237 5519.76 24717.39 29.00 1740.00 1,03 13.37 30358 5716.89 24640.63 30.00 1800.00 1.00 13.08 30481 5914.03 24566.63 35.00 2100.00 0.91 11.83 31124 6899.70 24224.65 40.00 2400.00 0.83 10.85 31791 7885.37 23906.10 45.00 2700.00 0.77 10.05 32463 8871.04 23592,13 50.00 3000.00 0.72 9.38 33130 9856.71 23272.88 55.00 3300.00 0.68 8.82 33786 10842,38 22943.18 60.00 3600.00 0.64 8.34 34428 11828.05 22600.32 Note: Vin=1.34*Qdev*t for t<=Tc Vin=(Q'"t)+(.34*Q*Tc)for t}Tc 01/03/2005 15:29 5096222888 TDH SPOKANE PAGE 02/07 STORMWATER DETENTION (Phase 3 Pond east) SIZING C Pa,�JD C� CATTAIL CREEK SUBDIVISION PHASE 3 B03-050 MODIFIED RATIONAL METHOD Walesh, Stuart G., "Urban Surface Water Management" John Wiley and Sons, New York,1989 COMMERCAIL/RESIDENTIAL DESIGN STORM: 10 YEAR AREAS(SF) PRE POST SUM OF CxA 3.842 10.5655 TOTAL(AC) 19.21 19,21 WEIGHTED C FACTOR 0.20 0.55 Tc(M I N) 54.00 24,00 RUNOFF(CFS) 2.63 MAXIMUM VOLUME REQUIRED(CF, 19878.23 TIME TIME 10 YEAR Q VOLUME VOLUME VOLUME MIN SEC i(IN/HR) C*I*A(CFS) IN(CF) OUT(CF) STORE(CF) 5.00 300.00 3.22 34.00 13670 789.95 12879.90 6.00 360.00 2.86 30.20 14571 947.94 13622.65 7.00 420.00 2.59 27.32 15378 1105.93 14272.38 8.00 480.00 2.37 25.05 16114 1263.92 14850.17 9,00 540.00 2.20 23.21 16792 1421,91 15370.35 10.00 600.00 2,05 21.67 17423 1579.90 15843.15 11.00 660,00 1.93 20.37 18014 1737.90 16276.17 12.00 720.00 1,82 19.25 18571 1895,89 16675.22 13.00 780.00 1.73 18.27 19099 2053.88 17044.86 14,00 840.00 1.65 17.41 19601 2211.87 17388.73 15.00 900.00 1.58 16.65 20080 2369.86 17709.80 16,00 960.00 1,51 15.97 20538 2527.85 18010.54 17.00 1020.00 1,45 15.35 20979 2685.84 18293.00 18.00 1080.00 1.40 14.79 21403 2843.83 18558.93 19,00 1140.00 1.35 14.28 21812 3001.82 18809,81 20.00 1200.00 1,31 13.81 22207 3159.81 19046.93 21.00 1260.00 1.27 13.38 22589 3317.80 19271.41 22.00 1320.00 1.23 12.98 22960 3475.79 19484.23 23.00 1380.00 1.19 12.61 23320 3633.78 19686.25 24.00 1440.00 1,16 12.27 23670 3791.77 19878.23 25.00 1500.00 1.13 11.95 23767 3949.76 19817.17 26,00 1,960.00 1.10 11.64 23867 4107.75 19759.63 27.00 1620.00 1.08 11.36 23971 4265.74 19705,03 28.00 1680.00 1.05 11.10 24077 4423.73 19652.87 29.00 1740.00 1.03 10.86 24184 4581.72 19602.75 30.00 1800.00 1.00 10.61 24294 4739.71 19554.29 35.00 2100,00 0.91 9.60 24857 5529.67 19327.80 40.00 2400,00 0.83 8,80 25431 6319.62 19111.59 45,00 2700.00 0.77 8A 5 26003 7109.57 18893.01 50.00 3000.00 0.72 7.61 26565 7899.52 18665.70 55.00 3300,00 0.68 7,16 27116 8689.48 18426.54 60.00 3600.00 0.64 6.76 27654 9479.43 18174,12 Note: Vin=1.347'QdeV't for t<=Tc Vin=(Q*t)+(.34*Q*Tc)for t>Tc 12/19/2004 14:56 5096222888 TDH SPOKANE PAGE 21/23 APPENDIX - Section 8 Test Pit Locations and Groundwater Depths ZONING PLI I ZONING B-I r 1 UA III ZONING A_S PUBLIC ACCESS J V ZZ_ O= B_2 AHO UIIIM EISEVEIfI 7 Z0+11��1 3 ROAD30' SECS.26COR,k 35 En �I ZONING A-S „ xW a FIIAAEAT ROAD IN B745'15' E J0' 2fS3.80' F�1LT �� 70m' --—- - s. FF 30o. 04 PUBLIC STREET EASEIIDR ZONING A-S NI LOR.SEC.75 J (DOG.NOTE J325) O / /J PER�DOCC..40�1WG3/�523 SEE NOTE N 5 y z ' 7 7 g o�GO•x 17'TETETANVUNICATIONS U j t EASEMENTEE NOOTE 11 lseT) L� 2 15 2 �' 15 BLOCK 1 W�� Q 3 14 0.1� 3 14 py 2 G R�3 R-0 O z„I g .. LOt1l ZONING '� N C7 a y Z s 4 13 z x 4 13 Z 4 � 4 uUU WIJ x z U / N 3 �Q o 0 o O 8�'o :.7 N ® 30'WIDE TRAP EASO M W N "i 5 12 m 5 12 E..R ugw 5 �7 ZOI A.S .�.. g Il 0 IS PARK -- 0 LWLB — 2pNING M-I FW- << z 3 o o O U ,.y W O 4 IMP 0 7 10 7 10 4 M N 6 4 g ZONING B_Y $ B 9 B 9 /� 3 ZONING R-3 BLO(:K '' Inm m [•1•� 3 /� '`Q r�• — DRANM BY: JLH .`Q SUNDEW LANE n 0 DESIGNED BY: 'A ZONING R_0 2 QUALITY CHECK KW R-2 ZONING R-1 R-2 /1 w 7 3 DATE: 6.15.04 7 0 9 10 11 12 13 14 '`Q® 2 JOB N0. Bos-osD Doc lxO3+sn EIELneooR 2 - SEE NOTE 13 BLOCK 13 _ w 2es25o' A ZONING R.3 ZONING R-3 ZONING R'0 ZONING ZONING R-3 IOINNt•'R-3 W a IL �s 0 z (1) a > z N m2 = z VICINITY MAP W N —{—� W O LFGEND — •� ,.7sm DESCRIPTION j..... SURVEY BOUNOMY/PNASE LINE 0 100' 200' 300' _ ,��♦T1 utIUIY EASENENf EXCEPT As NOTED ` 1 t I IS C A L E I v — CA— AIL CREEK _ tom}—'�E i 'n�. y Y SECTION CORNER PHASE 3 QUARTER CORNER GROUND WATER NOWORINC WELL ti ��JJ�L �SHE �. N Z F-� Cattail Creek Ground Water Monitorin 7 _ - `I° ____ TOPOF T- __�_ TUP OF 1 N TOP OP t PIPETO i GROUND m TOP OF PIPE TO GROUND PIPE TO ' GROUNI} m TEST Prr PIPE TO WATER TO WATER ! WATER TO WATER WATER TO WATER A NUMBER 1 GROUND DATE LEVEL LEVEL. DATE - LEVEL LEVEL I DATE-f ]LEVEL -IFF LEVEL 71 _1 f.- 265 3.23.04 6.07 3.42 4.05.043.55 4.21.04 6.1 _3.45 Ln 4.05.04 4.63 3.73A 4.21.04 4.44 _ _3.54 6.34- 4.74 - --- 1.6 3.23 A4 i 6.55 4.95 _4.05.04� 6.7 5.1 A.21.04 ___ 5.32j5.36 4.05.04_' _7.7_� 5.6^ _4.21.04 _7.46~ 4.75 i0 --- 3 2.1-- -3.23.04 -7 _ `4.9 421.Q4- "'- _5- -w225 3.23.04 7.9- _7.65_ 4.05.04 _ 7.15 _ _.�.-- °1 `-" ___ 4.05.04 -_6.5 4.85 4.21.04 6A 1_ 4 76-- n 6 1.55 3.23.04 4.5 2.85 - -- 4.21.04 4.SZ f 2.77 co 7 ^� �1.75 3_�3.04 2.83 4.05.04 _. . ._! m m TOP OF TOPOF 'POP OF l f 1 PIPE TO ` GROUND PIPE TO GROUND ^� PIPE TO GROUND ! TOP OF ; WATER 'i O WATER WATER TO W ATHL TCSTPIT PIPETO WATER TO WATER' •...LEV _.... NUMBER GROUND DATE LEVEL LEVEL DATE V LEVEL 'LEVEL I)A LEVEL ....LEVEL 5.75 1 5.20.04 5,41 1 2.82 X 6.09.04 4.8 3.45 -- w _...._. 5.20.04 4.68 _ 3.78.. 6.09.04 _ 4.35 0.9 5.5.04 4.62 3.72 __ .. -___..- - - 2 �...._.. .._._.-._.._.._...._. _ 6.09.04 �6.41 510.04 6.79 5.19 3 �--••1.6 5.5.04 6.63 5.03 •.r.._..- .•---------..__.._..._w. . • 4.81 --- - " 5.20.04 5.9 6.09.04.1 7,67 5.57 4 2.1 5.5.04 7 75 5.65 - -- _- - _ 5 2.25 5.5.04 6.3 4.05 5.20.04 4.78 2.53 - •-6.09.04 2.75 ---- -- - - r5.5.04 6.42 4,77 5.20.04 ; 6.43 -� 4.78 _6.09.04 _ 5.92 _#.27 N �_ -- - - ---- `_4.68 _2.93_..3 ~5.20.04_ 4.74� 299 . _6: -� _ 4.78 -3.03 µ00 z �_ TOP OF m -7OPOF PIPETO`1 GROUND TEST PIT P]PE TO WATER TO WATER NUMBELt , GROUND _ DATE LEVEL LEVEL LEVE'L __...�:-ram--- _ - - --• 2.65 J6:15.04 `t_ 3.12 _• 0.47 j 2 p g - 6.15.04 3.72 2.82 1`J 31 1.6 6.15.04 5.93 4.33 4 2,1 6.15.04r 7.04 4.94 6.15.04 2.40 0 5� 2,25 _ _6 1.65_-_ 6.15.045.50 M 3.85 y l�1.75 6 15.04 ( 4.322 '-1 m a N r � N 47 APPENDIX- SECTION 8 CULVERT CALCULATIONS � 1 f110_ aa3- aso - aoz ,Zl�6/oy FLci✓s die �ni A�ysis o� ilt �`1.���//ra�® �` t'� c�li �c� OF t G € S l'o,Z CAM. 1J c)ei`Ce !N T/I u!'P�� Y£tto�.r/srcr� - G�rvr�//� �o i�ii9srd P ion/ 3,S7 - o.s7 fl+E�2� u iu Q )'�Do� /�f/61✓�9L`0� /N GFS oaC) N N.crF IM N!! N r!r 1/7L0,9z� 6 ( �1760��o�a) a�-,a� C,uS s y1/ a,SIC 3.yaj z a. 9c(a, Sz) ( �/�Ga/eoaa� �la� = z 9; a Cry Cl�� `l7/ CA) 7 ��I.,o0 S�, Z GFS 0,7y 3,IC - 1,os ssan, eY7Cal000 -011d) _ /a3 yaer7 0 7Z 2.9s cuL✓� ff �y76471j000) (H���a) = 1�9 . l GFS /1- l� 566s✓ GG�c,/ aF /zs� �. S C L s c ra c�r✓s ed,¢�>d� �% d✓��� rQ l s a MISS A Afs�a/v FLa`✓ D'F i7-S C.GS I C14 Ce� » n \ / ° + — $ k § o 0 a Q 2 04 7 \ % q / �2 \ < / E § < « CIO e ® » o co k R7 % k � ci C-4 C: ° 0 / 3 c > � CD 00 R » z 20 a) 0) g C r_ 0 $ § f a / f \ § a > \ f �0 \ 3 § § j 00 m a 2 CC o B § f \ 2 c — 2 N \ N Nk E c « / E CL R 3 = 2 � / $ K Co c _ > $ / § 0 \ & t 0 § : $ g ooa » m % ° ku UC14C> � W k m $ $ c o 2 � k Ego 2 2 2 § $ f 0 w cm e k a R �� �� �� �� / a I \ �� \ © ' % _ ® w w = $ 0 M ° 4 = o @22 # U) am2 t / / cn U) 0 k ¥ b 0 5 % / § w W d O - G[ca✓fir o✓r e fzcw i S rGoF--w _ /Z.s L�s LCL✓ G�I�P'� ,/�le�N P,n / Gcab✓b�27 131rceev = /zS ccs — 7G,41 cry = 419a9Crrs o✓r � To�v�>•_/� !,j C� 0C� O� _ t< ! cv c, (11 N N i` .'R a 4�-,7 t- G G1=5 S = a. ao 6 7 �i� Olt_17S �f/IS �2axD _. N/WY GAS✓ G v�'�Y (9, 6 GrS INLET CONTROL Diameter= 3.5 ft Number of depths to compute Geometric Elements= 20 Area Wetted Hydraulic Theata (Square Perimeter Radius Depth (Feet) (Radians) Feet) (Feet) (Feet) 3.5 6.28 9.62 11.00 0.88 0.5 1.55 0.841 2.71 0.31 Diameter= 3.5 ft Area Wetted Hydraulic Theata (Square Perimeter Radius Depth (Feet) (Radians) Feet (Feet) (Feet) 3.5 6.28 9.62 11.00 0.88 Diameter= 3.5 ft Area Wetted Hydraulic Theata (Square Perimeter Radius Depth (Feet) (Radians) Feet) (Feet) (Feet) 3.5 6.28 9.62 11.00 0.88 C= 0.6 overtopping elevation 41.66 INLET CONTROL Q=CA*SQRT(2*G*H) CL of Orfice Pipe#1 85.27 cfs 4.07 ft Pipe#2 85.08 cfs 3.37 ft Pipe#3 85.08 cfs 3.37 ft INLET CONTROL= 255.44 cfs POND G Column A B C D E F G H I J ROWS Circular Pipe Geometric Elements 4 5 Diamet 0.83 ft 6 Number of depths to compute Geometric Elements = 20 7 8 EQ= 1.480$37"(C11)*(F11))A(2/3)*D$40 Area Wetted Depth Theata (Square Perimeter Hydraulic 9 (Feet) (Radians) Feet) (Feet) Radius (Feet) Q 10 0.83 6.28 0.54 2.61 0.21 2.55 11 0.789 5.38 0.53 2.23 0.24 2.74 12 0.747 5.00 0.511 2.07 0.25 2.72 13 0.706 4.69 0.491 1.95 0.25 2.63 14 0.664 4.43 0.461 1.84 0.25 2.49 15 0.623 4.19 0.441 1.74 0.25 2.33 16 0.581 3.96 0.40 1.65 0.25 2.14 17 0.54 3.75 0.37 1.56 0.24 1.93 18 0.498 3.54 0.34 1.47 0.23 1.71 19 0.457 3.34 0.30 1.39 0.22 1.49 SQRT SLOPE n PVC 0.011 Slope = 1 0,011 0.1 C= 0.6 overtopping elevation 39.25 INLET CONTROL Q=CA*SQRT(2*G*H) CL of Orfice Pipe#1 1 2.713661 cfs 1.085 ft POND F Column A B C D E F G H I J ROWS Circular Pipe Geometric Elements 4 5 Diamet 0 83 ft 6 Number of depths to compute Geometric Elements = 20 7 8 EQ= 1.48/D$37"(C11)*(F11))^(2/3)''D$40 Area Wetted Depth Theata (Square Perimeter Hydraulic 9 (Feet) (Radians) Feet) (Feet) Radius(Feet) Q 10 0.83 6.28 0.54 2.61 0.21 2.55 11 0.789 5.38 0.53 2.23 0.24 2.74 12 0.747 5.00 0.51 2.07 0.25 2.72 13 0.706 4.69 0.49 1.95 0.25 2.63 14 0.664 4.43 0.46 1.84 0.25 2.49 15 0.623 4.19 0.44 1.74 0.25 2.33 16 0.581 3.96 0.40 1.65 0.25 2.14 17 0.54 3.75 0.37 1.56 0.24 1.93 18 0.498 3.54 0.34 1.47 0.23 1.71 19 0.457 3.34 0.30 1.39 0.22 1.49 SQRT SLOPE n PVC 0.011 Slo e= 0.01 0.1 C= 0.6 overtopping elevation 39.25 INLET CONTROL Q=CA*SQRT(2*G"H) CL of Orfice Pipe#1 1 2.71366 cfs 1.085 ft Column 10 YEAR FLOWS A B C D E F G H I J K L M N O P Q R S T U V W ROWS Circular Pipe Geometric Elements 4 5 Diamet 3.5 ft Diamet 3.5 ft Diameter= 3.5 ft 6 Number of depths to compute Geometric Elements 20 7 8 Theat Area Wetted Hydraulic a Area Wetted Hydraulic Area Wetted Hydraulic Depth Theata (Square Perimeter Radius Depth (Radia (Square Perimet Radius Depth Theata (Square Perimeter Radius 9 (Feet) (Radians) Feet) (Feet) (Feet) (Feet) ns) Feet) er(Feet) (Feet) (Feet) (Radians) Feet) (Feet) (Feet) 10 3.5 6.28 9.62 11.00 0.88 3.5 6.28 9.62 11.00 0.88 3.5 6.28 9.62 11.00 0.88 11 3.325 5.38 9.44 9.42 1.00 3.325 5.38 9.44 9.42 1.00 3.325 5.38 9.44 9.42 1.00 12 3.15 5.00 9.12 8.74 1.04 3.15 5.00 9.12 8.74 1.04 3.15 5.00 9.12 8.74 1.04 13 2.975 4.69 8.72 8.21 1.06 2.975 4.69 8.72 8.21 1.06 2.975 4.69 8.72 8.21 1.06 14 2.8 4.43 8.25 7.75 1.06 2.8 4.43 8.25 7.75 1.06 2.8 4.43 8.25 7.75 1.06 15 2.625 4.19 7.74 7.33 1.06 2.625 4.19 7.74 7.33 1.06 2.625 4.19 7.74 7.33 1.06 16 2.45 3.96 7.19 6.94 1.04 2.45 3.96 7.19 6.94 1.04 2.45 3.96 7.19 6.94 1.04 17 2.275 3.75 6.62 6.56 1.01 2.275 3.75 6.62 6.56 1.01 2.275 3.75 6.62 6.56 1.01 18 2.1 3.54 6.03 6.20 0.97 2.1 3.54 6.03 6.20 0.97 2.1 3.54 6.03 6.20 0.97 19 1.925 3.34 5.421 5.85 0.93 1.925 3.34 5.42 5.85 0.93 1.925 3.34 5.42 5.85 0.93 20 1.76 3.15 4.851 5.52 0.88 1.76 3.15 4.85 5.52 0.88 1.76 3.15 4.85 5.52 0.88 21 1.585 2.95 4.231 5.17 0.82 1.585 2.95 4.23 5.17 0.82 1.585 2.95 4.23 5.17 0.82 22 1.41 2.75 3.63 4.81 0.75 1.41 2.75 3.63 4.81 0.75 1.41 2.75 3.63 4.81 0.75 23 1.195 2.50 2.90 4.37 0.66 - cLt��"O�- 03 1.1951 2.50 2.90 4.37 0.66 1.195 2.50 2.90 4.37 0.66 24 1.02 2.28 2.33 3.99 0.58 1.02 2.28 2.33 3.99 0.58 1.02 2.28 2.33 3.99 0.58 25 0.845 2.05 1.79 3.60 0.50 0.845 2.05 1.79 3.60 0.50 0.845 2.05 1.79 3.60 0.50 26 0.67 1.81 1.29 3.17 0.41 0.67 1.81 1.29 3.17 0.41 0.67 1.81 1.29 3.17 0.41 27 0.5 1.55 0.84 2.71 0.31 0.5 1.55 0.84 2.71 0.31 0.5 1.55 0.841 2.71 0.31 28 0.3251 1.24 0.45 2.171 0.21 29 0.151 0.83 0.14 1.461 0.10 30 EQ= 1.48/D$36*(D10-D$27)*((D10-D$27)/(E10-E$27+2.45))^(2/3)*E$39+ 31 ROW 1.48/D$37*(L10)*N10^(2/3)*E$39+1.48/D$37*(S10)*U10^(2/3)*E$39 32 10 Q 239.7411 33 11 257.5854 34 Q Total 10 year stor 55.2 cfs 12 255.2203 35 13 246.3485 36 n 42" 0.0168 14 233.1735 37 n concretc 0.013 15 216.9234 38 16 198.4779 39 Slope = 0.0081 .0894431 17 178.5457 40 18 157.7361 19 136.5928 20 116.7985 21 96.39279 22 77.01473 23 55.20829 24 39.54281 25 14.68288 26 8.178733 27 3.9386 Column 25 YEAR FLOWS A B C D E F G H I J K L M N O P Q R S T U V W ROWS Circular Pipe Geometric Elements 4 5 Diamet 3.5 ft Diamet 3.5 ft Diameter = 3.5 ft 6 Number of depths to compute Geometric Elements 20 7 8 Theat Area Wetted Hydraulic a Area Wetted Hydraulic Area Wetted Hydraulic Depth Theata (Square Perimeter Radius Depth (Radia (Square Perimet Radius Depth Theata (Square Perimeter Radius 9 (Feet) (Radians) Feet) (Feet) (Feet) (Feet) ns) Feet) er(Feet) (Feet) (Feet) (Radians) Feet) (Feet) (Feet) 10 3.5 6.28 9.62 11.00 0.88 3.5 6.28 9.62 11.00 0.88 3.5 6.28 9.62 11.00 0.88 11 3.325 5.38 9.44 9.42 1.00 3.325 5.38 9.44 9.42 1.00 3.325 5.381 9.44 9.42 1.00 12 3.15 5.00 9.12 8.74 1.04 3.15 5.00 9.12 8.74 1.04 3.15 5.00 9.12 8.74 1.04 13 2.975 4.69 8.72 8.21 1.06 2.975 4.69 8.72 8.21 1.06 2.975 4.69 8.72 8.21 1.06 14 2.8 4.43 8.25 7.75 1.06 2.8 4.43 8.25 7.75 1.06 2.8 4.43 8.25 7.75 1.06 15 2.625 4.19 7.74 7.33 1.06 2.625 4.19 7.74 7.33 1.06 2.625 4.19 7.74 7.33 1.06 16 2.45 3.96 7.19 6.94 1.04 2.45 3.96 7.19 6.94 1.04 2.45 3.96 7.19 6.94 1.04 17 2.275 3.75 6.62 6.56 1.01 2.275 3.75 6.62 6.56 1.01 2.275 3.75 6.62 6.56 1.01 18 2.1 3.54 6.03 6.20 0.97 2.1 3.54 6.03 6.20 0.97 2.1 3.54 6.03 6.20 0.97 19 1.925 3.34 5.42 5.85 0.93 1.925 3.34 5.42 5.85 0.93 1.925 3.34 5.42 5.85 0.93 20 1.76 3.15 4.85 5.52 0.88 1.75 3.14 4.81 5.50 0.88 1.75 3.14 4.81 5.50 0.88 21 1.585 2.95 4.23 5.17 0.82 1.575 2.94 4.20 5.15 0.82 1.575 2.94 4.20 5.15 0.82 22 1.41 2.75 3.63 4.81 0.75 1.4 2.74 3.59 4.79 0.75 1.4 2.74 3.59 4.79 0.75 23 1.235 2.54 3.03 4.45 0.68 1.225 2.53 3.00 4.43 0.68 1.225 2.53 3.00 4.43 0.68 24 1.06 2.33 2.461 4.08 0.60 1.05 2.32 2.43 4.06 0.60 1.05 2.32 2.431 4.06 0.60 25 0.885 2.11 1.91 3.69 0.52 0.875 2.09 1.88 3.67 0.51 26 0.71 1.87 1.40 3.27 0.43 0.7 1.85 1.37 3.25 0.42 27 0.5 1.55 0.84 2.71 0.31 0.525 1.59 0.901 2.78 0.33 28 0.325 1.24 0.45 2.17 0.21 29 0.15 0.83 0.14 1.46 0.10 30 EQ= 1.48/D$36*(D10-D$27)*((D10-D$27)/(E10-E$27+2.45))^(2/3)*E$39+ 31 ROW 1.48/D$37'(L10)*N 10"(2/3)*E$39+1.48/D$37*(S10)*U 10^(2/3)*E$39 32 10 Q 239.7411 33 11 257.5854 34 Q Total 10 year stori 55.2 cfs 12 255.2203 35 13 246.3485 36 n 42" 0.0168 14 233.1735 C= 0.6 37 n concretE 0.013 15 216.9234 overtopping elevation 41.66 38 SQRT OF SLOPE 16 198.4779 39 Slope = 0.0081 0.089443 17 178.5457 INLET CONTROL 40 18 157.7361 Q=CA*SQRT(2*G*H) CL of Orfice 19 136.5928 Pipe#1 85.26846 cfs 4.07 ft 201 115.9284 Pipe#2 85.08437 cfs 3.373333 ft 21 95.55401 Pipe#3 85.08437 cfs 3.373333 ft 22 76.22396 INLET CONTROL= 255.4372 cfs 23 58.34156 24 42.28747 25 16.14787 26 9.265323 27 4.356601 w cd ,d a) m h0 b N + d a> e0 mow, 40 o p� y `nto ID 04ec rb cb b w a; m N o� y b fi o y ° y ^ 0 �, a .� a 0 b o o .a o C S o y 0 o d 0 a w AE .O Q o� O '> w N C3 bio F S., U r o t~ .p A •� 'r~ md O W d ..•' cy'i � ,� 0 y � � rn 0 v °r,°I� 0 40 � TO ti m CD GV d `/�/ .p N � o Iz b1 � w�+ pp� II d d a ° II II II II II II � � � �' �•ad O a, 0 O G b ^�' I1 a3 O a'w r1 lam, ^C' .N 'tl '� v� y p C 0 q m c0. g p " Cd y 0 0A . y m Ci m ,0.� �d +' O 00 d c0 o d A b 0 a p d 0 v� ci y 42 y 0 In cl ° o 'g � a C', cy c �•o � .a qb z o c� 4i~ W O o ca w N a c0. ci C's r N � N d N a y .Lt IV CD 0'pp�� N N N O S N d El C.' �b ab 6 �, � cN� '� .ter .p ,� � � �.5 '3 B• � � '� 'a`�4:� ° � o,q '� �-' -E; �'' w t+ q0 w ',w m o d o b qO it `a w ba w aNi 0 0 v s7 w F. Voa d x �L qtd q o W •0 pco sm.. C3 oU0 CIO al � wclF ocOo °a � ai -p api ad 'y II � adi � 4j •� r0•, ++ � q°S � m C] y N y a y, O L. bD ° ai o Y II t3 a) q N O U G Pa 0F +� ' GL c. x d �" ,�.q �'bB oa •� �' m 0 �p z �C 2 5t k .�Rw a> co3. h0 .b a :� v Pi ab A o ° c 0 c .p ap q .., > y v m c. .0 E w d ce y 0 P $ O � 9, O.9 •G.0 .d 0 � bo *" ra a q p 0 cd yD .q'� w E~ q p o q ti .ra aa4q qy+ 'N w 0 cc mom ' dNC6 � 8 �° av � ' � � f'' oa � � �7 F� a) h•i O e.�'.� C d �1 w O w.a.� .� 00 12/19/2004 14:07 5096222888 TDH SPOKANE HAUL 111'zu On Grade Flow-Modified 1S ung Equation page 1 of 1 g On Grade Flow in 'triangular Gutter Sections Where... Q= Channel flow in CFS (calculated) p Z = Reciprocal of transverse slope (11ST) ' D = Depth In feet S = Longitudinal slope ZO s N = Roughness coefficient at constant N 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate One Alternate Two AlternThre Depth of flow in feet(D): M J:L47 _ Transverse Slope in ft./ft. (ST): Longitudinal Slope in ft./ft. (SO: Q ooss_...... 0,016 0.016 0.01 Roughness coefficient(N): (value for concrete or (value for concrete or (value for coi asphalt) asphalt) aspha Imo_ Total flow in cfs (Q): M �.7 Spread of flow in feet: 8 233 J � Catalog numbers and grate types that have K-charts: M 13067 Grate Coefficient from K-chart (K); 12 :: .._............ ------- ---- Grate capacity in cFs: (Flow captured) (Flow captured) (Flow rapt Rese For additional information regarding Neenah Inlet Grate Capacities,please contact our Product Engineer,Steve Akkala,at 920-725^7000 or at sakkala(Mnfco http://www.neenahfoundry.com/literature/brochures/gratecapacities/modified_manning.php 12/15/2004 12/19/2004 14:07 5096222888 TDH SPOKANE NACRE 12/2b On Grade Flow-Modified Mann Equation Pagel of 1 10 on Grade Flow in Triangular Gutter Sections Where... Q Channel flow in CFS (calculated) e z Z=Reciprocal of transverse slope(1/ST) D =Depth in feet S=Longitudinal slope Q_ � �ZDKS N Roughness coefficient at constant (Modified planning Equation) 0.016 (value for concrete and asphalt) I structions Alternate One Alternate Two Alternate Depth of flow in feet(D): M ,176 ! �_ Transverse Slope in ft./ft. (ST): M 113 Longitudinal Slope in ft./ft. (SL); q -0069 0.016 0.016 0.01, Roughness coefficient(N): (value for (value for (value concrete or concrete or concret asphalt) asphalt) aspha Total flow in cfs (Q): 21 s9 Spread of flow in feet: pr L?, 5.867 Catalog numbers and grate types that have K--charts: 13067 Grate Coefficient from K-chart (K); JIL _7 Grate capacity in,cfs: (Flow capwmd) (Flow caPM4 (Flow rapt Ram ^�+ " For additional information regarding Neenah Inlet Grate Capacities, please contact our Product Engineer, Steve Akkala, at 920-725-7000 or at sakkalaQnfco,gorp. http://winw.neenahfoundry.00m/literatu,e/brochures/gratecapacities/modified manning.php 12/15/2004 12/19/2004 14:07 5096222888 TDH SPOKANE PAGE 13120 On Grade Flow- Modified P Wing Equation Page 1 of 1 ll On Grade Flow in Triangular Gutter Sections Where... i Q = Channel flow in CFS (calculated) �Q z Z= Reciprocal of transverse slope (1/ST) - D = Depth in feet Q 0.�6 Zder�s�t S = Longitudinal slope a — N = Roughness coefficient at constant N 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate One Alternate Two Altern Thre Depth of flow in feet (D): Q „... Transverse Slope in ft.lft.'(S7): Longitudinal Slope in ft./ft. (SO: 0.016 0.016 0.01 Roughness coefficient (N): (value for concrete or (value for concrete or (value for cot asphalt) asphalt) alpha Total flow in cfs (Q): .si C — Spread of flow in feet: Catalog numbers and grate types that have K-charts: M13067 Grate Coefficient from K chart (K): 12 __..µ.__.._. _.... ....._; Grate capacity in,cfs: Qr— (Flow captured) (Flow captured) (Flow capt ..[ ^r^,;;� • a n r_ Kul: n} WWII alctlate„1 For additional Information regarding Neenah Inlet Grate Capacities,please contact our Product Engineer,Steve Akkala,at 920-725-7000 or at sakkalaO-nfcgyeQQ. http://www.neenahfoundry.corn/literature/brochures/gratc,capacities/Modi.fied manning,php 12/15/2004 12/19/2004 14:07 5096222888 TDH SPOKANE PAGE 14/20 On Grade Flow-Modified Mann. Equation Page 1 of; 1 I � On Grade Flow in Triangular Gutter Sections _ Where... Q- Channel flow in CPS (calculated) TD+ zZ= Reciprocal of transverse slope(1 isT) LD = Depth in feet S= Longitudinal slope Q = d'6�ZD%43 X N = Roughness coefficient at constant N 0,016 (value for concrete and asphalt) (Modified Manning Equation) I Instr� uctions Alternate One Alternate Two Altern Thre Depth of flow in feet (D): Transverse Slope in ft./ft. (ST): Longitudinal Slope in ft./ft. (S0: Q ooss �- 01016 0.016 0.01 Roughness coefficient(N): (value for concrete or (value for concrete or (value for col asphalt) asphalt) aspha Total flow in cfs (Q); b Spread of flow in feet: Catalog numbers and grate types that have K-charts: 3os7 Grate Coefficient from K-chart (K): Grate capacity in cfs: I 0.486_ 1 (Flow captured) (Flow captured) (Flow rapt For additional Information regarding Neenah Inlet Grate capacities,please contact our Product Engineer,Steve Akkalel,at 920-726-7000 or at sakkala gko.com. http:J/www.neenahfoundry.eom/literature!brochures/gratecapacities/modified man,uing.php 12/15/2004 12/19/2004 14:07 5096222898 TDH SPOKANE PAGE 15/20 On Grade E1ow- Modified P ' zing Equation Page 1 of 1 13 On Grade Flow in Triangular Gutter Sections T Where... Q= Channel flow in CFS (calculated) p z Z- Reciprocal of transverse slope (1/ST) D = Depth in feet 0 �� $ = Longitudinal slope _ _,ZD S X N = Roughness coefficient at constant N 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate One Alternate Two AlternThre Depth of flow in feet (D): Q L 2 Transverse Slope in ft./ft. (ST): Longitudinal Slope in ft./ft. (SLY Q 012 0.016 0.016 0.01 Roughness coefficient(N): (value for concrete or (value for concrete or (value for col asphalt) asphalt) aspha Total flow in cfs (Q): Spread of flow in feet: I l�l: Catalog numbers and grate types that have K-charts: 3067 Grate Coefficient from K-chart K): Grate capacity in cfs: Q 1-7os r- (Flow captured) (Flow captured) (Flow capt y i' ^�.?E For additional information regarding Neenah Inlet Grate capacities,please contact our product Engineer,Steve Akkala,at 920-725-7000 or at sakkala,QLfr,q m. L http://www.neenahfoundry.com/literature/brochures/gratecapacities/modified manning.php 12/15/2004 12/19/2004 14:07 5096222888 TDH SPOKANE PAGE •lb/20 On Grade Flow- Modified Maori Equation Page 1 of 1 On Grade Flow in Triangular Gutter Sections Where... 0= Channel flow in CFS (calculated) 7- Z= Reciprocal of transverse slope ('IIST) D = Depth in feet S = Longitudinal slope _ 0.66 ZD$ S N = Roughness coefficient at constant N 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate One Alternate T n-- Altern Thre Depth of flow in feet(D): Q .28 Lr _I Transverse Slope in ft./it. (ST): Longitudinal Slope in ft./ft. (SO: Q .0067 [—� �_0.016 0.016 0.01 Roughness coefficient(N): (value for concrete or (value for concrete or (value for cot asphalt) asphalt) aspha Total flow in afs (0): Spread of flow in feet: Q Catalog numbers and grate types that have K-charts: I ; 13067 Grate Coefficient from K-chart(K): 112 Grate capacity in cfs: Lq 11.43a I (Flow captured) (Flow captured) (Flow rapt For additional information regarding Neenah Inlet Grate capacities,please contact our Product Engineer,Steve Akkala,at 920-725-7000 or at sakkaloOnfco.cQID. http://www.neenahfo=dry.com/literature/brochures/gratempacitiies/modified manning.php 12/16/2004 12/19/2004 14: 07 5096222888 TDH SPOKANE PAGE 17/20 On Grade Flow-Modified I ring Equation Pa-e 1 of 1 16 On Grade Flow in Triangular Gutter Sections Where... i Q = Channel flow in CFS (calculated) z Z= Reciprocal of transverse slope (1/ST) D = Depth in feet S - Longitudinal slope Q = zp � N = Roughness coefficient at constant �V 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate One Alternate Two AlternThre Depth of flow in feet(D): Transverse Slope in ft./ft. (ST): Longitudinal Slope in ft./ft. (SO: " .0067 0.016 0.016 0.01 Roughness coefficient (N): (value for concrete or (value for concrete or (value for cot asphalt) asphalt) alpha Total flow in cfs (Q): Spread of flow in feet: Catalog numbers and grate types that have K-charts: L� 3os7 Grate Coefficient from K-chart(K): 12 Grate capacity in cfs: (Flow captured) (Flow captured) (Flow rapt ;v-+:Y w..;,rrr.....�. p-,■,,■//r'��'�����r•MNlwnnw.atai.11mjj {��{�iii4:,��Cl'�f IiAR yG ICI:I��d�@�r �.Y.[•iVfil�wCa���,�i .{I�I u,rr.•y rr rr^ For additional information regarding Neenah Inlet Grate Capacities, please contact our Product Engineer,Steve Akkala,at 920-725-7000 or at sa ka ;@nfr .corn_ http://www.neenahfoundry.co=literature/broobures/gratecapacities/modified mannizg.php 12/16/2004 12/19/2004 14:07 5096222888 TDH SPOKANE PAGE 18/20 On Grade Flow-Modified Mann" Equation Page 1 of 1 l(a On Grade Flow in Triangular Gutter Sections Where... Q= Channel flow in CFS (calculated) D z Z= Reciprocal of transverse slope (1/ST) D = Depth in feet S = Longitudinal slope Q = 56 ZDNS' N= Roughness coefficient at constant N 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate one Alternate Two Alter Thre Depth of flow in fleet(D): 7-75 ...... Transverse Slope in ft./ft. (ST): Longitudinal Slope in ftAL (SO: "Q .0067 0.016 _ 0.016 0.01 Roughness coefficient (N): (value for concrete or (value for concrete or (value for col asphalt) asphalt) aspha Total flow in cis (Q): Spread of flow in feet: �9.16�7--. Catalog numbers and grate types that have K-charts: Q Grate Coefficient Coefficient from K chart (K): 12 Grate capacity in cfs: Q 1.39s (Flow cape) (Flow captured) (Flow rapt For additional information regarding Neenah Inlet Grate Capacities,please contact our Product Engineer,Steve Akkala,at 920-725-7000 or at sakkal @p-fw.com. O http://www.neenobfoundry.coon/literature/brochures/gratecapacities/modified manning.php 12/16/2004 12/19/2004 14:07 5096222/388 TDH SPOKANE PAGE 19/20 On Grade Flow - Modified� iing Equation Pagel of 1 d� On Grade Flow in Triangular Gutter Sections Where... (1= channel flow in CFS (calculated) p z Z^ Reciprocal of transverse slope (11ST) D = Depth in feet 0 66 S= Longitudinal slope N = Roughness coefficient at constant N 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instructions Alternate One Alternate Two Altern rr T�hre- Depth of flow in feet(D): 1 .211 __M w l..mry Transverse Slope in ft./ft. (ST): Longitudinal Slope in ft./ft. (S0: 0067 0.016 0.016 o.61 Roughness coefficient (N): (value for concrete or (value for concrete or (value for coi asphalt) asphalt) aspha Total flow in cfs (Q): Spread of flow in feet: CCQ �^�` Catalog numbers and grate types that have K-charts: E-Q 13067 _ Grate Coefficient from K-chart (K): 112_ _------_._____.; Grate capacity in cfs: Q 10.897 W_ (Flow captured) (Flow captured) (Flow rapt °`• "���� �,��'.�� te ;, cur For additional information regarding.Neenah Inlet Grate Capacities,please contact our product Engineer,Steve Akkala,at 920-725-7000 or at egkkala0nfoo.,c=. http://ww w.:aeenahfoundry.,pomlliterature/brochures/grater,apacities/modified manning.plip 12/16/2004 12/19/2004 14:07 509b222888 I VH 51'UKANt rAut zut zu On Grade Flow-Modified Mann' Equation Page 1 of 1 16 On Grade Flow in Triangular Gutter Sections � Where-6 Q= Channel flow in CFS (calculated) ,p z Z= Reciprocal of transverse slope'(11ST) D = Depth in feet 0.56 S = Longitudinal slope Q = Zp$r N = Roughness coefficient at constant 0.016 (value for concrete and asphalt) (Modified Manning Equation) Instruc ions Alternate One Alternate Two Altern Thre Depth of flow in feet (D): Transverse Slope in ft./ft. (ST): 13 1 i Longitudinal Slope in ft./ft. (SO: M 1:09e7 _ r- 0.016 0.016 0.01 Roughness coefficient(IV): (value for concrete or (value for concrete or (value for cot asphalt) asphalt) asphe Total flow in cfs (Q): fQ 11.12 __,.__..._.... Spread of flow in feet: [M Catalog numbers and grate types that have K-charts: 093os7 Grate Coefficient from K-chart (K): Grate capacity in cis: Q 0.72i (Flow Captured) (Flow captured) (Flow capt For additional Information regarding Neenah Inlet Grate Capacities,please contact our Product Engineer,Steve Akkala,at 920-725-7000 or at s*, la(a�nfco.comr http://www.neenahfoutidry.com/literaturetbrochimes/gratecapacities/modified manning,php 12/16/2004 y o m b m y a 0 o bo 75 a� q y q o t� „•, y ,� O m q a� ou0 d N m di't�+' m o U p "' •o y o y eo000$ ° 0 , , W a, y o F •m '� iy U o N ad d 't2 g O NEy .2 " 'a 0. .3 N a 's � •a M b y � ,p � � q � p � e7 ;� E p i U a M 3 0 p a� o a q o o G ° 5� 7P4 ' ; d '. � o � 13 O'ba '.j °� a � � m m �' •d a F �' "' o 6 b d 'd d.� Qp+ [07• P, vi d C3 +� a� ''i p' m o 'b a r. 3 F '� a p p 'S3 O O. b q cb d dqD o d o [: So d d ° a " > p . G AQ b a si F q a s a F., d .., •C .rJ ^�., >' d 3'.d +' O g �. 1 o •� m a� m a> [� G1 O • 1 _ o d q q C �•a d ° 'W cgio q Aar WEE" m m- d� 4 °4 m e� � m Ml m .cl +"� �' �•�bb 4 g C N ,On.0 y 'ate q W z O O O p p O q i cb 8 a�'e z 7 ti m ti A m ti o � o d 3 F g b > o � mGn QE,�p�v V"'U Asia ° w N ai +� .B •� C7 O U�� E m P . a o 'C C y+U f=.�;P4 F� ti- G4 m GD q .'.;' ti h .a ya, d w •� .Or+ dJ Oo F 'd � '3w p F F of a wA:7b o w Z q eo a) bo­ a0 0i ,� � q °�Q E0 80 000 00 000000 O y yo m'm 00 000 00 000000 ; pp m h y o °� at +' p pp o .° I o0 000 00 00000o m q coo 00 000000 O •� " c�i a'i q I w ��oti-vtiM� ntimwM..o .F M O H M.r .r .y.y .-. N N M W.y Id C O O . . . .O •O •0 0 0 0 0 0 0 ' ~d O d> ce.° bn eu ` ' 00000000 .o : 0000000 b ID O.+M�Oo00 Ol w 4 o 'o y m q y o q ma� y > ° 00000000 0 000000o w O 0 y G. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a o ,0., d o O N p . b y c Oy o d .X .0 q O C y °� m cd o 3 a� FL o w a) a " Ra :'a Pi d ' m o d a A a a y m q qd a q '� 3 F a a ay d o w m,y o m 3 z O`, O y •'d 0 '� V .� N ...0 7 ti � ,� d °� " +� .a � >'c� O � � a> P. •c+ `� o b ,� m o Q Q � omoff�X X ;a o w •y :: QI a •� °' b.a O, Y N da� m o c c o m a 7 B a".a W 60 .Q •`� cd a q cd �• cd 'b o ''� q a m a ai ai ai : - > a "y as^ h G O w v w•ag a aaa3 •o m q . .� � m c. q � � c'�i � O ,� P-i � � a b�v'o.°,.�•c"�'rs'ca v ° ai ai ai d T � � �v m m'C Ocl p o O q b y of a a a a a m m d N N q.d I +' h 'o. }' N m ''' O 'O q m Aq . 0'd a a !D +' p N y q N g q i v A m m d N M y +' q N q a' O a ae m m o o cd q H + F N W d d m O O O a a a g a ,� " i.. " Ct o1 'q VA..•-. V 1] •b O U 0 .� 'J UUA0.'i.7C70.1L�'�'.�000UU'JUUUUC0 0 O f]$5 .H . V y O o ad .. 0/E'•i d O N O.>.Ui c ' cd •O „ q a>0 • >� N C� y GV O O F� Q ° U d m rwAqm o°,.'.•L mpOqy 'pa°l vp.q 'apf"; nC+d7 ysa '8 8 'g 8 ceq 0 k W m FmM c c .a9 m0 k ° opcD IlII c 7 FyFj X —yO° h6 o d! m "aN +wLO amm" oc�D ° °O o co co c ooOO oo X O �'am - p ceD + wycO II ai m Wa b° m �oKO cc w ° f� K m '8 ° 8 m'd °' " X o H a' cc" o X •a-' a �'� O X e0 O +°' W q � .� " a> >� N •' '� y +> dam`O t„' F d' C H q o d u N o o w p a ° II ; a p0 a° 18, o 0 go oo -00 a; c II w a -0 $ d « a W c (� d w c ro II O o °m ' B II q II A b q d m o a d ,� II W II P�cirQ G�e°o d•°qaa> °o'p mP4.. P. v� o f+ wp'y.�_q N ° 'om 8yp cbHi a t 9A c 1 s p A 5 ao> roA 8 aA 8 ° N p wO ' C. . ro a tiba0 Zb7F*m r� .w o a a a u o boa: o cgs! •apdgv � od� doo `°> > coo aQ 8 0 1-`a ° o =i o o - -0„ °"°4 a�i "£ � El Q s G3 9 B � � °' 0 0 A �3 ; Y3 +� a, � eoo� � 8 a.9 &� ao,o �,+� °� ° �, " ��" na %i �` a �� a• °' � e8ad � "' � am °a �' waA F, da� � � yAo 800 a Sao � �A o " aoffio >: o �' � aoM > 0 rom > a8 q o i] o' 'b .0O .0+cc c. m a y O .a a O a 9 ° d 0 5 d 8 �b 0 . a � 0 p 3 � y+Hd °" ° wp �. 4 Q'9 A vOi„ '� a y b H s � > a ai= ° N °' :+ a.N q A q Q•9 '�p O w O a C�7 Z a, �, as A d ° 8 a 8 CC ° n $ ° 00 o 2, a a .? a ".o �, a c m q,°vm r" Q .a � � >':� � > �o'� A a,u .o.0 > �'d 1 ca d > A 'c� w O C) q .Aa m " tko O• w ° a�i 43 °A a6 O z ,Ov 3A ° ro � a.9o � a � a ��oo � � o� aaa � Q-' vcai � � o .3a O� K ° d 0 .o .c O'w q o a m a ,,°r 06 9do 0°'.$'� � ►: " ° a 14 o.Qi.cw� .9�ron�� �d" .�agg.p�"'��m�. � wpH° 3�o8 � •a °�'.�u>,�oc�� ava�O ° o �a •Q 9 �a woo c8 $ Gr � 9 8 d the c0io � oa °o Ndo0 sS8 ° ca bVo O1 No d ° 8 ° o > a °ayZ p o o i m> oo li 6 6 o � d aa0 dq�m Q a y 0. m ti W m b .m ,�' y M c�Od CD 02 M m A (•Q w_ q 45 o a„i :b g 'b a o c o cd b 'qq d a O o p f� � ' D,-d x o o 6 �" �°„ d 0 y p q q 1n W co F o d o m y a� ya y o y b w b�c 0 p d ro N N (D bA - q 0 N 1fJ Q 0 0 cd ti - y r �:. 'C w k Elami coi c'�.a t— .�2 0 ;j � cp. ) on 3 : d q d a� adi ca sm. o cd N I y q m C, O 'd m F m a) ca W G•� � .� d � H q y a a bQ d m. d o o r� .b x., ... D a� "CJ o W o ° ° m 0 -Eb c ° 4 , w 0 II a y U o U r a w a q cd a s ° q m m O a4 o CL ^ ° '�' ti' ai q ti o `� a d cm a � cu o d ND m aF"i w d y I p �' ° a o o q G o cold � d 'd A -O :; c0, id O ?P. w d w c i� c`°i P.a qG •Fp^, 0 •y N •C �i ^d .mm a c0 ad 'H W ••�-� am) G, o o a O N'+d' q °v d ci d ti w C •� O p'o °' m b0 O c a a oo 3 O y ° d F II w % m a m Pi 5 F m Pd d o a� d m C m ti w ca FQ x a a m a� m eo � o � m —csdC� � II Jo O ,.q w � N N O 'a� bb 4 m m oo °o. a ar i q m o m',., a p 'w q -bo eb o w C c cb y a III .c m a> O m ° k W q P, D o m p 1 m L7' F q N ,� ^' a 'd c. ai ° o o w ai a H X ami O w .A .p k y a II �� p y a � °D � o a yas ad,ti •d .m 0) Pi 0 C'J X o-0 ' .0 .� .p O m .a y, O v atii ho gX X N a Q a �' �c� x1:1 m� k iro 2z > of °�G O 9 i an' —0 ^ o +a'i wo X4F � p q cq ° a� o Pi .o-0XX cb m a o m qO + (> i m O �d CV o a a) a� ca GL ti q II q ol m ti!' a) *' � e q Dd 4y r:. mw ww ;—0H owwm o - 'o U . o ho � qqy ^ c m o - - q ' ay> 00 a) bA" qm � p gu mkd m D, W I� ro q as ,2 b .� cy. m o c o k bqo E.., d 'LL c, c p d a0 m a C .0 a a x W ccli Q ° 0•aa � a o m bo d a d a W w c3 F ti D 01/06/2005 10:21 4065822263 CITY OF BOZEMAN PAGE 01/01 THE CITY OF BOZEMAN 20 e, OLIVE• P.O. 13OX 12S0 * BOZEMAN, MONTANA 5977 1-1 220 ENGINEERING DEPARTMENT 9Cr4Tl1V 88 0 PHONE: (406)582-22BO • FAX: (406) 582.2263 January G, 2005 Keith Waring,P.E. Thomas, Dean&Hoskins, Inc. 215 West Mendenhall, Suite C-1 Bozeman, MT 59715 Re: Cattail Creek Subdivision Phase Ill Design Report Review Comments Dear Keith: The City of Bozeman has completed its review of the remised design,tepo>t!t received January 4,2005 for the above referenced project. Below is a written summary of the City's review comments on the documents submitted. 1, Provide supplemental information to support the methodology used to calculate the flow capacities :for the Cattail Creek culverts. 2. During normal flow conditions in Cattail Creek,the outlet pipes will discharge more than the predevelopment rate at full.pool due to the lack of tailwater. Revise to ensure that the flow will be limited to predevelopment rates. Please provide the additional information required to complete the review. If you have any questions regarding these comments, please call me at 582-2280. Sincerely, fRobertJ. Murray Jr., P.E. Project Engineer CC: ERF Project Pile HOME OF MONTANA STATE UNIVERSITY GATEWAY TO YELLOWSTONE PARK HYDRAULIC DESIGN OF SEWERS AND CULVERTS FIGURE 23 V CULVERT NOMOGRAPH r CIRCULAR CONCRETE PIPE CULVERTS WITH INLET CONTROL P 180 10,000 168 8,000 r 156 s• 6,000 144 5,000 5 r 4,000 132 3,000 4. _ 120 2,000 100 3. R� 96 1,000 600 - 84 2, n, 600 500 - 72 400 to h w 300 z 3: / 1.5 M: Z 60 u 200 w F- Z = w 0 54 K a a w 48 Z > � eo — J Q = = F, - � 42 N 60 w 1.0 0 _ 50 0 I 40 w38 30 Q 9 m 33 c a a 0 20 w 30 = .8 27 10 24 a .7 6 c 21 5 4 .6 18 3 2 15 5 1.0 12 0 E GROOVE-EDGED ENTRANCE 36 Q 85.08 Cv 0.61 g 32.2 h 3.37 D 41.66354 Q 85.27 Cv 0.61 9 32.2 h 4.07 D 39.78776 Q 2.71 D 10 Cd 0.6 Cd 0.6 9 32.2 9 32.2 h 1.085 h 1.085 D 9.953285 Q 2.735498 E I G, 1�, 14 czir J �— .$03-0,�-a- oat MI/� U>~LaGI`f5/ 3 7'PS FS Ole w QGc� Ord JL4'G,� �J � en • � ��(� C) Sn , R _ a C` r�✓g�T duT 3G:, c /W✓P�Py' our-_ 31,7 3s, Z S a1l = y/. C6 52-op's _ o' . Ffa s S�1'f = 0.�a A Jz,C.A 9, 7 5- SF ���r9= G', 16 s fs vP = 8,2-Vt-2,y.-= / 01, 73 P 9� 3q o, a l3 c a,ar oe-FT yr ` Co. Do so, cavBGF-S W616k N 8.zfif9( a, a/3 t. z�y5� orr3as O, 0168 Zov#z,y5 X 1 C�R l Z S G -S r Nam` S Z.ay �= y�. 66 o�r%'eYcJ'Pi`✓Gl ✓�]�cn/ _ ��s, Zs�- 1, 36 t is�� _ z.zZ c6, 13 6 7 /3 ,l 1,4 1�,� og' ��JJ� of ✓O, 2 G2 r **" c I,Al jr .4C L/S - �_ � z� 9� 4�'1/3 = 7 6 g/C S Z u S 91h 66 C.cr3 C3�,Zd` /F36 -3G.a3 + /3 G n = 1 A Yz y e' �-t - ss 1 fist - I zI Z1 9 /S L /Z 1% so• 14J,#lh40M s1 PG = 0.9-1-97 I fI AYJ/YIo/i%9L- P�f'Lr— )�yb� o,al 3 /y J-7- s _ 211,t ro -- .3G r(o / - yet 13 I:1 v- f� 4 i I I I i i I E ti,id I G 4l r,A t 2 C-A' i I i Gcv`l131^IAD rLovJ ) aa.sj- w . ra/Z Q 2S 12S C �`5 zs wow all Q _ !zS G L 0 �5 tY c* vas Y y z l �� Z I 4w ) 36 3G, 6 � � � y 676�67 6 ,y i (36.03 1 3 S, 36-.3r,o33) 4- �,yts aF-G•z 6 � G, Z 3 5y3,�r� J 3G,G) ay�y a � /3r Q3_� ,3 G 4- s, S-3 ?-r cr-s Q3oi, 3/r ZS GrS V3 �� �. 36 GY'S d I , Ingersoll-Dresser Pumps Cameron Hydraulic Data Frictioi Friction of Water(Continued) Friction of Water(Conti Friction Loss in Pipe Fittings Resistance coefflclent (use in formula hf=K 9 111 O N N lD 10 Z G All pipe sizes a) ^_a — pp pp�^ N O O N N 17 a f0 n Fitting Description K value �.Y Pipe exit — � o � . P J J projecting 1.0 sharp edged N rounded H Pipe entrance J— inward 0.78 c O o tO = N a 0 ,r projecting Pipe entrance flush sharp edged 0.5 ,� o O � r r/d =0.02 0.26 C No o mo N m NN e v� C tL C . r/d =0.04 0.24 C Id I d A� O O O O O O OI N t7 M r/d =0.06 0.15 N �p 0 r/d =0.10 0.09 N m 7 o s o 0 0 o a m N N a_ me � � r/d =0.15& up 0.04 G U Oi N O o s s o From Crane Co.Technical Paper 410. pp O tD O < t7 N r 00 N q C N C O V N O m N N N T 0 O O r N O v O O N N M < (P mty O N J O o O N � ,w/ O v) O � r O O O O N N N N d W C G> o E a> o s o 0 o s a V vs Cn to W you 3-116 Circular Pipe Geometric Elements Diameter= 3.5 ft Number of depths to compute Geometric Elements = 7 Wetted Hydraulic Hydraulic Section Depth Theata Area Perimeter Radius Top Width Depth Factor Feet Radians (Square Feet Feet Feet (Feet) (Feet) ft"2.5 3.5 6.28 9.62 11.00 0.88 0.00 3 4.73 8.78 8.28 1.06 2.45 3.58 16.62 2.5 4.03 7.35 7.05 1.04 3.16 2.33 11.21 2 3.43 5.68 6.00 0.95 3.46 1.64 7.28 1.5 2.85 3.94 5.00 0.79 3.46 1.14 4.20 1 2.26 2.27 3.95 0.57 3.16 0.72 1.92 0.5 1.55 0.84 2.71 0.31 L 2.45 0.341 0.49 0 0.001 0.001 0.001 #DIV/0! 1 0.001 #DIV/0! I #DIV/0! 8 zg 3,S O.,S JC13-oso- z q a u p slt ,fwi f eCAI t1 GcG3>E/ 3S 2,5 z g a ,n r cn, C ?l>,I6 �y LU h s u_I LU Ul U� X o cr s� I 4315 .ay v r'�aW DrEP�'N G,eo ss SAC Tfc�v �a✓� �Laal /ZScfsS yf, 16' 601lie0 ,s 1 } Pond F Culvert Circular Pipe Geometric Elements Diameter= 0.83 ft Number of depths to compute Geometric Elements = 20 Wetted Hydraulic Hydraulic Section Theata Area Perimeter Radius Top Width Depth Factor Depth (Feet) (Radians) (Square Feet) (Feet) (Feet) (Feet) (Feet) ft"2.5) 0.83 6.28 6.-5-41 2.61 0.21 0.00 overflow elevation 39.25 Tailwater 38.02 Pipe length 44.84 S=overflow-(tailwater + pipe exit loss)divided by length of pipe slope 10.0154987521 Pipe exit loss=K"(v^2/2g) 0.535035979 K= 1 Flowrate for pipes using mannings equation iterate by changing this cell to value in L14 flowrate 3.17645121 3.176 Average of K10 and M10 3.176225605 mannings n= 01.011 Pond G culvert Circular Pipe Geometric Elements Diameter= 0.83 ft Number of depths to compute Geometric Elements = 20 Wetted Hydraulic Hydraulic Section Depth Theata Area Perimeter Radius Top Width Depth Factor (Feet) (Radians) (Square Feet) (Feet) (Feet) (Feet) (Feet) (ft"2.5) 0.83 6.28 0.54 2.61 0.21 0.00 overflow elevation 39.25 Tailwater 38.6 Pipe length 29 S=overflow- tailwater+ piRe exit loss)divided by length of pipe sloe 10.0102389491 Pipe exit loss=K*(v^212g) 0.353070484 K= 1 Flowrate for pipes using rannings equation iterate by changing this cell to value in L14 flowrate 2.581793583 2.58 Average of K10 and M10 2.580896791 mannings n= 0 011 V r �� APPENDIX- SECTION 9 PAVEMENT DESIGN TEST PIT LOCATIONS AND TEST PIT LOGS ZONING -5 ZONING RLJ ZONING B_2 zo PUDUC ACCESS g00 AND URUTY CASEMENT 65 9_2 O_ DFt _, 1ilAB£ftT ZONING As o' ROADSEC.26 s Js ROAD N845 ' F 1 - rA w 00, Jam' N Af J00 11N R.SEC.JS - ZONING A-S F PVBIt STREET EASOAEM [OD / (1) (DOC.L20M525) Q2 O ® t 18 I 16 Is, ti� `Q `Q/ t �3 TAµ«�NNo�roJ.�- are RY SEE N /J 5 7 /2 ,2 z Q Q/�' a �Q p d 10 ,C W .� IV \ 15'TDECOMIM1 OTIONS V xl 2 l521 2 15 EASEMENT(DOC.12o219lT) BLOCK 1 SEE NOTE i1 a 3 14 I 3 14 1 2 13 6 ti2 x C ?I- U) A z Z „QN1N IOM SR`O 4 � CA ,MO x 4 13 z x 4 13 Z 4 4 4 aS K U c�i U VW 1 ^v N CJ N 3 'tQ/ w w w 0 wz� N f g 5 Co 5 12 � 5 12 ® J0 WOE TR4L EASLMOC I�•( l 1STREET— G8 [1.1 00 6 O� 11 B 11 PARK �QP M 2 /0 w Z ..4 4 p i�17 10 --- a1R 3 5 4 n g e 9 6 D B 2�a z zoNIrM2 B_z b 0 �Q/ BLOCK 2 3 3 Q/ SUNDEw -LANE �Q/ LON1N ® cI ,2 DRAWN BY: JLN ZONING q-0 'tQ DESIGNED BY: �j R-2 ZONING R-1 R-2 ,'� w 2 gwuncNECK KEw ,2~ 7 B S�Q S ^^10 11 12 13 14 .`Q 7 3 JOB NO.DATE: .18.04 2 � O` ® 2 F FLOEfOOK 803-050 00C 110J132S SEE NOTE BLOC 13 Q� 2652.50' ZONING R-3 ZON4 R-3 ZOIRNG R-J ZONING R J ZONIM�'R_0 ZONING M-1 M W IL zQ oz ZZ N N � Z a �VICINITY MAP J� W O jt IE -mil V tol I �j0 DESCRIPTION �`.�'7��• :^ SURVEY DOUNDAR1/PHKSE UNE C )oo, 200' 300' E_ R x UTRITY EASEMENT,E%CEPI AS NOTED I I I I I I Q CA IL CREEK I^` �`wCv SECTION CORNER 5 C A L E (� ` QUARTER CORNER 1 f F -N �® GROUND WATER MONITORING WELL ... V.I�R E \\ I CAD AIOI "a-t w.DwG SHEET 'I OF l CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-201 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.0 OL TOPSOIL,dark grayish brown , 1.0—3.5 CL CLAY, silty, stiff,wet,medium brown 3.5-8.0 GW GRAVEL, Sandy with some cobbles up to 6" medium dense,wet to saturated, dark gray. Groundwater encountered at 5.5'. Nuclear densometer reading at 1.3' WD= 104.3 pcf DD=78.5 pcf MC=35% Soil sample collected at 3.5' LL=27 PL= 15 PI = 12 CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-202 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.7 OL TOPSOIL, dark grayish brown 1.7—3.5 CL CLAY, silty, stiff, saturated,medium brown 3.5-8.0 GW GRAVEL, Sandy with some cobbles, medium dense, saturated, dark gray. Groundwater encountered at 3.51. Torvane at 2.0'=4.5 tsf CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-203 Excavated by: Cat Extend-a-hoe F Logged by: Jay Crawford,P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0—0.8 OL TOPSOIL, dark grayish brown 0.8 —3.0 CL CLAY, silty, stiff,wet,medium brown 3.0 -8.0 GW GRAVEL, Sandy with cobbles up to 6", medium dense, wet to saturated, dark gray. Groundwater encountered at 5.5'. CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-204 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford, P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0—0.5 OL TOPSOIL, dark grayish brown 0.5 —1.5 CL CLAY, silty with some sand,medium stiff, moist, medium brown 1.5 -8.0 GW GRAVEL, Sandy with some cobbles up to 6", medium dense,wet to saturated,dark gray. Groundwater encountered at 4.0'. CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-205 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E.with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0—0.1 OL TOPSOIL,dark grayish brown 1.0—3.5 CL CLAY, silty, stiff,wet,medium brown 3.5-8.0 GW GRAVEL, Sandy with some cobbles up to 6" medium dense, saturated, dark gray. Groundwater encountered at 5.0'f. Nuclear densometer reading at 1.5' WD=94.2 pcf DD= 68.8 pcf MC=37% Torvane at 2.0'=3.5 tsf CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-206 Excavated by: Cat Extend-a-hoe r Logged by: Jay Crawford,P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.0 OL TOPSOIL,dark grayish brown 1.0—6.0 CL CLAY, silty, stiff,wet,medium brown 6.0-9.0 GW GRAVEL, Sandy with cobbles up to 5 medium dense, saturated, dark gray. Groundwater encountered at 7.5'. CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-207 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.0 OL TOPSOIL, dark grayish brown 1.0—6.0 CL CLAY, silty, stiff,wet,medium brown 6.0 -8.0 GW GRAVEL, Sandy with cobbles up to 5 medium dense, saturated, dark grayish brown. Groundwater encountered at 7.0'. CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-208 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.0 OL TOPSOIL, dark grayish brown 1.0—5.5 CL CLAY, silty, medium stiff,saturated, medium brown 5.5 -8.0 GW GRAVEL, Sandy with cobbles up to 6", medium dense, saturated, dark gray T Groundwater encountered at 5.8'. Gravel sample collected at 6.5' b CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-209 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.0 OL TOPSOIL,dark grayish brown 1.0-4.8 CL CLAY, silty,medium stiff,wet, medium brown 4.8-8.0 GW GRAVEL, Sandy with cobbles up to 5" medium dense, saturated, dark gray. Groundwater encountered at 6.5'. Nuclear densometer reading at 1.5' VWD= 108.2 pcf DD=82.2 pcf MC=32% Torvane at 1.5'=2.5 tsf CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-210 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford, P.E. with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.0 OL TOPSOIL, dark grayish brown 1.0—3.8 CL CLAY, silty,medium stiff,wet, medium brown 3.8 -8.0 GW GRAVEL, Sandy with cobbles up to 5 medium dense, saturated, dark gray Groundwater encountered at 5.0'. I, CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-211 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E.with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.2 OL TOPSOIL,dark grayish brown 1.2—4.5 CL CLAY, silty,medium stiff,moist to wet,medium brown 4.5 -8.0 GW GRAVEL, Sandy with cobbles up to 5 medium dense, saturated, dark gray Groundwater encountered at 4.5'. CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-212 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E.with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.3 OL TOPSOIL,dark grayish brown 1.3 —4.0 CL CLAY, silty,medium stiff, saturated,medium brown 4.0-8.0 GW GRAVEL, Sandy with cobbles up to 6", dense, saturated,dark gray. Groundwater encountered at 3.0'. Soil sample collected at 2.5' LL=26 PL= 16 PI = 10 CATTAIL CREEK SUBDIVISION—PHASE III LOG OF TEST PIT TP-213 Excavated by: Cat Extend-a-hoe Logged by: Jay Crawford,P.E.with TD&H(05/28/04) Depth USC Soil (feet) Classification Soil Description 0.0— 1.2 OL TOPSOIL,dark grayish brown 1.2—2.5 CL CLAY, silty,medium stiff,wet,medium brown 2.5 -9.5 CL CLAY, silty medium stiff, saturated, dark grayish green Groundwater encountered at 9.5'. b APPENDIX - SECTION 10 STORMWATER MASTER PLAN FOR CATTAIL CREEK PHASE III SUBDIVISION BOZEMAN, MT STORMWATER MASTER PLAN CATTAIL CREEK PHASE III SUBDIVISION BOZEMAN, MT Introduction This report is designed to satisfy conditions of plat approval requiring a stormwater master plan. This report describes treatment, detention basins, conveyance systems, grading, and the maintenance plan for the stormwater system. Attached to this report are the calculations sizing the various facilities. The final design plans for Cattail Creek Subdivision Phase III are attached and hereby made part of this stormwater master plan. In particular, refer to the Site Grading Plan, Storm Drain Plans, and Details of Detention Ponds F and G. Treatment In order to remove solids, silts, oils, grease and other pollutants generated from the streets and lots in this subdivision,we designed two stormwater detention ponds. Based upon calculations provided by the City Engineering department, each pond must have a minimum surface area adequate to provide 145 square feet of basin area per one cubic foot per second release rate. The table below summarizes each pond's size and required basin area,using the criteria above. Pond Minimum Area Required (sq. ft. Actual Basin Areas . ft. F 406 14,700 G 421 14,700 These ponds will be grass-lined. Based upon technical research, grass-lined ponds of this nature will trap urban runoff contaminants and provide a high level of treatment. A berm has been designed inside the pond to prevent short-circuiting.. The hydrology computations for sizing the detention basins are included in the attached calculations. The basic concept is to detain the post development runoff to a rate that does not exceed the predevelopment peak runoff rate. A mass balance spreadsheet is provided for each detention basin showing the volume of water flowing into the pond, the volume flowing out, and the required storage volume. Each of these ponds will be located within the dedicated park. Conveyance A series of City standard storm drain inlets are provided at critical intersections to provide relief of storm drainage impacts. The runoff will be collected in a series of conveyance pipes and released in detention ponds F and G. Valley gutters have been used at intersections to direct runoff toward the inlets described above. In all cases, the storm drain piping is reinforced concrete as required by the City of Bozeman. Where culverts pass under the roadways, flared end sections have been specified without the use of trash racks. Trash racks are not allowed by the City of Bozeman, due to additional maintenance requirements. Grading All existing and proposed elevations within the subdivision are shown on the site grading plan,which is located in the design drawings. This detailed plan indicates the slopes, which will direct runoff to the three detention ponds described above. When reviewing this plan,please refer to storm drain sheets for specific details. Elevations are called out for every inlet,pipe, ditch,pond or other structure designed within this subdivision. Maintenance Plan The storm drain inlets and conveyance pipe system will be maintained by the City of Bozeman through their normal street and drainage maintenance plan. The pipes have been sized to provide self-cleansing velocities during storm events. As discussed above, no trash racks have been provided at cross culverts. This will minimize the City's required maintenance of these crossings. Storm drain detention ponds F and G will remain the responsibility of the homeowner's association. These ponds will be inspected periodically by a representative of the homeowner's association. When sediments in the ponds reach a depth of 6 inches or more,the homeowner's association will clean out the deposits and dispose of them. The periodic inspections will be performed at a minimum of once per year, with cleanings provided as needed to meet the criteria listed above. 2003\B03-050\OffcDocs\Design Report\StrtnwtrMP.doc