HomeMy WebLinkAbout01-27-22 Public Comment - M. Egge - Downtown Parking PolicyFrom:Mark Egge
To:Cyndy Andrus; Terry Cunningham; Christopher Coburn; I-Ho Pomeroy; Jennifer Madgic
Cc:Agenda; Michael Veselik; kelly pohl
Subject:Downtown Parking Policy
Date:Thursday, January 27, 2022 5:48:16 PM
Attachments:SFpark.pdf
CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you
recognize the sender and know the content is safe.
Mayor, Deputy Mayor, Commissioners—
Implementing pricing for on-street parking downtown will ensure thatdowntown visitors are always able to find a parking spot that's convenient
and close to their destinations while also encouraging modes of reaching
downtown other than driving alone. I highly encourage this step.
As you consider paid parking for on street parking downtown, please bear
in mind and insist on these three accompanying policy provisions:
1) Revenue return. Revenues generated from parking downtown shouldbe reinvested back into downtown, e.g. through the downtown business
improvement district. Reinvesting these revenues in downtown is a
virtuous circle whereby paid parking makes downtown even more vibrant
and successful. As Donald Shoup writes, "Using curb parking revenue toimprove the metered area can therefore create a strong local interest in
charging the right price for curb."
2) Pricing should be demand responsive. Demand responsive pricingadjusts rates to match demand (usually based on schedules set quarterly),
both ensuring that occupancy remains below the target 85% threshold
during peak demand and also minimizing or eliminating fees during times
of limited demand. As Donald Shoup writes, "The right price for curbparking is the lowest price that keeps a few spaces available to allow
convenient access."
For example, the price on Main Street during the peak 11 am – 1 pmperiod might increase from $1 to $2 per hour, helping eliminate "I couldn't
find a place to park!" from the list of excuses for being late to a lunch
date. I've attached a brief case study of San Francisco's implementation of
demand responsive parking with SFPark.
3) Reduce or eliminate parking minimums within the central business
district in accordance with the recommendations in the Community Plan,
from the former Parking Commission, the Downtown Improvement plan,etc. Reducing or eliminating minimums does not mean that developers willno longer provide new parking capacity with new developments for their
prospective tenants and customers—but it would open up the surface
parking crater that runs between Main Street and Mendenhall to be
converted into shops, offices, and housing (the incremental tax from which
could finance new public/private structured capacity, continuing the
virtuous circle building a more vibrant downtown).
Thank you for your consideration,
Mark
-- Mark Egge542 N Black Ave
Bozeman, MT 59715
20ACCESS
In 2011, San Francisco adopted the biggest price reform for on-street parking
since the invention of the parking meter in 1935. Most cities’ parking meters
charge the same price all day, and some cities charge the same price
everywhere. San Francisco’s meters, however, now vary the price of curb
parking by location and time of day.
SFpark, San Francisco’s new pricing program, aims to solve the problems
created by charging too much or too little for curb parking. If the price is too
high and many curb spaces remain open, nearby stores lose customers,
employees lose jobs, and governments lose tax revenue. If the price is too low
and no curb spaces are open, drivers who cruise to find an open space waste
time and fuel, congest traffic, and pollute the air.
Gregory Pierce is Doctoral Candidate of Urban Planning in the Luskin School of Public Affairs at the University of California,
Los Angeles (gspierce@ucla.edu). Donald Shoup is Distinguished Professor of Urban Planning in the Luskin School of Public Affairs
at the University of California, Los Angeles (shoup@ucla.edu).
SFpark: Pricing
Parking by Demand
GREGORY PIERCE AND DONALD SHOUP
21 ACCESS
NUMBER 43, FALL 2013
In seven pilot zones, San Francisco installed sensors that report the occupancy of
each curb space on every block, and parking meters that charge variable prices according
to the time of day. In response to the observed occupancy rates, the city adjusts parking
prices about every two months.
Consider the prices of curb parking on a weekday at Fisherman’s Wharf, a tourist and
retail destination [Figure 1]. Before SFpark began in August 2011, the price was $3 an hour
at all times. Now each block has different prices during three periods of the day—before
noon, from noon to 3 pm, and after 3 pm. By May 2012, prices on almost every block had
decreased for the period before noon and increased between noon and 3 pm. Most prices
after 3 pm were lower than during mid-day, but higher than in the morning.➢
FIGURE 1
Weekday Parking Prices at
Fisherman’s Wharf, May 2012
(A) Before Noon
(B) Noon to 3pm
(C) After 3pm
San
Francisco
Bay
$1.50 $1.50 $1.25 $1.50 $0.25 $1.50 $3.00
$1.50 $1.50 $0.25 $1.50 $3.00 $2.25
$0.25 $1.50 $1.50
$1.
2
5
$1.
5
0
$2.75$2.75$2.25$1.75$1.00$0.50$1.00$1.75$1.75$1.75$2.00$1.50$1.25$3.75$1.25$1.50$2.50San
Francisco
Bay JEFFERSON
NORTHPOINT
BAY
FRANCISCO
C
OL
UM
B
U
S
EMBA
R
C
A
D
ERO
BEACH
JEFFERSON
NORTHPOINT
BAY
FRANCISCO COL
UM
B
US
EMB
ARC
ADER
O
BEACH
$3.50 $4.25 $3.50 $3.25 $2.00 $3.25 $3.75
$2.50 $1.50 $1.50 $2.00 $3.25 $3.00
$0.25 $1.50 $2.25
$
2.
2
5
$1.
5
0
$2.75$3.00$3.25$2.75$1.00$1.75$3.00$4.00$2.50$2.25$2.75$2.50$2.75$3.50$3.00$3.00$4.25San
Francisco
Bay
$3.00 $3.25 $3.00 $3.00 $2.00 $2.75 $3.50
$2.25 $1.75 $1.00 $1.75 $3.20 $3.25
$0.25 $1.75 $2.00
$
2.
0
0
$1.
0
0
$3.00$3.00$3.00$1.25$1.75$1.50$2.75$3.75$2.50$2.25$2.75$1.50$2.25$3.75$3.00$1.75$3.75A
B
C
JEFFERSON
NORTHPOINT
BAY
FRANCISCO
EMBA
R
C
A
D
E
R
O
BEACH
22ACCESS
SFpark bases these price adjustments purely on observed occupancy. Planners cannot
reliably predict the right price for parking on every block at every time of day, but they can
use a simple trial-and-error process to adjust prices in response to occupancy rates. This
process of adjusting prices based on occupancy is often called performance pricing. Figure
2 illustrates how nudging prices up on crowded Block A and down on under-occupied
Block B can shift a single car to improve the performance of both blocks.
Beyond managing the on-street supply, SFpark helps to depoliticize parking by setting
a clear pricing policy. San Francisco charges the lowest prices possible without creating a
parking shortage. Transparent, data-based pricing rules can bypass the usual politics of
parking. Because demand dictates the prices, politicians cannot simply raise them to gain
more revenue.
DID SFPARK MOVE PARKING OCCUPANCY IN THE RIGHT DIRECTION?
After several years of planning, the San Francisco Municipal Transportation Authority
(SFMTA) launched SFpark in April 2011 by installing new parking meters and extending
or removing the time limits on curb spaces. The pilot program covers seven zones that
contain 7,000 metered curb spaces. The initial prices in each zone were simply carried
over from the previous, uniform pricing scheme. Under the new SFpark program, most
meters operate daily from 9 am to 6 pm, with prices that vary by the time of day and
between weekdays and weekends. SFMTA established the desired target occupancy rate
at between 60 and 80 percent for each block. If the average occupancy on a block for a
given period falls in this range, the price will not change in the following period. San
Francisco’s pricing policy is thus data-driven and transparent, while most other cities’
pricing policies are political and opaque.
Before SFpark
Block A – Central Business District Location No Open Spots
Block B – Nearby Location 3 Open Spots
After SFpark
Block A – Central Business District Location 1 Open Spot
Block B – Nearby Location 2 Open Spots
FIGURE 2
Performance Prices Balance
Occupancy on Every Block
23 ACCESS
NUMBER 43, FALL 2013
In setting a target occupancy rate, SFpark has two goals: to make curb parking readily
available, and to ensure that curb parking accommodates as many customers as possible
for the adjacent businesses. These two goals conflict because when meter rates increase
to encourage one or two open spots per block, the higher prices also reduce average
occupancy.
For example, large groups gathering at a restaurant may generate exceptionally high
parking demand on a block on some days, so cities cannot aim for a consistently high
occupancy rate of 80 to 90 percent without often reaching 100 percent occupancy, which
produces unwanted cruising. A lower average occupancy, however, means fewer customers.
San Francisco set the target occupancy rate at between 60 and 80 percent to cope with the
random variation in parking demand and to balance the competing goals of reliable
availability and high occupancy. If SFpark works as intended, prices will move occupancy
rates toward this target range.
During its first two years, SFpark adjusted prices 11 times on each block for three
different periods during the day. Prices increased in 31 percent of the cases, declined in
30 percent, and remained the same in 39 percent. On average, prices declined in the
morning and increased in the midday and afternoon. The average price fell 4 percent,
which means SFpark adjusted prices up and down according to demand without increasing
prices overall.
Because occupancy rates have moved toward the target goals, the share of blocks
needing no price adjustment has slowly increased since the program began. By August
2013, after the program had been operating for two years, 62 percent of blocks were in
the target range. Altogether, a third of all the blocks that had been over- or under-occupied
at the beginning of SFpark had shifted into the target occupancy range.
We can use an example of parking prices and occupancy rates on Chestnut and
Lombard Streets in the Marina District to show the effects of SFpark. In July 2011, these
parallel streets had the same meter rate ($2 an hour) but very different occupancy rates.
All five blocks of Chestnut were over-occupied (above 80 percent); of the five blocks on
Lombard, two were under-occupied (below 60 percent), and three were in the target range
(60 to 80 percent). What would it take to shift a few cars from the over-occupied blocks on
Chestnut to the under-occupied blocks on Lombard?➢
24ACCESS
Figure 3 shows the path of average prices and occupancy on the five blocks of
Chestnut and Lombard Streets from 3 pm until 6 pm. In response to the over- and under-
occupancy, SFpark began to increase the prices on Chestnut and reduce them on Lombard.
After 10 price changes in two years, the average price on Chestnut had climbed by 75
percent to $3.50 an hour; on Lombard it had fallen by 50 percent to $1.00 an hour. As prices
diverged, occupancy rates converged within the target range.
Figure 4 shows the parking prices on each block in April 2013. Between Pierce and
Scott Streets, for example, the price on Chestnut was $3.50 an hour, and just a block away
the price on Lombard was only 50 cents an hour, yet both blocks were in the target
occupancy range. Parking spaces so close together would seem close substitutes for each
other, but the huge price differences reflect very different local demand patterns.
CHESTNUT
LOMBARD
FRANCISCO
GREENWICH
WEBSTERDIVISADEROSCOTTPIERCEFILLMORESTEINERBRODERICK$0.50 $0.50 $1.00 $2.25 $1.50
$3.00 $3.00 $3.50 $4.25 $3.75
$4.50$4.25$4.50$4.50$3.75$3.50$4.50$2.00$2.75AVERAGE OCCUPANCY RATE
90%
85%
80%
75%
70%
65%
60%
55%
50%
MONTH
July2011 October2011 November2011 February2012 March2012 May2012 August2012 October2012 January2013 April2013
$2.00
$2.00
$2.25 $2.45 $2.65 $2.90
$3.05
$3.20
$3.25 $3.40
$3.50
$1.00
$1.15$1.25$1.40$1.55
$1.90
$1.70
$0.95$0.95
CHESTNUT ST.
LOMBARD ST.
FIGURE 3
Average Parking Prices and
Occupancy Rates on Chestnut and
Lombard Streets, 3 pm to 6 pm
FIGURE 4
Parking Prices on Chestnut and
Lombard Streets, April 2013,
3pmto6pm
25 ACCESS
NUMBER 43, FALL 2013
PRICE ELASTICITY OF DEMAND
Before each price change, SFpark publishes data on the occupancy and prices for all
curb spaces in the pilot zones. The price elasticity of demand measures how these price
changes affected occupancy rates. Economists define price elasticity as the percent change
in the occupancy rate (the quantity of parking demanded) divided by the percent change
in the meter price. For example, if a 10 percent price increase leads to a 5 percent fall in
occupancy, the price elasticity of demand is –0.5 (–5% ÷ 10%).
We calculated the elasticity of demand revealed by all the price changes during
SFpark’s first year. For each price change, we compared the old price and average
occupancy to the new price and average occupancy during the following period. We thus
have 5,294 elasticity measurements, one for each price change during the year at each
time of day at each location.
The average price elasticity of demand was −0.4, but when we plot the elasticity for
individual price changes at the block level, we find astonishing variety. Figure 5 shows
the distribution of the price elasticities calculated for 5,294 individual price and occupancy
changes on 1,492 city blocks.
The wide range of price elasticities suggests that many variables other than price
affect parking demand. Higher prices should reduce occupancy, and lower prices should
increase occupancy. In many cases, however, occupancy either rose after prices rose or fell
after prices fell. Higher prices do not cause higher occupancy, and lower prices do not
cause lower occupancy, so other factors must have overwhelmed the effects of prices on
occupancy in the cases of positive price elasticity.
The wide range of elasticity at the block level also suggests that the circumstances on
individual blocks vary so greatly that planners will never be able to estimate an accurate
elasticity to predict the prices needed to achieve the target occupancy for every block.
Instead, the best way to achieve target occupancy is to do what SFpark does: adjust prices
in response to the observed occupancy. This trial-and-error method mirrors how other
markets establish prices, so it should work in the market for on-street parking.➢PERCENT OF OBSERVATIONS
35%
30%
25%
20%
15%
10%
5%
0
PRICE ELASTICITY
–7orLower –6to–7 –5to–6 –4to–5 –3to–4 –2to–3 –1to–2 –0to–1 0to1 1to2 2to3 3to4 4to5 5to6 6to7 7orAbove
FIGURE 5
Distribution of Elasticities for
5,294 Price Changes
26ACCESS
EQUITY IN PERFORMANCE PRICING
While it is clear that performance parking prices can improve transportation
efficiency, are they fair? In San Francisco, 30 percent of households do not own a car, so
they don’t pay anything for curb parking. How the city spends its parking revenue also
affects the equity implications of charging for parking. San Francisco uses all its parking
meter revenue to subsidize public transit, so automobile owners subsidize transit riders.
SFpark will further aid bus riders by reducing traffic caused by drivers cruising for
underpriced curb parking.
Performance pricing is not price discrimination because all drivers who park on the
same block at the same time pay the same price. Performance pricing is also not the same
as maximizing revenue. Because demand was, on average, inelastic, the city could increase
revenue by charging higher prices. However, SFpark’s goal is to optimize occupancy, not
to maximize revenue, and the average price of parking fell by 4 percent during SFpark’s
first two years.
THREE SUGGESTED IMPROVEMENTS
Our findings suggest three ways to improve SFpark: (1) refine the periods of
operation, (2) shift from reaction to prediction in setting prices, and (3) end the abuse of
disabled placards.
Refine the time periods
Most meters stop operating at 6 pm, so anyone who arrives at 5 pm and pays for one
hour can park all night. Drivers who park during the evening thus have an incentive to
arrive during the last hour of meter operation while a few open spaces are still available.
Since SFpark sets the price to achieve an average target occupancy for the period from 3
to 6 pm, a price can be too high at 4 pm (and occupancy too low) but too low at 5 pm (and
occupancy too high).
NUMBER 43, FALL 2013
27 ACCESS
One way to solve this problem is to operate the meters in the evening for as long as
they are needed to achieve the optimal occupancy. Free parking after 6 pm is a holdover
from the days when meters had one- or two-hour time limits to increase turnover during
the daytime. Most businesses closed by 6 pm, so parking turnover was not needed in the
evening. Today many businesses remain open after 6 pm, so the old rationale for free
parking in the evening no longer applies. The purpose of metering in the evening is to
prevent shortages, not to create turnover.
Because the occupancy sensors and parking meters are already in place for the pilot
program, it seems unwise to cease operating at 6 pm simply because the old meters did.
If, during the day, SFparkreduces cruising, congestion, traffic accidents, energy waste, air
pollution, and greenhouse gases, San Francisco can incrementally extend metering to
additional evening hours when it will provide similar benefits. SFpark has not increased
curb parking prices overall, so the major benefit is better parking management, not more
revenue from the existing meters. Nevertheless, more revenue can come from installing
more meters and extending meter hours. In 2013, for example, the city extended meter
operation to include Sundays, so SFpark increased meter revenue without increasing the
average meter rates.
Taking this process to its logical end, SFpark can refine its pricing strategy to fit the
demand on specific blocks at different times of the day across different days of the week.
Narrowing the pricing windows to meet varying demand will increase the program’s
efficiency.
Shift from reaction to prediction
The wide range of occupancy changes after each price change shows that many
factors other than prices affect parking demand. Therefore, basing the next period’s
parking prices only on the previous period’s occupancy rates will not reliably achieve
occupancy goals. For example, SFpark should not increase prices in January because
occupancy rates were high during the Christmas shopping season. Seasonal adjustments
based on occupancy rates in previous years may greatly improve the program’s
performance.
By shifting from reaction to prediction when adjusting prices, SFpark maybeableto
get closer to target parking occupancy rates. Like hockey players who skate to where the
puck will be, SFpark can price parking based on future demand, not simply on past
occupancy.
End the abuse of disabled placards
Abuse of disabled parking placards helps explain why occupancy does not reliably
respond to price changes. Because California allows all cars with disabled placards to park
free for an unlimited time at parking meters, higher prices for curb parking increase the
temptation to misuse disabled placards to save money. Higher prices at meters may
therefore drive out paying parkers and make more spaces available for placard abusers. If
so, disabled placard abuse will reduce the price elasticity of demand for curb parking.
Placard abuse is already rampant in California. A survey of several blocks in
downtown Los Angeles in 2010, for example, found that cars with disabled placards
occupied most of the curb spaces most of the time. For five hours of the day, cars with
placards occupied all the spaces on one block. The meter rate was $4 an hour, but the ➢
SFpark’s
goal is to
optimize
occupancy,
not to
maximize
revenue.
28ACCESS
meters earned an average of only 28 cents an hour because cars with placards consumed
80 percent of the meter time. Drivers using disabled placards were often seen carrying
heavy loads between their cars and the adjacent businesses.
Reforms in other states show how California can prevent placard abuse at parking
meters. In 1995, Michigan adopted a two-tier placard system that takes into account
different levels of disability. Drivers with severe disabilities receive special placards
allowing them to park free at meters. Drivers with less severe disabilities receive ordinary
placards and must pay at meters. Before this reform, Michigan had issued 500,000 disabled
parking placards allowing all users to park free at meters. After the two-tier reform, only
10,000 people (2 percent of the previous placard holders) applied for the special placards
that allow free parking at meters. Enforcement is simple because any able-bodied driver
who misuses the distinctive severely-disabled placard is conspicuously violating the law.
Illinois adopted a similar two-tier placard law in 2013.
How will ending placard abuse affect SFpark? If reform reduces placard abuse at
meters, more spaces will open up for paying parkers. SFpark will then reduce prices to
increase occupancy, but all the new parkers will pay for the spaces they occupy, so parking
revenue will probably increase. The lower prices, higher revenue, and greater availability
of curb spaces will benefit almost everyone except placard abusers.
CONCLUSION:APROMISING PILOT PROGRAM
SFpark is a pilot program to examine the feasibility of adjusting prices to manage
parking occupancy, and it appears largely successful. Los Angeles has already adopted a
similar program called LA Express Park, and other cities are watching the results. After
drivers see that prices can decline as well as increase, they may appreciate the availability
of open curb spaces and learn to use the pricing information to optimize their parking
choices for each trip. What seemed unthinkable in the past may become indispensable in
the future.
With performance parking prices, drivers will find places to park their cars just as
easily as they find places to buy gasoline. But drivers will also have to think about the price
of parking just as they now think about the prices of fuel, tires, insurance, registration,
repairs, and car purchases. Parking will become a part of the market economy, and prices
will help manage the demand for cars and driving.
If SFpark succeeds in setting prices to achieve the right occupancy for curb parking,
almost everyone will benefit. Other cities can then adopt their own versions of
performance parking prices. Getting the prices right for curb parking can do a world of
good.◆
This article is adapted from “Getting the Prices Right: An Evaluation of Pricing Parking by
Demand,” originally published in the Journal of the American Planning Association.
FURTHER READING
Michael Manville and Jonathan Williams. 2013.
“Parking without Paying,”ACCESS, 42: 10–16.
Dadi Ottosson, Cynthia Chen, Tingting Wang,
and Haiyun Lin. 2013. “The Sensitivity of
On-Street Parking Demand in Response to
Price Changes: A Case Study in Seattle, WA,”
Transport Policy, 25: 222–232.
Gregory Pierce and Donald Shoup. 2013.
“Getting the Prices Right: An Evaluation of
Pricing Parking by Demand,”Journal of the
American Planning Association, 79(1): 67–81.
San Francisco Municipal Transportation
Authority. 2011.SFpark: Putting Theory
into Practice.
Donald Shoup. 2011.The High Cost of
Free Parking, Chicago: Planners Press.