Loading...
HomeMy WebLinkAbout028 Stormwater ManagementJarrett Subdivision Preliminary Plat Application Stormwater Management Introduction This design report will give an overview of the stormwater management plan for the proposed Jarrett Subdivision. The site is currently undeveloped and vacant. Stormwater management within the subdivision will be accomplished with the combination of surface/gutter flow, pipe conveyance, and detention facilities. Monolithic curb and gutters and valley gutters will be utilized to transfer stormwater to the drain inlets, which will be connected to the closed conveyance piping collection system. The collection system will be designed to convey the 25-year storm event. The location of the curb inlets and piping will be dependent on the final roadway and grading design. The stormwater basins and flow control structures will control and meter the discharge of the increased flow to the 10-year pre-development flows and will help remove solids, silt, oils grease and other pollutants from the stormwater. Stormwater Detention Ponds The detention pond on the corner of Arnold Street and Bon Ton Avenue in Allison Subdivision Phase IV was designed with this subdivision in mind. In general, the runoff from this subdivision will drain north east into the curb inlets on site and be piped across S. 11th Ave to the pond in Allision Subdivision Phase 4A. The stormwater management system was designed and sized per the City of Bozeman Design Standards. Each pond is sized to accommodate more than the required volume, has 4:1 minimum side slope, and is 1.5 ft deep maximum with 6" depth of freeboard. The runoff coefficients (C) were determined from Table I-1 of the City of Bozeman Design Standards. Although the property will be both medium and high density residential, the runoff coefficient for high density residential was used for the entire subdivision to be conservative during the early design stage. Detention pond volume calculations are provided in this section. A summary of the assumptions and parameters used in the detention pond calculations are provided below: • Pre-development run-off coefficient: C=0.20 (undeveloped) • Design Storm Frequency: 10 years • Post-development run-off coefficient: C=0.50 (composite of R-1 and R.O.W. areas) The proposed detention facilities will be maintained by subdivision’s Home Owners Association. Maintenance activities will include periodic inspection, mowing of grasses in the basin and adjacent areas, weed control, removal of trash, and maintenance of the basin flow control structure and outlet piping to ensure the system functions properly. STORMWATER DESIGN REPORT FOR: ALLISON SUBDIVISION PHASE IV BOZEMAN, MT Prepared By: Madison Engineering 895 Technology Blvd Ste 203 Bozeman, MT 59718 (406) 586-0262 SEPTEMBER 2020 Allison Subdivision Stormwater Design Report Page 1 of 4 ALLISON SUBDIVISION PHASE IV STORMWATER DESIGN REPORT A. Introduction This design report will give an overview of the stormwater management plan for the proposed Allison Subdivision Phase IV and the future remaining phases of Allison Subdivision. The site is currently undeveloped and vacant. There is one wetland area, Figgins Creek, that runs along the east side of the property. The 50-foot watercourse setback will be used to protect this area. Stormwater management within the subdivision will be accomplished with the combination of surface/gutter flow, pipe conveyance, and detention/retention facilities. Monolithic curb and gutters and valley gutters will be utilized to transfer stormwater to the drain inlets, which will be connected to the closed conveyance piping collection system. The collection system will be designed to convey the 25-year storm event. The stormwater basins and flow control structures will control and meter the discharge of the increased flow to the 10-year pre-development flows and will help remove solids, silt, oils grease and other pollutants from the stormwater. B. Peak Flow (Runoff) Calculations The project area was divided into overall drainage areas as shown on Sheet SD1.1 (Appendix G) and sub drainage areas that contribute to individual curb inlets as shown on Sheet SD1.2 (Appendix H). These areas were used to determine the stormwater runoff flows, which in turn were used to determine the size of the storm drain pipes, gutter capacities, curb inlet sizes, and detention/retention facility volumes. Peak flow calculations are provided in Appendix D. C. Storm Drain Piping Storm drain piping from the curb inlets to the detention/retention facilities was sized to carry the 25-year storm event peak runoff flow. All pipes are 15-inch to 24-inch diameter PVC. All storm drains were sized using Manning's Equation for circular channels to determine the pipes capacity to flow stormwater at specified grades. See pipe capacity calculations in Appendix E and an accompanying map (Sheet SD1.3) which identifies each pipe that was sized by number in Appendix I. When sizing the stormwater infrastructure for the subdivision, a Manning’s roughness coefficient (n) of 0.013 for PVC pipe was not used per Table I-2 of the Bozeman DSSP. Based on the Handbook of PVC pipe, and the Civil Engineering Reference Manual, the recommended n value is 0.009 for design of PVC sewers (see Appendix N). D. Stormwater Drainage Areas Pre-Development The project area was delineated into two watersheds or “basins” (Basin 1 and 2) based on existing topography as shown on Sheet SD 1.0 (Appendix F). These two basins each contribute to the existing Figgins Creek which runs north along the east property boundary. The pre-development Allison Subdivision Stormwater Design Report Page 2 of 4 flow for the 10-year storm was calculated for each basin and used to size the outlet structure weirs and detention facilities within the project. Post-Development The project area was divided into post-development drainage areas based on the proposed subdivision street and lot layout as shown on Sheet SD1.1 (Appendix G). In general, each basin will drain north and east and flow into each drainage area’s respective detention/retention facility. Additional drainage areas from S. 11th Avenue contribute to the infrastructure designed with this subdivision. Excerpts from the S. 11th Avenue project are included in Appendix L. Additional runoff from a future phase of Allison subdivision to the west of S. 11th Avenue is included in the stormwater pipe sizing calculations to ensure when that area is developed it will be able to tie into the existing infrastructure without the need to upgrade. The impacts of this development on the existing stormwater infrastructure at the tie in location with existing Arnold Street to the east was considered. Excerpts from the original design report for Allison Minor Subdivision are included in Appendix M. The original storm design had stormwater flowing off the end of Arnold street into two ponds located on either side of the street. With this project, two curb inlets will be added and water will be directed into the existing stormwater detention pond #2 per the original Allison Subdivision design. It will be expanded to include the volume from stormwater detention pond #3 of the original subdivision. E. Stormwater Detention/Retention Ponds The stormwater management system was designed and sized per the City of Bozeman Design Standards. Each pond is sized to accommodate more than the required volume, has 4:1 minimum side slopes, and is 1.5 ft deep with a maximum basin depth of 2.5 ft. The runoff coefficients (C) were determined from Table I-1 of the City of Bozeman Design Standards. A summary of the assumptions and parameters used in the detention pond calculations are provided below:  Pre-development run-off coefficient: C=0.20 (undeveloped)  Design Storm Frequency: 10 years  Post-development run-off coefficient: C=0.90 pavement The proposed detention/retention facilities will be maintained by subdivision’s Property Owners Association. Maintenance activities will include periodic inspection, mowing of grasses in the basin and adjacent areas, weed control, removal of trash, and maintenance of the basin flow control structure and outlet piping to ensure the system functions properly. See Appendix J for a draft version of the Stormwater Maintenance Plan. Table 1 below summarizes the proposed detention/retention facilities. Allison Subdivision Stormwater Design Report Page 3 of 4 TABLE 1 DETENTION & RETENTION FACILITY VOLUMES Facility ID Contributing Drainage Areas* 10-yr, 2-hr Post Development Peak Runoff (cfs) Required Volume (C.F.) Proposed Volume (C.F.) Det. 1 1, 1.1 6.20 9,844 12,491 Det. 2 3, 4.1, 4.2, 4.3 14.10 14,260 14,848 Temp. Ret. 1 2 N/A 2,052 2,071 *See Appendix F Sheet SD 1.1 – Post-Development Delineation Half-inch requirement The half-inch requirement per Bozeman DSSP II.A.4 was accounted for the impervious areas within the subdivision by elevating the weirs of the Detention Facilities. The impervious areas within the subdivision that were included in the calculations are the roads, and 65% of the area of each R-3 lot. (65% impervious area for an R-3 lot is an estimate based on experience.) F. Groundwater Groundwater monitoring was conducted during the spring and summer of 2019 and 2020. Six monitoring wells were observed and various groundwater depths were recorded. The monitoring well location map and observed groundwater data is included in Appendix K. The highest (shallowest) groundwater measurement was 3.17 ft from the surface at well #6, which is the well nearest to Figgins creek. The average seasonal high groundwater depth of the six wells was 5.32 ft from the surface. The stormwater infrastructure is not anticipated to be adversely affected by the groundwater. In case of the stormwater pipes, manholes, and inlets, they will be fitted with rubber gaskets to prevent leakage and infiltration. The stormwater detention ponds and retention pond are designed for a water depth of 1.5 ft with a maximum basin depth of 2.5 ft, which is above the highest observed groundwater level of 3.17 ft. It is not anticipated that the ponds will be influenced by groundwater. G. Gutter Flow and Curb Inlets A 25-year storm event was used to calculate the runoff flows. Based on these values, the curb inlet capacities are more than adequate for carrying the 25-year storm event. The gutter-flow Allison Subdivision Stormwater Design Report Page 4 of 4 capacity is also well above the designed runoff values to avoid overflow encroachment into the drive lane. Standard 24”x36” inlets are proposed. Gutter flow and curb inlet calculations are provided in Appendix D. A map of the individual drainage areas contributing to each inlet is found on Sheet SD1.2 in Appendix H. Appendix A. Detention Facility Calculations B. Retention Facility Calculations C. Composite C Value calculations for Road Right of Ways D. Peak Flow, Gutter and Inlet Capacity Calculations E. Pipe Capacity Calculations F. Stormwater Drainage Exhibit – Pre-development: SD1.0 G. Stormwater Drainage Exhibit – Post-development: SD1.1 H. Stormwater Drainage Exhibit – Curb Inlet Drainage Areas: SD1.2 I. Stormwater Drainage Exhibit – Pipe Sizing Identification Map: SD1.3 J. Stormwater Maintenance Plan K. Groundwater Monitoring Well Location Map and Groundwater Data L. Excerpts from Stormwater Design Report for South 11th Avenue project (June 2017) M. Excerpts from Design Report for Allison Minor Subdivision (April 1999) N. Manning’s roughness coefficient for PVC (from the Handbook of PVC Pipe and Civil Engineering Reference Manual) References 1. COB Design Standards and Specifications Policy, 2004. Addendum #6 2. COB Modifications to Montana Public Works Standard Specifications (MPWSS) 3. Bozeman Stormwater Master Plan (1982) 4. Handbook of PVC Pipe, Design and Construction. Uni-Bell PVC Pipe Association (1991) 5. Civil Engineering Reference Manual, 14th Edition (2014) Appendix A: Detention Facility Calculations Allison Subdivision Phase IV Detention Pond 1 Calculations Calculation of Required Volume for Storm Detention Pond (Reference: Bozeman Stormwater Master Plan - 1982) Design Rainfall Freq.10 year (see page III - 5 of master plan) IDF coefficient a 0.64 IDF coefficient b IDF coefficient n 0.65 Pre-development Calculations Post-development Calculations Area (AC)C Area (AC)C Areas (ft2):Basin 1 17.30 0.20 Areas (AC):DA 1: R-1 lots 5.10 0.35 DA 1: R-2 lot 2.16 0.35 DA 1: R-3 lots 3.63 0.50 DA 1: Local Street ROW 2.27 0.73 DA 1: Alley ROW 1.13 0.67 DA 1.1: 11th ROW 0.92 0.73 Total:17.30 Total:15.21 total area:17.30 acres total area:15.21 acres composite C:0.20 composite C:0.49 Overland tc Overland tcaverage slope:1.62 percent average slope:1.2 percent travel distance:2103 feet travel distance:1198 feet tc:66 minutes tc:37 minutes Channel tc Channel tc channel tc:minutes channel tc:2.6 minutes Total tc:66 minutes Total tc:40 minutes intensity at tc (fig 23):0.60 in/hr intensity at tc (fig 23):0.84 in/hr pre-devel peak runoff:2.09 cfs post-devel peak runoff:6.20 cfs Storm Duration Intensity Future Runoff Runoff Release Required (minutes)(in/hr)Rate (cfs)Volume (cf)Volume (cf)Storage (cf) 30 1.00 7.46 13423 3755 9668 32 0.96 7.15 13730 4006 9724 34 0.93 6.87 14025 4256 9768 36 0.89 6.62 14308 4506 9801 38 0.86 6.40 14581 4757 9824 40 0.83 6.19 14845 5007 9838 42 0.81 5.99 15101 5258 9844 44 0.78 5.81 15349 5508 9841 46 0.76 5.65 15590 5758 9831 48 0.74 5.49 15824 6009 9815 50 0.72 5.35 16051 6259 9792 52 0.70 5.22 16273 6509 9764 54 0.69 5.09 16490 6760 9730 56 0.67 4.97 16701 7010 9691 58 0.65 4.86 16907 7260 9647 60 0.64 4.75 17109 7511 9598 62 0.63 4.65 17306 7761 9545 required detention storage (ft3) =9,844 Detention Pond Calculations: design depth of pond 1.50 feet max side slope 4.00 horizontal to 1.00 vertical length/width ratio 3.00 min. particle removed 40 microns (1 micron = 1 x 10-6 meters) settling velocity of particle 0.0069 feet/second min. pond to settle particle 899 square feet pond dimentions assuming vertical side slopes (actual pond footprint will be larger) width 55 length 120 Volume held between contours: Cumulative Contour Area (ft2)Delta V (ft3)Volume (ft3) 4939.25 7,182 4939.75 7,931 3,778 3,778 4940.25 8,707 4,160 7,938 4940.75 9,506 4,553 12,491 Design storage at 1.5' depth (ft3) =12,491 0.5 inch stormwater in roadways calculations within Drainage Area 1 and 1.1: C Areas (ft2):asphalt 107,822 0.90 A =2.48 acres I = 0.021 in/hr (0.5" in 24 hrs) C =0.90 Q = 0.05 cfs Volume = 4,010 cf *0.5 inch stormwater from impervious area on Lots 1&2, Block 1 * Only Lots 1 &2, Block 1 and Lot 2, Block 1 are included in Detention Basin #1 for the 1/2" requirement. These two lots are the only high C density lots proposed within the subdivision. **Areas (ft2):asphalt/concrete 102,673 0.90 **assume 65% impervious area for each R-3 lot A =2.36 acres I = 0.021 in/hr (0.5" in 24 hrs) C =0.90 Q = 0.044 cfs Volume = 3,818 cf Total Volume=7,828 cf Elevated Weir Elevation above pond bottom Use Interpolation to solve for the pond height at the required volume 0.5" storm Volume 7,828 cf Volume of Pond at 0.5'=3,778 cf Volume of Pond at 1.0'=7,938 cf Interpolated Depth=0.99 ft bottom weir h =0.99 ft top of weir =1.50 ft bottom of weir elev =4940.24 ft top of weir elev =4940.75 ft Flow Structure Calculations - Pond 1 (Reference: City of Bozeman, Design Standards and Specifications Policy, March 2004, II.D.2, page 24) Note: see Figure A-2 in above reference. Rectangular weir - Q=3.33LH3/2 Determine Outlet Slot Width needed: Pre-development flow rate = 2.09 cfs Vertical Slot Height = 6.12 inches Req'd Outlet Slot Width = 1.72 feet or 20 5/8 inches Determine Outlet Flow: Outlet Slot Width = 20.64 inches stage above weir (ft)stage above bottom (ft)Q (cfs)Q (gpm) 0.00 0.94 0.00 0 0.10 1.04 0.18 81 0.20 1.14 0.51 230 0.30 1.24 0.94 422 0.40 1.34 1.45 650 0.50 1.44 2.03 909 0.51 1.50 2.09 936 0.00 0.50 1.00 1.50 2.00 2.50 0 0.5 1 1.5Discharge (cfs)Stage (ft) Flow through outlet Stage vs. Discharge Allison Subdivision Phase IV Detention Pond 2 Calculations Calculation of Required Volume for Storm Detention Pond (Reference: Bozeman Stormwater Master Plan - 1982) Design Rainfall Freq.10 year (see page III - 5 of master plan) IDF coefficient a 0.64 IDF coefficient b 0.00 IDF coefficient n 0.65 Pre-development Calculations Post-development Calculations Area (AC)C Area (AC)C Areas (ft2):27.80 0.20 Areas (AC):DA 3: R-1 lots 1.17 0.35 DA 3: Arnold St ROW 1.15 0.77 DA 3: Gravel turnaround 0.16 0.85 DA 3: Bon Ton St ROW 0.14 0.73 DA 3: Alley ROW 0.17 0.83 DA 4.1: S 11th ROW 0.09 0.71 DA 4.2: R-1 Lots 16.20 0.35 DA 4.2: Street ROWs 3.69 0.73 DA 4.3: Graf St ROW 1.93 0.71 DA 4.3: R-1 Lots 3.10 0.35 Total:27.80 Total:27.80 total area:27.80 acres total area:27.80 acres composite C:0.20 composite C:0.45 Overland tc Overland tcaverage slope:2.1 percent average slope:1.8 percent travel distance:879 feet travel distance:632 feet tc:39 minutes tc:25 minutes Channel tc Channel tc channel tc:minutes channel tc:minutes Total tc:39 minutes Total tc:25 minutes intensity at tc (fig 23):0.85 in/hr intensity at tc (fig 23):1.12 in/hr pre-devel peak runoff:4.70 cfs post-devel peak runoff:14.10 cfs Storm Duration Intensity Future Runoff Runoff Release Required (minutes)(in/hr)Rate (cfs)Volume (cf)Volume (cf)Storage (cf) 20 1.31 16.41 19697 5643 14054 21 1.27 15.90 20036 5925 14111 22 1.23 15.43 20365 6207 14158 23 1.19 14.99 20684 6489 14195 24 1.16 14.58 20995 6771 14223 25 1.13 14.20 21297 7054 14243 26 1.10 13.84 21591 7336 14256 27 1.08 13.51 21878 7618 14260 28 1.05 13.19 22159 7900 14259 29 1.03 12.89 22432 8182 14250 30 1.00 12.61 22700 8464 14236 31 0.98 12.35 22962 8746 14216 32 0.96 12.09 23219 9029 14190 33 0.94 11.85 23470 9311 14160 34 0.93 11.63 23717 9593 14124 35 0.91 11.41 23959 9875 14084 36 0.89 11.20 24196 10157 14039 37 0.88 11.00 24429 10439 13990 38 0.86 10.81 24658 10721 13937 39 0.85 10.63 24883 11003 13880 40 0.83 10.46 25105 11286 13819 required detention storage (ft3) =14,260 Detention Pond Calculations: design depth of pond 1.50 feet max side slope 4.00 horizontal to 1.00 vertical length/width ratio 3.00 min. particle removed 40 microns (1 micron = 1 x 10-6 meters) settling velocity of particle 0.0069 feet/second min. pond to settle particle 2044 square feet pond dimentions assuming vertical side slopes (actual pond footprint will be larger) width 56 length 169 Volume held between contours: Cumulative Contour Area (ft2)Delta V (ft3)Volume (ft3) 4951.0 8,578 0 0 4951.5 9,444 4,506 4,506 4952.0 10,336 4,945 9,451 4952.5 11,253 5,397 14,848 Design storage at 1.5' depth (ft3) =14,848 0.5 inch stormwater in roadways calculations within Drainage Areas 3, 4.1, 4.2, 4.3: C Areas (ft2):asphalt 267,960 0.90 A =6.15 acres I = 0.021 in/hr (0.5" in 24 hrs) C =0.90 Q = 0.12 cfs Volume = 9,965 cf Elevated Weir Elevation above pond bottom Use Interpolation to solve for the pond height at the required volume 0.5" storm Volume 9,965 cf Volume of Pond at 1'=9451 cf Volume of Pond at 1.5'=14,848 cf Interpolated Depth=1.05 ft bottom of weir h =1.05 ft top of weir h =2.05 ft bottom of weir elev =4952.05 ft top of weir overflow elev=4953.05 ft Flow Structure Calculations - Pond 2 (Reference: City of Bozeman, Design Standards and Specifications Policy, March 2004, II.D.2, page 24) Note: see Figure A-2 in above reference. Rectangular weir - Q=3.33LH3/2 Determine Outlet Slot Width needed: Pre-development flow rate = 4.70 cfs Vertical Slot Height = 11.4 inches Req'd Outlet Slot Width = 1.53 feet or 18 2/8 inches Determine Outlet Flow: Outlet Slot Width = 18.30 inches stage above weir (ft)stage above bottom (ft)Q (cfs)Q (gpm) 0.00 1.05 0.00 0 0.10 1.15 0.16 72 0.20 1.25 0.45 204 0.30 1.35 0.83 375 0.40 1.45 1.28 577 0.50 1.55 1.80 806 0.60 1.65 2.36 1059 0.70 1.75 2.97 1335 0.80 1.85 3.63 1631 0.90 1.95 4.34 1946 1.00 2.05 5.08 2279 0.00 1.00 2.00 3.00 4.00 5.00 6.00 0.00 0.50 1.00 1.50 2.00 2.50Discharge (cfs)Stage (ft) Flow through outlet Stage vs. Discharge Appendix B: Retention Facility Calculations Allison Subdivision - Ph IV Temp. retention pond 1 Stormwater Calculations Appendix B Design Rainfall Freq. 10 year (see page III - 5 of master plan) IDF coefficient a 0.64 IDF coefficient b IDF coefficient n 0.65 Post-development Conditions DA 2 Contributing drainage area Square feet Acres C R-2 Lot (Lot 1, Blk. 3) 53892 1.24 0.35 Local St. R.O.W. 70142 1.61 0.73 Total area 124034 1.24 Composite C 0.56 Retention Pond Calculations: Q = CIA C = 0.56 (post-development) I = 0.41 in/hr (10-yr, 2-hr storm) A = 1.24 acres Qpost = 0.29 cfs Required retention storage (ft3) =2,052 ft3 (10-yr, 2-hr storm) Volume held bewteen contours Cumulative Contour Area (ft2) Delta V (ft 3) Volume (ft 3) 4946.3 918 4946.8 1,212 533 533 4947.3 1,532 686 1,219 4947.8 1,877 852 2,071 Design storage at 1.5' depth (ft3) =2,071 Design storage at 1.5' depth (C.Y.) =77 Appendix C: Composite C Value Calculations for Road Right of Ways Arnold St.Local streets 70' ROW Cross-sectional dist (ft)C 60' ROW Cross-sectional dist (ft)C Landscaped 13 0.2 Landscaped 15 0.2 Paved (road & sidewalk)57 0.9 Paved (road & sidewalk)45 0.9 Total 70 0.77 Total 60 0.73 Alley (30' row)South half of Opportunity Way 30' ROW Cross-sectional dist (ft)C 60' ROW (only south half) Cross-sectional dist (ft)C Landscaped 10 0.2 Landscaped 7.5 0.2 Paved (road & sidewalk)20 0.9 Paved (road & sidewalk)22.5 0.9 Total 30 0.67 Total 30 0.73 Alley (20' row)Graf St & S 11th 20' ROW Cross-sectional dist (ft)C 90' ROW Cross-sectional dist (ft)C Landscaped 2 0.2 Landscaped 24 0.2 Paved (road & sidewalk)18 0.9 Paved (road & sidewalk)66 0.9 Total 20 0.83 Total 90 0.71 Appendix D: Peak Flow, Gutter and Inlet Capacity Calculations Appendix D Drainage Area No.Area (Ac.) Weighted C 100 Yr 25 Yr 10 Yr 1.01 0.131 0.73 0.53 0.29 0.21 1.02 1.686 0.50 1.97 1.34 1.05 1.03 0.222 0.73 0.75 0.41 0.30 1.04 1.941 0.50 2.54 1.71 1.35 1.05 7.906 0.48 5.86 4.07 3.19 1.06 0.219 0.73 0.51 0.28 0.20 1.07 2.158 0.35 1.60 1.14 0.91 1.10 0.922 0.73 2.36 1.29 0.93 2 2.765 0.56 4.00 2.63 2.03 3.01 0.550 0.54 1.10 0.72 0.56 3.02 0.683 0.42 0.72 0.50 0.40 3.03 0.053 0.67 0.21 0.12 0.09 3.04 0.743 0.68 1.77 1.03 0.77 3.05 0.390 0.67 0.80 0.48 0.36 3.06 0.700 0.45 - 0.16 0.13 3.07 0.160 0.45 - 0.06 0.05 3.08 0.427 0.27 0.28 0.20 0.16 3.09 0.172 0.67 0.50 0.30 0.22 3.10 0.018 0.90 0.09 0.06 0.05 4.1 0.092 0.73 0.36 0.25 0.18 4.2 - - - 11.46 - 4.3 5.029 0.73 4.90 3.35 2.62 General Equation:i = a/(b+D)n where D is duration in hours, i = intensity in inches/hour Design Rainfall Freq.100 25 10 IDF coefficient a 1.01 0.78 0.64 IDF coefficient b 0 0 0 IDF coefficient n 0.67 0.64 0.65 Adjustment Factor Cf:1.25 1.1 1 60' ROW Cross-sectional dist (ft)C Landscaped 15 0.2 Paved (road&sidewalk)45 0.9 Total 60 0.73 70' ROW Cross-sectional dist (ft)C Landscaped 30 0.2 Paved (road&sidewalk)60 0.9 Total 90 0.67 Allison Subd. Peak Flow Summary (cfs) Storm Information IDF Equations from Bozeman Stormwater Master Plan for City of Bozeman, March 1982 Weighted C Value - Local Streets (60' ROW) Peak flow calculations See SD1.2 for visual reference Curb Inlet Drainage Areas - Post Development Weighted C Value - Arnold St. (70' ROW) Page 1 of 7 30' ROW Cross-sectional dist (ft)C Landscaped 10 0.2 Paved (road&sidewalk)20 0.9 Total 30 0.67 20' ROW Cross-sectional dist (ft)C Landscaped 2 0.2 Paved (road&sidewalk)18 0.9 Total 20 0.83 Drainage Area 1.01 Area C 0.131 acres 0.73 Total 0.131 acres 0.73 1.24 percent 190 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.91 0.80 0.73 (Shall not exceed 1.00) Total tc:4.65 7.26 9.00 minutes intensity at tc 5.60 3.01 2.20 in/hr 0.5 0.3 0.2 cfs Drainage Area 1.02 Area C 1.686 acres 0.50 Total 1.686 acres 0.50 0.98 percent 367 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.63 0.55 0.50 (Shall not exceed 1.00) Total tc:17.13 19.83 21.63 minutes intensity at tc 2.34 1.58 1.24 in/hr 2.0 1.3 1.0 cfs Drainage Area 1.03 Area C 0.222 acres 0.73 Total 0.222 acres 0.73 1.21 percent Travel Distance 322 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.91 0.80 0.73 (Shall not exceed 1.00) Total tc:6.10 9.52 11.80 minutes Weighted C Value - Alley (30' ROW) 60' R.O.W. Travel Distance Peak Q values Average slope Weighted C Value - Alley (20' ROW) Weighted C Average slope peak runoff: 60' R.O.W. Lot 1, Block 1 (R-3) Average slope Travel Distance peak runoff: Weighted C Weighted C Page 2 of 7 intensity at tc 4.67 2.53 1.84 in/hr 0.8 0.4 0.3 cfs Drainage Area 1.04 Area C 1.941 acres 0.50 Total 1.941 acres 0.50 1.82 percent 395 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.63 0.55 0.50 (Shall not exceed 1.00) Total tc:14.45 16.73 18.25 minutes intensity at tc 2.62 1.77 1.39 in/hr 2.5 1.7 1.3 cfs Drainage Area 1.05 Area C R-1 lots 5.105 acres 0.35 30' Alley R.O.W. 0.565 acres 0.67 2.236 acres 0.73 Total 7.906 acres 0.48 1.06 percent 1191 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.60 0.53 0.48 (Shall not exceed 1.00) Total tc:31.75 36.29 39.32 minutes intensity at tc 1.55 1.08 0.84 in/hr 5.9 4.1 3.2 cfs Drainage Area 1.06 Area C 0.219 acres 0.73 Total 0.219 acres 0.73 1.10 percent 931 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.91 0.80 0.73 (Shall not exceed 1.00) Total tc:10.72 16.74 20.76 minutes intensity at tc 3.20 1.77 1.28 in/hr 0.5 0.3 0.2 cfs Drainage Area 1.07 Area C Lot 1, Block 2 (R-2) 2.158 acres 0.35 Total 2.158 acres 0.35 2.05 percent 415 feet 60' R.O.W. Weighted C Travel Distance Weighted C Average slope Travel Distance peak runoff: Average slope Weighted C peak runoff: peak runoff: 60' R.O.W. Average slope Travel Distance peak runoff: Lot 2, Block 1 (R-3) Weighted C Average slope Travel Distance Page 3 of 7 Design Rainfall Freq. 100 25 10 years C*Cf 0.44 0.39 0.35 (Shall not exceed 1.00) Total tc:19.87 21.45 22.50 minutes intensity at tc 2.12 1.51 1.21 in/hr 1.6 1.1 0.9 cfs Drainage Area 1.10 Area C 11th Ave. R.O.W. 0.922 acres 0.73 Total 0.922 acres 0.73 1.43 percent 900 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.91 0.80 0.73 (Shall not exceed 1.00) Total tc:9.34 14.79 18.42 minutes intensity at tc 3.51 1.91 1.38 in/hr 2.4 1.3 0.9 cfs Drainage Area 2 Area C 60' R.O.W. 1.528 acres 0.73 Lot 1, Block 3 1.237 acres 0.35 Total 2.765 acres 0.56 2.01 percent 600 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.70 0.61 0.56 (Shall not exceed 1.00) Total tc:14.65 17.69 19.71 minutes intensity at tc 2.60 1.70 1.32 in/hr 4.0 2.6 2.0 cfs Drainage Area 3.01 Area C 70' R.O.W. 0.334 acres 0.67 Lot 1, Block 6 0.216 acres 0.35 Total 0.550 acres 0.54 0.97 percent 117 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.68 0.60 0.54 (Shall not exceed 1.00) Total tc:8.64 10.30 11.41 minutes intensity at tc 3.70 2.41 1.88 in/hr 1.1 0.7 0.6 cfs Drainage Area 3.02 Area C 0.155 acres 0.67 0.528 acres 0.35 Total 0.683 acres Average slope peak runoff: Average slope Travel Distance peak runoff: Weighted C 70' R.O.W. peak runoff: Weighted C peak runoff: Average slope Travel Distance Weighted C Travel Distance This information was taken from the S. 11th Improvement project drainage report ("Basin J"). Lots 2, 3, 4 Blk. 6 Page 4 of 7 0.42 0.86 percent 193 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.53 0.46 0.42 (Shall not exceed 1.00) Total tc:15.64 17.37 18.52 minutes intensity at tc 2.49 1.72 1.37 in/hr 0.7 0.5 0.4 cfs Drainage Area 3.03 Area C 70' R.O.W. 0.053 acres 0.67 Total 0.053 acres 0.67 0.82 percent 66 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.83 0.73 0.67 (Shall not exceed 1.00) Total tc:4.33 5.96 7.04 minutes intensity at tc 5.88 3.42 2.58 in/hr 0.2 0.1 0.1 cfs Drainage Area 3.04 Area C 70' R.O.W. 0.100 acres 0.67 60' R.O.W. 0.145 acres 0.73 20' Alley R.O.W. 0.174 acres 0.83 Lot 5, Blkl. 6 0.170 acres 0.35 Gravel turnaround 0.155 acres 0.85 Total 0.743 acres 0.68 1.31 percent 500 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.85 0.75 0.68 (Shall not exceed 1.00) Total tc:9.44 13.35 15.96 minutes intensity at tc 3.49 2.04 1.51 in/hr 1.8 1.0 0.8 cfs Drainage Area 3.05 Area C 0.390 acres 0.67 Total 0.390 acres 0.67 0.94 percent 500 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.83 0.73 0.67 (Shall not exceed 1.00) Total tc:11.39 15.66 18.51 minutes intensity at tc 3.07 1.84 1.37 in/hr 0.8 0.5 0.4 cfs peak runoff: Average slope Travel Distance Weighted C Average slope peak runoff: Travel Distance Weighted C Weighted C Travel Distance 70' R.O.W. Weighted C Average slope peak runoff: peak runoff: Average slope Travel Distance Page 5 of 7 Drainage Area 3.06 Design Rainfall Freq. 100 25 10 years C*Cf - - - (Shall not exceed 1.00) Total tc:- - - minutes intensity at tc - - - in/hr -0.16 0.13 cfs Drainage Area 3.07 Design Rainfall Freq. 100 25 10 years C*Cf - - - (Shall not exceed 1.00) Total tc:- - - minutes intensity at tc - - - in/hr -0.06 0.05 cfs Drainage Area 3.08 Area C 0.172 acres 0.67 Lot 1, Blk. 7 0.210 acres 0.35 20' Alley R.O.W. 0.045 acres 0.83 Total 0.427 acres 0.27 2.56 percent 250 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.34 0.30 0.27 (Shall not exceed 1.00) Total tc:16.49 17.37 17.95 minutes intensity at tc 2.40 1.72 1.40 in/hr 0.3 0.2 0.2 cfs Drainage Area 3.09 Area C 70' R.O.W. 0.172 acres 0.67 Total 0.172 acres 0.67 1.09 percent 200 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc:6.75 9.33 11.05 minutes peak runoff: peak runoff: This information was taken from the Allison Minor Subdivision design report. (Pond #2) This information was taken from the Allison Minor Subdivision design report. (Pond #3) 70' R.O.W. Weighted C Average slope Travel Distance peak runoff: Weighted C Average slope Travel Distance Page 6 of 7 intensity at tc 4.37 2.57 1.92 in/hr 0.5 0.3 0.2 cfs Drainage Area 3.10 Area C 70' R.O.W. 0.018 acres 0.90 Total 0.018 acres 0.90 2.00 percent 66 feet Design Rainfall Freq. 100 25 10 years C*Cf 1.00 0.99 0.90 (Shall not exceed 1.00) Total tc:5.00 5.00 5.00 minutes * Manual Estimates intensity at tc 5.34 3.83 3.22 in/hr 0.1 0.1 0.1 cfs Drainage Area 4.1 Area C 0.092 acres 0.67 Total 0.092 acres 0.73 1.25 percent 100 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.91 0.80 0.73 (Shall not exceed 1.00) Total tc:5.00 5.16 6.42 minutes intensity at tc 5.34 3.75 2.73 in/hr 0.4 0.3 0.2 cfs Drainage Area 4.2 Design Rainfall Freq. 100 25 10 years C*Cf - - - (Shall not exceed 1.00) Total tc:- - - minutes intensity at tc - - - in/hr -11.46 -cfs Drainage Area 4.3 Area C 1.929 acres 0.73 Future R-1 Development 3.100 acres 0.35 Total 5.029 acres 0.49 1.00 percent 600 feet Design Rainfall Freq. 100 25 10 years C*Cf 0.62 0.54 0.49 (Shall not exceed 1.00) Total tc:22.11 25.50 27.77 minutes intensity at tc 1.97 1.35 1.06 in/hr 4.9 3.3 2.6 cfs peak runoff: 11th Ave. R.O.W. Weighted C Average slope Travel Distance peak runoff: This information was taken from the S. 11th Improvement project drainage report ("Basin I"). This information was taken from the S. 11th Improvement project drainage report ("Basins C, D, E, F, G, H, K"). peak runoff: peak runoff: Weighted C Average slope Travel Distance Graf St & S 11th Ave. R.O.W. Weighted C Average slope Travel Distance peak runoff: Page 7 of 7 Appendix D Allowable Pavement Encroachment Given: T =9 feet (max per city) W =1.5 feet Ts =7.5 feet Sw =0.0625 ft/ft Sx =0.03 ft/ft a =0.59 inches d =3.24 inches n =0.015 Sw/Sx =2.08 T/W =6 Capacity for Gutter equations: Where: Qs = Discharge within the Roadway above the depressed section (cfs) Qw = Discharge within the depressed (gutter) section (cfs) Cf = 0.56 for English units Sx = Pavement cross slope (ft/ft) Ts = Width of flow in the roadway above depressed section So = Gutter longitudinal slope (ft/ft) Sw = Gutter depression cross slope (ft/ft) T = Spread (ft) W = Width of gutter depression (ft) Capacity solution Gutter Capacity - Drainage Area 1.01 Gutter Capacity - Drainage Area 1.02 So =0.0124 Qs =2.59 cfs Eo =0.42 cfs Q =4.50 cfs Gutter Capacity - Drainage Area 1.03 Gutter Capacity - Drainage Area 1.04 So =0.0121 Qs =2.56 cfs Eo =0.42 cfs Q =4.45 cfs Gutter Capacity - Drainage Area 1.05 Gutter Capacity - Drainage Area 1.06 So =0.0106 So =0.0110 Qs =2.40 cfs Qs =2.44 cfs Eo =0.42 cfs Eo =0.42 cfs Q =4.16 cfs Q =4.23 cfs Gutter Capacity - Drainage Area 1.07 Gutter Capacity - Drainage Area 1.10 Gutter Capacity - Drainage Area 2 Gutter Capacity - Drainage Area 3.01 So =0.0201 So =0.0097 Qs =3.30 cfs Qs =2.29 cfs Eo =0.42 cfs Eo =0.42 cfs Q =5.73 cfs Q =3.97 cfs Allison Subdivision Gutter Capacity Calculations Does not apply. Drains future R-3 lot to stub, not inlet in road. Does not apply. Drains future R-3 lot to stub, not inlet in road. Does not apply. Drains future R-2 lot to stub, not inlet in road. Does not apply. This drainage area is unchanged from when it was installed with the S. 11th Ave. project. SWQQQ QEQoW 0 S E1 QQ 2 1 O3 8 S3 5 XfS STSn CQ   1 8/3 XW XW o 11T/W /SS1 /SS1E             Page 1 of 2 Gutter Capacity - Drainage Area 3.02 Gutter Capacity - Drainage Area 3.03 So =0.0086 So =0.0082 Qs =2.16 cfs Qs =2.11 cfs Eo =0.42 cfs Eo =0.42 cfs Q =3.75 cfs Q =3.66 cfs Gutter Capacity - Drainage Area 3.04 Gutter Capacity - Drainage Area 3.05 So =0.0131 So =0.0094 Qs =2.67 cfs Qs =2.26 cfs Eo =0.42 cfs Eo =0.42 cfs Q =4.63 cfs Q =3.92 cfs Gutter Capacity - Drainage Area 3.06 Gutter Capacity - Drainage Area 3.07 So =0.0050 So =0.0050 Qs =1.65 cfs Qs =1.65 cfs Eo =0.42 cfs Eo =0.42 cfs Q =2.86 cfs Q =2.86 cfs Gutter Capacity - Drainage Area 3.08 Gutter Capacity - Drainage Area 3.09 So =0.0256 So =0.0109 Qs =3.73 cfs Qs =2.43 cfs Eo =0.42 cfs Eo =0.42 cfs Q =6.47 cfs Q =4.22 cfs Gutter Capacity - Drainage Area 3.10 So =0.0200 Qs =3.30 cfs Eo =0.42 cfs Q =5.72 cfs Gutter Capacity - Drainage Area 4.1, 4.2, & 4.3 DA Gutter Capacity (cfs) 25 Yr Design Flow (cfs) Capacity greater than 25- yr flow? 1.01 4.50 0.29 Yes 1.02 N/A N/A N/A 1.03 4.45 0.41 Yes 1.04 N/A N/A N/A 1.05 4.16 4.07 Yes 1.06 4.23 0.28 Yes 1.07 N/A N/A N/A 1.10 N/A N/A N/A 2 5.73 2.63 Yes 3.01 3.97 0.72 Yes 3.02 3.75 0.50 Yes 3.03 3.66 0.12 Yes 3.04 4.63 1.03 Yes 3.05 3.92 0.48 Yes 3.06 2.86 0.16 Yes 3.07 2.86 0.06 Yes 3.08 6.47 0.20 Yes 3.09 4.22 0.30 Yes 3.10 5.72 0.06 Yes 4.1 N/A N/A N/A 4.2 N/A N/A N/A 4.3 N/A N/A N/A Summary The gutter capacity is adequate for each drainage area. Does not apply. These areas are either existing and were addressed with their stormwater reports or future and will be addressed with a future report. Page 2 of 2 Appendix D Gutter Section Given: T =9.0 feet W =1.50 feet Ts =7.50 feet Sw =0.0625 ft/ft Sx =0.03 ft/ft a =0.59 inches d =3.24 inches n =0.015 Where: Qs = Discharge within the Roadway above the depressed section (cfs) Qw = Discharge within the depressed (gutter) section (cfs) Capacity for Inlets on Grade Cf = 0.56 for English units (Standard 24x36 Curb inlet) Sx = Pavement cross slope (ft/ft) Ts = Width of flow in the roadway above Drainage Area 1.01 depressed section So = Gutter longitudinal slope (ft/ft) Qw =1.91 cfs Sw = Gutter depression cross slope (ft/ft) Qs =2.59 cfs T = Spread (ft) Cross-sectional area of flow W = Width of gutter depression (ft) A =1.22 ft2 Gutter Velocity V =3.70 ft/sec Fraction of side flow intercepted Rs =0.19 Total flow capacity intercepted by the inlet Qint =2.46 cfs Qbypass =2.04 cfs Design Q for inlet #8 Q25 =0.29 cfs Single Inlet Sufficient Drainage Area 1.03 Qw =1.89 cfs Qs =2.56 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.66 ft/sec Fraction of side flow intercepted Rs =0.19 Total flow capacity intercepted by the inlet Inlet Capacity Calculations Allison Subdivision Page 1 of 6 Qint =2.44 cfs Qbypass =2.01 cfs Design Q for inlet #9 Q25 =0.41 cfs Single Inlet Sufficient Drainage Area 1.05 Qw =1.76 cfs Qs =2.40 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.43 ft/sec Fraction of side flow intercepted Rs =0.21 Total flow capacity intercepted by the inlet Qint =2.33 cfs Qbypass =1.83 cfs Design Q for inlet #11 Q25 =4.07 cfs Double Inlet Required Drainage Area 1.06 Qw =1.79 cfs Qs =2.44 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.48 ft/sec Fraction of side flow intercepted Rs =0.21 Total flow capacity intercepted by the inlet Qint =2.36 cfs Qbypass =1.87 cfs Design Q for inlet #10 Q25 =0.28 cfs Single Inlet Sufficient Drainage Area 3.01 Qw =1.68 cfs Qs =2.29 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.27 ft/sec Fraction of side flow intercepted Page 2 of 6 Rs =0.23 Total flow capacity intercepted by the inlet Qint =2.26 cfs Qbypass =1.72 cfs Design Q for inlet #1 Q25 =0.72 cfs Single Inlet Sufficient Drainage Area 3.02 Qw =1.59 cfs Qs =2.16 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.09 ft/sec Fraction of side flow intercepted Rs =0.25 Total flow capacity intercepted by the inlet Qint =2.17 cfs Qbypass =1.58 cfs Design Q for inlet #2 Q25 =0.50 cfs Single Inlet Sufficient Drainage Area 3.03 Qw =1.55 cfs Qs =2.11 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.01 ft/sec Fraction of side flow intercepted Rs =0.26 Total flow capacity intercepted by the inlet Qint =2.13 cfs Qbypass =1.52 cfs Design Q for inlet #3 Q25 =0.12 cfs Single Inlet Sufficient Drainage Area 3.04 Qw =1.96 cfs Qs =2.67 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.81 ft/sec Fraction of side flow intercepted Page 3 of 6 Rs =0.18 Total flow capacity intercepted by the inlet Qint =2.51 cfs Qbypass =2.12 cfs Design Q for inlet #14 Q25 =1.03 cfs Single Inlet Sufficient Drainage Area 3.05 Qw =1.66 cfs Qs =2.26 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.22 ft/sec Fraction of side flow intercepted Rs =0.23 Total flow capacity intercepted by the inlet Qint =2.24 cfs Qbypass =1.68 cfs Design Q for inlet #12 Q25 =0.48 cfs Single Inlet Sufficient Drainage Area 3.06 Qw =1.21 cfs Qs =2.67 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.19 ft/sec Fraction of side flow intercepted Rs =0.24 Total flow capacity intercepted by the inlet Qint =2.22 cfs Qbypass =1.66 cfs Design Q for inlet #6 Q25 =0.16 cfs Single Inlet Sufficient Drainage Area 3.07 Qw =1.21 cfs Qs =1.65 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =2.35 ft/sec Fraction of side flow intercepted Page 4 of 6 Rs =0.35 Total flow capacity intercepted by the inlet Qint =1.82 cfs Qbypass =1.04 cfs Design Q for inlet #7 Q25 =0.06 cfs Single Inlet Sufficient Drainage Area 3.08 Qw =1.58 cfs Qs =3.73 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =4.37 ft/sec Fraction of side flow intercepted Rs =0.15 Total flow capacity intercepted by the inlet Qint =2.78 cfs Qbypass =2.53 cfs Design Q for inlet #4 Q25 =0.20 cfs Single Inlet Sufficient Drainage Area 3.09 Qw =1.03 cfs Qs =2.43 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =2.85 ft/sec Fraction of side flow intercepted Rs =0.28 Total flow capacity intercepted by the inlet Qint =2.06 cfs Qbypass =1.41 cfs Design Q for inlet #5 Q25 =0.30 cfs Single Inlet Sufficient Drainage Area 3.10 Qw =1.40 cfs Qs =3.30 cfs Cross-sectional area of flow A =1.22 ft2 Gutter Velocity V =3.86 ft/sec Fraction of side flow intercepted Page 5 of 6 Rs =0.18 Total flow capacity intercepted by the inlet Qint =2.54 cfs Qbypass =2.15 cfs Design Q for inlet #13 Q25 =0.06 cfs Single Inlet Sufficient Page 6 of 6 Appendix E: Pipe Capacity Calculations Allison Subd. Phase IV Stormwater Pipe Capacity Summary Pipe Contributing Basin Inflow Q(25) (cfs)Pipe Size Pipe Slope Pipe Capacity (cfs) 1 1.01 & 1.10 1.57 15" 1.97% 14.1 2 1.01, 1.02 & 1.10 2.91 15" 0.97% 9.9 3 1.01, 1.02, 1.03, 1.04 & 1.10 5.03 15" 1.96% 14.0 4 1.05 4.07 15" 1.53% 12.4 5 1.01, 1.02, 1.03, 1.04, 1.05 & 1.10 9.10 15" 1.96% 14.0 6 1.01, 1.02, 1.03, 1.04, 1.05, 1.06 & 1.10 9.38 15" 2.20% 14.9 7 1.01, 1.02, 1.03, 1.04, 1.05, 1.06 & 1.10 9.38 15" 1.50% 12.3 8 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07 & 1.10 10.52 18" 0.70% 13.6 9 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07 & 1.10 10.52 18" 0.50% 11.5 10 Det. Pond #1 outflow 2.09 15" 0.50% 7.1 11 Det. Pond #2 outflow 4.70 15" 3.60% 11.4 12 4.1 0.25 15" 0.50% 7.1 13 4.1, 4.2 & 4.3 15.06 24" 0.55% 26.0 14 4.1, 4.2, 4.3 & 3.01 15.78 24" 0.60% 27.2 15 4.1, 4.2, 4.3, 3.01 & 3.02 16.28 24" 0.65% 28.3 16 4.1, 4.2, 4.3, 3.01, 3.02 & 3.03 16.40 24" 1.46% 42.4 17 4.1, 4.2, 4.3, 3.01, 3.02, 3.03, 3.04, 3.05, 3.08, 3.10 18.17 24" 0.70% 29.4 18 4.1, 4.2, 4.3, 3.01, 3.02, 3.03, 3.04, 3.05, 3.08, 3.09, 3.10 18.47 24" 0.70% 29.4 19 3.06 0.16 15" 0.40% 6.3 20 3.06 & 3.07 0.22 15" 0.40% 6.3 21 3.05 & 3.10 0.54 15" 0.50% 7.1 22 3.05 0.48 15" 0.50% 7.1 23 4.1, 4.2, 4.3, 3.01, 3.02, 3.03, 3.04, 3.05 & 3.10 17.91 24" 1.45% 42.3 DA Q(25) (cfs) 1.01 0.29 1.02 1.34 1.03 0.41 1.04 1.71 1.05 4.07 1.06 0.28 1.07 1.14 1.10 1.29 2 2.63 3.01 0.72 3.02 0.50 3.03 0.12 3.04 1.03 3.05 0.48 3.06 0.16 3.07 0.06 3.08 0.20 3.09 0.30 3.10 0.06 4.1 0.25 4.2 11.46 4.3 3.35 Pipe #6 (See Sheet SD 1.3) 15" pipe from Curb Inlet 10 to SDMH #1 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =15.0 Enter Value Diameter,do (ft) =1.25 Units =1.486 n =0.009 Slope, S (ft/ft)0.022 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.06 0.90 0.02 0.56 0.04 0.54 0.04 0.00 0.1 29.8 14317.1 2.9 0.13 0.13 1.29 0.06 0.80 0.08 0.75 0.09 0.02 0.3 129.7 62245.8 4.5 0.32 0.19 1.59 0.12 0.99 0.12 0.89 0.13 0.04 0.7 301.9 144925.5 5.8 0.53 0.25 1.85 0.17 1.16 0.15 1.00 0.17 0.07 1.2 543.9 261088.0 6.9 0.75 0.31 2.09 0.24 1.31 0.18 1.08 0.22 0.11 1.9 850.8 408402.0 7.9 0.97 0.38 2.32 0.31 1.45 0.21 1.15 0.27 0.16 2.7 1216.4 583857.5 8.8 1.19 0.44 2.53 0.38 1.58 0.24 1.19 0.32 0.22 3.6 1633.2 783937.4 9.5 1.40 0.50 2.74 0.46 1.71 0.27 1.22 0.37 0.28 4.7 2093.1 1004706.3 10.2 1.61 0.56 2.94 0.54 1.84 0.29 1.24 0.43 0.35 5.8 2587.2 1241854.9 10.8 1.80 0.63 3.14 0.61 1.96 0.31 1.25 0.49 0.43 6.9 3105.7 1490716.2 11.3 1.97 0.69 3.34 0.69 2.09 0.33 1.24 0.56 0.52 8.1 3638.0 1746257.6 11.7 2.13 0.75 3.54 0.77 2.22 0.35 1.22 0.63 0.61 9.3 4173.0 2003046.2 12.1 2.27 0.81 3.75 0.84 2.34 0.36 1.19 0.71 0.71 10.5 4698.3 2255180.7 12.4 2.39 0.88 3.96 0.92 2.48 0.37 1.15 0.80 0.82 11.6 5200.3 2496167.6 12.6 2.48 0.94 4.19 0.99 2.62 0.38 1.08 0.91 0.94 12.6 5664.0 2718701.8 12.8 2.54 1.00 4.43 1.05 2.77 0.38 1.00 1.05 1.08 13.5 6071.4 2914251.5 12.9 2.57 1.06 4.69 1.11 2.93 0.38 0.89 1.25 1.24 14.3 6400.4 3072188.6 12.8 2.56 1.13 5.00 1.16 3.12 0.37 0.75 1.55 1.45 14.8 6620.0 3177602.8 12.7 2.50 1.19 5.38 1.20 3.36 0.36 0.54 2.21 1.79 14.9 6674.2 3203592.6 12.3 2.371.25 6.28 1.23 3.93 0.31 0.00 13.8 6213.4 2982440.6 11.3 1.98 Flow (cfs) 0.3 1.3 0.4 1.7 4.1 0.28 1.3 9.4TOTAL 1.06 1.05 1.10 Q = Contributing DA 1.01 1.02 1.03 1.04 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #7 (See Sheet SD 1.3) 15" pipe from SDMH 1 to SDMH 2 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =15.0 Enter Value Diameter,do (ft) =1.25 Units =1.486 n =0.009 Slope, S (ft/ft)0.015 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.06 0.90 0.02 0.56 0.04 0.54 0.04 0.00 0.1 24.6 11822.0 2.4 0.09 0.13 1.29 0.06 0.80 0.08 0.75 0.09 0.02 0.2 107.1 51397.8 3.7 0.22 0.19 1.59 0.12 0.99 0.12 0.89 0.13 0.04 0.6 249.3 119668.3 4.8 0.36 0.25 1.85 0.17 1.16 0.15 1.00 0.17 0.07 1.0 449.1 215586.3 5.7 0.51 0.31 2.09 0.24 1.31 0.18 1.08 0.22 0.11 1.6 702.6 337226.9 6.5 0.66 0.38 2.32 0.31 1.45 0.21 1.15 0.27 0.16 2.2 1004.4 482104.4 7.2 0.81 0.44 2.53 0.38 1.58 0.24 1.19 0.32 0.22 3.0 1348.6 647315.0 7.9 0.96 0.50 2.74 0.46 1.71 0.27 1.22 0.37 0.28 3.9 1728.4 829608.9 8.4 1.10 0.56 2.94 0.54 1.84 0.29 1.24 0.43 0.35 4.8 2136.3 1025427.9 8.9 1.23 0.63 3.14 0.61 1.96 0.31 1.25 0.49 0.43 5.7 2564.4 1230918.4 9.3 1.35 0.69 3.34 0.69 2.09 0.33 1.24 0.56 0.52 6.7 3004.0 1441924.8 9.7 1.45 0.75 3.54 0.77 2.22 0.35 1.22 0.63 0.61 7.7 3445.8 1653961.0 10.0 1.55 0.81 3.75 0.84 2.34 0.36 1.19 0.71 0.71 8.6 3879.5 1862154.1 10.2 1.63 0.88 3.96 0.92 2.48 0.37 1.15 0.80 0.82 9.6 4294.0 2061142.5 10.4 1.69 0.94 4.19 0.99 2.62 0.38 1.08 0.91 0.94 10.4 4676.9 2244894.1 10.6 1.73 1.00 4.43 1.05 2.77 0.38 1.00 1.05 1.08 11.2 5013.3 2406364.0 10.6 1.75 1.06 4.69 1.11 2.93 0.38 0.89 1.25 1.24 11.8 5285.0 2536776.2 10.6 1.74 1.13 5.00 1.16 3.12 0.37 0.75 1.55 1.45 12.2 5466.3 2623819.2 10.5 1.70 1.19 5.38 1.20 3.36 0.36 0.54 2.21 1.79 12.3 5511.0 2645279.5 10.2 1.611.25 6.28 1.23 3.93 0.31 0.00 11.4 5130.6 2462669.2 9.3 1.35 Flow (cfs) 0.3 1.3 0.4 1.7 4.1 0.28 1.3 9.4 1.05 1.06 1.10 TOTAL Q = Contributing DA 1.01 1.02 1.03 1.04 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #8 (See Sheet SD 1.3) 18" pipe from SDMH 2 to SDMH 3 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =18.0 Enter Value Diameter,do (ft) =1.50 Units =1.486 n =0.009 Slope, S (ft/ft)0.007 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.08 0.90 0.03 0.68 0.05 0.65 0.05 0.01 0.1 27.4 13132.4 1.8 0.05 0.15 1.29 0.09 0.97 0.10 0.90 0.10 0.03 0.3 118.9 57095.0 2.9 0.13 0.23 1.59 0.17 1.19 0.14 1.07 0.16 0.07 0.6 276.9 132932.9 3.7 0.21 0.30 1.85 0.25 1.39 0.18 1.20 0.21 0.12 1.1 498.9 239482.9 4.4 0.30 0.38 2.09 0.35 1.57 0.22 1.30 0.27 0.18 1.7 780.4 374606.7 5.0 0.39 0.45 2.32 0.45 1.74 0.26 1.37 0.32 0.25 2.5 1115.7 535543.2 5.6 0.48 0.53 2.53 0.55 1.90 0.29 1.43 0.39 0.34 3.3 1498.1 719066.5 6.1 0.57 0.60 2.74 0.66 2.05 0.32 1.47 0.45 0.44 4.3 1919.9 921566.7 6.5 0.65 0.68 2.94 0.77 2.21 0.35 1.49 0.52 0.55 5.3 2373.1 1139091.3 6.9 0.73 0.75 3.14 0.88 2.36 0.38 1.50 0.59 0.68 6.3 2848.7 1367359.3 7.2 0.80 0.83 3.34 1.00 2.51 0.40 1.49 0.67 0.81 7.4 3337.0 1601754.6 7.5 0.87 0.90 3.54 1.11 2.66 0.42 1.47 0.75 0.96 8.5 3827.7 1837293.9 7.7 0.92 0.98 3.75 1.22 2.81 0.43 1.43 0.85 1.12 9.6 4309.5 2068564.2 7.9 0.97 1.05 3.96 1.32 2.97 0.44 1.37 0.96 1.30 10.6 4770.0 2289609.4 8.0 1.00 1.13 4.19 1.42 3.14 0.45 1.30 1.09 1.49 11.6 5195.3 2493728.9 8.1 1.03 1.20 4.43 1.52 3.32 0.46 1.20 1.26 1.70 12.4 5569.0 2673096.9 8.2 1.04 1.28 4.69 1.60 3.52 0.45 1.07 1.49 1.96 13.1 5870.8 2817964.6 8.2 1.04 1.35 5.00 1.68 3.75 0.45 0.90 1.86 2.29 13.5 6072.2 2914655.9 8.1 1.01 1.43 5.38 1.73 4.04 0.43 0.65 2.65 2.82 13.6 6121.9 2938495.0 7.9 0.961.50 6.28 1.77 4.71 0.38 0.00 12.7 5699.3 2735643.3 7.2 0.80 Flow (cfs) 0.3 1.3 0.4 1.7 4.1 0.28 1.1 1.3 10.5 1.06 1.10 TOTAL 1.07 1.01 1.02 Q = Contributing DA 1.03 1.04 1.05 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #9 (See Sheet SD 1.3) 18" pipe from SDMH 3 to Detention Pond #1 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =18.0 Enter Value Diameter,do (ft) =1.50 Units =1.486 n =0.009 Slope, S (ft/ft)0.005 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.08 0.90 0.03 0.68 0.05 0.65 0.05 0.01 0.1 23.1 11098.9 1.6 0.04 0.15 1.29 0.09 0.97 0.10 0.90 0.10 0.03 0.2 100.5 48254.0 2.4 0.09 0.23 1.59 0.17 1.19 0.14 1.07 0.16 0.07 0.5 234.1 112348.8 3.1 0.15 0.30 1.85 0.25 1.39 0.18 1.20 0.21 0.12 0.9 421.7 202400.0 3.7 0.22 0.38 2.09 0.35 1.57 0.22 1.30 0.27 0.18 1.5 659.6 316600.4 4.3 0.28 0.45 2.32 0.45 1.74 0.26 1.37 0.32 0.25 2.1 943.0 452616.6 4.7 0.34 0.53 2.53 0.55 1.90 0.29 1.43 0.39 0.34 2.8 1266.1 607722.1 5.1 0.41 0.60 2.74 0.66 2.05 0.32 1.47 0.45 0.44 3.6 1622.6 778866.0 5.5 0.47 0.68 2.94 0.77 2.21 0.35 1.49 0.52 0.55 4.5 2005.6 962707.8 5.8 0.52 0.75 3.14 0.88 2.36 0.38 1.50 0.59 0.68 5.4 2407.6 1155629.5 6.1 0.57 0.83 3.34 1.00 2.51 0.40 1.49 0.67 0.81 6.3 2820.3 1353729.7 6.3 0.62 0.90 3.54 1.11 2.66 0.42 1.47 0.75 0.96 7.2 3235.0 1552796.8 6.5 0.66 0.98 3.75 1.22 2.81 0.43 1.43 0.85 1.12 8.1 3642.2 1748255.8 6.7 0.69 1.05 3.96 1.32 2.97 0.44 1.37 0.96 1.30 9.0 4031.4 1935073.1 6.8 0.72 1.13 4.19 1.42 3.14 0.45 1.30 1.09 1.49 9.8 4390.8 2107585.6 6.9 0.74 1.20 4.43 1.52 3.32 0.46 1.20 1.26 1.70 10.5 4706.6 2259179.2 6.9 0.74 1.28 4.69 1.60 3.52 0.45 1.07 1.49 1.96 11.1 4961.7 2381614.8 6.9 0.74 1.35 5.00 1.68 3.75 0.45 0.90 1.86 2.29 11.4 5131.9 2463333.8 6.8 0.72 1.43 5.38 1.73 4.04 0.43 0.65 2.65 2.82 11.5 5173.9 2483481.5 6.6 0.691.50 6.28 1.77 4.71 0.38 0.00 10.7 4816.8 2312040.6 6.1 0.57 Flow (cfs) 0.3 1.3 0.4 1.7 4.1 0.28 1.1 1.3 10.5 Q = Contributing DA 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.10 TOTAL 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #11 (See Sheet SD 1.3) 15" pipe Det. Pond #2 to swale CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =15.0 Enter Value Diameter,do (ft) =1.25 Units =1.486 n =0.009 Slope, S (ft/ft)0.036 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.06 0.90 0.02 0.56 0.04 0.54 0.04 0.00 0.1 38.2 18314.6 3.7 0.21 0.13 1.29 0.06 0.80 0.08 0.75 0.09 0.02 0.4 165.9 79625.1 5.8 0.52 0.19 1.59 0.12 0.99 0.12 0.89 0.13 0.04 0.9 386.2 185389.3 7.5 0.86 0.25 1.85 0.17 1.16 0.15 1.00 0.17 0.07 1.6 695.8 333984.8 8.9 1.22 0.31 2.09 0.24 1.31 0.18 1.08 0.22 0.11 2.4 1088.4 522429.6 10.1 1.59 0.38 2.32 0.31 1.45 0.21 1.15 0.27 0.16 3.5 1556.0 746873.0 11.2 1.95 0.44 2.53 0.38 1.58 0.24 1.19 0.32 0.22 4.7 2089.2 1002816.1 12.2 2.30 0.50 2.74 0.46 1.71 0.27 1.22 0.37 0.28 6.0 2677.6 1285224.6 13.0 2.63 0.56 2.94 0.54 1.84 0.29 1.24 0.43 0.35 7.4 3309.6 1588586.1 13.8 2.94 0.63 3.14 0.61 1.96 0.31 1.25 0.49 0.43 8.9 3972.8 1906930.6 14.4 3.23 0.69 3.34 0.69 2.09 0.33 1.24 0.56 0.52 10.4 4653.8 2233820.2 15.0 3.49 0.75 3.54 0.77 2.22 0.35 1.22 0.63 0.61 11.9 5338.1 2562305.3 15.5 3.72 0.81 3.75 0.84 2.34 0.36 1.19 0.71 0.71 13.4 6010.1 2884836.8 15.9 3.91 0.88 3.96 0.92 2.48 0.37 1.15 0.80 0.82 14.8 6652.3 3193108.3 16.2 4.05 0.94 4.19 0.99 2.62 0.38 1.08 0.91 0.94 16.1 7245.4 3477775.0 16.4 4.15 1.00 4.43 1.05 2.77 0.38 1.00 1.05 1.08 17.3 7766.5 3727923.1 16.4 4.20 1.06 4.69 1.11 2.93 0.38 0.89 1.25 1.24 18.2 8187.4 3929956.8 16.4 4.18 1.13 5.00 1.16 3.12 0.37 0.75 1.55 1.45 18.9 8468.3 4064803.2 16.2 4.09 1.19 5.38 1.20 3.36 0.36 0.54 2.21 1.79 19.0 8537.6 4098049.4 15.8 3.87 1.25 6.28 1.23 3.93 0.31 0.00 17.7 7948.2 3815150.8 14.4 3.23 Flow (cfs) 4.7 4.7 Q = Contributing DA TOTAL Det. Pond #2 outflow 0.0 5.0 10.0 15.0 20.0 25.0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #13 (See Sheet SD 1.3) 24" pipe from Ext'g Curb Inlet 3 to Curb Inlet 1 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =24.0 Enter Value Diameter,do (ft) =2.00 Units =1.486 n =0.009 Slope, S (ft/ft)0.0055 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.1 52.2 25069.5 2.0 0.06 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.5 227.1 108993.4 3.1 0.15 0.30 1.59 0.30 1.59 0.19 1.43 0.21 0.13 1.2 528.7 253766.8 4.0 0.25 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 2.1 952.4 457169.0 4.7 0.35 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 3.3 1489.8 715118.2 5.4 0.45 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 4.7 2129.9 1022343.4 6.0 0.56 0.70 2.53 0.98 2.53 0.39 1.91 0.51 0.70 6.4 2859.8 1372686.4 6.5 0.66 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 8.2 3665.1 1759256.1 7.0 0.75 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1.14 10.1 4530.2 2174507.0 7.4 0.84 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1.39 12.1 5438.1 2610267.1 7.7 0.92 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 14.2 6370.3 3057723.9 8.0 1.00 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 16.3 7307.0 3507364.7 8.3 1.06 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 18.3 8226.8 3948856.0 8.5 1.12 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 20.3 9105.9 4370827.8 8.6 1.16 1.50 4.19 2.53 4.19 0.60 1.73 1.46 3.05 22.1 9917.7 4760488.6 8.7 1.19 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 23.7 10631.0 5102899.2 8.8 1.20 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 25.0 11207.2 5379449.4 8.8 1.20 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 25.8 11591.7 5564031.4 8.7 1.17 1.90 5.38 3.08 5.38 0.57 0.87 3.54 5.80 26.0 11686.5 5609539.9 8.4 1.11 2.00 6.28 3.14 6.28 0.50 0.00 24.2 10879.8 5222299.3 7.7 0.92 Flow (cfs) 0.3 11.46 3.35 15.11 Q = Contributing DA TOTAL 4.1 4.3 4.2 0.0 5.0 10.0 15.0 20.0 25.0 30.0 0.00 0.50 1.00 1.50 2.00 2.50 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #14 (See Sheet SD 1.3) 24" pipe from Curb Inlet 1 to Curb Inlet 2 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =24.0 Enter Value Diameter,do (ft) =2.00 Units =1.486 n =0.009 Slope, S (ft/ft)0.006 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.1 54.6 26184.3 2.1 0.07 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.5 237.2 113839.9 3.2 0.16 0.30 1.59 0.30 1.59 0.19 1.43 0.21 0.13 1.2 552.2 265050.7 4.2 0.27 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 2.2 994.8 477497.5 5.0 0.38 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 3.5 1556.1 746916.6 5.6 0.49 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 5.0 2224.6 1067802.9 6.3 0.61 0.70 2.53 0.98 2.53 0.39 1.91 0.51 0.70 6.7 2986.9 1433724.2 6.8 0.72 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 8.5 3828.1 1837483.1 7.3 0.82 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1.14 10.5 4731.7 2271198.5 7.7 0.92 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1.39 12.7 5679.9 2726335.0 8.1 1.01 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 14.8 6653.5 3193688.4 8.4 1.09 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 17.0 7631.9 3663323.0 8.6 1.16 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 19.1 8592.6 4124445.6 8.9 1.22 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 21.2 9510.8 4565180.7 9.0 1.26 1.50 4.19 2.53 4.19 0.60 1.73 1.46 3.05 23.1 10358.7 4972168.2 9.1 1.29 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 24.7 11103.8 5329804.4 9.2 1.31 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 26.1 11705.5 5618651.7 9.2 1.30 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 27.0 12107.2 5811441.3 9.1 1.27 1.90 5.38 3.08 5.38 0.57 0.87 3.54 5.80 27.2 12206.2 5858973.3 8.8 1.21 2.00 6.28 3.14 6.28 0.50 0.00 25.3 11363.6 5454513.7 8.1 1.01 Flow (cfs) 0.3 11.46 3.4 0.7 15.9 Q = Contributing DA 4.1 3.01 TOTAL 4.2 4.3 0.0 5.0 10.0 15.0 20.0 25.0 30.0 0.00 0.50 1.00 1.50 2.00 2.50 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #15 (See Sheet SD 1.3) 24" pipe from Curb Inlet 2 to Curb Inlet 3 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =24.0 Enter Value Diameter,do (ft) =2.00 Units =1.486 n =0.009 Slope, S (ft/ft)0.0065 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.1 56.8 27253.5 2.2 0.07 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.6 246.9 118488.3 3.4 0.18 0.30 1.59 0.30 1.59 0.19 1.43 0.21 0.13 1.3 574.7 275873.6 4.3 0.29 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 2.3 1035.4 496995.1 5.2 0.41 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 3.6 1619.6 777415.4 5.9 0.54 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 5.2 2315.4 1111404.5 6.5 0.66 0.70 2.53 0.98 2.53 0.39 1.91 0.51 0.70 6.9 3108.9 1492267.5 7.1 0.78 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 8.9 3984.4 1912513.1 7.6 0.89 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1.14 11.0 4924.9 2363938.3 8.0 0.99 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1.39 13.2 5911.8 2837659.5 8.4 1.09 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 15.4 6925.2 3324096.3 8.7 1.18 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 17.7 7943.6 3812907.4 9.0 1.26 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 19.9 8943.5 4292859.1 9.2 1.32 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 22.1 9899.1 4751590.7 9.4 1.37 1.50 4.19 2.53 4.19 0.60 1.73 1.46 3.05 24.0 10781.7 5175196.7 9.5 1.40 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 25.8 11557.2 5547436.3 9.6 1.42 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 27.1 12183.5 5848078.1 9.5 1.41 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 28.1 12601.5 6048739.9 9.4 1.38 1.90 5.38 3.08 5.38 0.57 0.87 3.54 5.80 28.3 12704.6 6098212.8 9.2 1.31 2.00 6.28 3.14 6.28 0.50 0.00 26.4 11827.6 5677237.8 8.4 1.09 Flow (cfs) 0.3 11.46 3.4 0.7 0.5 16.4 Q = Contributing DA 4.1 4.2 3.02 TOTAL 3.01 4.3 0.0 5.0 10.0 15.0 20.0 25.0 30.0 0.00 0.50 1.00 1.50 2.00 2.50 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #16 (See Sheet SD 1.3) 24" pipe from Curb Inlet 3 to Curb Inlet 14 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =24.0 Enter Value Diameter,do (ft) =2.00 Units =1.486 n =0.009 Slope, S (ft/ft)0.0146 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.2 85.1 40845.2 3.2 0.16 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.8 370.0 177580.4 5.0 0.39 0.30 1.59 0.30 1.59 0.19 1.43 0.21 0.13 1.9 861.4 413456.5 6.5 0.66 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 3.5 1551.8 744855.3 7.7 0.93 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 5.4 2427.3 1165126.0 8.8 1.20 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 7.7 3470.2 1665681.2 9.8 1.48 0.70 2.53 0.98 2.53 0.39 1.91 0.51 0.70 10.4 4659.3 2236487.2 10.6 1.74 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 13.3 5971.5 2866316.6 11.3 2.00 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1.14 16.4 7381.0 3542875.5 12.0 2.23 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1.39 19.7 8860.1 4252849.6 12.6 2.45 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 23.1 10378.9 4981881.0 13.1 2.65 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 26.5 11905.1 5714470.7 13.5 2.82 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 29.9 13403.7 6433782.6 13.8 2.96 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 33.1 14836.0 7121291.7 14.1 3.08 1.50 4.19 2.53 4.19 0.60 1.73 1.46 3.05 36.0 16158.7 7756157.3 14.2 3.15 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 38.6 17320.9 8314039.3 14.3 3.19 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 40.7 18259.6 8764616.3 14.3 3.17 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 42.1 18886.1 9065351.7 14.1 3.10 1.90 5.38 3.08 5.38 0.57 0.87 3.54 5.80 42.4 19040.6 9139497.6 13.8 2.94 2.00 6.28 3.14 6.28 0.50 0.00 39.5 17726.2 8508575.1 12.6 2.45 Flow (cfs) 0.3 11.46 3.4 0.7 0.5 0.1 16.46TOTAL 3.02 Q = Contributing DA 4.1 4.2 3.01 3.03 4.3 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 0.00 0.50 1.00 1.50 2.00 2.50 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #17 (See Sheet SD 1.3) 24" pipe from Curb Inlet 4 to Curb Inlet 5 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =24.0 Enter Value Diameter,do (ft) =2.00 Units =1.486 n =0.009 Slope, S (ft/ft)0.007 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.1 58.9 28282.3 2.2 0.08 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.6 256.2 122961.1 3.5 0.19 0.30 1.59 0.30 1.59 0.19 1.43 0.21 0.13 1.3 596.4 286287.5 4.5 0.31 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 2.4 1074.5 515756.2 5.4 0.44 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 3.7 1680.8 806762.1 6.1 0.58 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 5.4 2402.8 1153358.9 6.8 0.71 0.70 2.53 0.98 2.53 0.39 1.91 0.51 0.70 7.2 3226.2 1548599.1 7.3 0.84 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 9.2 4134.8 1984708.6 7.9 0.96 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1.14 11.4 5110.8 2453174.7 8.3 1.07 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1.39 13.7 6135.0 2944778.4 8.7 1.18 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 16.0 7186.6 3449577.8 9.0 1.27 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 18.4 8243.4 3956841.0 9.3 1.35 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 20.7 9281.1 4454910.4 9.6 1.42 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 22.9 10272.8 4930958.7 9.7 1.47 1.50 4.19 2.53 4.19 0.60 1.73 1.46 3.05 24.9 11188.7 5370555.4 9.9 1.51 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 26.7 11993.4 5756846.7 9.9 1.53 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 28.2 12643.4 6068837.4 9.9 1.52 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 29.1 13077.2 6277074.0 9.8 1.49 1.90 5.38 3.08 5.38 0.57 0.87 3.54 5.80 29.4 13184.2 6328414.5 9.5 1.41 2.00 6.28 3.14 6.28 0.50 0.00 27.3 12274.1 5891548.1 8.7 1.18 Flow (cfs) 0.25 11.46 3.4 0.72 0.5 0.12 0.48 0.06 0.2 1.03 18.22 3.08 3.05 3.10 3.04 TOTAL 3.03 Q = Contributing DA 4.1 4.2 3.01 3.02 4.3 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 0.00 0.50 1.00 1.50 2.00 2.50 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #18 (See Sheet SD 1.3) 24" pipe from Curb Inlet 5 to Det. Pond 3 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =24.0 Enter Value Diameter,do (ft) =2.00 Units =1.486 n =0.009 Slope, S (ft/ft)0.007 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.1 58.9 28282.3 2.2 0.08 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.6 256.2 122961.1 3.5 0.19 0.30 1.59 0.30 1.59 0.19 1.43 0.21 0.13 1.3 596.4 286287.5 4.5 0.31 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 2.4 1074.5 515756.2 5.4 0.44 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 3.7 1680.8 806762.1 6.1 0.58 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 5.4 2402.8 1153358.9 6.8 0.71 0.70 2.53 0.98 2.53 0.39 1.91 0.51 0.70 7.2 3226.2 1548599.1 7.3 0.84 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 9.2 4134.8 1984708.6 7.9 0.96 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1.14 11.4 5110.8 2453174.7 8.3 1.07 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1.39 13.7 6135.0 2944778.4 8.7 1.18 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 16.0 7186.6 3449577.8 9.0 1.27 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 18.4 8243.4 3956841.0 9.3 1.35 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 20.7 9281.1 4454910.4 9.6 1.42 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 22.9 10272.8 4930958.7 9.7 1.47 1.50 4.19 2.53 4.19 0.60 1.73 1.46 3.05 24.9 11188.7 5370555.4 9.9 1.51 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 26.7 11993.4 5756846.7 9.9 1.53 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 28.2 12643.4 6068837.4 9.9 1.52 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 29.1 13077.2 6277074.0 9.8 1.49 1.90 5.38 3.08 5.38 0.57 0.87 3.54 5.80 29.4 13184.2 6328414.5 9.5 1.41 2.00 6.28 3.14 6.28 0.50 0.00 27.3 12274.1 5891548.1 8.7 1.18 Flow (cfs) 0.3 11.46 3.4 0.7 0.5 0.1 1 0.2 0.3 0.06 0.5 18.5 Q = Contributing DA 4.1 4.2 3.01 3.02 4.3 3.08 3.09 3.10 3.03 3.05 TOTAL 3.04 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 0.00 0.50 1.00 1.50 2.00 2.50 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #21 (See Sheet SD 1.3) 15" pipe from Curb Inlet 13 to Curb Inlet 14 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =15.0 Enter Value Diameter,do (ft) =1.25 Units =1.486 n =0.009 Slope, S (ft/ft)0.005 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.06 0.90 0.02 0.56 0.04 0.54 0.04 0.00 0.0 14.2 6825.4 1.4 0.03 0.13 1.29 0.06 0.80 0.08 0.75 0.09 0.02 0.1 61.8 29674.5 2.2 0.07 0.19 1.59 0.12 0.99 0.12 0.89 0.13 0.04 0.3 143.9 69090.5 2.8 0.12 0.25 1.85 0.17 1.16 0.15 1.00 0.17 0.07 0.6 259.3 124468.8 3.3 0.17 0.31 2.09 0.24 1.31 0.18 1.08 0.22 0.11 0.9 405.6 194698.0 3.8 0.22 0.38 2.32 0.31 1.45 0.21 1.15 0.27 0.16 1.3 579.9 278343.1 4.2 0.27 0.44 2.53 0.38 1.58 0.24 1.19 0.32 0.22 1.7 778.6 373727.5 4.5 0.32 0.50 2.74 0.46 1.71 0.27 1.22 0.37 0.28 2.2 997.9 478974.9 4.9 0.37 0.56 2.94 0.54 1.84 0.29 1.24 0.43 0.35 2.7 1233.4 592031.1 5.1 0.41 0.63 3.14 0.61 1.96 0.31 1.25 0.49 0.43 3.3 1480.6 710671.1 5.4 0.45 0.69 3.34 0.69 2.09 0.33 1.24 0.56 0.52 3.9 1734.4 832495.6 5.6 0.48 0.75 3.54 0.77 2.22 0.35 1.22 0.63 0.61 4.4 1989.4 954914.8 5.8 0.52 0.81 3.75 0.84 2.34 0.36 1.19 0.71 0.71 5.0 2239.8 1075115.2 5.9 0.54 0.88 3.96 0.92 2.48 0.37 1.15 0.80 0.82 5.5 2479.2 1190001.2 6.0 0.56 0.94 4.19 0.99 2.62 0.38 1.08 0.91 0.94 6.0 2700.2 1296090.2 6.1 0.58 1.00 4.43 1.05 2.77 0.38 1.00 1.05 1.08 6.4 2894.4 1389314.9 6.1 0.58 1.06 4.69 1.11 2.93 0.38 0.89 1.25 1.24 6.8 3051.3 1464608.4 6.1 0.58 1.13 5.00 1.16 3.12 0.37 0.75 1.55 1.45 7.0 3156.0 1514862.7 6.0 0.57 1.19 5.38 1.20 3.36 0.36 0.54 2.21 1.79 7.1 3181.8 1527252.8 5.9 0.54 1.25 6.28 1.23 3.93 0.31 0.00 6.6 2962.1 1421822.7 5.4 0.45 Flow (cfs) 0.06 0.48 0.54 Q = Contributing DA 3.10 3.05 TOTAL 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #22 (See Sheet SD 1.3) 15" pipe from Curb Inlet 12 to Curb Inlet 13 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =15.0 Enter Value Diameter,do (ft) =1.25 Units =1.486 n =0.009 Slope, S (ft/ft)0.005 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.06 0.90 0.02 0.56 0.04 0.54 0.04 0.00 0.0 14.2 6825.4 1.4 0.03 0.13 1.29 0.06 0.80 0.08 0.75 0.09 0.02 0.1 61.8 29674.5 2.2 0.07 0.19 1.59 0.12 0.99 0.12 0.89 0.13 0.04 0.3 143.9 69090.5 2.8 0.12 0.25 1.85 0.17 1.16 0.15 1.00 0.17 0.07 0.6 259.3 124468.8 3.3 0.17 0.31 2.09 0.24 1.31 0.18 1.08 0.22 0.11 0.9 405.6 194698.0 3.8 0.22 0.38 2.32 0.31 1.45 0.21 1.15 0.27 0.16 1.3 579.9 278343.1 4.2 0.27 0.44 2.53 0.38 1.58 0.24 1.19 0.32 0.22 1.7 778.6 373727.5 4.5 0.32 0.50 2.74 0.46 1.71 0.27 1.22 0.37 0.28 2.2 997.9 478974.9 4.9 0.37 0.56 2.94 0.54 1.84 0.29 1.24 0.43 0.35 2.7 1233.4 592031.1 5.1 0.41 0.63 3.14 0.61 1.96 0.31 1.25 0.49 0.43 3.3 1480.6 710671.1 5.4 0.45 0.69 3.34 0.69 2.09 0.33 1.24 0.56 0.52 3.9 1734.4 832495.6 5.6 0.48 0.75 3.54 0.77 2.22 0.35 1.22 0.63 0.61 4.4 1989.4 954914.8 5.8 0.52 0.81 3.75 0.84 2.34 0.36 1.19 0.71 0.71 5.0 2239.8 1075115.2 5.9 0.54 0.88 3.96 0.92 2.48 0.37 1.15 0.80 0.82 5.5 2479.2 1190001.2 6.0 0.56 0.94 4.19 0.99 2.62 0.38 1.08 0.91 0.94 6.0 2700.2 1296090.2 6.1 0.58 1.00 4.43 1.05 2.77 0.38 1.00 1.05 1.08 6.4 2894.4 1389314.9 6.1 0.58 1.06 4.69 1.11 2.93 0.38 0.89 1.25 1.24 6.8 3051.3 1464608.4 6.1 0.58 1.13 5.00 1.16 3.12 0.37 0.75 1.55 1.45 7.0 3156.0 1514862.7 6.0 0.57 1.19 5.38 1.20 3.36 0.36 0.54 2.21 1.79 7.1 3181.8 1527252.8 5.9 0.54 1.25 6.28 1.23 3.93 0.31 0.00 6.6 2962.1 1421822.7 5.4 0.45 Flow (cfs) 0.48 0.48 Q = Contributing DA 3.05 TOTAL 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Pipe #23 (See Sheet SD 1.3) 24" pipe from Curb Inlet 14 to Curb Inlet 4 CIRCULAR CHANNEL Manning's Eqn.1.486 A R2/3 S1/2 n Diameter,do (in) =24.0 Enter Value Diameter,do (ft) =2.00 Units =1.486 n =0.009 Slope, S (ft/ft)0.0145 Depth, y (ft) Theta (rad) Area, A (ft 2) Wetted Perimeter, P (ft) Hydraulic Radius, R (ft) Top Width, T (ft) Hydraulic Depth, D (ft) Section Factor, Z (ft5/2) Q (cfs) Q (gpm) Q (gpd - 8 hour day) V (ft/s) Energy, E = V2/2g (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.2 84.8 40705.1 3.2 0.16 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.8 368.7 176971.2 5.0 0.39 0.30 1.59 0.30 1.59 0.19 1.43 0.21 0.13 1.9 858.4 412038.1 6.5 0.65 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 3.4 1546.5 742300.0 7.7 0.92 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 5.4 2419.0 1161129.0 8.8 1.20 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 7.7 3458.3 1659967.0 9.7 1.47 0.70 2.53 0.98 2.53 0.39 1.91 0.51 0.70 10.3 4643.4 2228814.8 10.6 1.73 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 13.3 5951.0 2856483.6 11.3 1.98 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1.14 16.4 7355.7 3530721.5 12.0 2.22 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1.39 19.7 8829.7 4238260.0 12.5 2.44 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 23.0 10343.3 4964790.4 13.0 2.63 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 26.4 11864.3 5694867.0 13.4 2.80 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 29.8 13357.7 6411711.2 13.8 2.94 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 32.9 14785.1 7096861.8 14.0 3.05 1.50 4.19 2.53 4.19 0.60 1.73 1.46 3.05 35.9 16103.2 7729549.5 14.2 3.13 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 38.5 17261.5 8285517.7 14.3 3.16 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 40.5 18197.0 8734549.0 14.2 3.15 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 41.9 18821.4 9034252.6 14.1 3.08 1.90 5.38 3.08 5.38 0.57 0.87 3.54 5.80 42.3 18975.3 9108144.2 13.7 2.92 2.00 6.28 3.14 6.28 0.50 0.00 39.4 17665.4 8479386.1 12.5 2.44 Flow (cfs) 0.3 11.46 3.4 0.7 0.5 0.1 0.48 0.06 1.03 18.03 Q = Contributing DA 4.1 4.2 3.01 3.02 4.3 3.03 TOTAL 3.04 3.05 3.10 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 0.00 0.50 1.00 1.50 2.00 2.50 Depth (ft) Q (CFS) V (ft/s) E (ft)ydoT THETA Appendix F: Stormwater Drainage Exhibit – Pre-development: SD1.0 MW S. 11TH AVEGRAF ST ARNOLD ST BASIN 1 OPPORTUNITY WAY BASIN 2 1 inch = 0 SCALE 300 feet 600'150' 300' SD1.0MADISON ENGINEERING 895 TECHNOLOGY BLVD, STE 203, BOZEMAN, MT 59718 PHONE (406) 586-0262 ALLISON SUBDIVISION PHASE IV STORM WATER DRAINAGE EXHIBIT PRE-DEVELOPMENT BASIN DELINEATION BOZEMAN, MT Appendix G: Stormwater Drainage Exhibit – Post-development: SD1.1 DRAINAGE AREA 6 16.44 AC R-1 ARNOLD ST S. 11TH AVEGRAF ST FUTURE ARNOLD ST DRAINAGE AREA 4.1 0.09 AC R.O.W. (SEE S. 11TH IMPROVEMENTS DRAINAGE MAP)DRAINAGE AREA 2 1.24 AC R-2 1.61 AC LOCAL R.O.W. DRAINAGE AREA 1 5.10 AC R-1 2.16 AC R-2 3.63 AC R-3 2.27 AC LOCAL R.O.W. 1.13 AC ALLEY R.O.W. OPPORTUNITY WAY DRAINAGE AREA 3 1.17 AC R-1 1.15 AC ARNOLD R.O.W. 0.16 AC GRAVEL 0.14 AC LOCAL ST. R.O.W. 0.17 AC ALLEY R.O.W. DRAINAGE AREA 1.1 0.92 AC R.O.W. (SEE S. 11TH IMPROVEMENTS DRAINAGE MAP) DRAINAGE AREA 4.2 3.69 AC R.O.W. 16.20 AC R-1 (SEE S. 11TH IMPROVEMENTS DRAINAGE MAP) DRAINAGE AREA 7 15.93 AC R-1 DRAINAGE AREA 4.3 GRAF ST & S 11TH 1.93 AC R.O.W. 3.10 AC R-1 EXT'G ALDER CREEK 3 INLETS 1 inch = 0 SCALE 300 feet 600'150'300' SD1.1MADISON ENGINEERING 895 TECHNOLOGY BLVD, STE 203, BOZEMAN, MT 59718 PHONE (406) 586-0262 ALLISON SUBDIVISION PHASE IV STORM WATER DRAINAGE EXHIBIT POST-DEV. DRAINAGE AREA DELINEATION BOZEMAN, MT Appendix H: Stormwater Drainage Exhibit – Curb Inlet Drainage Areas: SD1.2 DRAINAGE AREA 6 16.44 AC R-1 ARNOLD ST S. 11TH AVEGRAF ST OPPORTUNITY WAY DA 1.02 DA 1.04 DA 1.05 DA 1.07 DA 2 DA 4.2 FUTURE ARNOLD ST DA 4.3 1 inch = 0 SCALE 300 feet 600'150'300' SD1.2MADISON ENGINEERING 895 TECHNOLOGY BLVD, STE 203, BOZEMAN, MT 59718 PHONE (406) 586-0262 ALLISON SUBDIVISION PHASE IV STORM WATER DRAINAGE EXHIBIT CURB INLET DRAINAGE AREA DELINEATION BOZEMAN, MT SUMMARY TABLE Appendix I: Stormwater Drainage Exhibit – Pipe Sizing Identification Map: SD1.3 S. 11TH AVEOPPORTUNITY WAY FUTURE ARNOLD ST ARNOLD ST. 1 inch = 0 SCALE 300 feet 600'150'300' SD1.3MADISON ENGINEERING 895 TECHNOLOGY BLVD, STE 203, BOZEMAN, MT 59718 PHONE (406) 586-0262 ALLISON SUBDIVISION PHASE IV STORM WATER DRAINAGE EXHIBIT PIPE SIZING IDENTIFICATION MAP BOZEMAN, MT SUMMARY TABLE Appendix J: Stormwater Maintenance Plan G:\MADISON ENGINEERING\PROJECTS\2018\18-118 Allison Sub\Reports\Stormwater\STORMWATER MAINTENANCE PLAN.doc STORMWATER MAINTENANCE PLAN Allison Subdivision Ph 4 Owner’s responsibility for routine inspection and maintenance 1. Keep the outlet and inlets of the facility free of leaves, rocks, and other debris. 2. The storm water retention basins are to be mowed regularly. During the summer, approximately once every two weeks, the grass is to be mowed and the cuttings are to be promptly removed and disposed of. Unless visibly tainted, dispose of lawn clippings in the same manner as yard waste. Otherwise, bag and take to a sanitary landfill. 3. Remove sediment by hand with a flat bottom shovel during the summer months whenever sediment covers vegetation. Have the grass cut short in that particular location so that the bed can be made as level as possible. 4. Re-sod damaged or maintained areas immediately, or use grass plugs from the adjacent up-slope area. 5. Inspect the facilities periodically, especially after heavy rains (preferably monthly and after each storm that delivers 0.5 inches of rainfall). 6. Inspect flow control outlet semi-annually. Clean outlet when soil and vegetation buildup interfere with flow introduction. 7. See that litter and other debris are removed from retention basins and swales. 8. Owner to maintain and fund Operation and Maintenance of stormwater facilities. _______________________________ Eugene Graf III, Bon Ton Inc, Owner Appendix K: Groundwater Monitoring Well Location Map and Groundwater Data Allison Subdivision, Phase IV & V, Bozeman _____ March 22nd 2019_ 9 Cedar Lake Drive, Butte, Montana Phone: (406) 209-5573 Cell: (406) 539-8439 4 A.3. Scope The scope of services is outlined in the Executive Summary. The authorization to proceed in accordance with our proposal was given in writing by the Owner’s representative, Chris Budeski, PE. A.4. Excavated Bore Investigation Bores (B-#) locations were selected by Andrew Pilskalns, P.E., Geotechnical Engineer with Castle Rock Geotechnical Engineering. The approximate locations are shown in Figure 2, Bore Hole Map. Bore 1 through 6 were used to define the subsurface characteristics of Ph-IV & V of Allison Subdivision. Figure 2- Bore Map – Preliminary Plat B. Field Investigation B.1. Logs Log of Boring sheets indicating the depth and identification of the various soil strata and water level information can be found in the Attachments. It should be noted the depths shown as boundaries between the strata are approximated. The actual changes may be transitions and the depths of the changes vary slightly between test holes. All measurements in the bores are taken from the top of pre-development grade. Figure 2 –Bore Map shows the approximate bore locations on the property. Geologic origins presented for the stratum recorded on the Log of Boring sheets are based on the soil types and available knowledge of the depositional history of the site. Because of the complex alluvial and post-glacial Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 5/3/2019 6.45 6.60 4.40 7.15 DRY 3.17 5/9/2019 6.51 7.79 4.71 7.14 DRY 3.28 5/17/2019 6.30 7.96 4.88 7.00 DRY 3.23 5/29/2019 6.47 7.93 4.88 6.77 7.01 DRY 6/14/2019 6.66 8.32 4.97 7.39 7.44 DRY 6/27/2019 6.02 7.81 4.06 5.98 6.75 3.64 7/12/2019 5.36 7.82 5.35 7.58 7.27 DRY 7/26/2019 5.91 7.89 5.45 7.01 DRY DRY 5/8/2020 8.61 DRY 5.17 DRY 8.98 6.87 5/15/2020 DRY DRY 6.07 9.34 9.15 DRY 5/27/2020 8.47 DRY 6.08 9.42 9.16 DRY 6/5/2020 8.54 DRY 6.26 9.52 9.22 DRY 6/12/2020 8.24 DRY 6.13 9.60 9.26 DRY 6/19/2020 7.77 DRY 5.90 9.55 9.17 DRY 6/26/2020 7.54 DRY 5.84 9.58 9.25 DRY 7/3/2020 8.07 DRY 5.97 9.60 9.33 DRY 7/13/2020 8.24 DRY 6.56 9.63 9.84 DRY Min 5.36 6.60 4.06 5.98 6.75 3.17 Avg 5.32 Allison PH 4 Groundwater Monitoring Summary Appendix L: Excerpts from Stormwater Design Report for South 11th Avenue project (June 2017) Appendix M: Excerpts from Design Report for Allison Minor Subdivision (April 1999) Appendix N: Manning’s Roughness coefficient for PVC