Loading...
HomeMy WebLinkAbout011 Stormwater Design Report (Ph. I) STORMWATER DESIGN REPORT FOR: GRAN CIELO SUBDIVISION BOZEMAN, MT Prepared By: M MADISON ENGINEERING Madison Engineering 895 Technology Blvd Ste 203 Bozeman, MT 59718 (406) 586-0262 APRIL 2019 STORMWATER DESIGN REPORT FOR: GRAN CIELO SUBDIVISION BOZEMAN, MT ' C}�i�4S G.''. • Ott/t11111\ Madison Engineering 895 Technology Blvd Ste 203 Bozeman, MT 59718 (406) 586-0262 APRIL 2019 GRAN CIELO SUBDIVISION STORMWATER DESIGN REPORT A. Introduction This design report will give an overview of the stormwater management plan for the proposed 48.75 acre Gran Cielo Subdivision in Bozeman, MT. The site is currently undeveloped and is vacant except for one barn which will be removed prior to development of the site. Stormwater management within the subdivision will be accomplished with the combination of surface/gutter flow, pipe conveyance, and detention facilities. Monolithic curb and gutters and valley gutters will be utilized to transfer stormwater from in the drain inlets which will be connected to the closed conveyance piping collection system. The stormwater basins and flow control structures will control and meter the discharge of the increased flow to the 10-year pre-development flows and will help remove solids, silt, oils grease and other pollutants from the stormwater, with the first 0.5 inches of rainfall from a 24-hour storm event preceded by 48 hours of no measurable precipitation also captured. The collection system will be designed to convey the 25-year storm event. The following references were used in the preparation of this report: a. COB Design Standards and Specifications Policy, 2004. Addendum#6 b. COB Modifications to Montana Public Works Standard Specifications (MPWSS). Addendum#3 c. Bozeman Stormwater Master Plan- 1982 B. Peak Flow (Runoff) Calculations The project area was divided into drainage areas as shown on Sheet SD1.0, provided in Appendix G. These areas were used to determine the stormwater runoff flows, which in turn were used to determine the size of the storm drain pipes, gutter capacities, curb inlet sizes, and retention pond volumes. Temporary retention ponds will capture the stormwater from Phase 1 of the project. Ultimately, once the project is fully built out, the temporary retention ponds will be filled in and the stormwater will flow detention ponds via curb inlets and piping. Peak flow calculations are provided in Appendix B. C. Storm Drain Piping Storm drain piping from the curb inlets to the detention ponds was sized to carry the 25-year storm event peak runoff flow. All pipes are 15" and in Phase 1 are directed into the temporary retention ponds discussed in Part E. In future phases the storm drain piping will be directed into permanent detention basins. All storm drains were sized using Manning's Equation for circular channels to determine the pipes capacity to flow stormwater at specified grades. See attached storm drain piping schedule in Appendix A and calculations in Appendix C. D. Culverts There are two proposed culverts in Phase 1 to pipe a lateral of the Middle Creek Ditch to downstream irrigation users to the north of the subdivision. At the intersection of S. 27th Ave Gran Cielo Subdivision Stormwater Design Report Page I of 4 and Graf Street, a 30" PVC pipe conveys the water from the southwest corner of the intersection to the northwest corner of the intersection where it enters a 6-foot diameter manhole. It is then diverted east across Graf Street to the northeast corner of the intersection where it re-enters the existing ditch. The development of Graf Street and S. 27th Ave will require the removal of existing ditch culverts and diversion structures. The diversion structures will be replaced outside of the roadway easement. The proposed culverts will carry a capacity of approximately 36 cfs, replacing the existing 24" CMP culverts which have a capacity of approximately 22 cfs at the existing slope of 0.67 cfs. The second culvert is a 22"xl3.5" arch RCP (18" equivalent) culvert under S. 27th Ave at Apex Drive which will replace an existing 12" CMP culvert. The existing 12" CMP culvert has a capacity of approximately 5.8 cfs, while the 22"xl3.5" culvert will have a capacity to carry 8.0 cfs. See Appendix D for culvert calculations. E. Stormwater Retention/Detention Ponds Three (3) detention ponds are proposed to accommodate the stormwater runoff of Gran Cielo Subdivision at full build out, minus the pre-development runoff rates. One (1) existing detention pond and appurtenant piping and structures in Meadow Creak Subdivision Phase I will be utilized to detain a small amount of stormwater from Graf Street. All of the detention ponds are designed to handle the 10-year, 2-hr storm event. All ponds have a 4:1 side slope and are 1.5 ft deep maximum with 6" depth of freeboard. In addition, a Stormtech SC-740 Infiltration Basin Systems is proposed in a future phase in the boulevards of S. 27th Avenue. The approval of this system will be required by the City of Bozeman prior to installation. See Table 1 below for a summary of the detention pond volumes. Pond calculations are provided in Appendix E. TABLE 1 DETENTION POND VOLUMES 10-yr,2-hr Post Required Approx. Contributing Development Proposed Pond ID Basins* Peak Runoff Volume Volume (cfs) (C.F.) (C.F.) (future 1 phase) 69 7, 8, 9, 13 8.30 12,105 14,427 2 3, 4, 5, 14, 15 6.39 8,753 13,385 3 2, 12, 16, 17, 18 4.14 7,842 7,846 (_future phase) Infiltration Basin 3 1 0.72 487 533 (future phase) 4 (Mead Creek Phaow1) 11 0.54 450 1,505 se * See Sheet SD1.0 Storm Drainage Basins There are temporary detention basins proposed at the northern limits of phase 1 as necessary to capture the stormwater runoff from Phase 1. These ponds were sized to handle a 10-year, 2-hr storm event. As the future phases of Gran Cielo subdivision are built, the temporary ponds will Gran Cielo Subdivision Stormwater Design Report Page 2 of 4 be removed and replaced with permanent detention ponds and stormwater infrastructure. See Table 2 below for a summary of the temporary retention pond volumes. Retention pond calculations are provided in Appendix E. TABLE 2 TEMPORY RETENTION POND VOLUMES Pond ID Contributing Basins* Post Required Approx. Development Volume (C.F.) Proposed Peak Runoff Volume (C.F.) (cfs) A 1, 2, 12 0.47 3,412 4,347 B 6, 7 0.90 6,485 7,262 C 8, 9 1.15 8,277 9,390 D 17 0.20 1,415 2,045 E Portions of 5 & 6 0.06 429 479 F Portions of 13 0.18 1,284 1,533 G Portions of 10 0.17 1,242 1 1,253 * See Sheet SD1.0 Storm Drain Control F. Gutter Flow and Curb Inlets Curb inlets are proposed in the gutter line at intersections as required. A 25-year storm event was used to calculate the runoff flows. Based on these values, the curb inlet capacities are more than adequate for carrying the 25-year storm event. The gutter-flow capacity is also well above the designed runoff values to avoid overflow encroachment into the drive lane. Curb inlets are standard 24"x36" inlets, or double curb inlets. Gutter flow and curb inlet calculations are provided in Appendix F. G. Existing Storm Sewer System Capacity - Meadow Creek Subdivision Phase I Basin 11 will drain to an existing inlet on the southwest corner of the intersection of Graf St and S. 27th Ave. This inlet was installed with Meadow Creek Subdivision Phase I and approximately 0.54 cfs will flow into this inlet from Gran Cielo Subdivision. The table below shows the network of pipes and manholes the 0.54 cfs of stormwater from Graf Street will drain through to the outfall at the existing Detention Pond 4 on the north west corner of Graf St. and Enterprise Blvd. There is enough extra capacity in all portions of the existing system to accommodate and additional 0.54 cfs from Graf St. Detention Pond 4 was built with an extra 1,505 cf of storage capacity for a 10-year, 2-hour storm event. The stormwater from Graf Street requires 450 cf of capacity for a 10-year, 2-hour storm event. Therefore, there is adequate capacity in the existing detention pond to detain the additional stormwater from Graf Street. The peak flow calculations for Basin 11 are in Appendix B. Please note, in order to be consistent with the current City of Bozeman design standards, the pipe capacity calculations for the existing system were completed for the 25-year storm event and are in Appendix C. The calculations for the additional pond capacity required are in Appendix E. Appendix H shows the record drawing Gran Cielo Subdivision Stormwater Design Report Page 3 of 4 of the existing storm drain infrastructure in Graf St and Appendix I is the original stormwater design report for Meadow Creek Subdivision Phase I. TABLE 3 MEADOW CREEK SUBDIVISION PHASE I EXISTING SYSTEM Diameter Pipe Pipe Capacity Existing 25- Extra Capacity From To Slope Year Flow Capacity Check (in) ft/ft (cfs) in Pipe (cfs (cfs) (cfs INLET K2 MH K 12 0.0100 3.828 2.252 1.576 >0.54 OK MH K MH J 24 0.0065 19.598 17.639 1.959 >0.54 OK MH J MH I 24 0.0065 19.598 17.639 1.959 >0.54 OK MH I OUTFALL 24 0.0100 24.308 22.165 2.143 >0.54 OK Appendices A. Storm Drain Piping Schedule B. Peak Flow(runoff) Calculations C. Storm Drain Piping Calculations D. Culvert Calculations E. Stormwater Pond Calculations (Detention Ponds, Flow Control Structures, Infiltration Basins & Temporary Retention Ponds) F. Gutter Flow and Curb Inlet Calculations G. Sheet SD1.0 Storm Drainage Basins H. Record Drawing - Storm Drain Improvements Plan, Meadow Creek Subdivision Phase 1, Sheet 6 of 41 I. Meadow Creek Subdivision Phase I Stormwater Design Report Gran Cielo Subdivision Stormwater Design Report Page 4 of 4 Appendix A: Storm Drain Piping Schedule Appendix A Gran Cielo Subdivision Pipe Schedule MAXIMUM SLOPE CAPACITY ACTUAL PIPE ID SIZE N LENGTH (CFS) CONTRIBUTING BASINS DEMAND(CFS) 1 15 0.50 31 5.8 4 3.26 2 15 0.50 24 5.8 4, 5 5.35 3 15 0.50 58 5.8 2, 12, 16, 17 3.00 Appendix B: Peak Flow Calculations Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) Post-Constructed Peak Flow Summary(cfs) Area Design Rainfall Freq. (Acre) C 100 Yr 25 Yr 10 Yr Basin 1 0.78 0.67 1.62 0.97 0.72 Basin 2 0.55 0.67 1.14 0.68 0.51 Basin 3 4.46 0.38 2.36 1.70 1.35 Basin 4 6.11 0.49 4.72 3.26 2.55 Basin 5 4.51 0.40 2.94 2.09 1.66 Basin 6 3.65 0.38 2.58 1.84 1.47 Basin 7 1.46 0.56 1.63 1.08 0.83 Basin 8 4.15 0.49 4.00 2.74 2.15 Basin 9 1.63 0.48 1.79 1.22 0.96 Basin 10 0.94 0.67 1.41 0.86 0.63 Basin 11 0.47 0.67 0.90 0.54 0.40 Basin 12 0.41 0.67 0.82 0.49 0.37 Basin 13 10.17 0.46 8.82 6.12 4.82 Basin 14 2.05 0.41 1.66 1.17 0.93 Basin 15 0.33 0.73 1.16 0.62 0.45 Basin 16 0.83 0.67 1.62 0.97 0.72 Basin 17 0.72 0.67 1.45 0.86 0.64 Basin 18 8.98 0.54 9.68 6.49 5.03 Storm Information Design Rainfall Freq. 100 25 10 OF coefficient a 1.01 0.78 0.64 OF coefficient b 0.00 0.00 0.00 OF coefficient n 0.67 0.64 0.65 Adjustment Factor Cf: 1.25 1.1 1 Weighted C Values 90'Right of Way Width(ft) C Road, Curb&Gutter, Sidewalk 60 0.9 (48'TBC to TBC+6'Sidewalks) Landscaping 30 0.2 Weighted C: 0.67 60'Right of Way Width(ft) C Road, Curb&Gutter, Sidewalk 45 0.9 (35'TBC to TBC+5'Sidewalks) Landscaping 15 0.2 Weighted C: 0.73 Page 1 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) Peak Q Values BASIN 1 Area(acre) C 90' ROW 0.775 0.67 Weighted C 0.67 Low-Med. Res. 0 0.35 Average slope: 1.86 percent Open Space 0 0.2 Travel Distance 780.00 feet Total area 0.775 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 15.42 1826 minutes intensity at tc 186 1.39 in/hr peak runoff: 0.97 0.72 cfs BASIN 2 Area(acre) C 90'ROW 0 547 0.67 Weighted C 0.67 Low-Med. Res. 0 0.35 Average slope: 1.86 percent Open Space 0 0.2 Travel Distance 780.00 feet Total area 0.547 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 11.15 15.42 1826 minutes intensity at tc 312 1.86 1.39 in/hr peak runoff: 1.14 0.68 0.51 cfs BASIN 3 Area(acre) C Total Area: 4.457 acres 60' ROW 0.358 0.73 C: 0.38 Low-Med. Res. 4.099 0.35 Average slope: 1.50 percent Open Space 0 0.2 Travel Distance 1323.00 feet Total area 4.457 0.38 Design Rainfall Freq. 100 25 10 C'Cf 0.48 0.42 0.38 (Shall not exceed 1.00) Total tc: 37.10 40.49 42.75 minutes intensity at tc 1.39 1.00 0.80 in/hr peak runoff: 2.36 1.70 1.35 cfs Page 2 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) BASIN 4 Area(acre) C 90' ROW 0.227 0.67 Total Area: 6.112 acres 60' ROW 1.284 0.73 C: 0.49 Low-Med. Res. 4.044 0.35 Average slope: 1.50 percent 20'Alley 0.557 0.90 Travel Distance 1540.00 feet Open Space 0 0.2 Total area 6.112 0.49 Design Rainfall Freq. 100 25 10 C*Cf 0.61 0.54 0.49 (Shall not exceed 1.00) Total tc: 31.11 35.83 38.99 minutes intensity at tc 1 57 1.08 085 in/hr peak runoff: 4.72 3.26 2.55 cfs BASIN 5 Area(acre) C 90' ROW 0 0.67 Total Area: 4.510 acres 60'ROW 1.311 0.73 C: 0.40 Low-Med. Res. 0.882 0.35 Average slope: 1.71 percent 20'Alley 0.107 0.90 Travel Distance 976.00 feet Open Space 2.21 0.2 Total area 4.510 0.40 Design Rainfall Freq. 100 25 10 C*Cf 0.50 0.44 0.40 (Shall not exceed 1.00) Total tc: 29.31 32.24 34.20 minutes intensity at tc 1.63 1.16 0.92 in/hr peak runoff: 2.94 2.09 1.66 cfs BASIN 6 Area(acre) C 90' ROW 0 0.67 Total Area: 3.650 acres 60' ROW 0.988 0.73 C: 0.38 Low-Med. Res. 0.485 0.35 Average slope: 1.50 percent 20'Alley 0.097 0.90 Travel Distance 568.00 feet Open Space 2.08 0.2 Total area 3.650 0.38 Design Rainfall Freq. 100 25 10 C*Cf 0.48 0.42 0.38 (Shall not exceed 1.00) Total tc: 24.24 26A7 2795 minutes intensity at tc 1.85 1 32 1.05 in/hr peak runoff: 2.58 1.84 1.47 cfs Page 3 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) BASIN 7 Area(acre) C 90' ROW 0 0.67 60' ROW 0.798 0.73 Total Area: 1.459 acres Low-Med. Res. 0.661 0.35 C: 0.56 20'Alley 0 0.90 Average slope: 1.65 percent Open Space 0 0.2 Travel Distance 1150.00 feet Total area 1.459 0.56 Design Rainfall Freq. 100 25 10 C*Cf 0.70 0.61 0.56 (Shall not exceed 1.00) Total t�: 21.61 26.10 29.10 minutes intensity at tc 2.00 1 33 1.02 in/hr peak runo : 1.63 1.08 0.83 cfs BASIN 8 Area(acre) C 90' ROW 0.495 0.67 Total Area: 4.150 acres 60' ROW 0.66 0.73 C: 0.49 Low-Med. Res. 2.683 0.35 Average slope: 1.55 percent 20'Alley 0.312 0.90 Travel Distance 792.00 feet Open Space 0 0.2 Total area 4.150 0.49 Design Rainfall Freq. 100 25 10 C*Cf 0.61 0.54 0.49 (Shall not exceed 1.00) Total tc: 22.17 25.51 27.74 minutes intensity at t� 1.97 1.35 1.06 in/hr peak runoff: 4.00 2.74 2.15 cfs BASIN 9 Area(acre) C 90' ROW 0.101 0.67 60'ROW 0.482 0.73 Total Area: 1.628 acres Low-Med. Res. 1.045 0.35 C: 0.48 20'Alley 0 0.90 Average slope: 1.77 percent Open Space 0 0.2 Travel Distance 538.00 feet Total area 1.628 0.48 Design Rainfall Freq. 100 25 10 C*Cf 0.60 0.53 0.48 (Shall not exceed 1.00) Total tc: 17.82 20.42 22.15 minutes intensity at tc 2.28 1.55 1.22 in/hr peak runoff: 1.79 1.22 0." cfs Page 4 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) BASIN 10 Area(acre) C 90'ROW 0 941 0.67 Total Area: 0.941 acres 60' ROW 0 0.73 C: 0.67 Low-Med. Res. 0 0.35 Average slope: 0.52 percent 20'Alley 0 0.90 Travel Distance 894.00 feet Open Space 0 0.2 Total area 0.941 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 1825 25.24 29.90 minutes intensity at tc 2.24 1.36 1.01 in/hr peak runoff: 1.41 0.86 0.63 cfs BASIN 11 Area(acre) C 90'ROW 0.468 0.67 Total Area: 0.468 acres 60'ROW 0 0.73 C: 0.67 Low-Med. Res. 0 0.35 Average slope: 0.55 percent 20'Alley 0 0.90 Travel Distance 442.00 feet Open Space 0 0.2 Total area 0.468 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 12.60 17.42 20.63 minutes intensity at tc 2.87 1.72 1.28 in/hr peak runoff: 0.90 0.54 0.40 cfs BASIN 12 Area(acre) C 90'ROW 0 412 0.67 60'ROW 0 0.73 Total Area: 0.412 acres Low-Med. Res. 0 0.35 C: 0.67 20'Alley 0 0.90 Average slope: 0.55 percent Open Space 0 0.2 Travel Distance 400.00 feet Total area 0.412 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 11.98 16.57 19.63 minutes intensity at tc 2.97 1.78 1.32 in/hr peak runoff: 0.82 0.49 0.37 cfs Page 5 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) BASIN 13 Area(acre) C 90' ROW 0 0.67 60' ROW 2.8 0.73 Total Area: 10.171 acres Low-Med. Res. 6.8 0.35 C: 0.46 20'Alley 0.251 090 Average slope: 1.50 percent Open Space 0.32 0.2 Travel Distance 790.00 feet Total area 10.171 0.46 Design Rainfall Freq. 100 25 10 C'Cf 0.58 0.51 0.46 (Shall not exceed 1.00) Total tc: 23.91 27.10 29.23 minutes intensity at tc 1 87 1.30 1.02 in/hr peak runoff: 8.82 6.12 4.82 cfs BASIN 14 Area(acre) C 90' ROW 0 0.67 60' ROW 0.456 0.73 Total Area: 2.046 acres Low-Med. Res. 1.315 0.35 C: 0.41 20'Alley 0 0.90 Average slope: 1.83 percent Open Space 0.275 0.2 Travel Distance 633.00 feet Total area 2.046 0.41 Design Rainfall Freq. 100 25 10 C"Cf 0.52 0.46 0.41 (Shall not exceed 1.00) Total tc: 22.38 24.77 26.37 minutes intensity at t, 1.37 1.09 in/hr peak runoff: 1.66 1.17 0.93 cfs BASIN 15 Area(acre) C 90' ROW 0 0.67 Total Area: 0.327 acres 60' ROW 0 327 0.73 C: 0.73 Low-Med. Res. 0 0.35 Average slope: 0.84 percent 20'Alley 0 0.90 Travel Distance 240.00 feet Open Space 0 0.2 Total area 0.327 0.73 Design Rainfall Freq. 100 25 10 C*Cf 0.91 0.80 0.73 (Shall not exceed 1.00) Total tc: 576 9.12 11.36 minutes intensity at tc 4.86 2.60 1.89 in/hr peak runoff: 1.16 0.62 0.45 cfs Page 6 of 7 Gran Cielo Subdivision Appendix B Post-Constructed Peak Flow Calculations (cfs) BASIN 16 Area(acre) C 90'ROW 0 831 0.67 60'ROW 0 0.73 Total Area: 0.831 acres Low-Med Res. 0 0.35 C: 0.67 20'Alley 0 0.90 Average slope: 1.40 percent Open Space 0 0.2 Travel Distance 800.00 feet Total area 0.831 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 12.41 17.16 2033 minutes intensity at tc 290 1 74 1 29 in/hr peak runoff: 1.62 0.97 0.72 cfs BASIN 17 Area(acre_) C 90' ROW 0 719 0.67 60' ROW 0 0.73 Total Area: 0.719 acres Low-Med. Res. 0 0.35 C: 0.67 20'Alley 0 0.90 Average slope: 1.26 percent Open Space 0 0.2 Travel Distance 675.00 feet Total area 0.719 0.67 Design Rainfall Freq. 100 25 10 C*Cf 0.84 0.74 0.67 (Shall not exceed 1.00) Total tc: 11.81 16.33 1934 minutes intensity at tc 3.00 1 79 1 34 in/hr peak runoff: 1.45 0.86 0.64 cfs BASIN 18 Area(acre) C 90' ROW 0 0.67 Total Area: 8.981 acres 60' ROW 1.76 0.73 C: 0.54 High Dens. Res. 7.01 0.5 Average slope: 1.26 percent 20'Alley 0 0.90 Travel Distance 850.00 feet Open Space 0.21 0.2 Total area 8.981 0.54 Design Rainfall Freq. 100 25 10 C*Cf 0.67 0.59 0.54 (Shall not exceed 1.00) Total tc: 21.58 25.65 28.37 minutes intensity at tc 2.00 1.34 1.04 in/hr peak runoff: 9.68 6.49 5.03 cfs Page 7 of 7 Appendix C: Storm Drain Piping Calculations 15"Storm Drain Pipe Gran Cielo Subdivision CIRCULAR CHANNEL T Appendix C Manning's Eqn. Q=1.486 A Rv3 S'/2 n Diameter,do(in)= 15 ♦-Enter Value $ >, Diameter,do(ft)= 1.25 THETA Units= 1.486 n= 0.011 PVC Slope,S(ft/ft) 0.005 Wetted Hydraulic Hydraulic Section Energy, Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z Q(gpd-8 =V2/2g Depth,y(ft) Theta(rad) (ft) (ft) (ft) T(ft) (ft) (ft") Q(cfs) Q(gpm) hour day) V(ft/s) (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.06 0.90 0.02 0.56 0.04 0.54 0.04 0.00 0.0 11.6 5584.4 1.1 0.02 0.13 1.29 0.06 0.80 0.08 0.75 0.09 0.02 0.1 50.6 242792 1.8 0.05 0.19 1.59 0.12 0.99 0.12 0.69 0.13 0.04 0.3 117.8 56528.6 2.3 0.08 0.25 1.85 017 1.16 0.15 1.00 0.17 0.07 0.5 212.2 101838.1 2.7 0.11 0.31 2.09 0.24 1.31 0.18 1.08 0.22 0.11 0.7 331.9 159298.4 3.1 0.15 0.38 2.32 0.31 1.45 0.21 1.15 0.27 0.16 1.1 474.4 227735.3 3.4 0.18 0.44 2.53 0.38 1.58 0.24 1.19 0.32 0.22 1.4 637.0 305777.0 3.7 0.21 0.50 2.74 0.46 171 0.27 1.22 0.37 0.28 1.8 816.4 391888.6 4.0 0.24 0.56 2.94 0.54 1.84 0.29 1.24 0.43 0.35 2.2 1009.1 484389.1 4.2 0.27 0.63 3.14 0.61 1.96 0.31 1.25 0.49 0.43 2.7 1211.4 581456.2 4.4 0.30 0.69 3.34 0.69 2.09 0.33 1.24 0.56 0.52 3.2 1419.0 681132.8 4.6 0.32 0.75 3.54 0.77 2.22 0.35 1.22 0.63 0.61 3.6 1627.7 781293.9 4.7 0.35 0.81 3.75 0.84 2.34 0.36 1.19 0.71 0.71 4.1 1832.6 879639.7 4.8 0.36 0.88 3.96 0.92 2.48 0.37 1.15 0.80 0.82 4.5 2028.4 973637.3 4.9 0.38 0.94 4.19 0.99 2.62 0.38 1.08 0.91 0.94 4.9 2209.2 1060437.4 5,0 0.39 1.00 4.43 1.05 2.77 0.38 1.00 1.05 1.08 5.3 2366.2 1136712.2 5.0 0.39 1.06 4.69 1.11 2.93 0.38 0.89 1.25 1.24 5.6 2496.5 1198316.0 5.0 0.39 1.13 5.00 1.16 3.12 0.37 0.75 1.55 145 5.8 2582.2 1239433.1 4.9 0.38 1.19 5.38 1.20 3.36 0.36 0.64 2.21 1.79 5.8 2603.3 1249570.5 4.8 0.36 1.25 6.28 1.23 3.93 0.31 0.00 5.4 2423.6 1163309.5 4.4 0.30 7.0 6.0 5.0 ----0(CFS) 40 E(n) 30 / �'�• 2.0 1.0 0.0 0.00 0.20 0.40 0.60 080 1.00 1 20 1.40 Depth(ft) 12"Storm Drain Pipe INLET K2 to MH K CIRCULAR CHANNEL T Appendix C Manning's Eqn. Q=1.486 A R"'Sin / n Diameter,do(in)= 12 4-Enter Value Diameter,do(ft)= 1 )111 1 A , Units= 1.486 n= 0.013 PVC Slope,S(ft/ft) 0.01 Wetted Hydraulic Hydraulic Section Energy, Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z Q(gpd-8 =V2l2g Depth,y(ft) Theta(rad) (ft) (ft) (ft) T(ft) (ft) (ftu) Q(cfs) Q(gpm) hour day) 'V(ft1s) (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 00 0.0 0.0 0.00 0.05 0.90 0.01 0.45 0.03 0.44 0.03 0.00 0.017 7.7 3685.7 1.2 0.02 0.10 1.29 0.04 0.64 0.06 0.60 0.07 0.01 0.074 33.4 16024.0 1.8 0.05 0.15 1.59 0.07 0.80 0.09 0.71 0.10 0.02 0.173 777 37308.3 2.3 0.09 0.20 1.85 0.11 0.93 0.12 0.80 0.14 0.04 0.312 140.0 67212.2 2.8 0.12 0.25 2.09 0.15 1.05 0.15 0.87 0.18 0.06 0.488 219.0 105135.4 3.2 0.16 0.30 2.32 0.20 1.16 0.17 0.92 0.22 0.09 0.698 313.1 150303.1 3.5 0.19 0.35 2.53 0.24 1.27 0.19 0.95 0.26 0.12 0.937 420.4 201809.9 3.8 0.23 0.40 2.74 0.29 1.37 0.21 0.98 0.30 0.16 1.201 538.8 258642.7 4.1 0.26 0.45 2.94 0.34 1.47 0.23 0.99 0.34 0.20 1.484 666.0 3196921 4.3 0.29 0.50 3.14 0.39 1.57 0.25 1.00 0.39 0.25 1.781 799.5 383756.8 4.5 0.32 0.55 3.34 0.44 1.67 0.26 0.99 0.44 0.30 2.087 936.5 449541.1 4.7 0.35 0.60 3.54 0.49 1.77 0.28 0.98 0.50 0.35 2.394 1074.3 515646.5 4.9 0.37 0.65 3.75 0.54 1.88 0.29 0.95 0.57 0.41 2.695 1209.5 580553.8 5.0 0.39 0.70 3.96 0.59 1.98 0.30 0.92 0.64 0.47 2.983 13387 642591.3 5.1 0.40 0.75 4.19 0.63 2.09 0.30 0.87 0.73 0.54 3.249 1458.1 699878.6 5.1 0.41 0.80 4.43 0.67 2.21 0.30 0.80 0.84 0.62 3.483 1563.0 7502192 5.2 0.42 0.85 4.69 0.71 2.35 0.30 0.71 1.00 0.71 3.671 1647.7 790877.1 5.2 0.41 0.90 5.00 0.74 2.50 0.30 0.60 1.24 0.83 3.797 1704.2 818014.0 5.1 0.40 0.95 5.38 0.77 2.69 0.29 0.44 1.77 1.02 3.828 1718.1 824704.6 5.0 0.38 1.00 6.28 0.79 3.14 0.25 0.00 3.564 15995 767773.1 4.5 0.32 6.000 - 5.000loe 4.000 1-1 0(CFS) // _vMA) 000 E(ft) / 2.000 1.000 0 000 0.00 0.20 040 0.60 0.80 1 00 1 20 Depth(ft) 24"Storm Drain Pipe MHKtoMHJ MHJtoMHI CIRCULAR CHANNEL T Appendix C Manning's Eqn. Q=1.486 A Rv3 S'n n Diameter,do(in)= 24 -0-Enter Value a Diameter,do(ft)= 2 THETA Units= 1.486 n= 0.013 PVC Slope,S(ft/ft) 0.0065 Wetted Hydraulic Hydraulic Section Lnergy, Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z Q(gpd-8 =VZ/2g Depth,y(ft) Theta(rad) (ft) (ft) (ft) T(ft) (ft) (ftw) Q(cfs) Q(gpm) hour day) 'V(ft/s) (ft) 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.000 00 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.088 39.3 18867.8 1.5 0.03 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.381 170.9 82030.3 2.3 0.08 0.30 1.59 0.30 1.59 0.19 1.43 0,21 0.13 0.887 397.9 190989.4 3.0 0.14 0.40 1.85 0.45 1.85 0.24 1.60 0,28 0.24 1.597 716.8 344073.6 3.6 0.20 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 2.498 1121.3 538210.7 4.1 0.26 0.60 2.32 0.79 2.32 0.34 1.03 0,43 0.52 3.572 16030 769433.9 4.5 0.32 0.70 2.53 0.98 2.53 0.39 1.91 0.51 0.70 4.796 21523 1033108.2 4.9 0.37 0.80 2.74 1.17 2.74 0.43 1.96 0,60 0.91 6.146 2758.4 1324047.5 5.2 0.43 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1.14 7.597 34095 1636572.7 5.5 0.48 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1.39 9.119 4092.8 1964533.5 5.8 0.52 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 10.683 47944 2301297.4 6.0 0.57 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 12.264 5499.4 2639705.1 6.2 0.60 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 13.796 61916 2971979.3 6.4 0.63 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 15.270 6853.3 3289562.8 6.6 0.66 1.50 4.19 2.53 4.19 0.60 1.73 1,46 3.05 16.632 7464.2 3582828.5 6.6 0.67 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 17.828 8001.1 3840532.8 6.6 0.68 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 18.794 8434.7 4048669.4 6.6 0.68 1.00 5.00 2.98 5.00 0.60 1.20 2.48 4.69 19.439 87241 4187589.1 6.5 0.66 1.90 5.38 3.08 5.38 0.57 0.87 354 5.8r 19.598 8795.5 4221839.6 6.4 0.63 2.00 6.28 3.14 6.28 0.50 0.00 18.245 8188.3 3930395.4 5.8 0.52 25.000 20 000 , Q(rFSI 000 -vi") .� E(RI � i 000 - f i i i 5.000 .� i i 0000 0.00 0.50 1.00 1.50 2.00 2.50 Depth(ft) 24"Storm Drain Pipe MH I to Outfall CIRCULAR CHANNEL T Appendix C Manning's Eqn. Q= 1.486 A Rti'S"' nr 0 Diameter,do(in)= 24 -0-Enter Value i Diameter,do(ft)= 2 THETA j Units= 1.486 _ n= 0.013 PVC Slope,S(ft/ft) 0.01 Wetted Hydraulic Hydraulic bection Fnergy, Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z Q(gpd-8 =V'/2g Depth,y(ft) Theta(rad) (ft') (ft) (ft) T(ft) (ft) (ft61') Q(cfs) Q(gpm) hour day) V(ft/s) (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 00 0.0 0.0 0.00 0.10 0.90 0.06 0.90 0.07 0.87 0.07 0.02 0.109 48.8 234026 1.8 0.05 0.20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.472 212.0 101746.1 2.9 0.13 0.30 1.59 0.30 1.59 0.19 1.43 0,21 0.13 1.100 493.5 236893.2 3.7 0.22 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 1.981 889.1 426770.7 4.4 0.30 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 3.099 1390.8 667568.2 5.0 0.40 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 4.430 1988.3 954365.2 5.6 0.49 0.70 2.53 0.98 253 0.39 1.91 0.51 070 5.948 2669.6 1281413.1 6.1 0.57 0.80 2.74 1.17 2.74 0.43 1.96 0.60 091 7.623 3421.4 1642278.8 6.5 0.66 0.90 2.94 1.37 2.94 0.47 1.99 0.69 1,14 9.423 4229.0 2029918.6 6.9 0.73 1.00 3.14 1.57 3.14 0.50 2.00 0.79 1 39 11.311 5076.5 2436703 9 7.2 0.81 1.10 3.34 1.77 3.34 0.53 1.99 0.89 167 13.250 5946.7 2854408.2 7.5 0.87 1.20 3.54 1.97 3.54 0.56 1.96 1.00 197 15.199 6821.1 32741513 7.7 0.93 1.30 3.75 2.16 3.75 0.58 1.91 1.13 2.30 17.112 7679.8 36862867 7.9 0.97 1,40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 18.940 8500.4 40802005 8.1 1.01 1.50 4.19 2.53 4.19 0.60 1.73 1.46 305 20.629 9258.2 4443951 8 8.2 1.03 1.60 4.43 2.69 4.43 0.61 1.60 1.68 350 22.113 9924.2 47635947 8.2 1.05 1.70 4.69 2.85 4.69 0.61 1.43 1.99 4.02 23.311 10462.0 50217564 8,2 1.04 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 24.111 10821.0 5194065.1 8.1 1.02 1.90 5.38 3.08 5.38 0.57 0.87 3 54 5,80 24.308 10909.5 52365476 7.9 0.97 2.00 6.28 3.14 6.28 0.50 0.00 22.630 10156.4 48750555 7.2 0.81 30.000 25.000 - 20.000 i p(CFS) I 10.000 i 5.000 - 0.000 - 0.00 0.50 1.00 1.50 2.00 2.50 Depth(ft) Appendix D: Culvert Calculations 30"PVC Culvert Appendix D CIRCULAR CHANNEL Appendix E -T -- Manning's Eqn. Q=1.486 A R2n S'/2 n / �1 Diameter,do(in)= 30 4-Enter Value $ T Diameter,do(ft)= 2.5 THETA Units= 1.486 --- n= 0.011 Slope,S(ft/ft) 0.005 Wetted Hydraulic Hydraulic beubull Energy, Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z Q(gpd-8 =V2/2g Depth,y(ft) Theta(rad) (ft) (ft) (ft) T(ft) (ft) (ftsn) Q(cfs) Q(gpm) hour day) V(ftls) (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 0.13 0.90 0.09 1.13 0.08 1.09 0.08 0.03 0.2 739 35459.0 1.8 0.05 0.25 1.29 0.26 161 0.16 1.50 0.17 0.11 0.7 321,2 154163.0 2.8 0.12 0.38 1.59 046 1 99 0.23 1.79 0.26 0.23 1.7 747.8 358934.3 3.6 0.20 0.50 1.85 0.70 232 0.30 2.00 0.35 0.41 3.0 1347.1 646631.7 4.3 0.29 0.63 2.09 0-96 2.62 0.37 2.17 0.44 0.64 4.7 2107.3 1011481.6 4.9 0.37 0.75 2.32 1 24 2.90 0.43 2.29 0.54 091 6.7 3012.6 1446028.9 5.4 0.46 0.88 2.53 153 3.17 0.48 2.38 0.64 1.23 9.0 4044.9 1941563.1 5.9 0.54 1.00 2.74 1 83 3.42 0.54 2.45 0.75 1.59 11.6 5184.0 24883373 6.3 0.62 1.13 2.94 214 3,68 0.58 2.49 0.86 1.99 14.3 6407.7 30756789 6.7 0.69 1.25 3.14 245 3.93 0.63 2.50 0.98 2.43 17.1 7691-7 3692029.2 7.0 0.76 1.38 3.34 277 4.18 0.66 2.49 1.11 292 20.1 9010.3 43249237 7.3 0.82 1.50 3.54 308 4.43 0.69 2.45 1.26 3.45 23.0 10335.2 4960907.3 7.5 0.87 1.63 3.75 3 38 469 0.72 2.38 1.42 4.02 25.9 11636.2 55853640 7.7 0.91 1.75 3.96 367 496 0.74 2.29 1.60 4.65 28.7 12879.6 6182211.8 7.8 0.95 1.88 4.19 3 95 5.24 0.75 2.17 1 82 5.33 31.3 14027.8 6733358.1 7.9 0.97 2.00 4.43 421 5.54 0.76 2.00 2.10 6.11 33.5 15036.8 7217672.5 8.0 0.98 2.13 4.69 445 5.87 0.76 1.79 2.49 7.02 35.3 15851.7 7608832.3 7.9 0.98 2.25 5.00 465 6.25 0.75 1.50 3.10 8.20 36.5 16395.6 7869909.8 7.9 0.96 2.38 5.38 4,82 6.73 0.72 1.09 4.42 10.13 36.8 165297 79342782 7.6 0.91 2.50 6.28 4.91 7.85 0.63 0.00 34.3 153887 7386555.0 7.0 0.76 40.0 35.0 `. / / 30.0 / / / 250 i ----O(CFS) / I V(.) i20.0 / I E(R) / 15.0 10.0 5.0 0.0 0.00 0.50 1.00 1.50 2,00 2.50 3.00 Depth(ft) Headwater Depth For Circular Culvert I Project: Gran Cielo Subdivision-Middle Creek Ditch Pipe ID: S.27th Ave&Graf St culvert x-section D Inlet 0 I - - -- - - - --- - - - - -- - ------i; L Outlet e H adrauue, ion D e0m Taiduarba V Ion d _ LSo-y - - - - - - - - - Sbpe So - Section 1 S"AAU 2 Design Information (input) Design Discharge Q= 36.8 cfs Pipe Diameter D= 30.00 inches Inlet Edge Type(choose from pull-down list) Inlet Type= Square End Projection Inlet Invert Elevation IQ = 4971.53 ft Outlet Invert Elevation Oe = 4970.51 ft Pipe Length L = 189.0 ft Manning's Roughness n-value n = 0.013 Bend Loss Coefficient Kb = 0.50 Exit Loss Coefficient Kx = 1.00 Tailwater Water Surface Elevation El.Y,= 4976.31 ft Calculations (output) Pipe Cross Sectional Area A.= 4.91 sq ft Culvert Slope So= 0.0054 ft/ft Normal Flow Depth Yn= 2.50 ft Critical Flow Depth Y�= 2.06 ft Headwater Depth by Inlet Control Headwater Depth by Inlet Control HW-inlet= 3.94 ft Headwater Depth by Outlet Control Tailwater Depth for Design d= 5.80 ft Friction Loss Coefficient over Culvert Length Kf = 1.73 Sum of All Loss Coefficients Ks= 3.43 Headwater Depth by Outlet Control HW-outlet= 8.65 ft Desion Headwater Depth HW= 8.65 ft HW/D Ratio= HWID= 3.46 Headwater Depth Calculator-Graf&27th Ave, HW-Pipe 8/1/2018, 9:39 PM 18"x 29"Arch RCP Culvert Appendix D CIRCULAR CHANNEL Appendix E T Manning's Eqn. Q-1.466 A R' S1Q n Diameter,do(In)= 24 ♦-Enler Value 10"rise x 29"span equivalent v4 Diameter,do(it)= 2 THETA Units 1.406 n= 0.013 Slope,S(fVft) 0.0164 Wetted HyOraunc Hydraulic Section n91gy. Area,A Perimeter,P Radius,R Top Width, Depth,D Factor,Z 0(gpd.6 =V212g Depth,y Oil Theta(nod) (fe) (ft) (ft) T(ft) (ft) (ftw) 0lcfs) 0(0pm) hour day) 'v(fils) (ft) 0.00 000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.00 010 0.90 0.06 0.90 0.07 0.87 007 0.02 0.1 62.4 29970.0 2.4 0.09 0,20 1.29 0.16 1.29 0.13 1.20 0.14 0.06 0.6 271.5 130298.6 3.7 0.21 0.30 1.59 0.30 1.59 0.19 1.43 0.21 0.13 1A 6320 3033713 4.8 0.35 0.40 1.85 0.45 1.85 0.24 1.60 0.28 0.24 La 113B.6 546533.2 5.7 0.50 0.50 2.09 0.61 2.09 0.29 1.73 0.35 0.37 4.0 17811 854904.4 6.5 0.65 0.60 2.32 0.79 2.32 0.34 1.83 0.43 0.52 5.7 2546.2 1222183.6 7.2 0.00 0.70 2.53 0.9B 2.53 0.39 1.91 0.51 0.70 7.6 34188 16410D9 4 7.8 0.94 0.80 2.74 1.17 2.74 0.43 1.96 0.60 0.91 9.8 4381.5 2103143.0 8.3 1.07 0.90 2,94 1.37 2.94 0.47 1.99 0.69 1.14 12.1 5415.8 2599564.2 8.6 1.20 1.00 3,14 1.57 3.14 0.50 2.00 0.79 1.39 14.4 6501.0 3120503.5 9.2 1.32 1.10 3.34 1.77 3.34 0.53 1.99 0.89 1.67 17.0 7615.5 3655426.0 9.6 1.43 1.20 3.54 1.97 3.54 0.56 1.96 1.00 1.97 19.6 87353 4192959.5 9.9 1.52 1.30 3.75 2.16 3.75 0.58 1.91 1 13 2.30 21.9 9834.9 47207503 10.1 1.60 1.40 3.96 2.35 3.96 0.59 1.83 1.28 2.66 24.3 10885.8 5226200.2 10.3 1.66 1.5D 4.19 2.53 4.19 0.60 1.73 1.46 3.05 26A 11856.3 56910351 10.5 1.70 1.60 4.43 2.69 4.43 0.61 1.60 1.68 3.50 n.3 12709.1 6100377.7 10.5 1.72 1.70 4.69 2.35 4.69 0.61 1.43 1.99 4.02 29.9 133979 6430986.0 10.5 1.71 1.80 5.00 2.98 5.00 0.60 1.20 2.48 4.69 30.9 13857.6 6651648.8 10.4 1.67 1.90 5.38 3.08 5.38 0.57 0.87 3.54 5.8D 31.1 139709 6706052.9 10.1 1.66 2.00 6.20 3.14 6.28 0.50 0.00 29.0 130065 62431173 9.2 1.32 35.0 30.0 i 25.0 ' i iI ----otcFs, 200 f _V 0") E(ft) 15.0 % I 100 I I 5.0 0.0 0.00 0 50 1.00 1.50 2.00 250 Depth(ft) I� Headwater Depth For Circular Culvert Project: Gran Cielo Subdivision -Middle Creek Ditch Pipe ID: S.27th Ave&Apex Drive culvert x-section 0 D ivuet L outlet Pipe low d _ LSo- -------� - Skpe So Section 1 Seth=2 Design Information (input) Design Discharge Q= 25.0 cis Pipe Diameter D= 24.00 inches Inlet Edge Type(choose from pull-down list) Inlet Type= Square End Projection Inlet Invert Elevation IB = 4945.12 ft Outlet Invert Elevation 00 = 4942.88 ft Pipe Length L = 228.0 ft Manning's Roughness n-value n = 0,013 Bend Loss Coefficient Kb= 0.00 Exit Loss Coefficient Kx= 0.00 Tailwater Water Surface Elevation El.Y,= 4943.88 ft Calculations (output) Pipe Cross Sectional Area A.= 3.14 sq ft Culvert Slope So= 0.0098 ft/ft i Normal Flow Depth Y„= 2.00 ft Critical Flow Depth YC= 1.76 ft Headwater Depth by Inlet Control Headwater Depth by Inlet Control HW-inlet= 3.86 ft Headwater Depth by Outlet Control Tailwater Depth for Design d= 1.88 it Friction Loss Coefficient over Culvert Length K,= 2.82 Sum of All Loss Coefficients Ks= 3.02 Headwater Depth by Outlet Control HW-outlet= 3.59 ft Design Headwater Depth HW= 3.88 ft HW/D Ratio= HW/D= 1.94 Headwater Depth Calculator-Apex&27th Ave, HW-Pipe 8/1/2018, 9:20 PM Appendix E: Stormwater Pond Calculations (Detention, Flow Control, Retention) Detention Ponds Gran Clelo Subdivision Detention Pond 1 Calculations Calculation of Reaulred Volume for Storm Detention Pond (Reference: Bozeman Stonmwater Master Plan-1982) Design Rainfall Freq 10 year(see page III-5 of master plan) OF coefficient a 0.64 IDF coefficient b OF coefficient n 065 Pre-development Calculations Post-development Calculations C Area(AC) C Areas(ft):open space 958,32u 0.20 Areas(AC):Basin 6 365 038 Basin 7 146 0.56 Basin 8 4.15 049 Basin 9 1,63 048 Basin 13 1017 0.46 Total: 958,320 Total: 21 05 total area: 22.0o acres total area: 21.06 acres composite C: 020 composite C: 046 Overland 4 Overland 4 average slope: 1 66 rl -enl average slope: I percent travel distance: 134E faei travel distance: 186E feet k: 52 minutes tc: 43 minutes Channel 4 Channel 4 channel tc, minutes channel 4. minutes Total4: 52 minutes Total4: 43 minutes intensity at I.(fig 23): 0.70 inthr intensity at 4(fig 23): 0.79 in/hr predevel peak runoff: 3.09 cis post-devel peak runoff: 7.72 cis Storm Duration Intensity Future Runoff Runoff Release Required (minutes) (In/hr) Rate(cfs) Volume(cf) Volume(cf) Storage(cf) 25 1.13 11.01 16520 4628 11891 27 1.08 1048 16971 4999 11972 29 1.03 10.00 17400 5369 12032 31 0.98 9.58 17811 5739 12072 33 0.94 9.19 18205 6109 12096 35 0.91 8.85 18584 6480 12105 37 0.88 8.54 18949 6850 12099 39 085 8.25 19301 7220 12081 41 0.82 7.98 19642 7590 12052 43 0.79 774 19972 7961 12012 45 0.77 7.52 20293 8331 11962 47 075 7.31 20604 8701 11903 49 0.73 7.11 2D907 9071 11835 51 0.71 6.93 21202 9442 11760 53 0.69 6.76 21489 9812 11677 55 0.68 6.60 21769 10182 11587 57 0.66 6.45 22043 10552 11491 required detention storage(fe)= 12.106 Detention Pond Calculations: 0.6 Inch Stormwater lu Roadways Calculations: C design depth of pond 1 50 feet Areas(fe):asphalt toy 33, 0.90 max side slope 4 00 hontontal to 1.00 verti- l Iength,Wdlh ratio 3 00 A= 4.81 acres min.particle removed 40 microns(1 micron=1 x 10-0 meters) 1= 0.021 in/hr (0.5"in 24 hrs) settling velocity of particle 0,0069 feeUsr. m.I C= 090 O= 0.D9 cis min pond to settle particle 1119 square feet Volume= 7,786 cf bottom weir h= 0.92 it pond dimentions assuming vertical side slopes(actual pond footprint will be larger) width 52 length 156 Volume held between contours: Cumulative Contour Area(ft') Delta V(tt') Volume(ft) 4953.50 8,472 - 4954,0 9.222 4,424 4,424 4954,5 9.998 4,805 9,229 4955.0 10 79; 5,199 14,427 Design storage at IN depth(ft')- 14,427 Gran Clelo Subdivision Detention Pond 2 Calculations Calculation of Required Volume for Storrs Detention Pond (Reference: Bozeman Stormwater Master Plan-1982) Design Rainfall Freq. year(see page III-5 of master plan) IDF coefficient a 064 IDF coefficient b IDF coefficient n 0.65 Pre-development Calculations Post-development Calculations C Area(AC) C Areas(fe):open space .I-F 0.20 Areas(AC): Basin 3 4.46 0.38 Basin 4 611 049 Basin 5 451 040 Basin 14 205 041 Basin 15 0.33 0.73 Total: 057.696 Total: 17.45 total area: 19.69 acres total area: 17.45 acres composite C: 0.20 composite C: 0.44 Overland 4 Overland 4 average slope: percent average slope: I br percent travel distance: 1 i feel travel distance: 1I730 feel 4: 52 minutes 4: 45 minutes Channel4 Channel k channel 4, minutes channel4, minutes Total 4: 52 minutes Total t�: 45 minutes intensity at 4(fig 23): 0.71 inthr intensity at 4(fig 23): 0.77 in/hr pre-level peak runoff: 2.77 cis post-level peak runoff: 5.87 cis Storm Duration Intensity Future Runoff Runoff Release Required (minutes) (Inthr) Rate(cfel Volume(cf) Volume(cf) Storage(of) 25 1.13 8.58 12877 4148 8730 27 1.08 8.17 13229 4479 8749 29 1.03 7.80 13584 4011 6753 31 0.98 7.46 13884 5143 8741 33 0.94 7.17 14191 5475 8716 35 0.91 6.90 14487 5007 SIM 37 0.88 685 14771 6139 8633 39 0.85 6.43 15046 6470 8575 41 0.82 6.22 15311 6802 8509 43 0.79 603 15569 7134 8435 45 0.77 586 15819 7466 8353 47 0.75 5.70 16D61 7798 8264 49 0.73 5.54 16297 8129 8168 51 0.71 5.40 16527 8461 SOBS 53 0.69 5.27 16751 8793 7958 55 0.68 5.14 16969 9125 7845 57 0.66 5.02 17183 9457 T726 required detention storage(R°)= s.753 Detention Pond Calculations: 0.61nch Stormwater In Roadways Calculations: C design depth of pond 150 fcat Areas(ft'):asphalt 2'7 3G4 0.90 max side slope 4.00 horizontal to 1.00 vertical length/widthratio 3.OD A= 4.99acres min.particle removed 40 microns(1 micron=1 x 10'meters) I= 0 021 iNhr (0.5"in 24 hrs) settling velocity of particle 00089 feetisecond C= 0.90 Q= 0 09 cfs min.pond to settle particle 850 square feet Volume= 8,084 cf bottom weir h= 1.D8 ft pond dimentions assuming vertical side slopes(actual pond footprint will be larger) width 44 length 132 Volume held between contours: Cumulative Contour Area(ft`) Delta V(ft') Volume(ft') Overflow Retention Pond Calculations: 49550 7.470 4955.5 8.425 3,974 3,974 Q=CIA 4!5,%0 9.404 4,457 8,431 C= 0.44 (post-development) 4956 5 10,410 4.954 13,385 I= 0.41 in/hr(10-yr,2-hr stone) A= 1745 acres Q= 3.15 cis Design storage at 1.6'depth(ft')= 13,386 required retention storage(R')- 22,666 ft' minus detention volume 13,386 If Overflow Design storage at 1.6'depth(its)• 8,281 if Retention Gran Clelo Subdivision Detention Pond 3 Calculations Calculation of Required Volume for Storm Detention Pond (Reference: Bozeman Stormwater Master Plan-1982) Design Rainfall Freq:` i:1D:`` ,year(see page III-5 of master plan) IDF coefficient a 064 IDF coefficient b IDF coefficient n 065 Pre-development Calculations Post-development Calculations C C Areas(ft):open space 396,614 0.20 Areas(ac):Basin 2 0.55 067 Basin 12 041 067 Basin 16 083 067 Basin 17 072 067 Basin 18 6-98 054 Total: 398,138 Total: 11 49 total area: 914 acres total area: 1149 acres composite C: 020 composite C: 057 Overland t, Overland tc average slope: 1 25 percent average slope: 125 percent travel distance: 7W feet travel distance: 1042 feel tc: 41 minutes f<: 30 minutes Channel 4 Channel I. channel t, minutes channel t� minutes Total tc: 41 minutes Total tc: 30 minutes intensity at k(fig 23): 0 81 in/hr intensity at 4(fig 23): 1.01 in/hr predevel peak runoff: 1.48 cfs postdevel peak runoff: 6.56 cfs Storm Duration Intensity Future Runoff Runoff Release Required (minutes) (ln/hr) Rate(cfs) Volume(cf) Volume(cf) Storage(cf) 34 093 603 12300 3027 9272 36 089 5 81 12548 3205 9343 38 0.86 561 12788 3384 9404 40 0.83 542 13020 3562 9458 42 081 5.26 13244 3740 9504 44 0.78 5.10 13461 3918 9544 46 0.76 4.95 13672 4096 9577 48 074 482 13878 4274 9604 50 072 469 14077 4452 9625 52 070 4.57 14272 4630 9642 54 069 4.46 14462 4808 9653 56 0.67 4.36 14647 4986 9661 58 0.65 426 14828 5164 9664 60 0.64 417 15005 5342 9662 62 0.63 408 15178 5520 9658 64 0.61 4.00 15348 5699 9649 66 0.60 392 15514 5877 9637 required detention storage(fe)= 9,6fi4 Detention Pond Calculations: 0.5 Inch Stormwater in Roadways Calculations: C design depth of pond 1 50 font Areas(ft):asphalt fArkl= 0 90 max side slope 400 horizontal to 1 00 vertical length/width ratio 300 A= 1.28 acres min.particle removed 40 microns(1 micron=1 x 10$meters) I= 0.021 in/hr (0 5"in 24 hrs) settling velocity of particle 0 OD69 feel/second C= 0.90 O= 0.02 cfs min.pond to settle particle 950 square feet Volume= 2,082 cf bottom weir h= 0.37 ft pond dimentions assuming vertical side slopes(actual pond footprint will be larger) width 46 length 139 Volume held between contours: Cumulative Contour Area(ft') Delta V(ft) Valumo(ft') 494550 5,613 49460 6,199 2,953 2,953 4946.5 6.810 3,252 6,205 4947,0 7.446 3,564 9,769 Design storage at IN depth(te)= 9,769 Meadow Creek Subdivision Phase I Detention Pond 4 Calculations Additional Stormwater from Graf Street Calculation of Reaulred Volume for Storm Detention Pond (Reference: Bozeman Slonnwater Master Plan-1982) Design Rainfall Freq. r r year(see page III-5 of master plan) OF coefficient a 0.64 IDF coefficient b OF coefficient n 0.65 Pre-development Calculations Post-development Calculations C C Areas(ft):open space 20.473 0.20 Areas(ac):Basin 11 0.47 0.67 Total: 20.473 Total: a 4'r total area: 0.47 acres total area: 0.47 acres composite C: 0.20 composite C: 0.67 Overland 4 Overland 4 average slope: 0115 percent average slope: o r, percent travel distance: 4 r 3 feet travel distance: 4 t feet 4: 42 minutes t�: 20 minutes Channel 4 Channel 4 channel t,. minutes channel 4: minutes Total 4: 42 minutes Total 4: 20 minutes intensity at t�(fig 23): 0.81 in/hr intensity at 4(fig 23): 1.31 in/hr pre-level peak runoff: 0.08 cis post-devel peak runoff: 0.41 cis Storm Duration Intensity Future Runoff Runoff Release Required (minutes) (in/hr) Rate(c%) Volume(cf) Volume(cf) Storage(cf) 25 1.13 0.35 532 114 418 27 1.08 0.34 546 123 423 29 1.03 0.32 560 133 428 31 0.98 0.31 573 142 432 33 0.94 0.30 586 151 435 35 0.91 0.28 598 160 438 37 0.88 0.27 610 169 441 39 0.85 0.27 621 178 443 41 0.82 0.26 632 187 445 43 0.79 0.25 643 196 446 45 0.77 0.24 653 206 448 47 0.75 0.24 663 215 448 49 0.73 0.23 673 224 449 51 0.71 0.22 682 233 449 53 0.69 0.22 692 242 450 55 0.68 0.21 701 251 449 57 0.66 0.21 710 260 449 required detention storage(fe)= 450 Flow Control Structures Flow Structure Calculations-Pond 1 (Reference: City of Bozeman, Design Standards and Specifications Policy, March 2004, II.D.2, page 24) Note: see Figure A-2 in above reference. Rectangular weir-Q=3.33LH112 Determine Outlet Slot Width needed Pre-development flow rate= 3.09 cfs Vertical Slot Height= 18 inches Req'd Outlet Slot Width= 050 feet or 6 2/32 of an inch Determine Outlet Flow: Outlet Slot Width= 6 06 inches stage ft Q cfs Q(gpm) 0.25 0.210 94 0.50 0.595 267 0.75 1.092 490 1.00 1.682 755 1.25 2.350 1055 1.50 3.089 1387 Flow through outlet Stage vs. Discharge 3.50 3.00 — 2.50 2.00 - _ - - -- - 1.50 _ t w 1.00 - 1 ME - - 0.50 0.00 0 0.5 1 1.5 Stage(ft) Flow Structure Calculations-Pond 2 (Reference: City of Bozeman, Design Standards and Specifications Policy, March 2004, II.D.2, page 24) Note: see Figure A-2 in above reference. Rectanqular weir-Q=3.33LH31 Determine Outlet Slot Width needed Pre-development flow rate= 2.77 cfs Vertical Slot Height= 18 inches Req'd Outlet Slot Width= 045 feet or 5 14/32 of an inch Determine Outlet Flow: Outlet Slot Width= 543 inches stage ft cfs Q(qpm) 025 0.188 85 0.50 0.533 239 0.75 0.979 439 1.00 1.507 676 1.25 2.106 945 1.50 76� 1242 Flow through outlet Stage vs. Discharge 3.00 2.50 2.00 _ v 1.50 1.00 'G 0.50 0.00 0 0.5 1 1.5 Stage(ft) Flow Structure Calculations-Pond 3 (Reference: City of Bozeman, Design Standards and Specifications Policy, March 2004, II.D.2, page 24) Note: see Figure A-2 in above reference. Rectangular weir-Q=3.33LH32 Determine Outlet Slot Width needed: Pre-development flow rate= 1.48 cfs Vertical Slot Height= 18 inches Req'd Outlet Slot Width= 024 feet or 2 29'32 of an inch Determine Outlet Flow: Outlet Slot Width= '9� inches stage ft Q cfs Q(gpm) 0 ,5 0.101 45 0.50 0.285 128 0.75 0.523 235 1.00 0.805 361 1.25 1.125 505 1.50 1.478 664 Flow through outlet Stage vs. Discharge 1.60 1.40 w 1.20 _ —u- 1.00 im 0.80 — — r 0.60 - - - __ N 0.40 � 0.20 - 0.00 0 05 1 1.5 Stage(ft) Retention Ponds Gran Cielo Subdivision Appendix E Temporary Retention Basin A Stormwater Calculations Design Rainfall Freq. `,;:._ 1Q '`:''year(see page III-5 of master plan) OF coefficient a 0.64 OF coefficient b IN coefficient n 0.65 Post-development Conditions Areas(fe): Acres C Basin 1 G 78 0.67 Basin 2 0 55 0.67 Basin 12 0,41 0.67 Total: 1.73 acres total area: 1.73 acres composite C: 0.67 Retention Pond Calculations: Q=CIA C= 0.67 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A 1.73 acres Qpost= 0.47 cfs Gran Cielo required retention storage(ft)= 3,412 W (10-yr,2-hr storm) pond dimentions assuming vertical side slopes(actual pond footprint will be larger) width 28 length 83 Volume held between contours: Cumulative Contour Area(ftZ) Delta V(ft') Volume(ft) 4966.00 1.659 4966.5 2,429 1,022 1,022 4967.0 3.300 1,432 2,454 496750 4,272 1,893 4,347 Design storage at IN depth(ft)= 4.347 Gran Cielo Subdivision Appendix E Temporary Retention Basin B Stormwater Calculations Design Rainfall Freq. .;"; ;'1U, year(see page III-5 of master plan) OF coefficient a 0.64 OF coefficient b OF coefficient n 0.65 Post-development Conditions Acres C Areas(ft): Basin 6 365 0.38 Basin 7 1 46 0.56 Total: 5.11 acres total area: 5.11 acres composite C: 0.43 Retention Pond Calculations: Q=CIA C= 0.43 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 5.11 acres Qpost= 0.90 cfs Temporary Retention Pond B storage(ft)= 6,485 ft3 (10-yr,2-hr storm) Pond dimentions assuming vertical side slopes(actual pond footprint will be larger) design depth of pond 1.50 feet max side slope 4.00 horizontal to 1.00 vertical length/width ratio 300 width 38 length 114 Volume held between contours: Cumulative Contour Area(ft) Delta V(ft) Volume(fr) 4960.0 3,300 49605 4,272 1,893 1,893 4961.0 5,344 2,404 4,297 4961.5 6,516 2,965 7,262 Design storage at 1.5'depth(ft)= 7,262 Gran Cielo Subdivision Appendix E Temporary Retention Basin C Stormwater Calculations Design Rainfall Freq. 0_;;`= year(see page III-5 of master plan) IDF coefficient a 0.64 OF coefficient b OF coefficient n 0.65 Post-development Conditions Acres C Areas(ft): Basin 8 4 15 0.49 Basin 9 1 63 0.48 Total: 5.78 acres Composite C 0.49 Retention Pond Calculations: Q=CIA C= 0.49 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 5.78 acres Qpost= 1.15 cfs Tempoary Retention Pond C storage(ft)_ 8.277] (10-yr,2-hr storm) Pond dimentions assuming vertical side slopes(actual pond footprint will be larger) design depth of pond 1 50 feet max side slope 400 horizontal to 1.00 vertical length/width ratio 300 width 43 length 129 Volume held between contours: Cumulative Contour Area(ft) Delta V(ft') Volume(ft) 4959.3 4.530 49%8 5,628 2,540 2,540 49603 6.825 3,113 5,653 4960M 8,123 3,737 9,390 Design storage at 1.5'depth(ft)= 9,390 Gran Cielo Subdivision Appendix E Temporary Retention Pond D Stormwater Calculations Design Rainfall Freq. `ti r .gip. :, year(see page III-5 of master plan) OF coefficient a 0.64 OF coefficient b OF coefficient n 0.65 Post-development Conditions Acres C Areas(ft): Basin 17 072 0.67 Total: 072 acres total area 0.72 acres composite C 0.67 Retention Pond Calculations: Q=CIA C= 0.67 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 0.72 acres Qpost= 0.20 cfs Temporary required retention storage(ft)= 1,415 W (10-yr,2-hr storm) Volume held between contours: Cumulative Contour Area(ft) Delta V(ft) Volume(ft') 49640 456 4964.5 989 361 361 4965.0 1,659 662 1,023 4965.5 2.429 1,022 2,045 Design storage at 1.5'depth(ft) Gran Cielo Subdivision Appendix E Temporary Retention Pond E Stormwater Calculations Design Rainfall Freq. 10 year(see page III-5 of master plan) IDF coefficient a 0.64 IDF coefficient b IDF coefficient n 0.65 Post-development Conditions Acres C Areas(ft): Local ROW 020 0.73 Total: 020 acres total area: 0.20 acres composite C: 0.73 Retention Pond Calculations: Q=CIA C= 0.73 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 0.20 acres Qpost= 0.06 cfs Temporary required retention storage(ft)= 429 ft` (10-yr,2-hr storm) Volume held between contours: Cumulative Contour Area(ft') Delta V(ft') Volume(ft) 49580 128 4958.5 446 144 144 4959.0 895 335 479 4959.5 Design storage at 1.5'depth(fe)= 479 Gran Cielo Subdivision Appendix E Temporary Retention Pond F Stormwater Calculations Design Rainfall Freq. 10 year(see page III-5 of master plan) OF coefficient a 0.64 IDF coefficient b OF coefficient n 0.65 Post-development Conditions Acres C Areas(fe): Asphalt 022 0.73 Low-Med.Dens.Res. 0.79 0.35 Total: 1.01 acres total area 1.01 acres composite C 0.43 Retention Pond Calculations: Q=CIA C= 0.43 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 1.01 acres Qpost= 0.18 cfs Temporary required retention storage(ft)= 1,284 ft3 (10-yr,2-hr storm) Volume held between contours: Cumulative Contour Area(ft) Delta V(ft') Volume(ft') 4958.0 362 4958.5 746 277 277 4959.0 1,231 494 771 4959.5 1,817 762 1,533 Design storage at 1.5'depth(ft) Gran Clelo Subdivision Appendix E Temporary Retention Basin G-Graf Street Stormwater Calculations Design Rainfall Freq. 10 year(see page III-5 of master plan) OF coefficient a 0.64 OF coefficient b OF coefficient n 0.65 Post-development Conditions Areas(fe): Acres C Basin 10 a 47 0.90 Total: 0 47 acres total area: 0.47 acres composite C: 0.90 Retention Pond Calculations: Q=CIA C= 0.90 (post-development) 1= 0.41 in/hr(10-yr,2-hr storm) A= 0.47 acres Qpost= 0.17 cfs Gran Clelo required retention storage(fe)= 1,242 ft3 (10-yr,2-hr storm) pond dimentions assuming vertical side slopes(actual pond footprint will be larger) width 17 length 50 Volume held between contours: Cumulative Contour Area(ft') Delta V(ft) Volume(ft') 49739 780 4974A 1,250 508 508 4974.9 1,730 745 1,253 49754 Design storage at IN depth(fe) Appendix F: Gutter Flow and Curb Inlet Calculations Gran Cielo Subdivision -Phase 1 Gutter Capacity Calculations Appendix F Allowable Pavement Encroachment Given: T= 9 feet(max per city) - W= 1.5 feet Ts = 7.5 feet Sw= 0.08 ft/ft Sx= 0.03 ft/ft Q. a= 0.96 inches a S. d = 3.24 n = 0.015 / S. Sw/Sx= 2.67 T/W= 6 Capacity for Gutter equations: Q=QW +QS Where: QW =EOQ Qs= Discharge within the Roadway above the depressed section (cfs) QS Qw= Discharge within the depressed Q= 1-Eo (gutter)section (cfs) Cf= 0.56 for English units Cr 5 8 '- Sx= Pavement cross slope(ft/ft) QS - SX3TS3Sp2 n Ts= Width of flow in the roadway above depressed section So= Gutter longitudinal slope(ft/ft) S /S Sw= Gutter depression cross slope(ft/ft) Eo = 1+ W X e� - T= Spread (ft/ft) 1+ SN'/SX -1 W= Width of gutter depression (ft/ft) (T/W)-1 Capacity solution Minimum Gutter Capacity Gutter Capacity-Basin 4& 5(S. 28th Ave) So= 0.005 So= 0.0164 Qs= 1.65 cfs Qs= c.Vo cfs Eo= cfs Eo= 0.44 cfs Q= cfs Q= 5.36 cfs Gutter Capacity-Basins 2, 12, 16, 17(S. 27th Ave) So= 0.0082 Qs= 2.11 cfs Eo= 0.44 cfs Q= 3.79 cfs Page 1 of 2 Basin 25 Yr Design Flow 1 0.97 3 1.70 4 3.26 (S. 28th Ave, east half) 5 2.09 6 1.84 7 1.08 8 2.74 9 1.22 10 0.86 11 0.54 12 0.49 13 6.12 Future Phase 14 1.17 15 0.62 18 4.96 Future Phase 2, 12, 16, 17 3.00 (S. 27th Ave,west half) Summary The gutter capacity in Baisn 4(S. 28th Ave) is 5.36 cfs, based on a slope of 1.64%,which provides adequate capacity for the 25 yr design flow of 3.26 cfs. The gutter capacity in Baisns 2, 12, 16, 17(S. 27th Ave) is 3.79 cfs, based on a minimum slope of 0.82%,which provides adequate capacity for the 25 yr design flow of 3.00 cfs. The minimum gutter capacity, based on a 0.5%, slope is 2.96 cfs, which povides adequate capcity for the 25 yr design flow for all other basins. Therefore, the pavement encroachment will be less than the allowable(9-feet) by the City of Bozeman.Baisns 13 and 18 are part of future phases of the subdivision. Curb and gutter capacity will be analyzed at the time of design of those phases. Page 2 of 2 Gran Cielo Subdivision Inlet Capacity Calculations Gutter Section Appendix F Given: T= 9.0 feet -T- W= 1.50 feet Ts= 7.50 feet " Sw= 0.08 ft/ft Sx= 0.03 ft/ft a= 0.96 inches d= 3.24 inches S. n= 0.015 a So= 0.016 Where: S, a Qs= Discharge within the Roadway above the depressed section (cfs) Qw= Discharge within the depressed (gutter)section (cfs) Capacity for Inlets on Grade Cf= 0.56 for English units (Standard 24x36 Curb inlet) Sx= Pavement cross slope(ft/ft) Ts= Width of flow in the roadway above S.28th Ave depressed section From Gutter Capacity-Basins 4&5 So= Gutter longitudinal slope(ft/ft) Qw= 2.38 cfs Sw= Gutter depression cross slope(ft/ft) Qs= 2.98 cfs T= Spread (ft/ft) Cross-sectional area of flow W= Width of gutter depression(ft/ft) A= 1.22 ft2 Gutter Velocity V= 4.42 ft/sec Fraction of side flow intercepted Rs= 0.15 Total flow acity intercepted b the inlet Qint= 2.80 cfs Qbypass= 2.56 cfs Design Q for inlet#1 Q25= 3.26 cfs Basin 4 Double Inlet Required Q25= 2.09 cfs Baisn 5 Design Inlet OK S. 27th Ave From Gutter Capacity-Basins 2, 12, 16, 17 Qw= 1.68 cfs Qs= 2.11 cfs Cross-sectional area of flow A= 1.22 ft2 Gutter Velocity V= 3.12 ft/sec Fraction of side flow intercepted Rs= 0.24 Total flow ca acit intercepted b the inlet Qint= 2.19 cfs Qbypass= 1.61 cfs Design Q for inlet#1 Q25= 3.00 cfs Basins 2, 12, 16, 17 Double Inlet Required (S. 27th Ave,west half) Page 1 of 1 Appendix G: Sheet SD1. O - Storm Drainage Basins I FUTURE INFILTRATION BASIN 4 STORMTECH SC-740 - TEMPORARY CHAMBERS (FUTURE) RETENTION POND A I PHASE 1 ONLY BASIN I BASIN 16 S.27TII AVE BASIN 2 l I I - CURB INLET #3 BASIN 3bob- 1 Ii I (DOUBLE INLET) / — J L 1 1 TO XT'GRB INLET DETENTION POND INV OUT - PIPE i I ! BASLN 17 — — — — MEADOW CREEK PH 1 II _ TEMPORARY !� I RETENTION POND D • n CURB INLET #1 ( I PHASE 1 ONLY a : z (DOUBLE INLET) BASIN+ A I INV OUT - PIPE 1 Y _ R.28'I'FI A�'E ` I DRAWN BY:BBB REVIEWED BY:CGS PROJECT ENGINEER:BLB DETENTION POND 3 BASIN 18 DESIGNED BY:CGB CURB INLET #2 REQUI' 9.664 RED CF VOLUME INV OUT +- PIPE 2 1 BASIL 5 ` DETENTION POND 2 I BASIN 14 �. a Ii REQUIRED VOLUME I u - DRAINAGE BASIN I I 1 of j I� 8,753 CF / BOUNDARY (TYP) I O 21ITII AVE r-r BASIL 6 r -i I W H TEMPORARY OVERFLOW III I I TEMPORARY pq RETENTION POND I I _RETENTION POND E 1 VOLUME 9,281 CF I I TEMPORARY PHASE 1 ONLY BASIN 7 ; Z j 1 RETENTION POND B I I ' O N I PHASE 1 ONLYIll j W-I 00 ..Ian I L_-_--_----_----_---- . , I I I v - - S.30TH AVE z O - - - - - - - - .Iz�, �. . -.. 1 I Z r TEMPORARY , of I I BASIN 13 RETENTION POND F PHASE 1 ONLY BASIN 8 1 I Ii I DETENTION POND 11 I I REQUIRED VOLUME L 12,105 CF (FUTURE I 1 TEMPORARY RETENTION POND U' PHASE) _ _ __ _ — . —•• 1 REQUIRED VOLUME 1,242 CF z - - -1 -- _ S. .31STAVE - .. I I TEMPORARY RETENTION POND BASIN 9 C I Z Aino 1 PHASE 1 ONLY c Z � 0 N D �To O U Go oo SCALE S ❑Q SHEET {� li..h= 150 i 3 SD1.0 GRAN C[ELO < E.XHIBI.1' � PROJECT:17-130 DATE:04-03-19 a Appendix H: Record Drawing - Meadow Creek Sub Ph I Storm Drain Improvements �I I Y= N 1415775 ffJ u E4B,y7,n f REuovF a DLSPosF - - ; aL:��r TEW.DEAD END EX POWERMETER -a .,J'1•.E,-:n E< (3)9 BITE N N 04'2512" E P11NQ\E AT asoog / � z �OELINI:A togs(SEE 23.20' E4 COMC N 37503.77 DIREMOSPOSE�, _ CERTIFICATA\.OF DETNL) 9 FM 1156 =w YWFR YN 12 —E b4 � / LEY.94D_ SURVEY No. 2t$2 / mu-,is AMA 5.5D- LERNER PA / N 9 FY 1156 STORM aeuN INLET.) - o Nv.N4Sj-629V (TYPE 1) S 88'S3'38' E 562.85' NV..OUTT(EN6 e: 'IFY1.ii:9! G 'REMOVE 0562s ag I �N]765J 7J NEW TV ��l NEW 4 uoN 4iQ'BARREL 3[cnCN) 1ZZ`� SARI SEWN 7 11 1 (MiK55 CORNER) -H76.27 OF EX TELEPHONE L 4649337 RIM-49705E 1( IT]7609 I. INV.N(5';-2, T RE�ESTK r 64 66-I� / E 4774!41 OU E INV.IN{S NV OUT I . E-6lb l �. I ' ` \ ,•� 1 DPAN•1 O; REMDIE r P9PQSE I,' TTEIIOV I� i{ E m IIY • N '"_Il OW 1r10- 37U IY STmIJ RETWDK♦ CDR w Ex DEAD ENO BARRICADE '•4c GRAF J IREE i OIUN O I OJ r n 7W,{ ■ OM(3)W II/TTOI a G YAV cTorry 11' -' -�= ,vr- P.oP 4 wWF i „ CEMNE4 ($ r:T ; N t-3/11' lo- IS Lf 19'91rmww � ��� /'m _ Mee w L a M NLA 1 ` NkAN O I4a SAN yEa�IWI 73 TV U NEW X AROI R� c Y MBA NEW N r, 7 I` • �� I AR47 BOLT_ IS• W14.W 1.40 ! I Ikv III T_CULVERT / _ __ _ LTEV.-4p�7_61TRACT A __ E'' _ } '' S R-25' + EX eEll tO- e COS >B61 I f - - --- _- __ -_�-_-.>�-- _-L-- --s-_ --- -_- -__ ! -- C fi'( .►-ssT' OFF EX TKES rn) C(}AF■ _ 1—I-- —v STONY L MH U L-3"r II STA 0449.15- ! 1 T`'i + !Y J B'J I (60'BARREL SECTOR) O I I ,.■•r STA."IE STORY GRAIN I / II 'V O (}\p.) (1YP) RIY-4070.75 NEW HYDRANT (V 11 L■LNE STORY DRAIN INLET II 131 U NEW b•AiOI - C O-//11 I (I I TC-97 N 375]7.&T ,AEI 6' „6ET KZ SITUP m! IN VOUTm 71,69 E bTOS� )z 1 II ■ RIM-749B (3e'sSeKN F E b40Q51 / ) t I ) I: I II I O I / ;SIDE"WDEALK 1 '• A!f(TYPE 41 1 B/ 1 I (E)-71.69 ' ARROW BOLT II I I II I .I STOP INV.CUT( 4rV.N(6W).7293 I TC-407653 I I R1-1 I" } rz RIY-760.5 I� I ELEV.-4979.08 II I II I 11 RI-1 itwM ORNN 1M NV.O;1(ME)-71.56/ v Y I It (3o•X3o') II0 1/ I II (�' / REMI7.E t usraaE m\ INV.OIT(NE)-750] /� I TEMP.DEAD END II II II ( �, (60'BARREL SECTION) 11 El A"RE A 37537.91 TEMP.DEAD END IT I; I i it BA(3)9 BARRICADE WITH I II I II it - INV.N(I'MW)-60.W L P� BARN7WRE / '-6 EX BANNINE I L 484,rB Ifi ".i II STA 0.{&65- I BARIRICADE MI7H II STORM DRAIN INLET III OO.NCATORS(SEE I I II ` I II NV-T(H£}-69.70 ' EEIAZ / ORrVFAims(sEe �` if �8 I I (T-i;ie.63 tKwEl n 1 11 �N��II{� I II I Y � ,I - . L DEEML)I N, I RIM-760] II I II ISyLT! II I II ;�C�xEQ EX DITCH TO 9E -- d 7I 1 ABANDONED UPON I I II INV.WT(NW)-7503 NOTE: - A i II LI 1I1 II I h I I Ex.IR■FRG ,� / '' DEVELOPMENT -EXISTING UNOE"-W MD INSTALLATIONS O PRIVATE UTIUTIES SHOWN ARE INDICATED ACCORORG TO THE BEST INFORMATION AVAW.A■I:[TO " \ M ENGINEER,THE EMORIEEA DOES NOT GUARANTEE THE ACCURACY OF SUCH INFORMATION. SERVICE ONES(WATER,POWER,GAS.STORY. SEWER.MERM71E r 1[IEN:'W)MAY NOT BE STRAIGHT LINES OR AS NOCATED ON THE PLANS STATE LAW REQUIRES CONTRACTOR 10 Gll ALL UTILITY CTLPAhIES BF10RE EXCAVATION FOR EXACT LOCATIONS -ALL IMPROVEMENTS SHALL BE PERFORMED IN ACCORDANCE WITH MONTANA PUBLIC WORKS STANDARD SPEOFICATIONS 5TH EDITION,YMCH, 2003.AND THE CITY OF BOZEMAN STANDARD MODIFICATIONS,DATED MARCH,2004 AND ADDENDUM No 1. -UNLESS OTHER14SE SPECIFIED.All CONSTRUCTION LAYCUr MO STAR7NC SMALL BE F£RFCWVED UNDER THE RESPONSIBLE CHARGE OF A LARD SLR\EYOM LICENSED N THE STATE OF MONTANA AND BY A PARTY CHIEF OR ENGINEERING.tECHNIGNM EXPERIENCED IN CONSTRUCTION LAYOUT AND STANNG TECINIOUES AS ARE REOLVtED BY THE SPECIFIC TYPE OF WCAN BEING PERFORMED. -BENCHMARK it: SECTION CORNER(REBAR)COMMON TO SECTIONS 2A 24,25 r 26 E 55030.5 SCALE ELEV.-5023.28 PLAN 1" = 30' -BENCHMARK P2: WITNESS CORNER('MMCSSA•YELLOW CAPPED REBAR)TO SECTION CORNER COMMON TO SECTIONS 13,14,23 r 24 PROFILE N 4029E E 5039783 HORIZ. 1" 30' "CONFORMS TO CONSTRUCTION RECORDS" = - ELEV.-4939-18 VERY. 1" = 5' COB BENCHMARKB/I1TO(ARROW BOLT ON HYDRANT)ELEVATION-4903.88 UTILITIES — AUGUST, 2006 -SUBTRACT 19.45 FEET FROM BENCHMARK it OR Ez ELEVATION TO CONVERT TO COB DATUM STREETS — SEPTEMBER, 2006 5000 0+00 1+00 2+00 3+00 4+00 5+00 6+00 7+00 _ _8+.00 5000 W N101 PORT ELEV-49771E En LOW POINT STA -197593 HIGH PORT STA-710737 O LOW PORT STA 5 50 PVI STA-7+00 = al O n PVI STA-5450 PM ELEV-497730 Q n 4990 r PH ELEV-4975,78 1.55 AD.--42 IT-64,66 K-�RE 4990 Z 3 T- ~ I F ii S 10aw K IywZ�� z ILL.O � �� H �N 8 3 A 3 N d x " 8 = m a+ a a m zz :m z0 a 4980 " -y w r o ¢ a I -�EX GRADE O E w e 0 R Y 1,7 S S III, Sw S,y 498 w m m w a a Itrt GRAVEL TAPER vl -----______-.-__________________ -- -_- -_-- ` LL.I � O F BAuc ro"SW , �E 1f- --- W W In co WADE � _._——— p !n L'i ^ / --- (�j ozz �1'751i,21'A-7Q00 PYC STORY GRAIN■0.0065 n/h T (f) N_M I_' tiaT=?v„� INV.ISE)•T}.61 \ -- Of INV N I _--_ OL SLY) Ta{7 .,rW N4rT=ve.•., 11 Q\ 275 Lf.24•A•7Q>7 P\C STORY IAAN OOI)DBS MITI 4970 1 �/ „ T "IN(NW,)-71 4970 Q o 0 04 W c c q a pO 4960 D 1 gS CAD. CMK �'.�_ 4960 CAIF: 2/28/06 b vN. : RE41S17N5: 3/8/06 7 10 OB W■d s a� APPROILD BIT: ClNlltt ASSURANCE. 4950 �� " 4950 SEE SHEET DIP GRAF-PRO PROJECT ND.78DZ-05021.0 0+00 1+00 2+00 3+00 4+00 5+00 6+00 7+00 8+00 SHEET 6 Of 4I Appendix H: Meadow Creek Sub Ph I Stormwater Design Report ENGINEERING , INCo q7 7 ; ,A Consulting Engineers and Land Surveyors ' _;r, O 1 2001 �S ------------------------ STORM WATER MANAGEMENT DESIGN REPORT FOR NTA fir N y 34MPE Meadow Creek Subdivision, Phase I Bozeman, Montana Prepared For: Meadow Creek Partners, LLC 924 Stoneridge Drive, Suite 1 Bozeman, MT 59718 February 2006 BOZ-05021.02 705 Osterman Drive, Suite F Bozeman, MT 59715 Phone 406.522.9876 Fax 406.922.2768 info.bozeman@enginc.com www.enginc.com STORM WATER MANAGEMENT DESIGN REPORT FOR Meadow Creek Subdivision, Phase I Bozeman, Montana Prepared For: Meadow Creek Partners,LLC 924 Stoneridge Drive, Suite 1 Bozeman,MT 59718 Prepared By: ENGINEERING, INC. A Consulting Engineers and Land Surveyors MILLuras m MUN{AN February 2006 BOZ-05021.02 TABLE OF CONTENTS Pg• Introduction................................................................................................... I Site Location and Description.............................................................................. I ExistingConditions........................................................................ ................. 1 Soils................................................................................................... 1 Drainage.............................................................................................. 2 DesignMethodology........................................................................................ 2 Design Considerations.............................................................................. 2 Subbasin Information............................................................................... 2 Storm Runoff Calculations................................................................................. 3 Rational Method Calculations..................................................................... 3 Gutter and Inlet Capacity Calculations........................................................... 3 Pipe Sizing Calculations............................................................................ 5 Detention Pond Calculations....................................................................... 6 Summary................................................................................................ ..... 7 References.................................................................................................... 8 LIST OF APPENDICES Appendix A— Soils Information Appendix B —Inlet Calculations Appendix C—Pipe Sizing Calculations Appendix D— Stormwater Service Lots Calculations Appendix E—Gutter Capacity Calculations Appendix F—Detention Pond Calculations Appendix G—Outfall Structure Sizing LIST OF TABLES Table I —Rational Method Detention Basin Sizing (1 0-Year Design Storm)...................... 3 Table 2—Rational Method Inlet Basin Results (25-Year Design Storm)........................... 3 Table 3 —Inlet Capacity Summary: 25-Year Design Storm.......................................... 4 Table 4—Pipe Sizing Summary: 25-Year Design 5-6 Table 5 —Detention Pond Sizing Summary: I 0-Year Design Storm................................ 6 P:PiNI\BOZ-05021-02-S'I'OP,AI-DESIGN-REPORT i INTRODUCTION This design report summarizes the management plan for storm water runoff within Meadow Creek Subdivision,Phase I located in Bozeman, Montana. The information contained in this report provides the basis of design for the required storm drainage improvements to be completed. The methodology and analysis procedures utilized in this report are in conformance with the design standards found in the City of Bozeman Design Standards and Specifications Policy, March 2004. Recommendations made in this report are based on these standards and the professional judgment of the author. SITE LOCATION AND DESCRIPTION Phase I of Meadow Creek Subdivision is located on Certificate of Survey No. 2286. Generally, the property is bordered on the east by Minor Subdivision 235; Genesis Business Park to the north; vacant, undeveloped land to the west; and future phases of Meadow Creek Subdivision to the south. Phase I of the development will contain four high-density lots with approximately thirty-five dwelling units per lot. There are two proposed local streets and one collector to serve Phase I. The two local streets are an extension of Enterprise Boulevard and Stubble Lane. The proposed collector is Graf Street which will be extended east to connect to South 19`h Avenue. Each of the internal local and collector streets will be constructed to City of Bozeman standards, having appropriate right-of-way widths of 60-feet and 90-feet respectively, and street widths of 33-feet and 48-feet from back-of-curb to back-of-curb respectively. Boulevard sidewalks,located seven and a half feet behind curb and gutter,will be installed at the time building construction occurs on the lots. EXISTING CONDITIONS Soils According to the Soil Suruey of Gallatin County Area,Montana (1996), the natural soil type is predominantly Turner Loam and Meadowcreek Loam. Groundwater in the development area is as high as 18-inches below the natural surface to 8 feet below the surface. Dewatering techniques will be used during construction to control groundwater. The site soils are gently sloping with moderate organic-matter content. The risk of soil blowing and water erosion is moderate to low. The existing area is primarily rangeland, having a moderate cover of native vegetation. A brief summary of the soils located in the subdivision is located in Appendix A of this report. A more detailed description of the soils in this development can be found in the Geotechnical Report for Meadow Creek Subdivision (December 2005,Allied Engineering Services, Inc.). P:PM\BOZ-05021_02_STORttii DESIGN_REPORT 1 02/22/2006 Drainage The existing ground is sloped,having an approximate 2%gradient from south to north. Surface runoff currently drains to existing creeks that run from south to north through Phase I of the development. Some runoff drains via sheet flow to the northern boundary of the development and eventually finds its way to the creeks that flow to the north from the property. Runoff from adjacent property to the east and west flows to the north and does not enter Phase I of the subdivision. Runoff from the southern boundary of Phase I flows to the existing creeks which flow through the development from south to north. DESIGN METHODOLOGY Design Considerations Phase I of Meadow Creek Subdivision has a gross area of 23.91 Acres. It is proposed to utilize a system of inlets and storm drain piping to collect storm water runoff from Meadow Creek Subdivision,Phase I. The storm drain piping will connect to detention areas located in two areas in Phase I. The detention areas will be designed to release only the pre-developed runoff from the 10- year design storm event. In addition to Phase I of Meadow Creek Subdivision, other phases of the subdivision will contribute to runoff to be collected in one of the two detention ponds located on Phase I. Runoff from the contributing basins has been included in the analysis to properly size the detention pond as well as the conveyance system which feeds the pond. Some of the area in Phase I will be park and wetland area which will remain in pre-developed runoff condition and therefore this area was not analyzed as part of this report. A stormwater exhibit has been included which delineates the drainage basins that drain to the two detention ponds and the inlet basins that drain to the inlet locations. The detention ponds located in Phase I have been sized using the 10-year design storm event with pre-development runoff as required by the City of Bozeman Design Standards and Specifications Policy. All conveyance systems including gutters,inlets, and pipe have been sized to accept the 25- year design storm as required by the City of Bozeman Design Standards and Specifications Policy. The Rational method was used in calculating the storm runoff from the proposed development and all contributing areas. Subbasin Information The storm water runoff analysis area for Meadow Creek Subdivision,Phase I has two drainage basins which drain to two detention pond areas. These two drainage basins have been divided up into smaller inlet basin areas. The inlet basin areas were used to space inlets and calculate the needed conveyance system to accept the 25-year design storm. These basins can be seen on the stormwater exhibit that is included in this report. P:PM\BOZ-05021_02_STORi _DESIGN_REPORT 2 02/22/2006 STORM RUNOFF CALCULATIONS Rational Method Calculations Storm water runoff calculations were performed using the Rational Method as outlined in the City of Bozeman Design Standards and Specifications Policy. A Rational Method"C" factor of 0.50 was taken from the Design Standards and Specifications Policy for basins that contained dense residential lots and 0.35 for basins that contained low to medium density residential lots. The "C" factor of 0.60 used for basins that contained only right-of-way area was taken from a weighted average of"C" factors contained in HydrologicAnalyrir and Design, Second Edition (McCuen). Table 1 and Table 2 summarize the results of the Rational Method calculations used to size the detention ponds and the conveyance systems in Phase I of Meadow Creek Subdivision. More detailed calculations can be found in Appendix B and Appendix F of this report. Table 1 Rational Method: Detention Basin Sizing (10-Year Design Storm) Drainage Basin Area (Acre) "C" Factor Required Storage (cf) 14 16.26 0.50 11,396 4 35.42 0.35 14,005 Table 2 Rational Method: Inlet Basin Results (25-Year Design Storm) Inlet Basin Area (Acre) "C" Factor Peak Runoff(cfs) 14A 2.94 0.60 2.71 14B 1.02 0.50 0.66 14C 1.04 0.60 2.14 14D 1.02 0.60 1.46 4A 1.53 0.60 2.81 4B 4.87 0.35 2.60 4C 5.92 0.35 3.45 4D 9.19 0.35 5.13 4E 2.66 0.35 1.56 4F 1.36 0.60 2.09 4G 5.49 0.35 3.13 4H 0.76 0.60 1.39 Gutter and Inlet Capacity Calculations The City of Bozeman Design Standards and Specifications provides that for city streets, the flow in the gutters shall not be greater than 0.15 feet below the top of the curb. Calculations for available gutter capacity for various street locations are located in Appendix E. These gutter capacities were used to place inlets at needed locations on the gutter. P:PM\BOZ-05021_02_STORiILDESIGN REPORT 3 02/22/2006 Type III inlets are to be installed in basins where the inlets are on-grade. Inlet capacities for the on- grade inlets were determined using dimensional data for a Neenah Foundry R-3278-AL inlet and the following: Q = Kd5/3 Q = captured flow (cfs) K= inlet grate coefficient from Neenah Foundry K-charts d = flow depth of runoff at inlet (ft) Type II inlets will collect any flow directed to low points in the gutter. The capacity of the inlet was calculated using a gutter depth of 0.35 feet (0.15 feet below top of curb). Using the nomograph contained in the Neenah Foundry Company Catalog"R", 11`" Edition (R-3150 inlet), the inlet capacities for the Type II inlet was determined to be 3.1 cubic feet per second. This capacity was used to determine spacing and density of inlets at low points in the gutter. The calculated capacities for the inlets proposed within Meadow Creek Subdivision,Phase I are summarized in Table 3. More detailed calculations for the inlet capacities can be found in Appendix B. Table 3 Inlet Capacity Summary: 25-Year Design Storm Total Theoretical Flow Allowable Flow Captured By-Pass Gutter Down- To Flow Into From Flow Inlet stream Subbasin Inlet Inlet Inlet At Inlet Inlet Type Inlet# Area (cfs) (cfs) (cfs) (cfs) B1 Ponded NA Inlet Basin 14A 2.71 2.71 0.00 3.10 B2 Ponded NA Inlet Basin 14D 1.46 1.46 0.00 3.10 H1 Ponded NA Inlet Basin 14B 0.66 0.66 0.00 3.10 H2 Ponded NA Inlet Basin 14C 2.14 2.14 0.00 3.10 I1 Ponded NA Inlet Basin 4G 3.13 3.13 0.00 3.10 I2 Ponded NA Inlet Basin 4H 1.39 1.39 0.00 3.10 K1 On-Grade I1 Inlet Basin 4E 1.94 1.94 0.00 4.09 K2 On-Grade NA Inlet Basin 4F 2.25 2.25 0.00 4.09 01 On-Grade K1 Inlet Basin 47 2.81 2.43 0.38 4.09 02 On-Grade K2 Inlet Basin 4B 2.60 2.43 0.16 4.09 P1 Ponded NA Inlet Basin 4C 3.45 3.10 0.35 3.10 P2 Ponded NA Inlet Basin 4C 0.35 0.35 0.00 3.10 Q1 Ponded NA Inlet Basin 4D 5.13 3.10 2.03 3.10 Q2 Ponded NA Inlet Basin 4D 2.03 2.03 0.00 3.10 P:PM\BOZ-05021._02_STORiiN DESIGN_REPORT 4 02/22/2006 Pipe Sizing Calculations Design of the system to convey storm water runoff for Meadow Creek Subdivision,Phase I included analysis of the 25-year storm event as required by the City of Bozeman Design Standards and Specifications Policy. The system was designed to accommodate the 25-year event, conveying runoff captured by the system inlets to detention ponds. Design calculations were performed by direct application of the Manning Equation. The minimum pipe diameter for the storm drain main lines (non-service) shall be 12-inches. Service lines will provide four lots (Block 2,Lots 1-3 and Block 4,Lot 5) with storm drain service. Calculations for the flow generated from these lots can be found in Appendix D. The calculated piping system is summarized in Table 4. Actual design slopes are greater than or equal to the minimum slopes in Table 4 More detailed calculations of the piping system can be found in Appendix C. Table 4 Pipe Sizing Summary: 25-Year Design Storm Pipe Location Diameter Pipe Slope Pipe Capacity Flow in Pipe From To (inches) (ft/ft) (cfs) (cfs) Inlet H1 MH H 12 0.005 2.519 0.660 Inlet H2 MH H 12 0.005 2.519 2.142 MH H MH G 15 0.0108 6.713 2.803 MH G MH F 15 0.0117 6.987 2.803 MH F MH E 15 0.0127 7.280 2.803 MH E MH D 15 0.0065 5.208 2.803 MH D MH C 15 0.0065 5.208 2.803 MH C MH B 15 0.0065 5.208 2.803 Inlet B1 MH B 12 0.010 3.563 2.707 Inlet B2 MH B 12 0.010 3.563 1.459 MH B Outfall 18 0.005 7.428 6.968 Inlet Q1 Inlet Q2 12 0.010 3.563 3.100 Inlet Q2 MH Q 15 0.010 6.460 5.130 MH Q MH P 15 0.007' 5.405 5.130 Inlet P1 Inlet P2 12 0.010 3.563 3.100 Inlet P2 MH P 12 0.010 3.563 3.450 MH P MH 0 18 0.007 8.789 8.580 Inlet 01 MH 0 12 0.010 3.563 2.434 Inlet 02 MH 0 12 0.010 3.563 2.434 MH O MH N 21 0.0075 13.722 13.447 MH N MH M 21 0.0083 14.436 13.450 MH M MH L 21 0.0174 20.901 13.450 MH L MH K 21 0.0165 20.353 13.450 Inlet K1 MH K 12 0.010 3.563 1.937 P:PM\BOZ-05021_02_STORiINi DESIGN_REPORT 5 02/22/2006 Table 4 (Cont.) Pipe Location Diameter Minimum Slope Pipe Capacity Flow in Pipe From To (inches) (ft/ft) (cfs) (cfs) Inlet K2 MH K 12 0.010 3.563 2.252 MH K MH J 24 0.0065 18.239 17.639 MH J MH I 24 0.0065 18.239 17.639 Inlet I1 MH I 12 0.010 3.563 3.131 Inlet I2 MH I 12 0.010 3.563 1.395 MH I Outfall 24 0.010 22.622 22.165 Blk 2,Lot 3 Service 12 0.010 3.563 1.700 Blk 2,Lot 3 Service 12 0.010 3.563 1.900 Blk 2,Lot 3 Service 12 0.010 3.563 1.650 Blk 2,Lot 3 Service 12 0.010 3.563 1.350 Detention Pond Sizing Calculations There are two proposed detention ponds located in Phase I of Meadow Creek Subdivision. These two ponds will detain storm runoff from the two drainage basins as shown on the stormwater exhibit. The ponds were sized to hold the 10-year design storm event while releasing only the pre-developed runoff from the basins. Both ponds were designed to allow for treatment of the stormwater and have adequate surface area to allow for particle settling. Discharge structures will be designed to limit the flow out of both ponds to the pre-developed runoff flow. Sizing for the discharge structures can be found in Appendix G. Overflow areas for both ponds will direct flow from storm events greater than the 10-year event to natural drainage areas. Overflow during these events will not flood or damage any structures on the site. A summary of the detention pond sizing calculations is in Table 5. More detailed detention pond calculations can be found in Appendix F. Table 5 Detention Pond Sizing Summary: 10-Year Design Storm Detention Drainage Required Required Surface Area Pre-developed Pond Basin Storage (co with 1.5 ft depth (so Runoff(cfs) 14 14 11,396 7,597 2.06 4 4 14,005 9,337 4.69 P:PM\BOZ-05021_02_STORil4_DESIGN_REPORT 6 02/22/2006 SUMMARY The included analyses and calculations show that the proposed storm water management system for Meadow Creek Subdivision,Phase I will adequately store the 10-year storm event and adequately convey the 25-year storm event. Available gutter capacity and the location and spacing of inlets will limit encroachment of runoff on pavement surfaces to acceptable levels. The recommended pipe sizes would effectively convey storm runoff from Meadow Creek Subdivision,Phase I to designated detention areas. Therefore, the proposed storm water managements system meets the requirements of the City of Bozeman Design Standards and Specifications Policy and will satisfy the needs of the owner of the property. P:PM\BOZ-05021_02_STOR-�vI_DESIGN REPORT 7 02/22/2006 REFERENCES 1. McCuen, Richard H. (1998). Hydrologic Analysis and Design. Second Edition. Upper Saddle River,NJ: Prentice Hall. 2. City Engineering Division. Quly, 2005). Design Standards and Specifications Policy. City of Bozeman,Montana: Author. 3. Allied Engineering Services, Inc. (2005). Geotechnical Report, Meadow Creek Subdivision, South 19"'Avenue,Bozeman, Montana.: Author. 4. United States Department of Agriculture Soil Conservation Service; Natural Resources Conservation Services; and Montana Agricultural Experiment Station. (1996). Soil Survey of Gallatin County Area,Montana. Washington,DC: U.S. Government Printing Office P:PM\BOZ-05021_02_STORA DESIGN REPORT 8 02/22/2006 Ao 0�tr��Qim�I Y' . . jl <0/0 V ZWMEP ' '_ 1 i So RN— ng�wrnon�a �,it � M 1��► ��YYYL�w . �� ,► eeell 9 agFAN jac 1. �`1 ° • s O 6r' 'do,��t�srt«`N!,-.ad �r P NONE d r �y dJ 9iln. R (b OPtoi>. �� �9 e��:�18•a�`r'•.Q�. ti�e APPENDIX A SOILS INFORMATION �'• < N.Fi A. 1. -,r.t., r ..,c .r�yGI r GIri;.Wr t Y r p '• r ^!<,,, :r rt> .a.r ^y7c 1' i :.ar :rv: !a iP '.»"^ia 'r �`.. `r' .•r �,/.(��- r I - ':� L1� •+ ��.`9r:�...a t li _ cr' .�-i-'+�.� '�5 .�r ''I..r '�'rr�,f:rr �7T"�_' .;�`�9 'L'[• ,�1�3�fZH•`�'•` E[ •�y '1 .3 .'!F�r :.�:iy, � .yr:r. >'a Y1.• -�'7 - . t .w �•EA. "' R ¢ {k.�.t'� P" •nk, •1: �r}�r�, �j � -♦A,3,r{u L. .�.,r�.. ,N�,1,�•, v v'< ^� '.bf I is '( •I .;f .r... :C' t`. ,♦t •W.. �•,.••vcA n,;;Nt..3 w:97 { '' t 2"' •S, :� r _ r. -a� :p.�•rt•• •i' ( �, yl�' •' �:t� -.'•� /_ :',�'-)Ir <'�� � 1•11< •3':%'• rr r 'A • ' eL� N •�_� .9`'' ~.i• - ��.'v. ,1•• R - r, .1- '' �'-�. t' _ - .A.".1. �r •:5• 7^'F. r '.l :� 'F: !'4!S' s Tu• l:if,- '71rr• labi.-> .t ,,,4u. i:•L - ! - .�"7:"1' •1 :,LS V .1.;, r�,i j/.td ;'d., ,a •u` , '�'q2 a.A� k'�.r � }�!'f.�. Lr '+�_" ,s _ ,-.•--` •F. r iL::�r '.-+r f '457A... i -r:§. Jj r=c� �` fc .-'L t' .r; � . r L7. _ '� {. rr''�aa��JJjj : rT yr ,•;, .�! `�,•yTy�i,� .P•F: -Y �r .. + '•Y:'la.'i•13!6 s>}. �j'-r- •:l.�S:..t• r tl.7�1r• -•'y"e�V"•- ..: , .Yr�'. 1 � :i,?¢t": .a er: `,"" ':/it' (:� .,.:•. (t ..1 I Zri.r t •1 ':F :s .C".:. i� 1,�.:_3- 1 r5, •I+�iJ.•.- 6 < ' 448A .Y• -'f :1..d•.�.tf:. i'! 'y,.L7aE'trn� •� ,•L ,-' y .-7s.; `i. .tsar Tr• .�. •r ='�!-••'! -L _ + - -'�) r � - y`r» r'` rA t`i J '1-t• :S'9P•.,« � ,'-J'L' ri. '•,p.:� �S r �. �' `�r/7•' �. v 'a• asp ,..: _ ,..,..F. �.� r�:. �u .r 747E >• ♦` `.A• - - }, 'C r s a� kyp+T - .7ta"f. ,IPt ��/ )ra:�r�-'• .E• •+. -d i' �. •. .,�.. i- L. '� 's>wYr _ j -r ..,i_.Z ,t��'•�_ t'aR^, .r��7 '3-....,.�} 7'..N �<; ..,- c.� •i:. , JJt•'- �:F )• ri'i f` �.I ,•r 3' '�'R .t' 4;A.' •<• <- L:• its �:, •?r_ 91 a� v�.. .�cw v, -vim. + y1t y� -r• ,rt _a XIOC. '1500 r -� .•t�'•. fi'. -- t r �. �%. �trr�.•rrr: _ -�: �:1iJwx.:r.`� ��a �!�'r- .a... Tc�.:4L. .rr;1S'w'�!r�.d -�' '! : `0. .t. ':.i•rY. - .y _ ., -:rr. irrl .•'w'41 a y�wr� .S7 '}• `1• �f. +• � i t O y •r s•t' i' A I w �3 ..p- ♦ 1:f+• -:T - _� Y' �•' .Lyr,. Jr• ry/1 .Y•d/ ,,t ,•7. ,�i' • A4., '•, s• M. a J "�. ,�ry 'i ::3F' 4 2 i Y j.. �•• r- y 'Y " j, ZL :T~ 1 - t ^t Y- ..��,ar�' YJt tr ! ~cF- •t,• ,s.' - :1_ h' P r. .rA: G f 7�- t. ; ZIS• , �Y•• ,.��j� }r - 1: ti.l• ?Y 'r••':i.'L. :.< • Jt: Ifr . r: YON L. L_� �P• -Y: N� f- '>. , Ire ..P�•'-.t r• ••`t� -, �• - t'-K ti t 3` ■yr AIA- IL Dr "�i: •'r�t c� .s. 3T:fi "•t F� 1 •u t� _fib v - t r_ ter: .1 f Y � r• .e. .✓ , ;3a. � _ .T2'• �••;� .t`t, ��--•• -1 .t tic `QI• S •�. r• ,�" � "3i -.�1 , 1P:r >r=':'i L 'Ly" �4 ' ..� i ;y - "r - e•.a. :7rT/ - -'.h;. `A. - _rv"" f r.e,�' t,. r• .fS a '� 'rat.' ?^` �' :.• �,$ i-J, ,t. 61'0�'' r•. _ •X'-•• '.a. =•:3.•"' 't4-r- r r ^[-' a. .� , '.r}rbP'.• x. .r •l\ 'Jr� .1 Jq- '@•t'''i: �.S]i IF- Y'ir P•jG� '•} ae• a �p "- :R,r �.' w;A- �..' :''�' S.s♦ � "t` P'{' 4' � '�.�S. 33�1' r: :7�.i:'.' a '� •! •1`•.r k�' � _� - 12 .a �V••r- t J.' ,. 1:,�t't' �� �•� ..,tt;- � i� t 'Y. f• �• 1 -�: • rye ��x�T� .�'". .� •� �7 v tr�� s��i ��t r.' •!- .r %�'.` ,. �L., .K,.':.' "6.Y.".'�5„ � pity �,!L 3 _n !. { r:.' T.3 '•'7' ,�j i, _,�, •..-< K ,ar 'il Z.:�ZiR[tX>�' i a�, M:.g •tr b - C v- _ �e ♦ �' 45714• � �d..�Y• ]I:' �• +�.,q •.t i.3'!5: '�.., `�: •'^L, 4:, i t C. :rt` p '� `.�c'' -i1'' ',/•' 1 "r•'R• .R' •� dr 1L • 6S. A'� y .'fi, ` !_ rin'' -1 - � S09 ;w CIt°0 �'Pd ?a -r-'x�3 •"r'. _ a - ��{%: -�'� .� 'v ��' _ �• .fir _��:rt,-- �"' r,, .sue 6• .. .T ci y r.LH .r V t L• - is ih: ,1 Y.. 'i } 09 �.0 ;ra .r e• .' t� 1- .I t rn• i K y� •, 4 '�. .�•• ter`.. � .r•w.«,- C CSc• Mr s L y.a.r '1 'i� v p - r,. ri ,�• '•a• M '•t.•T , G -! I,� rx i x 505'.t r•• ii d a 7'. .•�. Yr r4 :h _ a' •�. -ice`•� ! w. •r.. r»\A:M •J,. .: ..N,►•.--a�' ..d.., +.3'4►"•''.- r �!t ?--Ic>y:r._ ,r•,•..4c :4;' ::'fl�,o'. .�L+.. �'� ..r'N-.1. .':�» .i ri�ir 'L � .?fir ,:{'=,- 73 •�.~ _ !, c �iY 'r'++ � •'•.•i• �r DB', 4AA ,�? y � 't •.4• ,o- .� i r t'•� 't- ? :�' i1 :G) .�..� p �r'a �a4t i•=l "§�.^... mat r�• '$-„• / 'i•. .'2i• •......1.y `'+•i'• .1' I .r b ,r , -i r- c r. YN ,+ `-ti ry r yr• . •t . a•. '�•%r 1. !'.- �=r .t, ab •Y, 1:• '� 'I <II'} 6 , ? 1 ,4,i.� 4:'R w :fir'•, � 7"d• 9 ^M •Y.r a r %•f x e s i is A •r t .� .�'wt• L f 1 yr �gg l'i 3 T1,• �r�. try `� •7 v 0 •� .'Sii• :V• vr3i - •t 0 � r`1• � 4 r• '7•. tt � P 4: t. - yylr ,•r'r-• riF �tir y•• •y `-'- • •a'" t '� fsY, 1 •3+ I _ •a v •3,.rl:• r t: i w rYr ? �: 4 � i -r '•�t { t•r� d .Y YC t ..i "�, •Ca• �1.. F. r •t+a f k- y T K•8. .r, rr T S ti� jr��Z �J .4•. M' C • 4 1pp L•'" r ,i4 t,,c:. •�: ref •," J1i• ;t f. •`5 I `�i�� `` Jr rah F S/ k ' .i ri�...• i�,{, � l.,• r -:t $, y �. {r •:'ter. ,, 'n'a` i ^r'•' 1 Y�t 1C "•�' •r i'. l J :fi+. :r�'' •y�. Tits( n�' � r4v'• T: 2.. -4,�: j t' rl Ta`^: •'N• rY•'.3`. .rrS d r• •� 1 A J+ rpy•,, �3yr?R'• I.;Y`�C:'� - - :L77• 4 _�� i= ••� a•1. .i' ..Gt - 1. - 'ni.� S -E '.L'•_,1! f PY F_ "fxtY f•4. , ,a: '4 .1.' {• .d,=' � j, .•12 r) ,I i 1 •d v t r q` M 1• L,. n .a.7r ' e t Aa.J 1 4 .7' •i a r � e Y. -w JF r -'A•�S 1. :t I. ._. .t 'y. >, •'b 1 .ant q :;} •t `Tf �Il•�r. Y` `i ( 4' 2 1 T• .t". i T •�,.. .,.• r, rJ -w. " � 1 'C�t 'tr• f I:lh g t.r t •'{. 7 1iY ik •G 'T •l y ' Y .I' nt. .•• r� t�3 , '•r r. mil' S s' h••r •.t. Rr .r ,,s' rC13 rw4 i M d :L'••':1k'•' t i' � y 1 r: I� t a,•t. 'r. s 'i'.r i• 'r/l' ':�« ,tin.:_z• ,1. )F h ! J F f (( 1 , P3 r 1i ,nj. 'd f r •,r >• yyam�•• t �.- r ••t^ lc r 1 , •.•1 rf '�3, ,f •�' Y • r f F >.. f• ��i55t; t-h t f" r rr' 3�rr• 1• •,h 1 � 1 r:"Z\.S f - r xC3. Q.• •RC•v'.t' �- h ', -tS '1 ./.. 1� •3i '1°"\,.., !'C !; �'rr ':L ripYt+!r+; ..,,�•,. ¢ �•, :'(7. P •'b`,. 1 ..r. ;'r$:"'�: }• 5 •:c. ±{fit'*- , �. .� r'•r•.M, '-lr. � `( .rye �jI '�j •$-- 'h a '� ..:L3.. -F` �' -i �� .•�� '•:La'- •:iSi. 1 ,.Y .a � :.� t ti .�.: ..,ri r+....~ - •.�• '�, <Y?. _ ".r ,rr.��i. -'4' �✓+ L 'F. Fil L 3."V" .ol: �i: r '�, i+ .G.- .S3 L.. '.'!n i. T `Sr N•- t !�a ,s. 3F(( 2 T 1• �\ Y `1� f i'• 'ti1.. `A:Y. .t. �'sK `il L 7 •f •rta*•. f fF.� ,t, �, ..,Y'' G. .i}' �'� i858D r•'•'�'rr ,.�• •'�' 'i is• ,. •�:i� f^ 'd ':,-..: F W ray f.. �. i r. .e.r• , k .�. .':t� D :f r �•r �� .,C •ram.' c•e•Y-' :(' •.rt:•. f ':.0 0'�r FI•.:• a i s 7 r' 'fit -`� •t. .'t ``i!%; 50 540!- S -.. 7r• - r Jti«3: •1 ��T'.' T ,:1• , iD.• 1.•. Ir S!', .ri! '`,•: •.. 7tYr'rw, .dt �i:i F�"'• fi N, •,rt 3N i'. t• 1 S tJz. s -:r•-' o T ik F •x n �•`. it .�• ,�} c'S •5 'r r 7" 'i �,� y'c •0i S i u .Y+ rJdti`>. J2 t• r� 'd ♦ 9 {,, lr. ,3' if •f' r Y• f _ A •i,' 3 •.Y ya•< :4n YJ t�a<'e t { -!(f' --lt' '1 .r t:i .i' ,F •7• :�cT;, 78Z• f 'SYr3.. t ';w Tsia: •t i't .rir•1 .f''.. 4 I. yr r D '•i• r V• 1 J, ii• '75 OB r .'.�t• .3 1 `•r! 1 ,• :"7"•r •� t;its s•1 J �L• M1;t .1 ,1, •7, `7 ite. L 4 il' tt •t,Y nY' r% ice.tP' ,y�• r: T ll �•1 (kCP° t�e1• , 1 G 'z •.r,••• '�..� ..r,.- ,�[•Y� P �'r`i:.-f• -r+ ,►>.• L .It:?�� _ 'T'T' P: T' ':ti 'it r,r r T � i� •� u= ct:`vim• :�'r ,tiler `r' A ra , k r• !., it .'R +•«_ - Ste• i. AD a.,r v1 -It y lt• 3, S'a "F .H J r. A•a� tt•s t-, .: ,•�I tom^I l• ` rJ Y�"'Vy '1 7t ,f ..t0„•^ �• .l.r_• f rr r�r 10& it 'f� "1�• h ''fi l R 0. 1. -1 4 <-_•� V E F � 1 rl.�.. .�• -t � r'• �,,^i .t 1' 1l .,�.' �, .�. �. y •ram:.`. I,tr. 'F• ••S 1 YY - t•tt h. S 3 ,a - ! A �t 1a 'Mr a r. t 1 r '1. •Jt;. `, 4•' X •t ,I F r.Z1. t •i.- l r ii -r A `rl r ''Fb f, r ?I •'T •1 x:. •3- s- 'N _ ,, ••fir'': o- t 1 -Dr r .F '-� sos t t - "i 4 y i• ! t ! O' a '� � •r , ..r y.� , 'y. r 3'a•7 ^1 •I.r t � J �r tCr •r''J Q t s. 3 �:i F1N rC i •t t• f •Y••• Y .i' - •d rtl'- �r •- , t SSAA ,Pro" 'd •,a r r i •`!t 1 _ tY'- - 1 _ -• - Y'. 1 -�t 's 3 � •b 1 a -7 .a •tY" q fir' rs:'r .:. gyps.,.. ••. R.5 E. .. .- .- R.6 E.' 407A 'S°3T30 T30"W 491000 492000 493000 111"5 W 494000 495000 496000 111°2'30'VJ497oo0 498000 499000 �1 1W (Joins sheet 40, Wheeler Mountain) 1 0 1 MILE This soil survey map was compiled by the U.S.Department of 1000 0 low 2gW0 3000 4000 s000 am 7000 FEET N Agriculture,Natural Resources Conservation Service,formerly Soil , D 1 KILOMETER Conservation Service,and cooperating agencies. Base maps are SHEET NUMBER Sri f1F 4ri_1� .: _��...�_I,r n___1---,_ct3_-'-,--:_- c•-.-1.. ,.oennn x o N r d 0 0 a N'D 0 0 Z 7 Z fO c E 2L o v 0 0 0 0 o o m _c._E LO 0 0 d 0 o a n J N CO N N E v O n n � 2 r- o O e I N LO M 'ITp � O v° a 0 E E ul) o LO LO o O u) $ N O O O rn ch m W N s. v ^ n 0 0 a>i m � n 0 y 3 Of t C t p O O O c0 O O O O O O O O cn 0 a � 0 0 t2 r n co rn am F CD a 0 0 0 0 0 0 ,O 0 O p 0 Ln •O CD LO LA to o7 CD cn N to 0) N � 6� 0) N O N O O O p N N -U a '- O •- O O O O C O C O O O O _� C N O m E 0 Cl y O N L w 3: LL H 5 C 0 N CL �O N A V O O O O 00 O O O � C C ON (D y N I. Q L O j N C = � OC ¢�¢ v19 to Q •` •4) U cf0i cca Q Q Q Q Q Q Q G1 _C C 5 c0 N .. _S .� N ca W j J -�C7..Un J C9 U) CD C') J J U a C7 � cc U ... U CJ U U C9 m 0 H 0 E c Q N O O .� h N c. Egad cn .. Eccaai Q [O N O m >` E O >'T 0 (7 O _Cl T 0_ >.; 0) > v m > 2 Q) C V .00E m0'�E5 U .. mOE O Ef _�fn f6 J N K f6 � X X J U U J J 0 i ❑ O O N N O O on N � u y aw � 0 E E c r N o �q C a�' a) z U �� v 3 Q n o om CD L1 v ~ `O �I� 250 Soil Survey nonplastic; 10 percent cobbles and 40 percent Major Component Description pebbles;slightly alkaline. Surface layer texture:Loam Range in Characteristics Depth class:Very deep (more than 60 inches) Soil temperature:43 to 47 degrees F Drainage class:Somewhat poorly drained Moisture control section:Between 4 and 12 inches Dominant parent material:Alluvium Mollic epipedon thickness:10 to 15 inches Native plant cover type:Rangeland Depth to seasonal high water table:24 to 42 inches Flooding:None Depth to the 2C horizon:20 to 40 inches Water table:Apparent Available water capacity.,Mainly 4.9 inches A horizons Hue: 10YR or 2.5Y A typical description with range in characteristics is Value:2 or 3 moist; 4 or 5 dry included, in alphabetical order, in this section. Chroma: 1 or 2 Texture: Loam or silty clay loam Management Clay content: 18 to 35 percent For management information about this map unit, Content of rock fragments:0 to 5 percent pebbles see appropriate sections in Part II of this publication. Electrical conductivity(mmhos/cm): 0 to 8 Reaction: pH 6.6 to 8.4 504A—Meadowcreek silty clay loam,. Bg horizons 0 to 2 percent slopes Hue: 10YR, 2.5Y, or 5Y Value: 3 or 4 moist; 5 or 6 dry Setting Chroma: 1, 2, or 3 Texture: Loam,silt loam,sandy clay loam, or Landform:Stream terraces sandy loam Slope:0 to 2 percent Clay content: 18 to 25 percent Elevation:4,000 to 5,000 feet Content of rock fragments: 0 to 5 percent pebbles Mean annual precipitation:10 to 14 inches Electrical conductivity(mmhos/cm):0 to 4 Frost-free period.,95 to 115 days Reaction: pH 6.6 to 8.4 2C horizons Composition Texture: Sand or loamy sand Major Components Clay content: 0 to 5 percent Meadowcreek and similar soils:85 percent Content of rock fragments:35 to 75 percent-0 to Minor Components 10 percent cobbles; 35 to 65 percent pebbles Bonebasin loam:0 to 5 percent Reaction: pH 6.1 to 7.8 Rivra sandy loam: 0 to 5 percent Ryell sandy loam: 0 to 5 percent 510B—Meadowcreek loam, 0 to 4 percent slopes Major Component Description Surface layer texture:Silty clay loam Setting Depth class:Very deep (more than 60 inches) Landform:Stream terraces Drainage class:Somewhat poorly drained Slope:0 to 4 percent Dominant parent material.Alluvium Elevation:4,200 to 5,950 feet Native plant cover type:Rangeland Mean annual precipitation:12 to 18 inches Flooding:None Frost-free period.90 to 110 days Water table:Apparent Available water capacity.Mainly 5.1 inches Composition Major Components A typical description with range in characteristics is Meadowcreek and similar soils: 85 percent included, in alphabetical order, in this section. Minor Components Management Blossberg loam:0 to 10 percent For management information about this map unit, Beaverton loam moderately wet: 0 to 5 percent see appropriate sections in Part 11 of this publication. 356 Soil Survey Flooding:None Parent material.,Sem icons olidated, loamy sedimentary Available water capacity.•Mainly 5.2 inches beds Slope range:4 to 35 percent A typical description with range in characteristics is Elevation range:4,100 to 5,500 feet included, in alphabetical order, in this section. Annual precipitation:10 to 14 inches Management Annual air temperature:41 to 45 degrees F • For management information about this map unit, Frost-free period. 95 to 115 days see appropriate sections in Part II of this publication. Taxonomic Class: Fine-loamy, mixed, superactive, frigid Aridic Argiustolls 457A—Turner loam, moderately wet, Typical Pedon 0 to 2 percent slopes Udecide cobbly sandy clay loam, in an area of Udecide-Cabbart complex, 15 to 45 percent slopes, in Setting an area of native rangeland, 1,600 feet south and Landform:Stream terraces 1,400 feet east of the northwest corner of sec.20, Slope:0 to 2 percent 11 N., R. 1 E. Elevation:4,300 to 5,200 feet A-0 to 5 inches; grayish brown (10YR 5/2)cobbly Mean annual precipitation: 15 to 19 inches sandy clay loam, very dark grayish brown (10YR Frost-free period.,90 to 110 days 3/2) moist;weak fine subangular blocky structure; Composition soft, friable, slightly sticky, and slightly plastic; many very fine and fine and few medium roots; 10 Major Components percent cobbles and 10 percent pebbles;slightly Turner and similar soils: 85 percent alkaline;clear smooth boundary. Minor Components Bt1-5 to 7 inches; grayish brown (10YR 5/2) clay Beaverton cobbly loam: 0 to 5 percent loam, very dark grayish brown (10YR 3/2) moist; Meadowcreek loam: 0 to 5 percent moderate fine subangular blocky structure; hard, Turner loam: 0 to 5 percent firm, slightly sticky, and slightly plastic; common very fine and few medium roots;few faint clay Major Component Description films on faces of peds;slightly alkaline;clear Surface layer texture:Loam smooth boundary. Depth class:Very deep (more than 60 inches) Bt2-7 to 12 inches;grayish brown (10YR 5/2)sandy Drainage class:Well drained clay loam, dark brown (10YR 4/2) moist;moderate Dominant parent material.,Alluvium medium subangular blocky structure; hard,firm, Native plant cover type:Rangeland moderately sticky, and moderately plastic; Flooding:None common very fine and fine and few medium roots; Water table:Apparent many faint clay films on faces of peds; slightly Available water capacity.•Mainly 5.2 inches alkaline;clear smooth boundary. Bk-12 to 32 inches; light gray(2.5Y 7/2) sandy clay A typical description with range in characteristics is loam, grayish brown (2.5Y 5/2) moist; weak fine included, in alphabetical order, in this section. subangular blocky structure; hard, friable,slightly sticky, and slightly plastic;few very fine and fine Management roots; common medium masses of lime;strongly For management information about this map unit, effervescent; moderately alkaline; clear wavy see appropriate sections in Part II of this publication. boundary. Cr-32 to 60 inches; weakly consolidated sandstone. Udecide Series Range in Characteristics Soil temperature:43 to 47 degrees F Depth class:Moderately deep (20 to 40 inches) Moisture control section:Between 4 and 12 inches Drainage class:Well drained Mollic epipedon thickness:7 to 10 inches Permeability:Moderately slow Depth to the Bkhorizon:10 to 22 inches Landform:Hills, sedimentary plains, and escarpments Depth to the Cr horizon:20 to 40 inches APPENDIX B INLET CALCULATIONS / §§ § I �3 e k !)B- 7 1 �)2 § g |/(2or \ 1`$ m 222)\ ) f �§�- ILL IS 2 �z®w , ) _j Q !#g� $ .o U j 0 r � §§I S J Iu2� } 82 I§()/\ $ 2 2 § 0 2 I ■ !o q $ ■ ■ |E@Smo k § � � k �� k tee = ie� « q < © } � o 2 I | k f ■ # t z < ) I § § ■ \ o - i o/; z K a 7 _ a , / ■ ` � ���� � co ` §\ j \ k j ] / - V < \ / Mn E k < i _ cm R 2 ® § 4) ] a E i `a ^ } / � � © ) m ` < 4T ` - - �j f � k #a § ƒ ;/ f $ \ (K��k f f \ } ) �A« � � � ■- / 77` / 7/ m \ / �f22a / Q k / § III IL )ƒ( ) ■ k C ate° . , a en s 2 i §\ 2 CL_ . . . . - ~ � °�� / Ct �� ��� � 0- \/ kmo m )��_ - \ a - /CY/ . n = ) Gt§§ ° ƒ G/ \ ~ » ! ƒ ! ujzz / G r k Co /\ { f ) a 2 ƒ 2 i /r2 f / k \/ / a © _ E ) t ƒ 2 a ` k 3! ) k )k LL / k co k ��_� § 0 k I 3� 1 °= o iLLU al ImIL lu ILF' 3 '3tZLL � 10 Q U ri w a/ Im `a c 'mOW LL o 8 I3 U. p , a I0 c m ,O O 0 iCC Z J in LL IIL 0 IU LL C O � 1 Ir U I o CL LL m M a) co C 1 LL Q O O fA c + p o +' Of J 0 O OOOpOj R � `Q i~yJ fA m p7 W O+ U. O NC' (V �" !OOZU .- _ n G O I N J— d ` N LL a) .-I Y y N�� u > ° CD Igy T 10 p L �' d a7 a Ia0'—�, o y � p, N 3 f' ,u �JLLIx o m 13wzU p rn O d r E ILL v L. c paa>i o w a `o le3 < X c 0 c '° a) c i Z E m y 2 �?a v .� ( �_ E m aci v w 3 $ �10MO N ` JCL a C 3 aD o.- r- cl 1 Z p E{.. � 20 c; � O E Ol t I J to O Q wit 11 II II II q I 3 Z N {wp U cLi c J > ° m ' O LL v = rn C � fa W ~ O i LL U O to O o E It ar W � I m o H > m ' Z L 0 a I YI dap: c ar o v > 1 Q CC ' U y L O FL r. ?.` al O ( kmQ Ol CV O > D O O! L II U of 1 O N O N OI C N C O a= N C C C 10 a1 I C off.. �¢3 o E r�cx� E E m s °c$u ' W O1 45 .2 'U) c v -0 o m a+ m E rn FL c ` 2�at U) co Lm 0 10 Ol r0-�L m ~ Q m Q�M.,N O y .N M j 7 ! W Z Q G ar b m �U o W a,pr` pc� �i y N a I O a-i E 3 N N C W 3 Cam„•, LL N C 9 M 0 g 1 Dy? O U N C W al 0 V fn OC W VII II C CO II C al •C II II II II II II d y 11 dII II 1 y . T cQU o � e U. c m UJ� > $ H —y yC70 I F'wo y m O N N U ° o co 3 a c r c v m > of > 1 W a Z � t O O O C E 3 O N O t N U C •c W ~ ~ H O` w ! ? a m b C - H O U cq U 0 J d O IL D O a. IL O FL I C •U cya m c a t m m m 1 H Z V U m 3� o ``—°—Oy co N E E > > ( wx m E d d a y w U w > � y o m 1 Z o > a1 C Q LL L a7 16 I LL 7 7 U O o li U U U �_,_, c7 cD -0\ i jƒ ± . � i±§ i2U--jm . % ik�g� e g/ -ur f 22)S i§ %)�2 % ( $±/oo 2 I2 i)$� uj _j m 7 0 cl 2) 2 - } /j -o® - © cc - } .34 @f JIL / io k § � � S\/\L) } , e2 � I � « C U 2 2 ` 2 § 3 ! / { � ) / ] a § f k ® ; %»® < 7 ! k ; �)U � k / . £ k §/ ) \ % \ E $ « $ _ 2 $ a § Z< / « 2 \ ) § m i M ) = � § - _ . ( \ ; �a . j k o § {<a § f f E § {2 �3 « f k k _ 2 a e )� C, I = § 2 7 $ 7 2ee � /�� \ / §f ) ! ) ) $ ~ 2 o - ~ k f Q }2i k ° k ] , . , , „ G a \ /$v 2 ) ¥ Sr- \ { )/ £ °�_ » \ R { ƒ ' {ooi Lam / t ) 7 11 y ■ p e » ] » § ' /§ y G Co �\ \ / \\ ° k / }ƒ ) 4 , � k / . 2LL a. ` ° i ) k ) - k k � - G k \ \ a ` ` � E | \ k 0 i4 k k k 2 R k k / 0 \ | $) ) » Iooe Icn k k§{� G J �$ |%0 Lu U. U. { 00 � 3zr� _ fa.§/b & ) Iu U. ) | §0.LL n [ | U. ° / (n / 0§@LL u & 2 B - � g / f C * §2 8 « ■ � k tom- 4 k 0 CD �I « c \ a 4 U � ) t # § 2 iE I / 7 ) | 2 2 # � E 2 e 2 suj = E © J • � z rL < I E 0 \? ; ) ! f CD | U. \ iMn - t f ) E } I C w o ( <\ \ / ; � / \ \ � \ j \ ���k f f / / § \{« � � \ j If 322 § n k � \@Smm ~ : 2 # a ! )§( < ( ] LL e \ � ! §/# Z # \ k\ k - - - ° ~ - - § . ! { G = 0 km§§ , § \ := 2 }G3� ! \ / 0 / - (D 11 &tLg N. =0 . § e E / ] ; § ' // E G k jkWo s 11� f GLL ~ 4 7 ] � \ 0,0 § ƒ° § 6 k § 2 2 ` k C k Q G \ 2 s § £ 2 LU \ m / } / k � )/ j # § B j � � ke« u 00 � e J J Y I 0W O x U.U imOW LL 3 rn o w IO W F U v it 4 tIl I>OLULL 8 (3 LL o �o C ILL m 00 ° j_z I4 0 N p— o IU U. I LL W LL p c o E I 0 y p f O O !O O Z U N Y C y ° U. �- i4 ran n n u n O (D to N y J Q' > U lO(/f (u� Wy U. o y >_3 V loa�� C 6L C 'y ao > LL [V m y i W `o c 2 c� E ' > c d , O O N O LU O O N Z O C 3 ^2 C NO(70 IT — I OJr O l6 OE Eo _ C I � ` -Jy O .t.G II II II II II4 Ul NyJ� > a ~m0 H O ul I O U N N n U. — 3 d m v �2 3 0 1= °� n m16 o m a°i :'% I °i OL N II O ,n W.0 ` m¢ y a « N ¢ U 3 ^ Ol 3 C G N N C C C N '� (0 I C N o ��� E E :% m o� - L ` C F U U- yy .rJ. O N O N F- U l0 1/7 C p) OI �• (0 7 N W M O N F- O N N O f0^ O G co C I Z F U N IR 0 W O `� d lc0 y O , �C�O fV r r CO N 3fV Q3�J Y O 3N c c 3 y cy LL 3 v (6 py2 3 O y II II C U r2m G u II II II 11 II d It 11 It 1W7 CL- QU C0 CU O � UO C y > _ >m 0 Ot- F «m -0 U _ O E rU (nNC 9II II CD m ? O ° U >U c LL 0rn c3 y S .0 d y d °i LL d m 1 m a m o O N O t 7 LL N 10 A ! W U U 7 cn m E G > > I J� 0 N N N U R � N C Q E `� U L) 0 0 i� LE cLi 0 I c� / )) 6 . u ,u§ ID |o/§Ulo , ) i< a > I RUJ2g § =2oe |«U- { !) i\(uj k I»0 7 '&2 2 1k3 gwe@ _ )S�:) E �� $ � o //)( § = \ m . / oh & 2 j33 » 0 �}� IDC4 ■ $>\LL § U k-e I, k LL - o _ ° ` % ` ) _ 0 2 ■ 0 k § woo cm \\[ \ - _ ° ° ; 1 � « « - ! §G3 ! { e a - , / (/§ E k 2 2 Mn , _ - - _ / � G a 2 (n « e2 f 2 . 5 7 } a0 | §$ � ) Q $Ia - § k k / k3��3 f § Z //« ! 2 _ § ) � $ n £ ` � ' Ek /m§ § $ % e \ / = $2\ , § ; f \ §7aI §§\) § ( ° \�IL � § b } y & \ / i w� A � § G ] / k/ k / 7 - � - | -� ( a § \\ / ( \ \/0 2 3 { )� ) \ ƒ , / § 7 2 / ) ) / .. $ § 2 k { \k ) _ _ } ) \ \ _ _ \- G / ` ' ! � J , e ; f ) 3] ) J / ± e d [__ 0 0 v xx o= od Or �QLLJfn , 3 13'Z- nn y �OW�U 17 A) �Q 7 Q 1 0 n Cl) C !(n O O QQ X > !y00�INi E E o Im�Z m m U LL OO paIc C c p `irZr ON Y U 1� J ' 'C0ZU Clio crf c BULL ° o c c m 0) 0 y LO c a a N OW CC II N N p 'm > cm n I m d Gl N �JOF�' NN Sd d L N LL m !OOZU Clfo d` OY } i pm IL1 p w 41 CM3 U.uj o oi, cm ;g O U y !3 W Z U O O er E � C C L) C U u- c ° ° y U. d dG G r- od '0 O > W w I[p� dim ! YQzz ON } N E > E •G Cl Cl c U U o` a a s c � mmN v I ZOLL 3 � CD (h 0-1 Z V 2 `w'- N � �, n u n u n 4 0 CR D crf N > $ coo 3y Ino Z ° O N m y 7 n 1 O t '?O G C p II O II c� p c �° H o i U.U c�o •a° f n a m 0 W m - H•- y c m i E ! v a 34 c c d 0 0 u N =Vp m w cc m m cj c 0 au L) E E ;y� yF ° c Iu to t-t �Q a (D ° m g rn K ga o m d m ci � ? moNin ° o d� 3 W °'o�M� ooi o ,�Oo myvl 3ugw ¢� m oa `om O NO �' O N O .- W O N 1 OwJ Z mt a) 3' 3 �o u. rn �o�� U) ni IL 1 pr-z E rn 3 N C d J d C tll 9 — 9 U U) y U y O v N C C N N 01 V a y ¢ y Q c II II C C o C II C C c m 11 II II II II II G 7 II O. CmAC LH0C I aVmw°y U•d>°C m�Vw- cO U ja ~� O IiE YN dd;! F 7•C'-o c U 'v com U- > M U E d ramoVE °c 9 n IL $ 'o ULL r .- c(AU LL ? V 10 mLd a C10 CL L 0 l m mID m c iL w E ¢E m Lo Z E w N yE u' Z � Qo IL > v� o m C L U U- 1. U U U L�--- :' C7 U ¢ Q ' 3 Y U O W Y 0 Y / J= 0 1 LLu w3 Im2� �¢LLw w 3�zuN. :- • 3 -OFV riri ) 1 ¢ C9 � 1N N m Ia f a ,m0�U) ¢¢ E c 1 U. z z 8IlL Id IJ N '0 0 �CL Np iM Z Ij N O co U �l7 O y N Ia OZU 0fV !U U. o o c am N w I O n.1- m c) am m J W— O p C i U. II Z C N II r > ,J��• M O (D d Z 47 _N 1J. 002U U. NCV c = d 1~U. G C C d ' N t O w V d N m 1pm o H ILL`?�T So O U N '3:wz OfV j O c U �Y C IO C- 20o 'M 0 11 c) W •� ILL = C + O N r ( w °' ¢ `o Gl CGf m Y J Z Z x� y + N 'H C C IC + N C 1 ¢ f0 d M l0 °c � �� E E w U m 2 m o` c (aO o v'C— fN0 I Z IL 0 ¢Q L C C NOO ,+7 d0F ZZ C V .N Itl O O a I J(p U. cm O U O C O Fi! W ICp m 11 11 II II II 4 1 E 7 N N J� ' V n I 3y m° Z E 0 [II W �pG 0uih O , O V In O ° C Z. .5 E U N a) U II 1 LL d E n E m d E , oo G m �+ w m > I vv • m d C 01 ,N C ~ G 1 Z ,. y d w cu ° 3 LL In .Z` >o. `° 0 m Q m°° `7 c w ° > °73 O ° c c c a°i N �a I mm o O c 11 L ? LL ,E a � c c c ma cc m c $ € �QJ m VI o ���C� •EE �; c1 _ N N C C N H �' O m O A YO ^ ° N m N f V N 2 m to N ad,7- I 3 J z Z Q 3CQ C C O Cco IL C w0 O V n7 V¢N I �U) O Z .M-.III y 'C i O C 7 N N >a > � N °II 11 1 Q❑ bU y� ad y ¢ (N Ce) O dN U d W Z ¢ C OO o U H m=N °> E _j° ~ 0-00 as k °0 ic U m lL U.O C — 0 m c > a� 5 LL CO —3° d IL a : ID �w ui LL a y I r y m d ?a a v y m N O C A C O L j LL N R A W tt N Z V O 'E !L- U U 00 li¢ LL U 0 U ( z dd o a | )$ 0 Luo d§G k(& $ � I $ ] / |■ §d/ § ) g � \o 1 0 j §/& - U- k & U. ci � a J0-j2 |-IL - 2 f @ ) �■� � §f � / 1 §§� 2 { § U k I■u � ■ 2 ■ � � } 2 | �2 Q a I k ) ' E z0 Ca _ ao �oN 0-j } kG\� ! { a: 2 k CO k/ MA \ _ : $ E ) 2 ( ` } ! / }� / \ nta o = o » e � o _ ) § v § \ ƒ f k / §S��) f f / k�« {aa \ r- 2 § I�nRm k j /e � ¢§[ _ k / \§§ / $ k§ 2 \ W §2§Q2 Q , 3 a § 2k@ � ■� tg - - ,}� , off■ ! ■ § 2. , - __ §k / U) . , - . , - ( � k<v - , G� E � CO E R - �001 0 ° ° $( ) } /\)) !2 \ )§ / k } / § ` 2/ § } \ 7 f) / J //Cn o J\ $ fƒ ) 2 2 0 0 a - i ! , f .. \ k v f / en E a ) )« Cu 3o I# Z 0 CO J 0 \ ` ! 6 i U. 1)/S �7cr/EG § 22220 * /co ��7 i\ -j > �§�_ (D ie cu |§(2� , 0 §/� 2 \2 I- LL � �u0wmm � a I/§)» % � 2 •�u- 0 `)� o®� » k $ 2 § }/)� Q \ \ % � f ' � q a) k �) � % a ■ ¥ 2 | J � a© ® E ■ £ • | 0-1 k ) e a ; a » J J 00 | kn ] £ ! )& § ) ^ _ . Mn k ) / 2 # �a � \ §$ / )k &kk £ \ ƒ \ / k3� kf ) � § f« . ' \§m 0 k (\ \ w \ : ° / \ CM/@ � \}( ) \ } | _ k2� - °� ow < o,� @ §4 \ / e , �� , u \ } «o C 2= |\ � r � /3�� , [ p D5 cooi wCL ƒ ¥ / � ��0 0§ \ � Co / $ \ - N. ® p J ° ))no ]t / \) ) § � \ / /) ) k ) * - § f a " i 2 m m §k - - k \ ) \ \ ` w- » \ - 0 �< § ) § k ! ` J$ ) J 2 I § d J [___. ; \ q§ - 12Ir )2t | |_5 @: A '�_ _ ,q < ito Z t 0 8 i� �w p !m z2 i[o � \ .0 cu a §[2G � d��rm / � a �ogkol� n ■ e ems - ± _ !)® & g w � CL /§ )( L 2 / / o ) ■ I k o � Ci ] _ �< z k k i > B CD \ j 0)� � i m k / §[ ) k cm | / ] j z / / § / �a § § \ ƒ ! £ $ ] 0 / { 41 22 ; % - �® i ` / / 2 § | °` § ' \ ) 3)k § \ ƒ ) \ / \S�:k f f Z kE,09 ) \ cj Im § k� jk n ■ � \/`m$ ° r k � �r° � ) §( ¢ | ol B4 f $\ 2 AGa �3w Q e § ��Qi ]mg ` ( m § r� \, . 13 @ , ea . ! . , . . i £ . , ( )/ ?<u / § 2 J\ za/ £ Gu= , { � G ƒ - }ooi 1w / 2I ) , ] $ �@ , §� / ;§ E / < » { i /} 2 ' �/ ) jk°0 7 �E ) ° LL § 7) ƒ° 2 . | f J 2 ] CL • m 2 §2 \ _ 2{ s ■ £ w CL J $k -2 u /k § k 0 0 ` / @ f J« ) J/ § J �_._. / ;u k APPENDIX C PIPE SIZING CALCULATIONS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0000000000000000000000000000000000 30 C� 7) O O co co On O�1 co 7 IT V M M O M ((DD O M M r- M M O O O (D Cl) CM O O M M O M M (q7 OM O Q, NN � Cg0ACN (O (ONUf N V U) (OO) (nCnhO (DvCo (ngq (f) CnN (n (n (nq V' ; s, MM uo (n 0v V � V vv � (n v � � � v TuJc6 (o W T � v) )ri v � r- 4v V' (!j V 0 v �� Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y X Y Y Y Y Y Y Y Y Y X Y Y Y Y Y Y LLLCL0000000000000000000000000000000000 U ar 0 3 0 L.L Q O N M 0 0 0 0 n N Q) [T CO 0 0 0 0 g V 0 0 0 0 0 0 0 (O (7 O M M CD In q CO M It It (n q M (O M M M O) 0 0 (n to Q. U (D r CC) CO a) CO CO CC) r� T O) r �-- '- r cr LO Itv It It 0)(A N q r M r- (7 CD Cl) >.. C O CN N N N N N N N r 0 C7 (n (f) CO M q N N r M � r r N T n co r N r r r r N T 'V O) CA M h O g q q M M g M 0 Co M M O M M N q M M M O o Cl) M N M M M M m w O o O o m N (D (D O g q q co CD N M O tO q (D M M (p (D N CD q CD CD p_ U o (o t` ONNNN (n (O V; )n �tv (n (n t` LO In f� V O) M � (n NN N (n CO � � tn to U NCN (D (Dr- N (n )nCl) co rl CM (6ui CO M Co CM CO Cr) � � (MM N M (M CMM N a � U') C) nomc"000 (onoo � oor- oo � wn0C)(D0om0000000 d •� Qp moo r o00 0 0 0 0o Oo } � 0w0000000000000000000000000000000000 N " 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o U to OO (f) (O U) U') m (O OOOO (n (000000 (O (C) U') g000 CD, 0000000 00l NN NN _N _N O O 47ON _NOO (O00 � n (` (� 00CD 00000000 f0 �...(I LOto q (� M M N(!') (O (n f- tC) (O M Co M M tO Co O O In O (o (0 47 LO N M M M M M M N N M N N M N N Y' V' V' 'cf N N (O co 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 r- r- r- n N N N N h n N N N_ N N q C70 g q N N M M N N M N N N N Q y N tt V' N N N N N N d' N N (7 fA O) O g q C 'ct q V 7 vrrOomCA O) Orrr� rO) Q) rrnrr V' v v 'crrrNNrr CN a � M a M C') M M M M m m M M V m M M C'M Cl) Cl) m t!7 In Ln M ('M (D (D M C'o (n ('M M M M LY 'T N N N N I N N V tt N N [Y <t Ce7 M M M m LO (O N r- N r.- r- r- � Ln r` (O r- I- to LO LO LO Ul) ul) (n (n LO (O LO (O (O rn U) (O g q N N N N N N q q (D g N N q q (D g q 0 0 0 o q g v q q 'IT q q q q Q � r- t` NNNNNNr- r` r- r� CN! Nr� t` Nr, r- V T tvF, rP, � t` rn � r� r� C O 'Oor rOOrOrrOOr000V (V N (V00 (MMOOM0000 iC n 7 Q Cl) M M M_ M M M M M_ M M _M M_ M M _M _M _M M M_ _M M_ M M_ _M M M W C C O O O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0t�2 0 N C ) O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 0 CT N C .0 C f0 � O N N to (o Cn In LO N N q N (o (C') N N q N N N N V N NCNC r N N N N N N rn Q a N J 22CDrLwoUmmm < O(� � aa000z � JYYYa - - - QU V V U c..) o H 2 2 2 2 2 2 2 2 2 2 w w 2 2 w 2 2 2 2 2 2 2 2 2 m J J 22 2 2 2 2 2 �S W of W W w T � 0 0z Z O (ncnr) Cl) o > a 222C71i W DUmmapCJ000- 00Z2JYYY ' 2C', UUUU D0- p - F- F- F F F- F- F- H � F- F- ui - - - - n u w = 2 2 2 2 2 w u 2 W w = w w 2 2 2 2 2 2 2 w w 2 > > > ll J J J J J J Gc J J J J J J J J C = Z Z Z Z Z Z Z Z Z Z Z Z Z Z CoL c N m' - - - - - - - - MNr Cn F- C (U C U2 cu - - r - - - - - - - - vvvvvvvvvvvvvvvvvvv0000 m N N N V a a) Y Y Y Y n. d JJJJ m m m m APPENDIX D STORMWATER SERVICE LOTS CALCULATIONS Storm Sewer-Serviced Lots Worksheet Meadow Creek Basin 14, 25-Year The following lots will have storm sewer service provided. All the lots are dense residential lots and runoff was calculated using the 25-year storm event. Biock,Lot Area C Factor Tc intensity at Tc Runoff(Q) service Location (Acre) (min.) (in/hr) (cfs) Upstream MH Downstream MH Blk 2.Lot 3 2.02 0.5 18 1.69 1.70 MH G MH F Blk 2,Lot 2 2.26 0.5 18 1.69 1.90 MH F MH E Blk 2,Lot 1 1.96 0.5 18 1.69 1.65 MH F MH E Blk 4,Lot 5 1.49 0.5 16 1.82 1.35 MH J MH I APPENDIX E GUTTER CAPACITY CALCULATIONS Gutter Capacity Meadow Creek-Phase I Basin 4-S. 27th,S. 28th, S.29th, Graf St.,Alder Creek Dr., Goldeneye 0.5'P 1.5' +f 7.5' T O.C. n if;, 1�7 22 0 35' - }I n 125 3%Crown Slope Catch Curb Not to Scale S.27th 0+00-22+00 S.27th 22+00-26+43 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0 013 Longitudinal Slope(S)= 0.0112 FT/FT Longitudinal Slope(S)= 0 018 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.491n)(A)(RA2/3)(SA.5) Q= 4.09 cfs Q= 5.18 cfs Graf 0+00-7+00 Alder Creek(Worst Case) Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9 35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0 013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 2.73 cfs Q= 2.73 cfs S.28th(all) S.29th(all) Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0196 FT/FT Longitudinal Slope(S)= 0.0196 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 5.41 cfs Q= 5.41 cfs Goldeneye(0+30-4+00) Goldeneye(4+00-7+00) _ Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9 35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0 013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0194 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Mannin 's Equation Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 5.38 cfs Q= 2.73 cfs Gutter Capacity Meadow Creek-Phase I Basin 14-Enterprise Boulevard 1 - 0.5'—►N 1.5' ►i.— 7.5' N T.O.C. nos o-F o;3s' —.1— e.tlS 3I Crown Slope Catch Curb Not to Scale Enterprise Blvd.1+75-7+00 Graf 9+50-25+37 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.015 FT/FT. Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's E uation Q=(1.49/n)(A)(R^2/3)(S^.5) I L Q=(1.49/n)(A)(R^2/3)(S^.5) Q= 4.73 cfs Q= 2.73 cfs APPENDIX F DETENTION POND CALCULATIONS Phase I Drainage Basin-14 The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Pre-developed Conditions Area= 16.26 Acre C= 0.2 Open Land Calculate Time of Concentration(T.) Pre-developed Conditions: S=1.90% C=0.20 Open Land Conditions Assume: L=2000 ft. (All overland flow) Using Equation in Section II-E-6 Tc= 61 min.(overland flow) Channel Flow Using Mannings Equation,n=0.035,S=2.00%,calculate channel flow L= 0 ft I = G.92 ft v= 5.68 ft/sec T,= 0.00 min Total Tc= 61.00 min Calculate Pre-developed Storm Intensity at Tc From Figure 1-3,using the 10 year event, I=0.64T�-o 65 I= 0.63 in/hr Calculate Pre-developed Peak Runoff Rate Qio= ciA,using the above parameters. Q10= 2.06 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C Value Description Area(Acres) 0.50 Dense Residential 16.26 Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (Cf) (Cf) 5 3.2185 26.17 7850 618 7232 7 2.5862 21.03 8831 865 7966 9 2.1964 17.86 9643 1112 8531 11 1.9278 15.67 10344 1359 8985 13 1.7295 14.06 10967 1606 9361 15 1.5759 12.81 11531 1853 9677 17 1.4527 11.81 12047 2100 9947 19 1.3514 10.99 12525 2347 10178 21 1.2663 10.29 12972 2594 10377 23 1.1936 9.70 13391 2841 10550 25 1.1306 9.19 13788 3089 10699 27 1.0755 8.74 14164 3336 10829 29 1.0266 8.35 14523 3583 10940 31 0.9831 7.99 14866 3830 11036 33 0.9439 7.67 15195 4077 11118 35 0.9085 7.39 15511 4324 11187 37 0.8763 7.12 15816 4571 11245 39 0.8468 6.88 16110 4818 11292 41 0.8197 6.66 16394 5065 11329 43 0.7947 6.46 16670 5312 11358 45 0.7716 6.27 16937 5559 11378 47 0.7501 6.10 17197 5806 11391 49 0.7300 5.94 17450 6054 11396 51 0.7113 5.78 17696 6301 11395 53 0.6937 5.64 17936 6548 11388 55 0.6772 5.51 18170 6795 11375 57 0.6617 5.38 18398 7042 11356 59 0.6470 5.26 18622 7289 11333 61 0.6332 5.15 18840 7536 11304 63 0.6200 5.04 19054 7783 11271 65 0.6076 4.94 19264 8030 11233 67 0.5957 4.84 19469 8277 11192 69 0.5844 4.75 19671 8524 11146 71 0.5737 4.66 19868 8772 11097 73 0.5634 4.58 20062 9019 11044 75 0.5536 4.50 20253 9266 10987 77 0.5442 4.42 20441 9513 10928 79 0.5352 4.35 20625 9760 10865 Storage Volume Required= 11396 Calculate Minimum Surface Area For Storm Treatment Assume: 1.Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec Design Release Rate= 2.06 cfs Minimum Area= 298 sf Criteria is met Basin Sizing(Pond 14)-Detention Water Depth= 1.5 ft Surface Area= 8672 sf (From AutoCAD) Volume= 11480 cf (From AutoCAD) Phase Drainage Basin-4 The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Pre-developed Conditions Area= 35.42 Acre C= 0.2 Open Land Calculate Time of Concentration(TJ Pre-developed Conditions: S= 1.90% C=0.20 Open Land Conditions Assume: L= 1780 ft. (All overland flow) Using Equation in Section II-E-6 Tc= 57 min. (overland flow) Channel Flow Using Mannings Equation, n=0.035, S=2.00%, calculate channel flow L= 0 ft R= 0.92 ft V= 5.68 ft/sec TC= 0.00 min Total T,_ min Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I=0.64TC-o.s5 I = 0.66 in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters. Quo= 4.69 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C Value Description Area(Acres) 035 Low to Medium Residential 35.42 Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 39.90 11970 1406 10564 7 2.5862 32.06 13466 1969 11497 9 2.1964 27.23 14704 2531 12173 11 1.9278 23.90 15774 3094 12680 13 1.7295 21.44 16723 3656 13067 15 1.5759 19.54 17582 4219 13364 17 1.4527 18.01 18370 4781 13589 19 1.3514 16.75 19099 5344 13755 21 1.2663 15.70 19780 5906 13874 23 1.1936 14.80 20420 6469 13951 25 1.1306 14.02 21024 7031 13993 27 1.0755 13.33 21598 7594 14005 29 1.0266 12.73 22145 8156 13989 31 0.9831 12.19 22668 8719 13950 33 0.9439 11.70 23170 9281 13889 35 0.9085 11.26 23652 9844 13808 37 0.8763 10.86 24117 10406 13710 39 0.8468 10.50 24565 10969 13596 41 0.8197 10.16 24999 11531 - 13468 43 0.7947 9.85 25419 12094 13325 45 0.7716 9.57 25827 12656 13171 47 0.7501 9.30 26223 13219 13004 49 0.7300 9.05 26608 13781 12827 51 0.7113 8.82 26983 14344 12640 53 0.6937 8.60 27349 14906 12443 55 0.6772 8.40 27706 15469 12237 57 0.6617 8.20 28054 16031 12023 59 0.6470 8.02 28395 16594 11802 61 0.6332 7.85 28728 17156 11572 Storage Volume Required= 14005 Calculate Minimum Surface Area For Storm Treatment Assume: 1. Non-flocculant particles 2. Settling velocity of 40 micron particles=0.0069 ft/sec Design Release Rate= 4.69 cfs Minimum Area= 679 sf Criteria is met Basin Sizing (Pond 4)-Detention Water Depth = 1.5 ft Surface Area= 11576 sf (From AutoCAD) Volume= 15510 cf (From AutoCAD) Phase I Northern End of Enterprise (176')-2 ponds The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Pre-developed Conditions Area = 0.133 Acre C = 0.2 Open Land Calculate Time of Concentration (TJ Pre-developed Conditions: S = 1.90% C = 0.20 Open Land Conditions Assume: L = 176 ft. (All overland flow) Figure 1-1 16 min. (overland flow) Channel Flow Using Mannings Equation, n = 0.035, S =2.00%, calculate channel flow L = 0 ft R = 0.92 ft v= 5.68 ft/sec Tc= 0.00 min Total T,= 16.00 min Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I = 0.64TC-11.61 1 = 1.51 in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters. Q10= 0.04 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C Value Description Area (Acres) 0.95 Impervious 0133 Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (Cf) 5 3.2185 0.41 122 12 110 7 2.5862 0.33 137 17 120 9 2.1964 0.28 150 22 128 11 1.9278 0.24 161 27 134 13 1.7295 0.22 170 31 139 15 1.5759 0.20 179 36 143 17 1.4527 0.18 187 41 146 19 1.3514 0.17 195 46 149 21 1.2663 0.16 202 51 151 23 1.1936 0.15 208 55 153 25 1.1306 0.14 214 60 154 27 1.0755 0.14 220 65 155 29 1.0266 0.13 226 70 156 31 0.9831 0.12 231 75 156 33 0.9439 0.12 236 80 157 35 0.9085 0.11 241 84 157 37 0.8763 0.11 246 89 157 39 0.8468 0.11 250 94 156 41 0.8197 0.10 255 99 156 43 0.7947 0.10 259 104 155 45 0.7716 0.10 263 109 155 47 0.7501 0.09 267 113 154 49 0.7300 0.09 271 118 153 51 0.7113 0.09 275 123 152 53 0.6937 0.09 279 128 151 55 0.6772 0.09 282 133 150 57 0.6617 0.08 286 137 148 59 0.6470 0.08 289 142 147 61 0.6332 0.08 293 147 146 Storage Volume Required = 157 Calculate Minimum Surface Area For Storm Treatment Assume: 1. Non-flocculant particles 2. Settling velocity of 40 micron particles = 0.0069 ft/sec Design Release Rate= 0.04 cfs Minimum Area= 6 sf Criteria is met Basin Sizing (Pond 4) - Detention Water Depth = 1.5 ft Surface Area = 113 sf (From AutoCAD) Volume = 170 cf (From AutoCAD) APPENDIX G OUTFALL STRUCTURE SIZING Outfall Structure Sizing Used weir equation in Section II-2D of City of Bozeman Design Standards and Specifications Policy Q= CLH's L= Q/(CH'.e) Q values from Pre-developed runoff conditions Basin 14 Q = 2.06 cfs Basin 4 Q = 4.69 cfs H = 1.5 FT C = 3.33 FT Weir Lengths Pond 14 L= 0.336733 FT 4.0 Inches Pond 4 L= 0.76664 FT 9.2 Inches STORMWATER EXHIBIT i I POND 4 1NYr6aAn POND I T 12oPYC XTRAPMOM VIDE ' eauTTAu sTm9aul,e y SETBAC Ex.mEPHa e YpT4��oP� �� 26•iGP 0�smutiW�� 5&565 S' EKSrx- \`'' csarastyasrHass P srranrvrsroty rDO 7 ESL WOOD ---••n FIENR E 4 24-LMP`CO 7 7 / ff to v/Y Ptc m RE11OYE d DISPOSE 1 ' \� JI 1 E%.YAM�I Y I j Of EXANPQNFII POLE •,, \`\I I ,` E]862C..4J • II - -�� " 1 + OU1fILL•S1RUClUR e vaa-i9n00 1 1n OF o BraRe = ,v0. srs7.2s W 1 I wAna LEva-7aoo / JR rvrcE x INV.outtN>-sz:s I I bD7TDY.a va4D-6as0 f I BOTMMo r POND; 14,00'3 S4• / f f -'` NEW,cxIDE DETENTION ry! 1 sToaAcnsloRrl-,ss10 sr I 1 � k.. NOT TO SCALE A n (i I I teal soCsWPEA tA7cN i A� POND 14 TOPM. vacs s¢DETARJ \ l J ' f I WATER of M-4* ?3 BOTTTOM OF POND-4157.2s V V �, REQUIRED STORACE-11.396 CI f I 1 D TI f I NOT TO SCALE uo LF NEW STORAGE srrow+_H,4eo rF 36'ARCN RCP (4:1 SIDE S1O1'ES.4u1 7,0- \POND 4II cAteN,sEe otrAly— i " ( IMOo43x STORM DRAW ! N V MII.7 ORAVFL\ REM P�OY(IVOSC E%.SD•59 CM!CULVLIT �` INV.OUT( 5a3O/ a 0.5ax 71.23 O METL7t 'Nv.auT(N•L'�-7a9. LERNER PARK N 3e7e7511 PP lI• "�_ _. — --` - - ----" E 4a569.25 ; V•• °•'- 5776.56 2,2597 SF /- `,t 285825 SF I\..._ - REMOVE OISP06E —1 �L6VC d STORM DRAIN YH 857.23 -N_O425'12' E / caNc \---w aiee1.43 3n 23.20- / ��_ _ E 4&38.50 a of + n v ii�6s $7.e6 sTA s+m- LERNER"PAR '.•� olmw;-57.45 STORM DRAIN INLET 12 r A 2., f tTYPE 9) - 2eSe2b SF 1 ;i' NEw s•TA \ STORM DRAIN W,FT of(TYKJ41. TC-4975.46 I ( REMow%dSPOBC/l N 37553.73 4OEWAL i 1C-466f.6D or E]L 1EEl7,IORE ` C 4&193.37 t• /� = RIM-61.16 4 I PEDESTAL a. 117 eaI �'y� \ Ky.OU7(NWZ 6a1E REMOVE Ur24•STORM DRAW.a tat } ! OF 911.T.. r IVDID 1 Ex.CORR 37 LF tY STORM STREET DRAW•tOeE E).BIAD/ID / +.4. 4 44p7r r •n _ / '/ _ as s E 1S dINN OSrdur _ `-� - ESL GROUND �'•`'w - r--r •WIDE BERM ww /' I I 4'MADE BEAM-f-1 OF P 16 �ABANOGMm, ., RF]1OVE a d6P06E / ( T -4959.75 0 E• OIL IX i1REE5 t1YP.) �WM% '� OL_ TOP _ __ -- WATER ILVR 4955.75 ° �4:1 TO CATCH �� •TT 3Ji--_ ( Q r �' '-.���� _L.{tryl.Rl(SCj.� t". -- 'I Jt //////���E1L GROUND N K �LX GROUND 4 4 - / /--I N CATCH k1 TO CATCH BOTTOM 57 / a 3 -- OF POND-4957.25 4 WIDE BERM A-E7L GROUND T' I 4'WADE BERM-1 / O V) a TOP OF'POND -4971.00 POND 14 CROSS SECTION (� "0 Z w NA1,Dt LEVEL-497D OD NOT TO SCALE <02 Z 5� ,� - t m =Z � V)5E 4 (n T o Lu m r _ BOTTOM OF Y W OC W POND-4980.50 r: N Li Nu~i DO z POND 4 CROSS SECTION U o a a 3 (L NOT TO SCALE TEE SET a VERTICAL SLOT 00 FT 0 TEE so or "vERncAL RIM�,- a3390 R 0 -0,7667SLOT I T a 4958.75 4. < 7 rt RIMELEV.- _ c T- 4871.00 L ' ,4• 4' . • ... �.,a. Sid Tr Du.PVC WT • I Ir W x 15•T 12 dA PVC OUT I —q. WINDOW W/ORATE i te• 1K 12' a 12•W x 16•T 1111fff tY CIA.PVC OUT tY DAA PVC OUT - •,I I / - WINDOW W/GRATE ,15. Ia' 1Y - K L CAD. cMK �df I - niv.IN- "iff 4• f Sf' mi. 2/22/06 ANY.OUT- 4957.33- REM.- IIr 1 p• 4957.25 INV.IN- � y �dV OUT -, fii • '•.VMP• 4955.50 2 y. '968,50 1 5 ' I CONTRACTOR '�LMP, •, TO GROUT(TP.) . 5-L \_OTRACTOR • ARVID�: To GROUT(11P.) _ �- 3.-9•DIA I PRELIMINARY 4- I 3'•6•dA BASE SLAB TOP SLAB RASE SLAB TOP SECTION DESIGN FOR REVIEW $CUE SEE SHEET SECTION D 14 STORM DRAIN POND QVILET STRUCTURE DETAIL NOT FOR CONSTRUCTION HLe PONDS POND 4 STORM DRAIN POND OUTLET STRUCTURE DETAIL P4N PMCT NO.:RoZ-DM21.D= NOT TO SCALE NOT 70 SCALE 2/2 2/0 6 SHEEP 31 OF 39 CONCRETE Cretex PIPE Concrete Products Project O West, Inc. Job No. Date STAYS IN SHAPE l' T.,d�vlkFT t tom--- �CwNt AWY Tr+t e a � •i'�1��Cvbb� { Montana • North Dakota • South Dakota • Wyoming -1 L`