Loading...
HomeMy WebLinkAbout02 - Design Report - Village Downtown (Mill Creek Park MiSub_Broadway Blvd MiSub) 2002 I A DESIGN REPORT WATER, SEWER & STORM WATER MANAGEMENT MILL CREEK PARK MINOR SUBDIV ISION (formerly Broadway Boulevard Minor Subdivision) Prepared for: Delaney & Company Inc. 101 East Main, Bozeman, MT 59715 Prepared by: 1 C & H Engineering and Surveying, Inc. 205 Edelweiss Bozeman, MT 59718 (406) 587-1115 IV o . Project Number: 02026.3 y®: No s September 2002 INTRODUCTION Mill Creek Park Subdivision is proposed as a 5 lot minor subdivision with mixed Property was recently re-zoned with the western 9.1747 acres designated uses. The (Residential/Office), and the eastern 24.0296 acres designated as R-0 The 33.2043 acre parcel is located on the outskirts of th ena s R-4 (Residential, high density). Bozeman on the east side of Broadway Avenue, north of East Ma usiness district of the City of situated in the NE 1/4 of Section 7 and the NW 1/4 of Section 8 Street. The development is East of P.M.M., Gallatin County, Montana. Township 2 South, Range 6 There is currently an abandoned farmhouse, barn, and several outbuildin s locate top at the north end of theproperty. g d on the bench The remainder of the property consists of sloping and uneven topography as a result of the construction of the existing and abandoned railroad surrounding and crossing the propert berms y The property currently has no use. The project requires connection to the City of Bozeman water and sanitary sewer to the subdivision will be provided at the west from Broadway Avenue. Mill Creek Park Access constructed to the eastern end of the subdivision telminating with a cul-de-sac with Park will be Emergency access roads will be constructed from Mill Creek Park to the eastern a 72 radius. and north along the Front Street alignment to the intersection with the paved port* line Street. Sixty feet of right-of--way has been dedicated along the eastern property °n of Front extension of Front Street. It is not likely that Front Street will be extended P y hire for the future site due to the proximity of wetlands on the adjacent properties. Approximately ded southeast from this 1,534 lineal feet of new roads will be constructed with the subdivision. i v 1' f Design Report-Page 1 of 22 WATER SYSTEM LAYOUT Water supply Water for domestic use and fire protection will be provided by connections to the City of Bozeman water system. 8-inch and 12-inch water main will be looped through the subdivision connecting to existing 6-inch diameter mains in Broadway Avenue, and Front Street. 8-inch diameter mains will be installed along the Mill Creek Park aligmnent and 12-inch diameter main will be installed along the Front Street aligninent. Hydrants will be provided at intervals no greater than 300 feet throughout the subdivision as specified in the Uniform Fire Code for dead end roads. Water Usage is based on the following criteria: According to the City of Bozeman Design Standards we should anticipate a population density of 34.5 persons per acre for both R-O and R-4 zoning. This equates to a population of 1,145.55 persons for the 33.2043 acres found in this development. Overall annual average daily demand of 200 gallons per day(gpd)per person is suggested for all future development. The demand estimate includes: 1.) Fire flows, flat rate accounts, leakage, under registering meters and other unaccounted water usage such as street cleaning, hydrant and sewer flushing. (Water Facility Plan, page 18) 2.) Base flow water. 3.) Increases in summer usage including lawn and garden irrigation, non-commercial car washing, cleaning sidewalks, and other miscellaneous metered uses. Utilizing the 200 gpd per person the predicted average daily water demand for Mill Creek Park Subdivision is 229,110 gpd(159.1 gpm). Design Report-Page 2 of 22 WATER DISTRIBUTION SYSTEM SIZING 1. INPUT DATA Minimum Fire Hydrant Flow = 1500 gpm Residual Pressure Required =20 psi for Fire Flow 1. Average Day Demand (Peaking Factor= 1) 2. Maximum Day Demand (Peaking Factor=2.5) 3. Maximum Hour Demand (Peaking Factor=3.0) Total Average Day Demand = 159.1 gpm x 1.0 = 159.1 gpm Total Maximum Day Demand = 159.1 gpm x 2.5 = 397.75 gpm Total Peak Hour Demand = 159.1 gpm x 3.0 =477.3 gpm Available Pressure Hydrant#5 at northwest conger of Mendenhall Street and Broadway Avenue: Static= 125 psi Residual =95 psi Pitot= 110 psi Hydrant#854 near Front Street connection point: Static= 130 psi Residual = 100 psi Pitot= 105 psi HYDRAULIC ANALYSIS We have provided a water distribution model using Watercad Version 4.5 to verify the adequacy of the system to meet minimum fire flow requirements and provide service. Design Report-Page 3 of 22 In order to model the system each junction node of the water distribution system was assessed a demand based on its service area. The table shown below quantifies the demands placed at the junction nodes and given are the demands for Average Day, Maximum Day and Peak Hour. The peaking factor for each case is 1, 2.5 and 3.0 respectively. MILL CREEK PARK MINOR SUBDIVISION WATER SYSTEM JUNCTION NODE AVG. DAY GPM MAX. DAY GPM PEAK HOUR GPM 1 12.52 31.29 37.55 4 12.52 31.29 37.55 5 12.85 32.12 38.54 6 16.81 42.03 50.44 7 16.81 42.03 50.44 8 16.81 42.03 50.44 9 70.78 176.95 212.34 TOTAL 159.1 397.74 477.3 Static, residual and picot pressures for fire hydrants located adjacent to the project were obtained from the City of Bozeman Water Department. Measurements taken on the hydrant at the intersection of Mendenhall Street and Broadway Avenue indicate a static pressure of 125psi, a pitot pressure of 95 psi, and a residual pressure of 110 psi. Measurements taken on Front Street near the tie in point indicate a static pressure of 130 psi, a pitot pressure of 100 psi, and residual pressure of 105 psi. This information was used to develop relationships between head and now at the tie in points. The relationship was used in the model by simulation of pumps at the comlection points. The pumps are connected to reservoirs which act as a source of water. The elevations of the reservoirs are fixed at the elevation of the pumps, which is also equivalent to the elevation of the tie in point. The reservoir does not create any head on the system, the head is generated entirely by the pumps. The input data and the pump curves are included in Appendix A Design Report-Page 4 of 22 DISTRIBUTION MAIN The 8-inch and 12-inch DIP water mains do provide capacity with regards to the Peak Hour Demands. The flows and pressures within the system for the Peak Hour Demands were generated from the Watercad program and can be found in Appendix A. The capacity of the system to meet fire flow requirements was tested by running a steady state fire flow analysis for all junctions at fire hydrant locations. The model shows that all hydrant junctions satisfy minimum fire flow constraints (pressure>20psi & flow rate> 1500 gpm), and there is still adequate pressure within the system to provide service to the lots. The model shows that for the worst case scenario at least 3,417 gpm is available at a hydrant while maintaining 20 psi residual pressure in the main. Assuming type V-N building consti-uction(wood framed), this is adequate fire flow for buildings up to 15,600 square feet. Construction of structures greater than 15,600 square feet will require an approved automatic sprinkler system or an alternative building construction type. The results of the analysis at peak hourly flow are given in Appendix A. SEWER SYSTEM Summary: Mill Creek Park Minor Subdivision will require connection to the City of Bozeman's existing sewage collection system. Extensions of the existing main in Broadway Avenue will be required to serve the development. From the existing manhole in Broadway Avenue an 8-inch sewer main will be constructed east, along Mill Creek Park to a point near the cul-de-sac. Service to each of the lots will be provided with a combination of 4-inch services and 8-inch mains extended beyond the property line. It is most likely that a force main will be required between the buildings and the main found on lots 3 and 4. 8-inch stubs will be provided onto both of these lots so that the force main will be entirely located on private property. Sewage will be conveyed to and treated at the City of Bozeman's Wastewater Treatment Plant located at Moss Bridge and Springhill Road. Design Report-Page 5 of 22 There are several sections of sewer main between the proposed subdivision and the treatment plant which are currently near or over capacity. The sections are identified in the City of Bozeman Wastewater Facility Plan. The sections of the main with capacity issues are planned for replacement in spring or summer of 2003. We anticipate replacement of the main prior to the completion of any buildings in this subdivision. As a safeguard the developer has agreed that no building permits can be issued for any of the lots zoned R-4 prior to correction of the downstream sewer issues. Design Requirements The peaking factor for the design area is determined by figuring the equivalent population and inserting the population into the Hannon Formula. Using the population density recommended in the City of Bozeman Design Policy(34.5 persons per acre) we calculate the population of the subdivision to be 1,145.55 persons. Harmon Formula: Peaking Factor= (18 +vrP)/(4 +vrP) P =Population in thousands Peaking Factor= (18 +11.14555)/(4 +11.14555) Peaking Factor=3.76 Assumed infiltration rate= 150-gallons/acre/day = 150(33.2043acres) =4,980.65 gal/day The peak flow rate is calculated by multiplying the City's design generation rate of 117 gallons per capita per day by the population, multiplying by the peaking factor, and adding the infiltration rate. Peak Flow Rate= 72 gpcpd (1,145.55 persons)(3.76) +4,980.65 = 315,104 gpd 218.82 gpm = 0.4876 cfs The capacity of an 8-inch main at minimum slope is checked using Maiming's Equation: Qfu„ =(1.486/0.013)AR"3S1/2 Design Report-Page 6 of 22 For the 8 inch main: Manning's n =0.013 for PVC Pipe Minimum Slope = 0.004 ft/ft A=(3.14/4)d 2= (3.14/4)(8/12)2=0.34907 ft2 P =2(3.14)r=2(3.14)(4/12) =2.0944 ft R=A/P = 0.34907/2,0944 =0.16667 ft R2/3 =0.30105 ft S = 0.004 ft/ft S"2= 0.0632 ft/ft Qfuu _(1.486/0.013)(0.34907)(0.30105)(0.0632) = 0.7592 cfs Q/Qf,,„ = 0.4876/0.7592 =0.6423 or 64.23% Based on the fact that the proposed sewer will not be extended onto adjacent properties the 8- inch sewer main at the grades shown will be more than adequate to carry the design flows. STORM WATER MANAGEMENT Summary STORM WATER run-off from the public right-of-way will be directed to two storm water retention areas. One of these areas will be constructed as an underground detention basin located on Lot#2 adjacent to Mill Creek(Detention Pond#1). This area will also retain storm water run off from a portion of Lot#2. The other retention area will be constructed as an underground retention basin on Lot#4 east of the cul-de-sac adjacent to the emergency access road and easement(Retention Pond#2). The storm water runoff rate was calculated with the rational formula as shown. A runoff coefficient (C) of 0.90 applicable to hard surfaces, a runoff coefficient (C) of 0.85 for house Design Report-Page 7 of 22 development, and a'runoff coefficient of 0.30 for residential lawns/landscaping was used for the system. For portions of the drainage areas found on individual lots a runoff coefficient of 0.60 was used. This is the runoff coefficient recommended in the City of Bozeman Storm water Master Plan for commercial neighborhoods. Detention Structure#1 The storm water runoff surface areas for Drainage Area#1 were calculated as follows: Please see the grading and drainage plan (Sheet Cl) CONTRIBUTING AREAS Mill Creek Park Impervious Area(C=0.90) 1,200' x 60' = 72,000 ft2 Grass and Landscaping(C=0.30) 1,200'x 20' =24,000 ft2 Lot#2 (C=0.60) = 118,363.4 ft2 Total =214,363.4 ft2 =4.9211 acres Mean C = [(0.90x72,000 ft2)+(0.30x24,000 ft2)+(0.60x118,363.4)]/214,363.4 ft2 = 0.6672 Overland travel time is based upon the length of time it would take a drop of water to travel from the furthest point in the drainage area to Detention Structure#1. hi this case the furthest point is the high point located in the center of the subdivision. The time of concentration is calculated on Figure I-1 in Appendix A. The travel time is calculated to be 25.7 minutes, or 0.4283 hours. Using the formula for the 10 year storm duration a storm intensity and flow is calculated in the following formulas: I,a=0.64X--" = 0.64 (0A283)--" = 1.1 l05 in/hr The storage basin located in the detention structure can have a release rate of pre-development Design Report-Page 8 of 22 flow. The C coefficient for this is 0.20 and the release rate is shown in the following: For pre-development, the C coefficient=0.20 Q,o=CIA= 0.20 (1.1105 in/hr)(4.9211) = 1.0930 cfs -0111, Release rate The maximum required storage is calculated below by varying the storm duration and holding the release rate at 1.0930 cfs and using a C of 0.6672. Detention Pond #1 c = 0.6672 A= 4.9211 acres release = 1.093cfs Storm Storm Runoff Release Required length(min)length hrs Intensity Q future Volume Volume Storage 30 0.5 1.004268 3.29737 5935.266 1967.4 3967,866 31 0.516667 0.98309 3.227836 6003.774 2032.98 3970.794 32 0,533333 0.96301 3.161907 6070.861 2098.56 3972.301 33 0.55 0.94394 3.099292 6136,598 2164.14 3972.45 34 0.566667 0.9258 3.039731 6201.052 2229.72 3971.332 35 0.583333 0.908519 2.982993 6264,286 2295.3 3968,986 36 0.6 0,892035 2.928869 6326.356 2360.88 3965.476 37 0.616667 0.876289 2.877169 6387.315 2426.46 3960.855 38 0.633333 0.86123 2.827725 6447.213 2492.04 3955.173 39 0.65 0.846811 2.780382 6506.095 2557.62 3948.475 Details for the underground detention structure are enclosed in Appendix B. The structure will consist of 570 lineal feet of 36-inch diameter high density polyethylene pipes connected at one end by a 24-inch diameter manifold. Ten-inch pipes will be placed in the haunches between the 36-inch pipes for structural support. The entire system will be wrapped in a geogrid and geotextile fabric. The detention system outlined in Appendix B has a storage volume of 4,030 cubic feet. Retention Pond #2 The storm water runoff surface areas for Drainage Area#2 were calculated as follows: Please see the grading and drainage plan (Sheet Cl) CONTRIBUTING AREAS Design Report-Page 9 of 22 Mill Creek Park Impervious Area(C=0.90) 334' x 60' =20,040 ft2 Grass and Landscaping(C=0.30) 334'x 20' = 6,680 ft2 Lot#4 (C=0.60) =32,914.3 ft2 Total = 59,634.3 ft2 = 1.3690 acres Mean C = [(0.90x2O,400 ft2)+(0.30x6,680 ft2)+(0.60x32,914.3)]/59,634.3 ft2 = 0.6726 The storm water runoff rate for a 10-yr 2-hr storm event was calculated as follows: Q = CiA Q = storm water runoff rate (cfs) i10 =0.64(t"0.65) = 0.64(2 hrs)-'-" =0.408 in/hr d= (0.408 in/hr)x(1 ft/12 in)x(2 hr) C =runoff coefficient d=0.068 ft d =depth of rainfall (ft) V=CdA A= surface area(ft2) V=total volume required V=0.6726 x 0.068 ft x 59,634.3 ft2 =2,727.5 ft3 =volume to be retained Details for the underground retention structure are enclosed in Appendix B. The structure will consist of 275 lineal feet of 36-inch diameter perforated high density polyethylene pipes connected at one end by a 24-inch diameter manifold. 440 lineal feet of 10-inch perforated HDPE pipes will be placed in the haunches between the 36-inch pipes. The voids found in the gravel bedding surrounding the pipes is included in the volume calculation using a void ratio of 0.25. The entire system will be wrapped in a geogrid and geotextile fabric. The retention system outlined in Appendix B has a storage volume of 2,898 cubic feet. Design Report-Page 10 of 22 STORM WATER run-off from the individual lots(excluding a portion of lot#2) will be retained on each lot. We will size each of the retention basins assuming runoff coefficients provided in the City of Bozeman Design Standards for commercial neighborhoods(C=0.60). Each lot will require a site plan as they are developed, the location and size of the basins are subject to change as each lot is developed. Retention Pond #3 CONTRIBUTING AREAS Portion of Lot#2(C=0.60) = 55,923.3 ft2 For a 10-yr 2-hr storm event: V= CdA V= 0.60 x 0.068 ft x 55,923.3 ft2=2,282.0 ft3 =volume to be retained The proposed pond has a mid-depth surface area of 1,522.6 ft2. At a depth of 1.50 feet, the pond has a storage volume of 2,284 ft3. Retention Pond#4 CONTRIBUTING AREAS Lot #3 (C=0.60) = 199,965.9 ft2 For a 10-yr 2-1-ir stone event: V= CdA V= 0.60 x 0.068 ft x 199,965.9 ft2 = 8,158.6 ft3 =volume to be retained The proposed pond has a mid-depth surface area of 5,466 ft2. At a depth of 1.50 feet, the pond has a storage volume of 8,199 ft3. Design Rep071-Page 11 of 22 Retention Pond#5 CONTRIBUTING AREAS Lot#1 (C=0.60) = 133,120.6 ft2 For a 10-yr 2-hr storm event: V= CdA V=0.60 x 0.068 ft x 133,120.6 ft2= 5,431.3 ft3 =volume to be retained The proposed pond has a mid-depth surface area of 3,621.35 ft2. At a depth of 1.50 feet, the pond has a storage volume of 5,432 ft3. Retention Pond#6 CONTRIBUTING AREAS Lot#6 (C=0.60) =218,758.7 ft2 For a 10-yr 2-hr storm event: V = CdA V= 0.60 x 0.068 ft x 218,758.7 ft2 = 8,925.4 ft3 =volume to be retained The proposed pond has a mid-depth surface area of 5,974.2 ft2. At a depth of 1.50 feet, the pond has a storage volume of 8,961.3 ft3. Retention Pond #7 CONTRIBUTING AREAS Lot#4 (C=0.60) = 557,299.7 ft2 Design Report-Page 12 of 22 For a 10-yr 2-hr storm event: V=CdA V =0.60 x 0.068 ft x 557,299.7 ft2=22,737.8 ft3 =volume to be retained The proposed pond has a mid-depth surface area of 15,160 ft2. At a depth of 1.50 feet, the pond has a storage volume of 22,740 ft3. OUTLET CONTROL STRUCTURE SIZING The outlet control structure for Detention Structure#1 needs to limit the release rate to the predevelopment runoff rate of 1.093 cfs. The size of the 28" H slot in concrete division wall within structure is calculated using civil design software included with the AutoCAD 2000 design package. The flow is computed for a rectangular weir with end contractions. The weir needs to be 6.66" wide in order to limit the release rate to 1.093 cfs. Calculations and results are enclosed in Appendix B. STREETS, CURB AND GUTTER, SIDEWALKS Access to the site will be provided directly from Broadway Avenue. Mill Creek Park will be constructed in a northeasterly direction ending with a cul-de-sac approximately 330 feet from the eastern boundary of the subdivision. Mill Creek Park will be constructed with two 14-foot wide driving lanes and two 9 foot wide parking lanes separate by an 18 foot wide grass median. A 7 foot wide concrete sidewalk will be constructed behind the curb on both sides of the street. Three inches of asphalt will be placed on top of 6-inches of 1.5-inch minus road mix, and 9- inches of 6-inch minus pit run material. A detail of the road section is enclosed in Appendix B. The site will be entirely re-graded at the onset of construction with much of the site being filled in with the material currently forming the railroad berms. The site will be reviewed after the initial rough grading has taken place and the suitability of proposed road section determined. For now we will use soil testing data from similar soils to detennine the suitability of our road Design Report-Page 13 of 22 section. PAVEMENT DESIGN NRCS Soils data for the site is enclosed in Appendix C. The site consists mainly of Blackmore Silt Loam arising from relict stream terraces. The soils reports indicate that this soil type rates fairly as a construction material/road fill. Results from California Bearing Ratio(CBR) Tests performed on similar soil types are enclosed in Appendix C. Three of the CBR tests are from Harvest Creek Subdivision. Soils found at Harvest Creek subdivision are silt loams and loams also from relict stream terraces and stream terraces(Blackdog Silt Loam, Turner Loam, and Meadowcreek Loam). The three CBR values range between 3.1 and 6.8. Also enclosed are two CBR test results from Tange Subdivision. These tests were also performed on a lean clay arising from relict stream terraces. The CBR values for this soil type are between 4.2 and 5.1. For the purpose of this report we will assume a CBR value equal to the 3.1, the smallest bearing ratio of any of the tests. Criteria for design: Bozeman Subdivision Regulations, Section 16.16.080: use AASHTO guide for design of pavement structures and refer to Asphalt Institute Manual Series No.l (MS-1) Minimum 20 year performance period traffic volume. The design herein is for the western portion of Mill Creek Park. We will assume that all traffic generated by this subdivision passes over this section of road. Average daily traffic at full build out was estimated using standard rates published in the Trip Generation Manual, 5`h Edition, Institute of Transportation Engineers. As stated previously in this report we anticipate an equivalent population of 1,146 persons for this development. Assuming this population is housed in apartments, using the charts found in Appendix C, 3,679.75 trip ends would be generated on a Saturday, 3,375.55 trip ends would be generated on a Sunday, and 3,834.83 trip ends would be generated on a weekday. 9.1747 acres of the development is zoned R-O - assuming numbers for a Design Report-Page 14 of 22 { business park, 1,648.8 trip ends would be generated on a weekday, 379.27 trip ends would be generated on a Saturday, and 144.56 trip ends would be generated on a Sunday. Summing all trip ends gives us a total of 1,824,868 trip ends per year. Since the roads in the subdivision have two lanes, we divide the trip ends in half to determine the average yearly traffic = 912,434 vehicles per year. The following assumptions were made while calculating the Total ESAL: 1. 5% of the AYT will consist of heavy trucks. 2. Growth rate=4% over 20 years(Table 4, Appendix C) 3. 2000 lb axle load for cars, and 10,000 lb axle load for trucks. 4. 2 axles per vehicle Traffic Estimate for North Eleventh Avenue Vehicle Type Vehicles Growth Design ESAL Factor Design per year Factor Vehicles ESAL (4%,20yrs) (20 years) Passenger Car 866,812.3 29.78 25,813,670 0.0001*2=0.0002 5,163 2 axle/6 tire truck 45,621.7 29.78 1,358,614 0.011*2=0.022 29,890 Total ESAL 35,053 The calculated estimate of the equivalent 18,000 lb Single Axle Load (ESAL)=35,053 Per Section 16.16.080A.1 of the Bozeman Area Subdivision Regulations, the minimum design lane ESAL shall not be less than 50,000. We will use 50,000 for this design. Design Report-Page 15 of 22 r CBR can be related to MR by the following: (Highway Engineering Handbook,McGraw Hill, 1996) Subgrade Resilient: MR= 1,500 CBR(Shell Oil Co.) This value used by Asphalt Institute. MR= 5,409 CBR0-71 (United States Army Waterway Experiment Station) MR=2,550 CBRo.64 (Transport &Research Laboratory, England) With CBR= 3.1 MR= 1,500 CBR= 1,500 (3.1) =4,650 psi MR= 5,409 CBR°"' = 5,409 (3.1)0.71' = 12,091 psi MR=2,550 CBRo.64=2,550 (3.1)0.64= 5,260 psi Use most conservative value=4,650 psi USING THE AASHTO METHOD OF FLEXIBLE PAVEMENT DESIGN 1. Subgrade Resilient Modulus MR=4,650 psi 2. Design serviceability loss: Estimate Initial Serviceability=4.2 Terminal Serviceability=2.5 (high volume roads) Design Serviceability Loss =4.2 -2.5 = 1.7 3. ESAL (18,000 lb) = 50,000 4. Level of reliability: 90 estimated (conservative) (See Table 2 on Page 1 of Appendix C) Overall standard deviation: 0.49 (Underlined on Page 1, Appendix C) (Based on AASHTO Road Tests-flexible Pavement) Design Report-Page 16 of 22 5. Pavement Structural Number: Layer Coefficients: a, =0.42 (Asphalt) (Fig. 3.18, Appendix C) a2 = 0.13 (Base Course- 1 %2" minus) (Fig. 3.19, Appendix C) a3 = 0.12 (Sub-base Course - 6" minus) (Fig. 3.20, Appendix C) Drainage Coefficients: m2 = 1.00 (good drainage 5-25%) (Table 3.25, Appendix C) m3 = 1.00 (good drainage>25%) (Table 3.25, Appendix C) % of time base& sub-base will approach saturation 6. Design Equation: SN = a,D, + a2D2m2 + a3D3m3 Assume D, = 3" D2 =6" - Solve for D3 Solving for the equation shown on Figure 3.17 gives us SN=2.5922 2.5922 = 0.42(3) + 0.13(6)(1.0) + 0.12D3(1.0) 2.5922 =2.04 + 0.12D3 D =4.60" The standard street subbase section of 9" (0.75') is more than adequate. CAPACITY OF CURB & GUTTER Flow Capacity of Curb & Gutter, in worst case scenario(see Detail in Appendix B): Q= (1.486/n)AR"S'/2 n= 0.012 for Concrete A=3.0 ft2 P = 14.51 ft R=A/P =3.00/14.51 =0.20675 ft R2/3 = 0.34965 ft Design Report-Wage 17 of 22 S = 0.005 ft/ft S"' =0.0707 ft/ft Q = (1.486/0.012)(3.00)(0.34965)(0.0707)= 9.185 cfs. The gutters at the west end of Mill Creek Park carry the largest quantity of storm water at minimum slope. We will check the capacity of this section of curb. Furthest point in drainage area= STA 10+50 Mill Creek Park Size of Drainage Area= 850'x40'=34,000 ft2 =0.7805 acres Mean C= [(0.90x25,500 ft2)+(0.30x8,500 ft2)]/34,000 ft2= 0.75 Travel distance= 850' Average Slope= 0.05% in gutter Time of Concentration = 13.8 minutes = 0.23 hours(see Figure I-1, Appendix B) I25 =0.78X--64= 0.78(0.23)".1¢= 1.998 iiVbr Q25 =CIA= 0.75(1.998 in/hr)(0.7805 acres) = 1.17 cfs 1.17 cfs <_ 9.185 cfs — Gutter capacity is adequate CAPACITY OF STORM SEWER PIPES 15" RCP crossing Mill Creek Park This pipe carries the stone water flowing down the south side of Mill Creek Park under the road towards detention pond#1. Furthest point in drainage area= STA 10+50 Mill Creek Park Size of Drainage Area= 1050'x40' =42,000 ft2= 0.9642 acres Mean C = [(0.90x3l,500 ft2)+(0.30x10,500 ft2)]/42,000 ft2= 0.75 Travel distance= 850' Average Slope=0.05% in gutter Time of Concentration = 13.8 minutes Design,Report-Page 18 of 22 Slope =0.005 ft/ft A=(3.14/4)d 2=(3.14/4)(15/12)2= 1.2272 ft2 P =2(3.14)r=2(3.14)(7.5/12) = 3.9270 ft R=A/P = 1,2272/3.9270 =0.3125 ft R2/3 =0.4605 ft S =0.005 ft/ft S12= 0.0707 ft/ft Qfuu_ (1.486/0.015)(1.2272)(0.4605)(0.0707) = 3.96 cfs 3.96 cfs >_ 2.88 cfs — 15-inch RCP @ 0.50% is adequate 12" HDPE from Detention Pond to Mill Ditch Diversion This pipe carries the same storm water as the pipe flowing from Mill Creek Park to the detention structure. We should anticipate a 25-year flowrate of 2.88 cfs. The capacity of the 12-inch main at 1.26% slope is checked using Manning's Equation: Qf,�n = (1.486/n)AR2"Sv2 For the 12-inch pipe: Manning's n = 0.018 for 12" HDPE Pipe Slope =0.0126 ft/ft A=(3.14/4)d 2= (3.14/4)(12/12)2=0.7854 ft2 P =2(3.14)r=2(3.14)(6/12) = 3.1416 ft R=A/P =0.7854/3.1416 = 0.25 ft R2/3 =0.3969 ft S =0.0126 ft/ft S 1/2= 0.1122 ft/ft Qf�ll =(1.486/0.418)(0.7854)(0.3969)(0.1122) = 2.89 cfs 2.89 cfs >_ 2.88 cfs — 12-inch HDPE @ 1.26% is adequate Design Report-Page 20 of 22 15" RCP from east end of Mill Creek Park to Retention Pond#2 This pipe carries the storm water flowing down both sides of Mill Creek Park from the road to retention pond#2. Furthest point in drainage area= STA 10+50 Mill Creek Park Size of Drainage Area=484'x80'= 38,720 ft2 = 0.8889 acres Mean C = [(0.90x29,040 ft2)+(0.30x9,680 ft2))/38,720 ft2 = 0.75 Travel distance=484' Average Slope=5.0% in gutter Time of Concentration = 6.5 minutes = 0.1083 hours(see Figure I-1, Appendix B) I25 = 0.78X".14= 0.78(0.1083)-.64=3.2348 in/hr Q25 = CIA= 0.75(3.2348 in/hr)(0.8889 acres) =2.16 cfs The capacity of a 15-inch pipe at 0.50% slope is checked using Manning's Equation: Qfuu = (1.486/0.015)AR2/3Sv2 For the 15-inch pipe: Mai ing's n = 0.015 for RCP Pipe Slope =0.005 ft/ft A= (3.14/4)d 2= (3.14/4)(15/12)2= 1.2272 ft2 P =2(3.14)r=2(3.14)(7.5/12) =3.9270 ft R=A/P = 1.2272/3.9270=0.3125 ft R2/3 = 0.4605 ft S =0.005 ft/ft S I/2 = 0.0707 ft/ft (1.486/0.015)(1.2272)(0.4605)(0.0707) =3.96 cfs 3.96 cfs >_ 2.16 cfs — 15-inch RCP @ 0.50% is adequate Design Report-Page 21 of 22 Mill Ditch Diversion Culvert There is an existing 42" diameter RCP culvert at the entrance to the site where Mill Creek Park will cross the Mill Ditch Diversion. Flood profiles and floodway data is enclosed in Appendix B from the FEMA Flood hisurance Study for the City of Bozeman dated July 15, 1988. The summary of discharges indicates that we should anticipate a peak 100-year discharge of 340 cubic feet per second from the Mill Ditch Diversion near Davis Street. The existing 42" diameter RCP is inadequate for this flowrate and will be removed and replaced with a 48" high x 10'wide RCP box culvert. The capacity of the box culvert at 0.50% slope is checked using Manning's Equation: Qf,,,, =(1.486/0.015)AR2/3S1/2 For the 15-inch pipe: Manning's n = 0.015 for RCP Pipe Slope =0.005 ft/ft A=4'(10') - 4((1(1))/2) = 38 ft2 P =2(8') +2(2') + 4(1.4142) =25.6569 ft R=A/P =38/25.6569 = 1.4811 ft R2/3 = 1.2993 ft S = 0.005 ft/ft Sit=0.0707 ft/ft (1.486/0.015)(38)(1.2993)(0.0707) = 345.8 cfs 345.8 cfs >_ 340 cfs — 4' x 10' RCP Box Culvert @ 0.50% is adequate The new culvert will exceed the requirements for flow outlined in the City of Bozeman Design Standards and Specifications Policy. 02026.3/office/desi,i report Design Report-Page 22 of 22 APPENDIX A Pump Curve Calculations: Pump#1 Pump#2 Mendenhall and Broadway Hydrant#854(Front Street) Pressure Flow Pressure Flow 125 0 130 0 120 903.3838 120 1024.287 100 2154.349 100 1853.818 80 2959.124 80 2442.674 60 3609.123 60 2929.373 40 4171.716 40 3355.155 20 4675.959 20 3739.157 0 5137.595 0 4092.146 PUG-25-2000 13:02 1 30ZEMAN CITY SHOPS TO 952797Sg P.01 iCIJ7�1tlt".'h .�� 9.t•Pa� 47i �._._ _ �y v� __..-... )_... 5 f4 E rn 3 4 kF. J. 62 ....J 1.U, ez K GVcU a JJ�.3 iaY 0 V v.a 4 0' KJ�) r��T� �Y•�� ,:✓('! ,;::ter�',3 ;J.✓�i'S ' .:>� _..:.: £�' t�irk.+ u .^/, '+`+ .�'.✓�;a+ V ;0 7 3 '+ _ _ J (� L G <�,�;�,j amµ_ .:3,. `I 5 0 C ?CJ tii 7 iS ..'n Sic —s. 5•;1 't r'.;v L r, r r.., ., AUG-'25-2000 13:03 DOZEMAN CITY SHOPS TO P-02 s. ne! Free Flows SIP, z—4. u a e h a t f 10 V ci 3)e rl 21 4"e L t u PSI 3 31 3 S l0i J-v , ou: c. /2 s % '14 :5 S ij. so 2 6 D C-11 4 4 Of 3 5 5,0 A.,r" 2 r 0 0 21 19 en 17 3 C 2�- n z C, ,d 2 L, _3 2 i 8 2 El�11 0 -7 2 1", 2 2 7- 2 e I 0 2 E ca 2 ci 3 2:01 a2 v 1 19%I'll 5 j-.C, t-1 c I Z .1280 V 2 c� 'i 7;�-0 2 5 10 2 C. 5.2 C. cz A U'.5 % 6 n 10,0! 2 _;V 25 7 20 3 3 2 ?0;u 6 0 _I) f ij 2 2 3 0 .0 8 cj � I I zll� 2-, - nI - 0 7 G rv' - I *.J -f o 4 8- g, sp.7v-,of I WWI ................... R_ P-�I, 1 / C J1 +'4 6 s'w 3 r _ \ J-9 C / LOT 3 /X / 200,366 Sq Ft \\ 4.5998 Acres \ C 1 \ / J-13 NOMINAL EXISTING WETLANDS / J-6 L 0 4 582,557 q Ft ! / J-12 a —5 �� 13.3737 A res C C � ACTIVE EXISTING LOT 2 00 179,948 Sq Ft LOT 5 4.1310 Acres \� j �• 217,519 Sq Ft \ rr ptg ex4, 4.9935 Acres #2 E 00 LOT 1 129,070 Sq Ft ,Al 2.9630 Acres J-11 J-1 R-1 c Er o ,-! 0 _t 0) E E cc :3 a)I- —, 7 > E 1�—0 2 IL 'Sc_ 0- 0 L�Q) < z z z z z z z z z z E E 9 '9 9 (D Z Z Z Z Z Z Z Z Z Z Lq ":a) Q) CD a 17 (D wl: L) r_ 0 N Q) 0 0 0 0 0 0 0 0 0 o q q 0 9 q 0 q q >,a) 0 0 0 0 0 0 0 0 0 0 0 0 0 cl) �5— N N N N N N N N N N N N N (n E .E E =3 E 'E T in T (0 Z Z Z Z Z Z Z Z Z Z LO E < U') =5 a) c= z z z z z z z z z Z1� r- In 0 r, I,- m 0r- om0 0 0 0 0 0 0 0 0 N 0 (D < 0 0 0 0 0 0 0 0 0 0 0 0 0 CO E (n U) :3 u)'C� co E 2 0 'E 0 4w Q)-E 0 0 0 L- 0 0 0 0 Z Z Z Z Z Z Z Z Z Z cu IC_ cli N N 0) 1 CO m C) 0 0 0 0 a 0 0 0 0 0 0 0 .C: (n V) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cz cu [Ln.v y 0 10 a) 6. -E� Z Z Z Z z Z Z Z Z Z .0 ELL -6 LL 0>cu cy) LO LIJ -,4 Cl) (1) co = 0 -E� z z z z z z z z z z 0 C• 6.2 Q) O. 0 0 0 LL (1) 0) 0 0 0 to LO LO � (D z z z z z z z z z V 0 U- > CD < Cl) Cl) m -0 0 0 0 0 0 0 0 0 0 0 0 0 OE— q q q q 00LL 0 0 0 0 0 0 0 0 0 0 0 0 (n 0 0 0 0 0 0 0 0 0 0 0 0 0 Q) Q) IQ LQ Iri Lri LQ LQ lr� LQ Lri LQ Lri L'i q Z — — — — — — — — — — — — — Cl. (n3.9 LL 2 2 2 2 cu (D v5 — — ,�= C: U- 0 C'. 0 (D FL 0 S 2 am m w -!= Il cu CO N 2' L z z z z z z z z z z m > N 0 N CO3 9 7 7 7 7 7 7 7 7 7 7 7 7 7 (D 0 0 0 0 0 0 0 0 w 0 0 0 0 >,N 0 c a c c a c c a c c c a c 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 N N" N N N N N N N N N N N N N 2 9 �2 co 'IT N m 9 n OP 9' 7 N Scenario: Base Fire Flow Analysis Junction Report Label Elevation Zone Type Demand Pattern Demand Calculated Pressure (ft) (gpm) (Calculated) Hydraulic Grade (psi) (gpm) (ft) J-1 4,777.32 Zone-1 Demand 37.55 Fixed 37.55 5,061.86 123.11 J-2 4,778.17 Zone-1 Demand 0.00 Fixed 0.00 5,060.57 122.18 J-3 4,778.32 Zone-1 Demand 0.00 Fixed 0.00 5,060.43 122.06 J-4 4,778.77 Zone-1 Demand 37.55 Fixed 37.55 5,060.10 121.72 J-5 4,780.87 Zone-1 Demand 38.54 Fixed 38.54 5,058.64 120.18 J-6 4,778.20 Zone-1 Demand 50.44 Fixed 50.44 5,058.29 121.18 J-7 4,772.70 Zone-1 Demand 50.44 Fixed 50.44 5,058.03 123.45 J-8 4,774.70 Zone-1 Demand 50.44 Fixed 50.44 5,057.76 122.47 J-9 4,750.55 Zone-1 Demand 212.34 Fixed 212.34 5,057.24 132.69 J-10 4,744.50 Zone-1 Demand 0.00 Fixed 0.00 5,057.24 135.31 J-11 4,787.32 Zone-1 Demand 0.00 Fixed 0.00 5,060.43 118.16 J-12 4,789.87 Zone-1 Demand 0.00 Fixed 0.00 5,058.64 116.29 J-13 I 4,783.70 Zone-1 I Demand 0.001 Fixed 1 0.001 5,057.76 118.57 Title:Broadway Boulevard Project Engineer:Matt Cotterman g:\c&h\02\02026\02026.3\watercad.wcd C&H Engineering and Surveying Inc WaterCAD v4.5[4.5015a] 09/27/02 02:19:40 PM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA +1-203-755-1666 Page 1 of 1 E o for 0 U (T m � � O � Q � U O p WS U N O a` N O 00 M O It n 't Un M N 0 0 0 0 0 0 O (D O n r <t C 7 r (D O p 0 0 0 0 0 O Q)O O O 'IT tO 4 M N N 0 0 0 0 0 0 N M O =U� O UO CO 't M (D Un (D n N 0 0 0 0 p 0 O OJ N r M d- M N N Un O O O O Q O O C 0 0 0 r 0 0 r O O p O p O O Q 0 0 CO N n tV D d = Lo n (D d- 7 7 O M d' (D N M In <t r (A N O n N N N u) ct (D n O U n 0 0 0 of w of n n n n co 0 of n N `-o n CD (D CD (D Un Un (n (n (n to tO V (D Un (n _ (` t` O O C C O C C C C 0 0 n C C 0 + 0(� It tO to tO Un UO Un tO UI) (f) Un Un It Un Lo Un cz 3= o 0 p � o N � _ H o cD n co CO m "r v o M v cD U N tO n M Un V: r (D N O n N N Un ll�: (D n N 0 0 0 0 0 OJ t• h- n N O M t- y Z' ((� L ` n co CD (D (D (D to UO N 0 to tO It CD Un Un ` D m o C o M o O o o O o Q rr o 0 o a Q � L)w v u) 0 0 tri 0 0 0 0 Ln (n Uri v (ri 0 0 a Q. Q= C m u' D _ N w V N N n n (D O N M -It M M CO co CO co C D ((f Q. M_ M M n t-: n N (D N n M RS E (h I- m 0) 0) N M co N N co 0) n 00 M 00 W:2n n co co Cl) 0 (D (D N V t 'IT It 'ITM M N N tM.•' ct 'ct d' V D = O m U n p y Cl) ` p C C C C C C C C C C C C c C C C C m N U U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V C p O O tO O O N O CO (D (D a O 0 r M M r M M 0 O M M p <- 0 0 (D (D (D D `p 0.V 0 6 ci O O O O O O o 0 0 o M C6 ('i 0 o .D U � a y(`• N 00 N N N N N 0 N N N N U 0 N 0 N N N N > _ V; V) O O O O O O Q O O O O O O O O p C E O O O O O O p O 0 0 0 0 0 0 Q 0 �° M U M M M M M M M M M M M M M M M NCc= r r r r r r r r r r r r r r _3: L L l 2 2 L V 2 L -U (p U U U U U U U U U U U U U U U U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o Q o 0 0 0 0 0 0 0 0 0 o m N.•` m co W co 0 0 co 0 w Oo N Oo w 0 0 p .D E � c M '- v y N O O d ' N O O O O Q O O O O O O p O 0 (O m n _ O O O O Q O O O O O O O O p p p (0 D) tO O O tO O M O (D O J 3 N N v r W M N p � N r CD 7 � CON Co O O N O N O m t n�2 (° N � N d d. d a d a ci L a d d CL d n. d d i- rn o Scenario: Base Fire Flow Analysis Pump Report Label Elevation Pump Shutoff Shutoff Design Design Maximum Maximum Control Intake (ft) Power Head Discharge Head Discharge Operating Operating Status Pump (Hp) (ft) (gpm) (ft) (gpm) Head Discharge Grade (ft) (gpm) (ft) PMP-1 4,777.50 288.75 0.00 208.76 2,568.80 0.00 5,137.60 On 4,777.50 PMP-2 1 4,748.501 1 300.301 0.001 217.111 2,046.081 0.001 4,092.151 Pump cannot deliver head(Closed] 4,748.50 Title:Broadway Boulevard Project Engineer:Matt Cotterman g:\c&h\02\02026\02026.3\watercad.wcd C&H Engineering and Surveying Inc WaterCAD v4.5[4.5015a] 09/27/02 02:21:17 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 USA +1-203-755-1666 Page 1 of 2 Scenario: Base Fire Flow Analysis Pump Report Discharge Discharge Pump Calculated Pump (gpm) Head Water Grade (ft) Power (ft) (Hp) 5,062.71 477.32 285.21 34.37 5,057.24 0.001 0.001 0.00 Title:Broadway Boulevard Project Engineer:Matt Cotterman g:\c&h\02\02026\02026.3\watercad.wcd C&H Engineering and Surveying Inc WaterCAD v4.5(4.5015aj 09/27/02 02:21:17 PM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA +1-203-755-1666 Page 2 of 2 Scenario: Base Fire Flow Analysis Reservoir Report Label Elevation Zone Inflow Calculated (ft) (gpm) Hydraulic Grade (ft) R-1 4,777.50 Zone2 -477.32 4,777.50 R-2 4,748.50 Zone2 4.87e-3 4,748.50 Title:Broadway Boulevard Project Engineer:Matt Cotterman g:\c&h\02\02026\02026.3\watercad.wcd C&H Engineering and Surveying Inc WaterCAD v4.5[4.5015a] 09/27/02 02:21:39 PM ©Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA +1-203-755-1666 Page 1 of 1 1997 UNIFORM FIRE CODE APPENDIX III-B APPENDIX 111-B ( FIRE HYDRANT LOCATIONS AND DISTRIBUTION i (See UFC Section 903.4.2) ' SECTION 1 —SCOPE SECTION 4—CONSIDERATION OF EXISTING FIRE � Fire hvdrants shall be provided in accordance with Appendix HYDRANTS III-B for the protection of buildings,Or portions of buildings,here- Existing fire hydrants on public streets are allowed to be,consid- 1 after constructed. ered as available. Existing fire hydrants on adjacent properties shall not be considered available unless fire apparatus access 1 SECTION 2—LOCATION roads extend between properties and easements are established to 1 prevent obstruction of such roads. Fire hydrants shall be provided along required fire apparatus ac- cess roads and adjacent public streets. ` SECTION 5—DISTRIBUTION OF FIRE HYDRANTS i SECTION 3_NUMBER OF FIRE HYDRANTS The average spacing between fire hydrants shall not exceed that Iisted in Table A-III-B-1. The minimum number of fire hydrants available to a building shall EXCEPTION: The chief may accept a deficiency of up to 10 per- not be less than that listed in Table A-III-B-1.The number of fire cent where existing fire hydrants provide all or a portion of the required hydrants available to a complex or subdivision shall not be less fire hydrant service. than that determined by spacing requirements listed in Table Regardless of the average spacing,fire hydrants shall be located A-III-B 1 when applied to fire apparatus access roads and perime- such that all points on streets and access roads adjacent to a build- ter public streets from which fire operations could be conducted. ing are within the distances listed in Table A-III-B-1. i i i TABLE A-111-B-1--NUMBER AND DISTRIBUTION OF FIRE HYDRANTS AVERAGE SPACING BETWEEN MAXIMUM DISTANCE FROM FIRE-FLOW REQUIREMENT(gpm) ANY POINT ON STREET OR ROAD HYDRA NTSt23(feet) I FRONTAGE TO A HYDRANT° x 3.7a5 for L/min. MINIMUM NO.OF HYDRANTS x 3D4.8 for mm 1,750 or less 2,000-2,250 I 500 250 2,500 3 I aso 225 3,000 225 3,500-4;000 a 400 2�5 4;500-5,000 350 210 5,500 6 300 180 G,000 6 '00 i80 6,500-7,000 7 50 150 7,500 or more 8 or mores pp 1 0 1Reduce by 100 feet(30 480 mm)for dead-end streets or roads. '--Where streets are provided with median dividers which can be crossed by firefighters pulling hose Iines,or arterial streets are provided with four or more traffic lanes and have a traffic count of more than 30,000 vehicles per day,hydrant spacing shall average 500 feet(152.4 m)on each side of the street and be arranged on an alternating basis up to a fire-flow requirement of 7,000 gallons per minute(26 495 L%min.)and 400 feet(122 m)for higher fire-flow requirements. 3'Where.new water mains are extended along streets where hydrants are not needed for protection of structures or similar fire problems,fire hydrants shall be pro- vided at spacing not to exceed 1,000 feet(305 rn)to provide for transportation hazards. 4Reduce by 50 feet(15 240 mm)for dead-end streets or roads. 50ne hydrant for each 1,000 aallons per minute(3785 L,imin.)or fraction thereof. 1-303 1997 UNIFORM FIRE CODE APPENDIX III-A Division III FIRE PROTECTION APPENDIX III-A FIRE-FLOW REQUIREMENTS FOR BUILDINGS (See UFC Section 903.3) SECTION 1 —SCOPE 4.2 Area Separation. Portions of buildings which are separated The procedure determining fire-flow requirements for buildings by one or more four-hour area separation walls constructed in ac- or portions of buildings hereafter constructed shall be in accord- cordance with the Building Code,without openings and provided ance with Appendix III=A.Appendix III-A does not apply to struc- with a 30-inch(762 mm)parapet,are allowed to be considered as tures other than buildings. separate fire areas. i 4.3 Type I and Type II-F.R. Construction. The fire area of SECTION 2—DEFINITIONS buildings constructed of Type I and Type II-RR.construction shall i be the area of the three largest successive floors. For the purpose of Appendix III-A, certain terms are defined as follows: i FIRE AREA is the floor area,in square feet,used to determine SECTION 5—FIRE-FLOW REQUIREMENTS FOR the required fire flow. BUILDINGS FIRE FLOW is the flow rate of a water supply,measured at.20 psi(137.9 kPa)residual pressure,that is available for firefighting. 5.1 One-and Two-Family Dwellings. The minimum fire flow and flow duration requirements for one-and two-family dwellings SECTION 3—MODIFICATIONS having a fire area which does not exceed 3,600 square feet(344.5 m2)shall be 1,000 gallons per minute(3785.4 L/min.).Fire flow 3.1 Decreases. Fire-flow requirements may be modified down- and flow duration for dwellings having a fire area in excess of ward by the chief for isolated buildings or a group of buildings in 3,600 square feet(344.5 m'-)shall not be less than that specified in rural areas or small communities where the development of.full Table A-II1-A-1. fire-flow requirements is impractical. EXCEPTION: A reduction in required fire flow of 50 percent,as approved,is allowed when the building is provided with approved 3.2 Increases. Fire flow may be modified upward by the chief where conditions indicate an unusual susceptibility to group fires automatic sprinkler system. or conflagrations.An upward modification shall not be more than 5.2 BuiIdings other than One- and Two Family Dwell- twice that required for the building under consideration. in-s. The minimum fire flow and flow duration for buildings oth- er than one- and two-family dwellings shall be as specified in SECTION 4—FIRE AREA Table A-III-A-1. 4.1 GeneraI. The fire area shall be the total floor area of all floor EXCEPTION: A reduction in required fire flow of up to 75 per- cent,as approved,is allowed when the building is provided with an ap- levels within the exterior walls,and under the horizontal projec- proved automatic sprinkler system.The resulting fire flow shall not be tions of the roof of a building, except as modified in Section 4. less than 1,500 gallons per minute(5677.5 L/min.). 1-301 APPENDIX III-A 1997 UNIFORM FIRE CODE TABLE A-III-A-I—MINIMUM REQUIRED FIRE FLOW AND FLOW DURATION FOR BUILDINGS FIRE AREA(square tee!) FIRE FLOW x 0.0929 for m2 (Pallons Type I-FiR. Type II One-HR. Type IV-N,T. Type II-N FLOW II-F.R. III One•HR.t V•One•HR.� Ipe 11 Type V•N x3.788 for DURATION 0-22,700 0-12,700 0-8,200 0-5,900 0-3,600 1,500 (hours) 22,701-30,200 12,701-17,000 8,201-10,900 5,901-7,900 3,601-4,800 1,750 30,201-38,700 17,001-21,800 10,901-12,900 7,901-9,800 4,801-6,200 2,000 38,701-48,300 21,801-24,200 12,901-17,400 9,801-12,600 6,201-7,700 Z Zj0 2 48,301-59,000 24,201-33,200 17,401-21,300 12,601-15,400 I 7,701-9,400 2,500 ; 59,001-70,900 33,201-39,700 21,301-25,500 15,401-18,400 9,401-11,300 2,750 70,901-83,700 39,701-47,100 25,501-30,100 18,401-21,800 11,301-13,400 3,000 83,701-97,700 47,101-54,900 30,101-35,200 21,801-25,900 13,401-15,600 3,250 97,701-112,700 54,901-63,400 35,201-40,600 25,901-29,300 15,601-18,000 3,500 3 112,701-128,700 63,401-72,400 40,601-46,400 29,301.33,500 18,001-20,600 3,7J0 125,701-145,900 72,401-82,100 46,401-52,500 33,501-37,900 20,601-23,300 4,000 145,901-164,200 82,101-92,400 52,501-59,100 I 37,901-42,700 23,301-26,300 4,250 164,201-183,400 92,401-103,100 59,101-66,000 42,701-47,700 26,301-29,300 4,500 183,401-203,700 103,101-114,600 66,001-73,300 47,701-53,000 29,301-32,600 4,750 203,701-225,200 114,601-126,700 73,301-81,100 53,001-58,600 32,601-36,000 5,000 225,201-247,700 126,701-139,400 81,101-89,200 58,601-65,400 36,001-39,600 5,250 247,701-271,200 139,401-152,600 89,201-97,700 65,401-70,600 39,601-43,400 5,500 271,201-295,900 152,601-166,500 97,701-106,500 7Q601-77,000 43,401-47,400 5,750 295,901-Greater 166,50)-Greater 106,501-115,800 77,001-83,700 47,401-51,500 I 61000 4 " 115,801-125,500 83,701-90,600 51,501-55,700 6,250 " 125,501-135,500 90,601-97,900 55,701-60,200 6,500 135,501-145,800 97,901-106,800 60,201-64,800 6,750 " 145,801-256,700 106,801-113,200 64,801-69,600 71000 " 156,701-167,900 113,201-121,300 69,601-74,600 7,250 ! " 167,901-179,400 121,301-129,600 I74,601-79,800 7,500 179,401-191,400 129,601-138,300 79,801-55,100 7,750 191,401-Greater 138,301-Greater 85,IO1-Greater 8,000 (Types of construction are based upon the Building Code. '-Measured at 20 psi(137.91,Pa).See Appendix III-A,Section 2. 1-302 APPENDIX B uO vo v� O wW o wz— O-� � a a. NEW CURB AND GUTTER x ui d w o to w w w zofzof ui a 00 �_� � z0f o O O Z 0�- m O° qua co Q U rn ui Z< W J� 0 Q Q� OQ0 W N (n O w to ui J Ch V) z Q m �- Y I O I Q x m m m w �' O Q m w w w w > m Y I Y Z J J Q J J _ \ J W W 0 J O Z Z Z J Z Z O m C o- m J Y > 00 > I Y In LLI� w o w o °_ m Sti o > m z al o o how z o � � � I§F 0 o w o) m w m 0 0 � 3 =cwnw w?cn I I � •' � zit- �O� LLI OQ� O O I I t W N (/l LJ J o \Lj V)Z O p �QQ a->(n 00� Ln m x Ctf 0 M O0 ui QCJ M of C9 W 0 M m a {� o V a� L51 In of �z— O-� - tij to`c4 a �Q� �� O { L } 0 V -- sr-, w � coi O � II li cou NI w T- rr7 W C `- cn � ~ < n v w Qw � w � w � U Q I- V W W r C_=-a 1200 140 l000 o . ° .120 0 cn w F- 800 100 z F z w w z a w 600 80 a z w z cn � a c,� J G w j 400 � 60 F F— YA z Q J J � 200 40 0 0 0 20 c 0 FIGURE I-1 TIME OF CONCENTRATION (Rational Formula) 26 ti 4g ' OEM Y _ jug j - f1l C Ci Eli ........ I WEfit 1 � � I o e 0 N pyy Ox o7 m m m 00 rnO M Z fl � Ob O "zdZ gO r� z�' FN�KFVjITTj�I�I t/r 't A CJ D' SJi� S CTOn p N B (Ai O zPrn m z .. a O O1—f EZ. a z r—Sp3 TAXZO D r �gc� O ��to r M r,M ?.L.Z Q tux x x x x` x a o 0 N A. �m 0 O Z a N - - - s 6 C Vt N rO� Z Q` z M o z A Z Vl m_{ = Q�p O A DDD-i f+1 z C f m ���n ���tn o c N rn so Nw z o �M z c) rn © .Im x x x x j x Fi7 � z n y A O t -P W L K O p_i yD Z u } O C O O N czs Z En P7 I I 1 �Iptg � Zt.�4 p� f 00 z v C/) ' oro mtn 0zno n ;�Pak {Xo c n°*zp of �D�=Z 11>1 FUAP z�� r z ooz ' la n Z2z_ oom m i a = fur �!4 p z m o C4 m m `(D-0mom f $ rb ri Q i zo 0 "r- FTI +s CIO Om IT m z zmcn � m o> o ao-, cc�� z N U) ->+ MZ0 Cl Ln 041 j �m mE3 o co 0 o m o R 0 0 000=. m U) Acn U) 0 z O y°. F- FTI M :IEM Omh' zz Z 9 S M p m m m rri o 4A nr rn o a rn ym _ g71 M. -0 A 0 0 n x m °�' zz i om m MZ c _ z Z> rr/�t a ZA VI O ;D m13 Z4 k CP mz 11�r�T zZ -�-] �r>+tz �rn CAA O1 P N Ln m m-ty "R S!!®. �ry2 to O o o cn CJ a 0� z n m OR : z ��a �8 0 =tn � m o �r mr �r m yr mm o R. !�-o o z a z z ME 0 m z "t m7� N D b M n Eo ' .Fi7 _ �) B C � � pON lJi j0 0 - Am T � j m - s PO LO A c ---------------- y err f i- V I,� m I `'arm {� z i I�if \II i �Dc cn �c CD Go CYI 71 co li i f aw c 1 f Iv Am � I �m ❑ AS m_C , O oul n 77 Vim n Avcu oA >D m i _ i co i I I I zi fpf° � I n t -e 432 N Kc 40 Co ro � mmmm V; m m C3 c is v � � � . tt2 L000Vcsci C] !rJ r NNCJCdIO � rNC�1 � �G , C O G �- t7 tt n u� C7 t f m tIJ ,q tf: fi co , 1`4 N [V Cl- r t 1!') O r T CV a La r in m l LL o LL a� c vss �, d� m � Ican E- c6 m — 0 U ' a N 11.. E E chit en -o a) is .� G. " �' Qr °' m '- y u to o C (D c Q � � '� c-�, 0CJf� � u; � C: U � E E > II C .� n .r C� i- p rtf .. rn C7 cti m $ o c La 'L7 LC " '` v Q. 6 E c fl , a a 3 C? ? m c u a c �n o o o x n c a z � L� CJ cn � u f-1)0 +li m A T z m m Z 120 co ror cn � o A / tl0 m f �-�I 1 _ o=ytj y II l i II` I T f X i CD Icoco � Q'm ❑r:75 � AC � X�-'� p m m r'`Ur co z m o m� t C) -------------- DT am J. Ui I4 w i LM _ I 2S O Ui z 7V CL CL r—I 0 cc -V 0 'o CO tC CO C: 15 1) N C3 s x x x (1) U) UJ Lo co Rt Zo t3 Q LL LL < < tt >- if N Q 0 kv 0 m tn N c Lo -co C) IN 0 CLY CN LW x Q C: UL C Q a. U) It ci 0 CD U- LI- 0 a 0 0 n- (D CD cu 0) C) 0 8 E- Q 0 LL z 0i u cl, > m m zt� 4it Z* 1 LU r1l) C/) Uj 4� LL U- LL <z5o l 140 I i i�. i . 'I 111 ' I � I I• . :I/ ' i .I � I I . I I I �. 1000 120 I :. I I I - : l:�;I �. ': �i :i �;I,. :. ; �•. ' . h,:I •� L. a�.• I ...i I 1 I . . I I '.I f I : ..Lo I ..:C I, ' C: :.I � �:. . � ;I`•. .�:'I. I • i I I I I . : Boo .. I' .. I J. I I I� I. I a� •. 1 � =-1 I I : ° .:I . I /.I � I .�..I � .I I . I :I I j.. I loo .•I I' I� I I ,.) .I .I. :I• • :• . L.,;I: : I I . I% I � .:I�. �: . I� I � `I I i . :f z w I. L . I I . L I _I'/I i . I .I _ I I I I : . I I I. ..I: 11 I I :V.I/ I I. I ' I . • I f :�.I I I ..-I LLJ. goo f �I ! I . I/ ` : ff � I :�'..' a . I: " , I• '. �,. ,, I. -� • , I I I .::60 I I I.• ll Vie /l it V I 7777 1 I I �. �o I i . 1. n I - f I I � V � I ! I ✓ � 1 1• I I I ! I I I i I i r.—i r, i 2ri 1 L + !J-Drvcc r.- E .,. I .• 1 I I I I I I I I ! i t ,' 0 FiGliRE I-1 TIsME OF CONCENTRATION—' - (Zat;oia1_ Foi-�nul_a) DRUZ^T ; s/is oi 23 CV4 L 7'v A& I-If 120-0 l000 I. I . I I I I I I I 120 Ll sooI. .I :. I11 Z i I I I I I I I I . I I i I I u, z cr- 80 I. I I' :, I. �. ; 1 . I I f I I I I . I ;00 I .60 _ -- - j 200 f I I I I ' � I I � + I ► I� � � I I. 0 PIQUE E I-1 TI_1vIE OF CONCENTRATION(Rational_ For mu 23 U) F— W m F- �o mW ui W J O ¢ d H LAJ W ¢ � U Z O 00 os cn eoa� < W d Y U ~ H X O W W U) m �t M J Ste.J 1¢— CO_ "P-00 co N W iols u co � � W Ho V ¢F. CD j T -i O W F- Q Z Li :2 W W W � W }om w ° W Z J J F- .J O ¢ I- d W J W ^ W 0 Jz Q f.i. m C) / d 00 N m �- O O O F- m „9� „6 AIL- Ro, j it o -( Fm vc ................... r - I .........._r ' I , 1 r , V ... ._._.__... ........... _ ........... _... ......... u1 r� i tmp#l . txt Weir Calculator Given Input Data : Weir Type . . . . . . . . . . . . . . . . . . . . . . . Rectangular Equation . . . . . . . . . . . . . . . . . . . . . . . . Contracted Solving for . . . . . . . . . . . . . . . . . . . . . Width Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 1 . 0930 cfs Depth of Flow . . . . . . . . . . . . . . . . . . . 28 . 0000 in Coefficient . . . . . . . . . . . . . . . . . . . . . 0 . 6500 Height . . . . . . . . . . . . . . . . . . . . . . . . . . 28 . 0000 in Computed Results : Full Flow . . . . . . . . . . . . . . . . . . . . . . . 1 . 0930 cfs Velocity . . . . . . . . . . . . . . . . . . . . . . . . 0 . 8442 fps Width . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 . 6586 in Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2947 ft2 Perimeter . . . . . . . . . . . . . . . . . . . . . . . 62 . 6586 in Wet Perimeter . . . . . . . . . . . . . . . . . . . 62 . 6586 in Wet Area . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2947 ft2 Percent Full . . . . . . . . . . . . . . . . . . . . 100 . 0000 Page 1 tmp#l . txt Manning Pipe Calculator Given Input Data : Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . Circular Solving for . . . . . . . . . . . . . . . . . . . . . Flowrate Diameter . . . . . . . . . . . . . . . . . . . . . . . . 15 . 0000 in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . 0000 in Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0015 ft/ft Manning ' s n . . . . . . . . . . . . . . . . . . . . . 0 . 0150 Computed Results : Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 2 . 1683 cfs Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2272 ft2 Wetted Area . . . . ... . . . . . . . . . . . . . . . 1 . 2272 ft2 Wetted Perimeter . . . . . . . . . . . . . . . . 47 . 1239 in Perimeter . . . . . . . . . . . . . . . . . ... . . . . 47 . 1239 in Velocity . . . . . . . . . . . . . . . . . . . . . . . . 1 . 7669 fps Hydraulic Radius . . . . . . . . . . . . . . . . 3 . 7500 in Percent Full . . . . . . . . . . . . . . . . . . . . 100 . 0000 -o Full flow Flowrate . . . . . . . . . . . . . . 2 . 1683 cfs Full flow velocity . . . . . . . . . . . . . . 1 . 7669 fps Critical Information Critical depth . . . . . . . . . . . . . . . . . . 8 . 4746 in Critical slope . . . . . . . . . . . . . . . . . . 0 . 0080 ft/ft Critical velocity . . . . . . . . . . . . . . . 4 . 2903 fps Critical area . . . . . . . . . . . . . . . . . . . 0 . 7151 ft2 Critical perimeter . . . . . . . . . . . . . . 25 . 5112 in Critical hydraulic radius . . . . . . . 4 . 0365 in Critical top width . . . . . . . . . . . . . . 15 - 0000 in Specific energy . . . . . . . . . . . . . . . . . 1 . 3252 ft Minimum energy . . . . . . . . . . . . . . . . . . 1 . 0593 ft Froude number . . . . . . . . . . . . . . . . . . . 0 . 3671 Flow condition . . . . . . . . . . . . . . . . . . Subcritical Page 1 tmp#l . txt Manning Pipe Calculator Given Input Data : Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . Circular Solving for . . . . . . . . . . . . . . . . . . . . . Flowrate Diameter . . . . . . . . . . . . . . . . . . . . . . . . 15 . 0000 in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . 0000 in Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0050 ft/ft Manning ' s n . . . . . . . . . . . . . . . . . . . . . 0 . 0150 Computed Results : Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 3 . 9587 cfs Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2272 ft2 Wetted Area . . . . . . . . . . . .. . . . . . . . . . 1 . 2272 ft2 Wetted Perimeter . . . . . . . . . . . . . . . . 47 . 1239 in Perimeter . . . . . . . . . . . . . . . . . . . . . . . 47 . 1239 in Velocity . . . . . . . . . . . . . . . . . . . . . . . . 3 .2259 fps Hydraulic Radius . . . . . . . . . . . . . . . . 3 . 7500 in Percent Full . . . . . . . . . . . . . . . . . . . . 100 . 0000 Full flow Flowrate . . . . . . . . . . . . . . 3 . 9587 cfs Full flow velocity . . . . . . . . . . . . . . 3 . 2259 fps Critical Information Critical depth . . . . . . . . . . . . . . . . . . 11 . 8646 in Critical slope . . . . . . . . . . . . . . . . . . 0 . 0096 ft/ft Critical velocity . . . . . . . . . . . . . . . 5 . 2436 fps Critical area . . . . . . . . . . . . . . . . . . . 1 . 0682 ft2 Critical perimeter . . . . . . . . . . . . . . 32 . 2912 in Critical hydraulic radius . . . . . . . 4 . 7637 in Critical top width . . . . . . . . . . . . . . 15 . 0000 in Specific energy . . . . . . . . . . . . . . . . . 1 . 5006 ft Minimum energy . . . . . . . . . . . . . . . . . . 1 . 4831 ft Froude number . . . . . . . . . . . . . . . . . . . 0 . 6702 Flow condition . . . . . . . . . . . . . . . . . . Subcritical Page 1 Ion Will u■�■u■nn W■■■■■IIUI ■■■■■■■■ ..:............ .. /nn/n��NMO■NNnnN■/iumiuiN NN///Nn■p mN /NnWMOnmm■n■■■p Wn/■n■/■■■nn■/nHu■//■■■p■ m■mn■p■■■p■/ ■W//■p//nu ■/■/ Vnv■///vu■■ MOON v ■//■■■■■■n/■i ■■■■■■■■H/■■n■H/■■/■/■ ■�//■■■■■�/ ■pvp■m�i■n■N■p■■mWW■/NN�MOON//■� ONMEEMN ///N/nN■■■ m iw■■inH■/MOH/■■®■■� /�■N■NN/■■N■N umuWMOp■■■■p■ ■W"mWN/N■///ii■iiNm■�.W■„u�p magow ■p ■m/N�ii■■W Wse•■N■/■Np/N■ mmnNall i/■/m■u■ mummon ■unvvN■ //■ppppp■W■■ _ m/N■■N■N■■ .. H�■u/■u�■H/■pH■■ . : ;® �iN mmvn■/■n MOH .. vuNNN�Iva"- ■�r■p-an.. ►.Nn■po®■■nuN■■s�unN■■u■H 1® m■p /ONN■ /■H■ N�■■NNp■�=+N//mn .. N■nn�' vm•■■Npi■�i van.•�m■■�iiii�MOu■ 167■ MO 'JN■1■p■■ p/■■MO■n/1.*jt�■ p■■n/■■Lw-I�O■■� � MOOn■O■11j� N O■■■■■■■uj/p 1t111■■Jpmp MONm/mNtr�i c�u■■//■r.� . n - nNON■ ■nnnadu■1 /N■N■■■ 1 ®vW/■ N■�mW■n■Hp■N■p■�■ ■■NnN- .. ®i�■/■■p/p■�p■■N■ m'�N■■N/■u�N�.urra. , ■"■■NNov■■■ n■■u■O■H■// NNuu■NMONr�IN�n /■/nnp■■pp■/ ■//r�iPo■MOn■■1�:1■■W/O■MO■pN■��N■/■ W■�r`-■HN■■■�m � ■H■-an HMO mMOO■�n n//O/■NN,ry�/■/OOn■MOE9 HO■■MOC�1■ �vv/■//p■■W� inn■ Nr�i/■■■■■■nnn■■nN/■■pN■■//■� . nN/r.��-�/n/nHN �u■>t�■n • ■■/nn//■p ® .■NMO■■p�m■nmMO■■m■■JiNn mn■n/NUN■p ry/�■u/n_u■nn■/■ no•u/nN■pnr.���■■■■u�"n�iin�n� � .. v>.■u■np■n �W■' nHn pi■ ■/n■/■■/■■p/■p■■/vniii�ra�unn ■Npv�nNr.�WNNH■N�-� :. ■H■ nmH�n■■■■/p■ mi■WNm®m■N■/pppp■■ N■MO■pp■■■Nc�m■uN/��mu■■p■�■�pm•■■/o ■p■Ni���■cr NHNs..rp� mMONp■Nm W/mNWWNn//■ ���m/NN �■/■■�crl�r�■n■ ��� _ a n� ■m■NNp�Wpn��mm/nu■■■■un■■p■/ pp mN� �mNp■ ■p■,,,.�mm� WH■p■■ n//NnH■E p■ '•�NWv■p■ _NnNMO�I�■■p � ■a■p■W■■p -., ■W: � :: - ununui nu■n■n■■■p■u■i■/NMO/N■■N�■p ■ ■■/pmn�WnN■p��n■■n�� ■NnN■■p■ ••. ma�iuMu��p/■■/ pN■■nppH//N■NNm/NNW■n�� /N■■/■WN■p■■�■�v�■■■//0■� ■�N■®/ ■limits ■R.�C/■Hp■■I,t��/■■ram 1.0 v■NN■vnu■n 'umu /■n■■■p■p■■■■ Nn WWnn n�■s imp�om■n■MONvp/■ ■u�■■//■■Nn■m'� N/■ pN/n//n//n W/■■/■■■ /■■■ �� ya■■ . IWNNo,W ■nWn1-- �o--o/aN��OO�■ - ■NH/■■■■nnnV■� ,■pp OONu■■NG�■■OMO■■ � ,► GN/N■n on■■/■■■ �No�EHREEMRp �samigilia � y�■■/ ••. J�m ■■N/■■�■ ■�■/ n■N■ ■�uN■■un �"Hon.W■■�mo WMERNuv .imuNnuNu .�■■N■ ■///�-��' _ _ /■■■■ ■nmimiWVWmMO■m-�■/�Nnp NW■u■n■/N■i>���■■■■�nmp■■m/ ■puN■p_■ �■u■ovi OW /nm■nW8■ OMON/ON■■NNi■0■■ i�11IU�nI`�g• �JMO■gym■mn/O��n��/i�■■pN!•■_Nol ■■■■ N■n■pW■p■■�m MON/nN■■/p■pRoompam m/nMONOp ■ ■■�ppp■■MO WH■NOEMn m■IOft0 HN■■mN1.-,%�I . _ �nONHMO/n■■ m•MONm/nNN■p■■■�mn■■/p■pNn■■■■■p�/unun■MON/Nn/■p ■■■MO■�iun■n■anal ■■■■p■■■ni■nwNpr n�/■■■p■m �pN/N/■N MOW�uW■pNNu■NN■/u W■uN■nnN ■p Noun ltilliiIn mnn■/■■■u/n pn nn WN ���p�� u■N■■■■■■■N■/■■ pW /■ nOW�■m-an --a ■i■nii:/MONup■W■ ■ONNpW■giiWvn n�NMOi■dM°jJnpui nnn �H■N n■/■■N■/■//r-- �-v uH■■■■�r.■rWi�v ■ MOO■ N/pN■ n■/■un■■■ ■nmm�nnnnn WNNOnn ■■i ►/� ■v■� ■■N■E/■■�■■ ■■p/�u■ �a■m■■�■■■F amm■■oW/Nn■NN■■■■E NN■■N�m■H■■/■n//■■■Nn■■/■■ n nviiii �►. nvOO/■■s�r.:N/MOm■ ■NMOi�uNNm/ ■N■Wpnn ■W/N/NMONnNn■N■■NN■■u ■/■Wn■■■■n■Na%■■vn�-■�/vv� ■�HN■■c'e�_ /■H nMON■MON/■/■n■nnn�i■■ipi/ii m■m/■■/NNN■■ pE■mu■■H■■■■■, ■■■■ n■�■N/■p■p■ o=N■■■�m���N '-Nv • mmWNMO mmmom ■mmanm/v/u■ M an/N■MONnn/m//nm n■MO Nn■■■■�p■p��HN■m'- .sNnHN■s■■■■■■'mNN■mn���/■■�u'N'i gyp■/p■■pH'/'u■u■NN NuplpmMO�per■ u■/■ pp ,Gilu../s■Np ■■//■■p■■pp�W�w..N■■N�qp ' � nnW �n■mn■Np ■m■NHNN■ m/Nnm■//��� ■HNNNMO■®N/ ■■N/■i e��■J,/u��p■ WNWmmnN■m Nn■■■■■■pMOOpnm ■N/n/W■■pW� NSHUNNnnn NmH ■uN■■■�E�uY■ /�I�NN " nNNnn/Np/■N■pmn■nn/np®pp// �/WNN � H/■n■■N .�-„ ! ■n■ mvNN IUN�u■ ■■N■■p■ Nnpiv■ mnNm/■■I■u■ - r1� WNW�uii/N HNN=�I�NNs■n�n ■■■p■■�WN �■p■■■,N/W■N■■HH■■■■■W■� ®MOe -�O■■p■p■�ii ■■■■m■■■ n■NNOv��n�nN�u■ nNNNn■■N■Nu■s■nNn �■�W■■■N■■, 'n°u►.�,■m WNWNNN■ �■sN�/■�i�l■N ■ p�pn/pMO/nN■p■■mp��n■NnNnN■H■/p■■■p /■■■�..�■■ nNryN no!�'�-�uMOinm�■■■■N�/np■�■W, pu■na•�l■■■/p■NH■,,�p ■om �W■mN■W■nWW■nu■/p■p■■mw—nn ■■■■Nn■ �uW■N■� 'nNN■ v■ _,._.Mmmul c;■cp/■e ■�■MO■ gi nona iM ll ■N■n■/Wmm�nWN�m ■/v/N■N■ ■ /NON■ NmNONON■ mn■■�._, -./■■■a ■■■N■n/■N ■NN NsnNNN■pv■■/ �■MONMOnv/NNyi ni■ioin■■■MO■■■■•� ■■■uvai■'''N■iiun■WiN■■■ -► rs • : •. v�Nr.■■NN■■p.o ■®WNpvp vmn■W■■npN■■p■pppN■ nMOO/O■P �mH/n■ n■�uNW■ MONu /�/up■ " n■ sMO ®NON mW nNNNON/On ONNn/�, v/NONNNO/■■■�i/mH■O/■p//nppp■■ ■NnL!NC/NuWN■ ®// npW WN■■■p/■■ nWNNsnNNN►.�s■ �aNp■■NON■/pp W■Nu■nMO �■■■■p u Wm■■■NN/i"'W■Np vmmnu. ■p■W� ■N■p■ N■p m■■/N MOW■v®MMMI /upE'�"iuEH'W"■ ® /■■■m■■■■N■mvN■N■p■/N■�nu/nnmi■mp -�iiv■W v■N��■■■■■p■■■■■■ mNNNNNN■�in/■p■i■/i�i��iinv■W�WN�ii ®p ®pnHp mWNWn■H/MOppm� ■i/>r��i�uN�lu nNnMO■pvMOn■■■■m p■�npm��m■■■p�■N���WN n=--------_uNs /���i piNmWHpn■■■p■■■pou/■/vNppp�IWmW/ u�ii■p�H■�pmm W�If.� - -ter amN■■pNm■ �mMO mnpnnn■■■■on �W/■ ■ 1� 1�®11 "=!�uvN�l■NN ® �nn■NVNN■■- mnpp■ Nnn■MO// ® 1 � �W■O■11'■aHNn■ Ili/ nWN■W�m■p-�p■W■m■u■ ■WNNNv■■NH■ vn■p■rs!NnpWN��wpv�w�uN'uI i as r.ru ® .�� ■/■vuNMO■■■pp■pMOMONnvN■p■■■�0 N■O■p�►n, O�p�n� �►N�iro�W�vp�ivl!MO Nm■■ mnp /■ npnWN WO 0ON 5 NN aMO p ®WNN pH�i//■■N■pp NNN■ppp■ ■�■mHn■np ppppp�•HN�-sue. .■.'■'!►�nlwH ■ e.mpin�ip■m■■■m■ppW�■■ppppnpn�/p■■■u■/■■■op■ ■pW■pN■ ■MOm ■ ■nn ■■�nv�■N W '�® ®■p■■■�■■/ � �IN�N/■in/■■■■MEN■/pW'v pN■nnp■■■p� �In�Nnnp . - ■ wpm■■■pp N■Nnn■■W:�o■■H■■■■MO■u■v■N Nv■Np■■NNMOMO/p�p ■■ - nN®® ® nn■■/up■ppi■NWm�W /u�impm�iNp■■NN m .. . - ••. mQ�� � �l�■m■oppp■■�n■NNiN i�1mN m� -�-•�_p�jn�W W/NN/■■■ : . . ••., _. �® N1� iiiiii�,■nWN■/np■pu■np ■p■OO�d� �OpW■�`jm��� ' ' ••. ' .■■N--Raw /;-Rip" MO� � mMEW ' ®�pp� m■■■Nu p. �i�� -no �� goo ■ � .�11 T.1 ^^V` y4 `t Ui r•; i !IS L1 ul m u) to L7 m Ln u1 to t1•) t!•) u) u7 u) t1.) u1 t!'1 cn t11 11.) u) ua to * j Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o H z [ o ~ U•. U1 '�?' N N r r1 n r-. C. O� h M Lf1 tl' u) r O r` w r-i H 'V' C" n. x N M er u) M V+ r O N H N r C1 r-i in n 0 .-{ M M r h h Ho ul L7 co co co co mo 30 Q � to � rrr rnrnrnoonon � � mo a E-+ [z Q U] WLLJ O O Ol r r N l0 M l0 m 'V' N n O m O N m q to q N M M V N C lD O r f l0 r N l0 m O ct m r O r-1 N N l0 l0 r E`O h r h Lo � W r r r CO m m m Ql O1 m m O O O W H a ; r y r th r n n n n n n CO 3 E-id � v ery �rzrrr �rd �r �r �ra �r �rc �r � �ry �rc �rc C.D y a C= P' O O O Ol r h N tD M t0 M q' N n 0 a> O N u) N r-i l0 tp m M N Ln l0 O lO r-I N l0 0) O <7' Ln r 0 .-i N N l0 1p h y u) L i N Ln l0 l0 tp r r r m n n n m ,("� m Cr 0 0 0 0 0 0 0 .. r r r r r h r r r h r cD n n n n n n � � �rer �rtrcr �r �rtr V, H W� C J N ci M Ln n Ln lD N Q CO r 1 M m V MN CD V lD u) W u)O o -� ONv oM IrI � N -� oernN �rMr-1 Mr1Mo GN v) r-I M O a � rn � in MMM nv r-linoin o0 n u Q H U W Ql u7 r M to i ) l0 N r--i Ol r O n m la o m NN co N Lo a <� N N u) M N r-i N V� •--I N r-� M �0 N QJ Cv r�l x •4 _ QH H u) r l0 m O M 'IV N l0 M m CO M r•-1 r--I N r--I r--I CT N (T1 In �.0 m N .--I �- W M NLr) N rO{ CV M CD to M lD CD r r-� M N N Ln coM N 0 to N r-1 U z C� w s yr r1 y W u) u) n n �0 lD r-I •-I r-1 r-i r-{ u1 to O N u) tf') O O O tf") O O N N N rd W z F l0 M l0 r-i lIl (��. lD M C r Ql O N M n lD V' r-{ l0 �0 r!' �7' 'C W y _ M ul l0 Ql O r-{ N M N C1 N V' u'1 l0 Ol O M Ut r n Ql O r-{ r-{ M M M m "z*l ` ` ` 4J W i co V �i rf V u} lf) u7 u) u7 O tD l0 l0 l0 l0 r h r{ Ur Q O U Q L W a� C7_ O L)E-i C a U _ o U �— uj O U ccr♦ Q Q u g U q W G C7 x H h x a 2 0 W O+ LaH b 3 >C >+ tv j w ?� w �-- ( O C� i v Q cc �•! N p m w w w i t u Ar TABLE 2 i i i' k; t. i; ro CD M �O r� 17 O CD C) C:) •.-a O I cn -H N N N .-i N N '7 M ro U CD W O _O UI u n } U 4 C) ro U O. p W of C .. Li --I U-, cn O o Ln O E Ln r- CC) O O O cn co C) CD cn rn t4 0 3 0 U - O C] 7 0 U O 1 v 14 w ro N U O a) .-t 00 m M CV irl O 'U �'+ v'i � r- of r- 00 m U O co I n O - w -a w O '-i •-f --� .--� cV M cn w ro Ln C G � c0 •� U i L E c U O ro (1) ti4 L N m M O m O N r- .� w In In CD In 1J rn •-I •-c �- �' I'ro � -aO o I -� U N O --4 .-4 O C o oO C:� v t4 < <n O U c U N CJ C O O V7 S.+ .-a H C w c a E ro v vo co cn vl r, U N cV M 7 C LL co O C i r (D C U O > ro O 2 E E co v m O o i4 o u tiJ 00 = w w v U o 0 a w c co D C 1 < v ro O � 41 O L L " O E E E o L ro ro ro CL W co o E G aD N v o ro o c L L L U Z U C UI y y C L O O p G O N •L G a 7 CZ •.a CD C L O C' rO 41 v CZ --+ Co v -4 R1 Cl ,-i cn a E ti E u o E v v coo Cli > ro - .-+ >J ro 3 v oa > u v o . -4 .--+ > o .� co cd o Li -a �4 co tir ro C� ro � .]; CDL a N cn N > •-� T7 p cd nc 7 U u1 C ,-4 14 >l -4 cn .-4 G Q) N > CL >,C, o w >� C G Q) 4-) v G U- - a cc p - 0) a) o > cn li ro ro aV a �a U aV "a ,i w o w O W as 7 N L V] 1J Cn Gl. 5', tI -4 cn m 41 mf•+ S.+ N O ro ro cn oO oO ro o G >, .,4 m >, ro L cn 14 E U E U ro G E U N bA .� > 4, .� ap .0 C cli op U —4 a U x •� U O ro X E X E W X E x Q ,�� N �G G C O o 0 0 w w CL. o O O a C }4 ro ro "+ C W 1-+ 1-+ L+ > > U] 1a 1+ U �4 �4 F-I U 1+ v aw O.w o 0 1 o.w co G w 0 oO a. CL o n c a as -, ro co L co 0 00� ro Z coZ ro z W ti4 o r ra R rz SINGLE CELL BOX CULVERT DETAILS SLAB THICKNESS > T - ---- T- ----\� -- \\ /�i ------ ----- ------ I� DIAGONAL REINFORCING �I I i TYPICAL FOUR PLACES K� I j I I A,1 (SIDE WALL OUTSIDE) 1" COVER A92 (TOP SLAB INSIDE) I I I TYP A 4 (SIDE WALL INSIDE) ! I RISE s ! i SPAN ! 8„ I I I I I I I A33 (BOTTOM SLAB INSIDE) I I\ I * A37 (TOP & BOTTOM SLAB OUTSIDE) j yHAUNCH i I I 1-- ------ ----- -------------- -!- ---- ------- --------------1--- �� 10" R SLAB � ————— THICKNESS SECTION VIEW *9' SPAN & LARGER - 12"x12" HAUNCH 8' SPAN & LESS - 12"x12" OR 6"x6" HAUNCH DEPENDING ON STATE SLAB ASIDE SURFACE SPAN THICKNESS 4" ;.. .� 3 11T, (INCHES) --.-T-, ' 6 FOOT 8 f 7 FOOT 8 1/2„ 1 J2" 8 FOOT 8 4" 9 FOOT 8 10 FOOT 8 TYPICAL JOINT DETAIL 12 FOOT 9 LOADING, DESIGN METHODS AND MATERIALS COMPLY WITH ASTM C789 WWF ASTM A182, f' = 65 KSI CONCRETE STRENGTH, f� = 5 KSI TEE CRETEX COWANDE(S INC Box Culvert Design and Analysis ELK RIVER, MINIESOTA performed. on Sa1&u CELL Box Car Computer Program BOX CULVERT DETAILS llQ -1 2/23/94 SINGLE CELL BOX CULVERT WEIGHT CHART SPAN RISE SLAB WALL HAUNCH WEIGHT PER (FEET) (FEET) (INCHES) (INCHES) (INCHES) FOOT (LBS) 6 3 8 8 6 x 6 2150 6 4 8 8 6 x 6 2350 6 5 . 8 8 6 x 6 2550 6 6 8 8 6 x 6 2750 7 3 8 8 12 x 12 2,600 7 4 8 8 12 x 12 2,800 7 5 8 8 12 x 12 3,000 7 6 8 8 12 x 12 3,200 7 7 8 8 12x12 3400 8 4 8 8 12 x 12 3,000 8 5 8 8 12 x 12 3,200 8 6 8 8 12 x 12 3,400 8 7 8 8 12 x 12 3,600 8 8 8 1 $ 12 x 12 1 3,800 9 6 8 8 12 x 12 3,600 9 7 8 8 12 x 12 3,800 9 8 8 8 12 x 12 4,000 10 _ 4 , 8 8 12x12 3400 10 5 8 8 12 x 12 3,600 10 6 8 8 12 x 12 3,800 10 7 8 8 12x12 4000 10 8 8 8 1 12 x 12 4,200 10 9 8 8 12 x 12 4,400 10 10 8 8 12 x 12 4,600 11 6 9 8 12 x 12 4,300 11 7 9 8 12 x 12 4,500 11 8 9 8 12x12 -4700 11 10 9 8 12x12 5100 12 4 9 8 12x12 4,100 12 5 9 8 12 x 12 4,300 12 6 9 8 12 x 12 4,500 12 7 9 8 12 x 12 4,700 12 8 9 8 12x12 4900 12 9 9 8 12 x 12 5,100 12 10 9 8 12 x 12 5,300 12 11 9 8 12 x 12 5,500 12 12 9 8 12 x 12 5,700 THE CRETEX COMPANIES, INC. ELK RNER, Mf#* OTA MM CELL BOX CULVERT IlOS'IfZ WEIGHT CHART APPENDIX C < MIS kill W O O CA LUU LLU --------------------- 'p O (6 C > d 00 r y }� W "a 'IT codM' i N N d CD U W U CV C @ p I— In m Cl) N O U U C @ U LL co N h r� CO N N N O N n C Y N M M M M M N � Q O_ N W Y N M CO CO N N O i N M 0 O U @ CN 0 0 0 0 O O O O O O O . N m U CO M r r a0 M V�' @ r d 0 0 u> L ' 0 0 0 0 0 0 0 ' N r 0 O 67 -O) CA O) CA O) O) CA O) O) (n O' C N _ U N Cn T Cn , N to N N N N ' d o o 0 0 0 o 0 0 (D 0 .0 a -j w o ai co cli o cri o 0 0 0 U) @ .0 .a ,>' N N O O N N CVO MO N M En @ C O O O O O O 0.0 ' > C O OOO O n co =O O O O O O O NO O O O C O N {.� L # C O ? r N C O (D O 0 N .O N N = 0 0 0 0 0 0 coma EY c o 000 6C5 000 0— @ t6 15 °' V 0 o C� C OCV M .@ to_5 •N CZUT O Ln 6 6 ' O Ln Li C� m r N N r N M r N to 1 W r r r r r r r r r r y C_ r > IN Cn O O N Cn N Cn @ N M co co N M O N M CD Q� N V 0.. N tIL L6 L ' Lh Cd C ' 0 0 0 i N N C W C/) d N O Q C U 'C Cn Q. i i i i i i i i d N .0 O N O Cn O V CO It r N O t 0) N I? V @ 00 N d' N O N (4 �. it !7 LV N � y O V U @ 6 cn E z m W@ � ° z E a aJ @ @ Q) Y 0) � L N U @ Q C a) @ W 3 Mo m u m ��� Table Q1. - Classification of the Soils Gallatin County Area,Montana An asterisk following the soil name indicates a taxadjunct to the series. Soil Name Family or Higher Taxonomic Classification Blackmore Fine-Silty, Mixed,Superactive,Frigid Typic Argiustolls Bonebasin Fine-Loamy Over Sandy Or Sandy-Skeletal,Mixed,Superactive, Frigid Fluvaquentic Endoaquolls Threeriv Fine-Loamy Over Sandy Or Sandy-Skeletal, Mixed,Superactive,Calcareous,Frigid Typic Fluvaquents USDA Natural Resources ^� Conservation Service Distribution Generation Date: 1/22/02 Paae 1 of 1 Non-Technical Descriptions Gallatin County Area, Montana Only those map units that have entries for the selected non-technical description categories are included in this report. Map Unit: 350C - Blackmore silt loam, 4 to 8 percent slopes Description Category: Sol BLACKMORE SILT LOAM IS MORE THAN 60 INCHES DEEP WITH A DARK COLORED SURFACE LAYER AND SLOPES OF 4-8 PERCENT.LANDFORM:RELICT STREAM TERRACES;FROST FREE DAYS:80-95;AVAILABLE WATER CAPACITY IN INCHES:10.2- 12.4;MAJOR CONSIDERATIONS:NONE,LANDUSE MAY INCLUDE:CROPLAND, RANGELAND. Map Unit: 556A - Threeriv-bonebasin foams, 0 to 2 percent slopes Description Category: Sol THREERIV LOAM IS MORE THAN 60 INCHES DEEP WITH A LIGHTER COLORED SURFACE LAYER AND SLOPES OF 0-2 PERCENT, LANDFORM:FLOOD PLAINS;FROST FREE DAYS:90-110,AVAILABLE WATER CAPACITY IN INCHES:4.3-6.3;MAJOR CONSIDERATIONS:FLOODING, WATER TABLE,LANDUSE MAY INCLUDE:RANGELAND, Description Category: Sol BONEBASIN LOAM IS MORE THAN 60 INCHES DEEP WITH A DARK COLORED SURFACE LAYER AND SLOPES OF 0-2 PERCENT, LANDFORM:FLOOD PLAINS,FROST FREE DAYS:90-110;AVAILABLE WATER CAPACITY IN INCHES:5.2-6.8;MAJOR CONSIDERATIONS:FLOODING, WATER TABLE;LANDUSE MAY INCLUDE:RANGELAND. Map Unit: W - Water Description Category: Sol WATER(NO DATA) USDA Natural Resources —' Conservation Service Distribution Generation Date: 1/22/02 Page 1 of 1 Selected Soil Interpretations Gallatin County Area, Montana The information in this table indicates the dominant soil condition,but does not eliminate the need for onsite investigation. Limiting features in this report are limited to the top 5 limitations. Additional limitations may exist. ENG-Construction Materials; Map Symbol Pct Roadfill of and Soil Name Map Unit Rating Class and Limiting Features Value 35OC: Blackmore 90 Fair Shrink-swell 0.87 556A: Bonebasin 45 Poor Depth to saturated 0.00 zone Threeriv 45 Poor Depth to saturated 0.00 zone W: Water 100 Not Rated USDA Natural Resources Conservation Service Distribution Generation Date: 1/22/02 Page 1 of 1 N O X O p) U p O N to to O � O (n to N 'N.p O, a' co c (fi (n cn 6 cn Z (n ' z d .. "a w O O Lo to Ln O (n o m <t m m Om m N m mLO N N Cm0 N N N N ON , N N CP O T m h ^ h LO N O t(j O tcj ' ttj O r i r a) m o o m (`nn co LO a E d O O O O O dO' LO m 'Oa' 0) C N O O O O O o 0 0 0 0 0 0 o oLO 0 0 oL9r r o o o n C N OJ a) N 0') co (n N N U N d O O U) O O O O O Or 0 O O 0 LO m C, N m Q� Q. co 0 d 0 00 O 0 0 O O O NO x C N N E r o m 0 o o 0 O o o O O o o p � - c � Q o c o c = 'i T d' (D O Q Q Q Q QQ RI U Q O y Q W CD@ J J J U cc J J cri Cl) ( J N _ U U U U U C� U U U cn U CD CL U) M J U J j j to 0 U) U B O m N T p >+ !i CO N �— E m E o U m O o E C'o N J a) ai f EJ J � a -� JCE E E > n o m Q O C O JJJ OJ p N � > y m ca m m m m a i (o o m m m m � o U U o U o U CD U E ° w U E o c° J > > _J J o m E Z m n a E y p y p _ _ _ _ U) (n (� U) U) U) r2 J U)U) > > U) W U) 2 a. J U)U) W U) CO N 3 N o (n O (o N C N d' (o V N (p o� O O G 'D N 1 G (D O N V' O V r N O d' m G 76- U � w c E c c E.Z o U o CC a`f' Z U `9 o _c E � Q c) oo Q c Q � m to tom ��� Table ENG-1. - Construction Materials Gallatin County Area, Montana The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99. The greater the value,the greater the likelihood that the bottom layer or thickest layer of the soil is a source of sand or gravel. Potential Source Potential Source Map Symbol Pot of Gravel of Sand of and Soil Name Map Unit Rating Class and Rating Class and Limiting Features Value Limiting Features Value 350C: Blackmore 90 Poor Poor Bottom layer 0.00 Bottom layer 0.00 Thickest layer 0.00 Thickest layer 0.00 556A: Bonebasin 45 Fair Fair Thickest layer 0.00 Thickest layer 0.00 Bottom layer 0.19 Bottom layer 0.20 Threeriv 45 Fair Fair Thickest layer 0.00 Thickest layer 0.00 Bottom layer 0.06 Bottom layer 0.20 W: Water 100 Not Rated Not Rated USA Natural Resources Conservation Service Distribution Generation Date: 1l22/02 Page 1 of 1 Table ENG-2. - Construction Materials Gallatin County Area, Montana The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99. The smaller the value,the greater the limitation. Potential Source Potential Source Potential Source Map Symbol Pct of Reclaimation Material of Roadfill of Topsoil and Soil Name of Map Unit Rating Class and Rating Class and Rating Class and __JLimiting Features Value Limiting Features Value Limiting Features Value 350C: Blackmore 90 Fair Fair Fair Carbonate content 0.80 Shrink-swell 0.87 Too Clayey 0.93 Low content of 0.88 organic matter Too clayey 0.98 556A: Bonebasin 45 Fair Poor Poor Too sandy 0.01 Depth to saturated 0.00 Depth to saturated 0.00 Droughty >0,99 zone zone Rock fragments 0.00 Hard to reclaim 0.00 Threeriv 45 Fair Poor Poor Low content of 0.50 Depth to saturated 0.00 Depth to saturated 0.00 organic matter zone zone Droughty 0.92 Hard to reclaim 0.00 W: Water 100 Not Rated Not Rated Not Rated USDA Natural Resources Conservation Service Distribution Generation Date: 1/22/02 Page 1 of 1 California Bearing Ratio Test (ASTM D 1883/AASHTO T 193) Project: 99-1000 Datc: 01/13/99 Harvest SUbdiyislon Field No.: - Lab No.: P-1 Depth: Sample Description: Lean Clay,low plasticity,dark gray(CL). (Remolded to 95%relative compaction) (Sample was submersed in water and allowed to saturate for 96.1 hours.) Maximum Dry Density: 104.0 pcf Procedure: ASTM D 698, Method A Initial Final Wt. Specimen+Tare Wet 567.0 gms Wt. Specimen+Tare Wet 4393.1 gins Wt. Specimen+Tare Dry 498.6 gms Wt. Specimen+Tare Dry 3753.6 gms Wt.Tare 155.9 gms Wt. Tare 342.4 gms Moisture Content 20.0% Moisture Content 18.7% Initial Wt. 4034.0 gms Diameter 6,00 in Initial Ht. 4.58 in Initial Dry Unit Wt. 98.9 pcf Initial Relative Compaction 95.1% Final Dry Unit Wt. 98.1 pcf Final Relative Compaction 94.3% SWELL TEST Surcharge Weight 22.5 lbs Surcharge Pressure 133.4 psf Initial Dial Rdg. 0.5000 Final Dial Rdg. 0.5377 Swell 0.8% CBR TEST Surcharge Weight 22.5 lbs Surcharge Pressure 128.1 psf CDR @ 0.1 in. 6.8 CBR�i),0.2 in 6.3 160 1 I 1 140 I 120 100 ! 1 80 60 40 - 20 - 0 0 0.1 0.2 0.3 0.4 0.5 Penetration (inches) SK(ieotechnical Cog)oralion, Billings,Montana (406)652-3930 California Bearing Ratio Test (ASTM D 1883/AASHTO T 193) Project: BHDX-97-237 Date: 12/17/97 Harvest Creek Field No.: GW-11 Lab No.: 97100 Depth: Sample Description: Silty Clay,low to medium plasticity,olive brown,moist Sample was remolded to 95%of a standard proctor Sample was submersed in water and allowed to saturate for 97.7 hours Maximum Dry Density: 105.5 pcf Procedure: ASTM D 698, Method A Initial Final Wt. Specimen+Tare Wet 531.1 gins Wt. Specimen+Tare Wet 4302.2 gins Wt. Specimen+Tare Dry 458.9 grass Wt.Spccimen+Tare Dry 3560.0 gins Wt.Tare 115.4 gins Wt.Tare 323.8 gms Moisture Content 21.0% Moisture Content 22.9% Initial Wt. 4124.0 gins Diameter 6.00 in Initial Ht. 4.58 in Initial Dry Unit Wt. 100.2 pcf Initial Relative Compaction 95.0% Final Dry Unit Wt. 99.9 pcf Final Relative Compaction 94.7% SWELL TEST Surcharge Weight 22.5 lbs Surcharge Pressure 133.4 psf Initial Dial Rdg. 0.5000 Final Dial Rdg. 0.5172 Swell 0.4% CBR TEST Surcharge Weight 22.5 lbs Surcharge Pressure 128.1 psf CBR @ 0.1 in. 3.3 CBR @ 0.2 in 3.1 80 i 60 i a cn 40 - Cn as 20 ! - 0 0 0.1 0.2 0.3 0.4 0.5 Penetration (inches) Braun Intertec Corporation,Billings,Montana (406)652-3930 California Bearing Ratio Test (ASTM D 1883/AASHTO T 193) Project: BHDX-97-237 Date: 12/17/97 Harvest Creek Field No.: GW4 Lab No.: 9799 Depth: Sample Description: SILTY CLAY,low to medium plasticity,olive brown,moist Sample was remolded to 95%of a standard proctor Sample was submerged in water and allowed to saturate for a period of 98.8 hours. Maximum Dry Density: 105.5 pcf Procedure: ASTM D 698, Method A Initial Final Wt. Specimen+Tare Wet 625.9 gms Wt.Specimen+Tare Wet 4909.4 gms Wt. Specimen+Tare Dry 549.2 gms Wt. Specimen+Tare Dry 4163.9 gm Wt.Tare 150.5 gms Wt.Tare 762.7 gms Moisture Content 191% Moisture Content 21.9% Initial Wt. 4067.0 gms Diameter 6.00 in Initial Ht. 4.58 in Initial Dry Unit Wt. 100.3 pcf Initial Relative Compaction 95.1% Final Dry Unit Wt. 100.1 pcf Final Relative Compaction 94.9% SWELL TEST Surcharge Weight 22.5 lbs Surcharge Pressure 133.4 psf Initial Dial Rdg. 0.5000 Final Dial Rdg. 0.5112 Swell 0.2% CBR TEST Surcharge Weight 22.5 lbs Surcharge Pressure 128.1 psf CBR @ 0.1 in. 6.3 CBR @ 0.2 in 5.8 140 120 a 100 5 g0 60 40 20 --{ 0 0 0.1 0.2 0.3 0.4 0.5 Penetration (inches) Braun Intertec Corporation,Billings,Montana (406)652-3930 ­Ct 04 00 11 - 35a -"geotechnicallbillings 652 2944 Califoniia Beai-hio,Ratio Test (ASTNI D 1883/AAS1ITO T 193) project: 005242 Mite: 10/04,12000 Tarige.Subdivisou Sample No.: 2 Boring: 13054 Dep'll: 2'(+) Sztruple Descriptiun; Lean Clay, lovi plasticity.trace orgaiu s light brown. (CL) (Remolded to 95%relative compaction.) (Sample was submersed in water and allowed to saturate for 97.8 7.8 hours.) Maximum Dry Density: 100.5 pcf Procedure: ASTM D 698 Method A Initial Final Wt. Spcciri-icti+Tar,-Wet 453.0 gms Wt. Specimen+Tare Wet 16')5.7 g rns Wt. Specimen+Tare Diy 395,6 gnis Wt. specimen+Tare Dry 1350.2 gins Wt.Tare 138.9 gins Wt.Tare 241.4 on,,s Moisture Content 22.4% Moisture Content -2,5.7(Xj Initial Wt• 3976.0 gms Diameter 6.00 in Initial lit. 4.58 in Initial Dry Unit Wt, 95.6 pof Initial Relative Compaction Final Dry Unit VA, 95. pof Final Relative Compaction 1071 SWELL TEST Surcharge Weight 22.5 lbs Sui-charge Pressuxe 133.4 psf lmtlai 'Dial Rdg. .0.5000 Final Dial Rdg, 0.50114 Swc I I CBR TEST Surcharge weight 22.5 lbs Surcharge Pressui-e 128 1 jx:f C31Z 0.1 in. 4.3 CPR 01 in 4.2 120 100 ­4 al 80 V) 60 coo 40 20 0 1 ......I 0 0.1 0.2 0.3 0.4 0 5 Penetration (inches) SK (icoteclanical Corporation,Billings,Montana (406)652-3930 ct 04 00 11 : 35a skgeotechnicalbillings 4,Pq 652 3944 California Bearing Ratio Test (ASTM 1) 1883/AASHFO T 193) Project:. 005.242 Dpae: 1_.0A04_/20.00. Tange Subdivison Sample No.: I Boring: B053 Dep1h: 3'(-1-) Sample Description: Lean Clay,low plasticity,trace organics,brogan. (CL) (Reinulded to 95%relative compaction) (Sample was submersed in water and allowed to saturate for 98.8 hours.) Maximum Dry Density: 102.0 pet Procedure: ASTM D 698 Method A. Initial Final Wt. Specimen+Tai-e;Wet 404.8 gms Wt. Specimen 1-Tare Wei. 13 48.1 ms Wt, Specimen+Tare Dry 357.4 gins Wt, Specilnen +-Tarc Dry 6rins Wt. Tare 148,6 gins Wt.Tare 277.8, gins Moisture Content 22.7% Moisture Content 25.6% Initial Wt 4044.9 gins Diameter 6.00 In Initial I-It. Initial Dry Unit Wt. 97.0 pcf Irvtial Relative Compaction 95.1'VO Final Dr)'Uni(Wt, 97.0 pof Final Relative Compaction, 95-1% SWELL TEST ')L1JC!_.'arOC WUi-Ilt ---------- 22.5 lbs Surcharge Press ure 131.4 psf Initial Dial I'd g 0,5000 Final Dial Rdg. --. 0:501-1- Svvull CBRTEST Stu-Cllalge Weight 22.5 lbs Surcharge Pressure 128.) Im,f CB I 0.1 in. 5.1 CBR @ 0.2 111 4.7 120 100 V2 J Ell 60 40 21 0 ------- 0 0.1 0.2 0.3 0.4 0.5 Penetration (inches) SK Cicotecluileal Corporation,Billings,Montana (406)652-3930 Apartment (220) Average Vehicle Trip Ends vs: Persons On a: Sunday Number of Studies: 15 Average Number of Persons: 347 Directional Distribution: 50% entering, 50% exiting Trip Generation per Person Average Rate Range of Rates Standard Deviation 2.95 1.73 - 5.04 1.93 Data Plot and Equation 2,200 2,100 . ... . . . . . . . . . . . . . ... . . . . 2,000 . . . . . . . . ;. _ . . . . . . . 1,900 .. . . . . . . . . . . . . . . .. . . . . .. . . .. 1,800 - - - - - - - . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . 1,700 . . .. . . . . . . . . . C LLJ 1,600 . . . . . . . . . . .. . . . . . . ... . . . . . . . . . . . . . . . . . . .. . . CL 1,500 - - - - - - - -O -- 1,400 - . . . . . . . . . . .. . . . . . . . . . 1,300 . . . .. . . . . . . . . . . . . ... . . . . . . . ... . . . . . . . . . . . . . . > - - -�<— : 1,200 . . . . . . . . . . . . . . . . . . . . . . . . . . x 1,100 . . . . . . . . . . .. . . . . . . . .. x (D < > . . . . . 1,000 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . II 900 . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 800 . . . . . . — - - - . . .: .. . . . . . . . . . . . . ... . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 700 x X. . . . .. . . ... . . . . . . . . . . . . . ... . . . . .. . . . . . . . . . . . . . . .. . . . . . . 600 x - - - - - - - - - - -- - - - - - - . . . . . . . . . . . . 500 . . . . . . . . . . . .. . 400 .I xi 100 200 300 400 500 600 X = Number of Persons X Actual Data Points Fitted Curve ------ Average Rate Fitted Curve Equation: T= 2.945(X) + 0.582 R2 = 0.65 Trip Generation, January 1991 336 Institute of Transportation Engineers Apartment (220) Average Vehicle Trip Ends vs: Persons On a: Saturday Number of Studies: 17 Average Number of Persons: 319 Directional Distribution: 50% entering, 50% exiting Trip Generation per Person Average Rate Range of Rates Standard Deviation 3.23 1.03 - 5.11 2.12 Data Plot and Equation 3,000 X C W 2,000 X Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N X U L m X ; Q1,000 . . . . . . . . . .. . . . .:. . . . . . . . . . IIX - - - - . . . . . . . .. X X ; X x X X X X ; 0 ; 100 200 300 400 500 600 X = Number of Persons X Actual Data Points Fitted Curve ------ Average Rate Fitted Curve Equation: T= 3.204(X) + 7.961 R2 = 0.59 Trip Generation, January 1991 334 Institute of Transportation Engineers Apartment f (220) Average Vehicle Trip Ends vs: Persons On a: Weekday Number of Studies: 52 Average Number of Persons: 409 Directional Distribution: 50% entering, 50% exiting Trip Generation per Person Average Rate Range of Rates Standard Deviation 3.27 1.89 - 5.85 1.97 Data Plot and Equation 6,000 X 5,000 . . . . . . . . . . . . . . . . . . - - - - - - - - . . .. . . . . . .. :. . . . . . . . . .. .. C W 4,000 . . . . . . • .. . . . . . .. . ... .. . -- - - - - - Q5-1 i-- 'X X X X X Q2,000 . . . . . . . . .X. . . - . .X. . . . -- - • - - . . . . . . . . ... . . . . . . ; i- X XX :X 1,000 X. . . X . . . .X.;. . . . . . . . . ;. . . . . . . -. - X X• X XX ; 100 300 500 700 900 1100 g X = Number of Persons X Actual Data Points Fitted Curve QC Fitted Curve Equation: T = 3.387(X) - 46.672 �J NQ d��y Trip Generation, January 1991 ,ri�tion Engineers Business Park (770) Average Vehicle Trip Ends vs: Acres On a: Weekday Number of Studies: 10 Average Number of Acres: 31 Directional Distribution: 50% entering, 50% exiting Trip Generation per Acre Average Rate Range of Rates Standard Deviation 159.75 69.22 - 276.76 66.51 Data Plot and Equation 17,000 16,000 :. . . . . . . . . ... . . . . . . . . .:. . . . . . . . . .:. . . . . . . . . .:. . . . . . . . . 15,000 . 14,000 ; 13,000 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 12,000 W . . . . . . . . . . . . . . . . . . ... . . . . . . . . ... . . . . . . . . ... . . . . . . . . .. . . . . . . . . : . . . n 11,000 • ... . . . . . . . . . -- . . - - - - F- 10,000 :. . . . . . . . . . : - s 9,000 ; . . . . . . . . . . . . ... . . . . m > 8,000 . . . . . . . . . . . . . m m 7,000 . . . . . . . . . . . . 6,000 . . . . . . . . . . . . . . . . . . . . Q x 11 5,000 . . . . . . . .. . . . . . . . . ... . . . . . . . . .. .. . . . . . . . . .. . . . . . 4,000 ': . . . . . . . . ... . . . . . . . .•. . . . . . . . . .•. . . . . . . . . .•. . . . . . . . . .•. . . . . . . . . . . . . . . . . . 3,000 . . . . . . . X. . 2,000 . ... . . . . . . . . .:. . . . . . . . . .:. . . . . . . . . ... . . . . . . . . . . . : . . . . . . . 0 X- 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 X = Number of Acres X Actual Data Points Fitted Curve ------ Average Rate Fitted Curve Equation: Ln(T) = 0.877 Ln(X) + 5.464 R2 = 0.82 Trip.Generation, January 199.1 1091 Institute of Transportation Engineers s gg E F. Business Park (770) Average Vehicle Trip Ends vs: acres On a: Sunday Number of Studies: 10 Average Number of Acres: 31 Directional Distribution: 50% entering, 50% exiting F Trip Generation per Acre Average Rate Range of Rates Standard Deviation 16.78 7.09 - 28.30 9.40 Data Plot and Equation 3.000 0 : ; X C ; Lit 2.000 . .•. . . . . - . . . .•. . . . . . . - . . . . . . . . M - Q1,000 . . . . . . . . . . . . . . . . . . . . . . . . . . . - - . . . . _x X X X X X , 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 50.0 X = Number of Acres X Actual Data Points Fitted Curve ------ Average Rate Fitted Curve Equation: T = [(0.062/X) + 0.00016]-1 R2 = 0.94 Trip Generation, January 1991 1095 Institute of Transportation Engineers Business Park (770) Average Vehicle Trip Ends vs: Acres On a: Saturday Number of Studies: 10 Average Number of Acres: 31 Directional Distribution: 50% entering, 50% exiting Trip Generation per Acre Average Rate Range of Rates Standard Deviation 32.61 10.45 - 61.54 18.72 Data Plot and Equation 5,000 —_ — X 4,000 . . . . . . . .:. . . . . . . . . .:. . . . . . . . . .:. . . . . . :. . . . . . . . . .. . . . . . . . N C I— 3,000 . . . . . . . . ... . . . . . . . . .' . . . . . . . ... C 2,000 . . . . . . 1,000 . . . . . . . . .X. . . . . . . X . . . . . . X. . . . . . . : . . . . . . . X X X . 0 �- 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 X = Number of Acres X Actual Data Points -- Fitted Curve ------ Average Rate Fitted Curve Equation: Ln(T) = 0.708 Ln(X) + 4.369 R2 = 0.70 Trip Generation, January 1991 1094 Institute of Transportation Engineers Page J 8 Lesson 1 ASPHALT TECHNOLOGY & CONSTRUCTION 2. Select from Table 3, a Truck Factor for each vehicle type found in step I . 3. Select, from Table 4, a single Growth Factor for all vehicles or separate Factors for each vehicle type, as appropriate. 4. Multiply the number of vehicles of each type times the Truck Factor and the Growth Factor (or Factors) determined in steps 2 and 3. 5. Sum the values determined in step 4 to obtain Design EAL. Fig. 1 is an example of a worksheet showing the calculation of Design of EA L for a two-lane rural highway following the procedure outlined here. TABLE 4 GROWTH FACTORS' Design Annual Growth Rate, percent Period, No Years (n) Growth 2 4 5 6 7 8 10 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2 2.0 2.02 2.04 2.05 2.06 2.07 2.08 2.10 _} 3 3.0 3.06 3.12 3.15 3.18 3.21 3.25 3.31 4 4.0 4.12 4.25 4.31 4.37 4.44 4.51 4. 44 5 5.0 5.20 5.42 5.53 5.64 5.75 5.87 6.11 6 6.0 6.31 6.63 6.80 6.98 7.15 7.34 7.72 7 7.0 7.43 7.90 8.14 8.39 8.65 8.92 9.49 8 8.0 8.58 9.21 9.55 9.90 i 0.26 10.64 11.44 9 9.0 9.75 10.58 11.03 11.49 11.98 12.49 13.58 10 i 0.0 10.95 12.01 12.58 1118 13.82 14.49 15.94 1.0 12.7 13.49 14.21 i4.97 15.78 i6.65 18.53 12 12.0 13.41 15.03 15.92 16.87 17.89 18.98 21.38 13 13.0 14.68 116.63 17.71 18.88 20.14 21.50 24.52 - 14 14.0 15.97 18.29 19.16 21.01 22.55 24.21 27.97 15 15.0 17.29 20.02 21.58 23.2& 25.13 27.15 31.77 16 16.0 18.64 21.82 23.66 25.67 27.89 30.32 35.95 17 17.0 20.01 23.70 25.84 28.21 30.84 33.75 40.55 18 18.0 21.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.0 22.84 2-7, 30.54 33.76 37.38 41 dF 51.16 20 20.0 24.30 (29.78 33.06. 36.79 41.00 45. 5 57.28 25 25.0 32.03 41-6.5 4T73 54.86 63.25 i . ! 1 98.35 30 30.0 40.57 56.08 66.44 79.06 94.46 113.28 164.19 35 35.0 49.99 73.65 90.32 111.43 138.24 172.32 271.02 (I + r) n - 1 rate ' Factor r where r = 100 and is not zero. If Annual Growth is zero, Growth Factor = Design Period. 3 C q ' { PAVF--:1ti F-NT DESIGNI ANT) Rl".1-1ARILITATION 3.19 r, iz TABLE 3.5 Axle Load Equivalency (=aciors for f=lexihlc Pavements. 1 Tandem Axles, acid p of 2.5 tt h iY Pavement sn•ucuu"al number(SIN) Axle load• kips 1 2 ; 4 5 6 2 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 4 0.0005 0.0005 0.0003 0.0003 0.0002 ai t 6 0,M) 0.002 6.002 0.001 0.001 0.001 'rl 8 0.004 0.006 0.005 0:0041 0.003 0.003 k tg- , 10 0.008 0.01-� 0.0 I I 0.009 0.007 0.006 !:r 12 0.015 0.024 0.023 0.018 0.014 0.013 4+ 14 0.026 0.041 0.042 0.033 0.027 0.024 1.1: 3 16 0.044 0,065 U70 0.057 0.047 0.043 1, r 18 0.070 0.097 0.109 0.092 0.077 0.070 k g 20 0.107 0.141 0.162 0.141 0.121 0.110 R 22 0.160 0.I98 0.229 0.207 0.190 0.166 24 0.231 0.273 0.315 0.292 0.260 0.242 II�f1 26 0.327 0.370 0.42.0 0.401 0.364 0.342 28 0.451 0.493 0.548 0.534 0,495 0.470 30 0.611 0.648 0.703 0.695 0.658 0.633 t. 32 0.813 0.843 0.889 0.887 0.857 0.834 x 34 1.06 1.08 1.1 1 1.11 1.09 1.08 €' 36 1.38 1.38 1.38 1.38 1.38 1.38 38 1.75 1.73 1.69 1.68 1.70 1.73 n q 40 2.21 2.16 2.06 2.03 2.08 2.14 42 2.76 2.67 2.49 2.43 2.51 2.61 r at 44 3.41 3.27 2.99 2.88 3.00 3.16 !' 46 4.18 3.98 3.58 3.40 3.55 3.19 48 5.08 4.20 4.25 3.98 4.17 4.49 z SO 6.12 5.76 5.03 4.64 4.86 5.28 52 7.33 6.87 5.93 5,30 5.63 6.17 54 8.72 8.14 6.95 6.22 6.47 7.15 S6 10.3 9.6 8.1 7.2 r; tri k: 7.4 9.2 : > 't 58 12.1 1l.; 9.4 8.2 8.4 9.4 r. �< 60 14.2 I;.I 10.9 9.4 9.6 10.7 i` vt Cit�q 62 16.5 15.3 12.6 10.7 10.8 12.) 64 19A 17.6 14.5 12.2 12.2 13.7 3 65 �� 166. 13.8 I-S.7 I5.4 p '\ 68 25.3 2�.3 18.9 15.6 15.4 17.2 y dt 70 29.0 26.6 21.5 17.6 17.2 19.2 72 33.0 30.3 24.el 19.8 19.2 21.3 74 37.5 34.4 27.6 22.2 2 76 42.5 l.3 23.6 r - 8.9 31.1 24.8 23.7 26.1 78 48.0 43.9 35.0 27.8 26.2 28.8 80 54.0 49.4 39.2 30.9 29.0 31.7 Y" 82 60.6 5 5.4 43.9 34.4 32.0 34.8 a 84 67.8 61.9 49.0 3 8.2 35.3 38.1 86 75.7 69.1 54.5 42.3 38.8 4'1..7 k 88 241.3 76.9 60.6 46.8 42.6 15.6 90 93.7 85.4 67.1 51.7 46.8 49.7 Sours cc: Crrkh•j'nr l)r.cre,r l'ur(WINIr Slowrures. Amcrican,,ssociation of.St;cte M1t�t iflibhwn)-and'il;m\'pormlion Officials- \';c<hin*Icin D.C., 1993.with per nir;ion. i r S ,1 T. IF � i PAVE.MENT DESIGNAND REFIABILITATION 3.21 Triple TABLE 3.7 Axle Load Equivalency Factors for Flexible Pavements,SinLle Axles, and p of U Axle load. Pavernent stRuctural number(SN) <, ?` kips 1 2 3 4 5 6 000 2 0.0008 0,0009 0.0006 0.0003 0.0002 0.0002 101 4 0.004 0.008 0.006 0.004 0.002 0.002 'u03 6 0.014 0.030 0.028 0.018 0,012 0.010 8 0.035 0.070 0.080 0.055 0.040 0.034 ")2 10 0.082 0.132 0.168 0.132 0.101 0,086 3 12 0,173 0.231 0.296 0.260 0.212 0.187 i6 14 0.332 0.398 0.468 0.447 0.391 0.358 0 16 0.594 0.633 0.695 0.693 0.651 0.622 18 1.00 1.00 1.00 1.00 1.00 1.00 ,4 20 1.60 1.53 1.41 1.38 1.44 1.51 22 2.47 2.29 1.96 1.83 1.97 2.16 24 3.67 3.33 2.69 2,39 2.60 2.96 26 5.29 4.72 3.65 3.08 3.33 3.91 9 28 7.43 6.56 4.88 3.93 4.17 5.00 30 10.2 8.9 6.5 5.0 5.1 6.3 32 13.8 12.0 8.4 6.2 6.3 7.7 34 18.2 15.7 10.9 7.8 7.6 9.3 36 23.8 20.4 14.0 9.7 9.1 11.0 38 30.6 26.2 17.7 1 1.9 11.0 13.0 40 38.8 33.2 22.2 14.6 13.1 15.3 42 48.8 41.6 27.6 17.8 15.5 17.8 44 60.6 51.6 34.0 2I.6 18.4 20.6 46 74.7 63.4 41.5 26.1 21.6 23.8 48 91.2 77.3 50.3 31.3 25.4 27.4 50 110. 94. 61. 37. 30. 32, Source: Guide for Des gn of Prnvemem Structures, American Association of Staie Highway and Transportation Officials,Washington. D.C.. 1993. % ith permission. desired and the amount of total variation or the overall standard deviation. A:`,SHTO recommends the follov ing reliability based on the functional classification of the road: Recommended level of reliability Functional classification Urban Rural Interstate/freeway 85-99.9 80-99.9 Prineinal arterials 80-99 75_.95 Collectors 80-95 75-95 Local 50-80 50-80 Overall standard deviation values recommended by AASHTO are 0.30 to 0.40 1'()r rigid pavements and 0.40 to 0.50 for flexible pavements. The IOkweI' values arC used when traffic predictions are more reliable. Values derived from the AASHTO Road Test are 0.39 for rigid pavements and 0.49 for flexible pavements. 3.50 CHAFFER THREE TABLE 3.25 Recommended /j, Layer Coefficients Of Untreated Base and Subbase Pavements Percent Of time pavement StRICILWC is exposed to moisture levels Ipproichill-2 Saturation Quality of Less than Greater than drainage I% 1-5 cc 5-2 5,-Ic 5-Ic' Excellent 1.4 0-J.3 5 1.15-1.10 1.1()-1.20 1.20 0 Good 1.35-1.25 1.25-1.15, 1.15-1.00 1.00 Fair 1.25-1.15 1.15-1.05 1.00-0.80 0.80 T. Poor 1.15-1-05 1.05-0.80 0.80-0.60 0.60 0 Very poor 1.05-0.95 0.95-0.75 0.75-0.40 0.40 V Source: Guide.for Desivi of Paremew Slitwwres, Ameriemi Associatiol, of State Hiollway and Transportation Official;. Washington. D.C.. 1993. wkh per- 1111ssioll, 0., 0.5 0 0., 0.4 0 0.( U 0.3 0.( A; 0 U 0.( 0 U o.2 0.1 Fl- 0.0 U- Tr, 0 100.Ox 2010,000 300.OX 400,DX Elastic Modulus. EAC(tb/in2).of tilt Asphalt Concrete (at 68"F) FIGURE 3.18 Chart for coclTiciimt ((/,) Of dC1)NC-2l':1dCd a.\p1mli concrete A) hosed on the resilient lllodLljt)\. I From (illidt, 1,01. DC<i2l) of'P:1vemel)l StrUCIL11-Cs' Amcri(.(m A fo!o.lStole Mid Trojispol-Im ioll 0//�I,(.iob. Nc pd, pa PAVEM NT DESIGN AND RLf tAtilt-I t 0.20 0.18 40 0.16 — — K v 0.14 - - - `- 100- - - - - -85- --- - - 2.0 -' - - Nc N � 60 25 50 0.12 c=� 40 70 2.5 � cc - - - -- -m- - - - 20 0.10 c0 30 v m t° o m 60 3.5 N 0.08 2 x 2 15 0 0.06 — — — —— — 4.0 0.CA t � 0.02 -� 0 -•- (11 Scale derived by averaging correlations obtained from Illinois. (2) Scale derived by averaging correlations obtained from California, New Mexico,and Wyoming. t31 Scale derived by averaging correlations obtained from Texas t; (4) Scale derived on NCHRP project. 3 FIGURE 3.19 Variation in granular base layer coefficient with various base strength parameters. (From Guide for Design of Pavement Structures, American Association of State Highi�nr curt! 0 cials, Woshington, D.C., 1993, with permission) Transportattai ffi JO.CXJJ s the cause and rate of pavement deterioration, prediction of optimal time for interven- tion, and evaluation of the most economical rehabilitation strategy. Pavement management can be applied at the project level or at the network level. ncrete Although both levels are very dependent upon one another, they are seldom applied for the same purpose. The network level applies to the whole system in a global sense. Network refers Co s}stemwide averages and is used for system budgeting and perfor- evel mance modeling. This chapter addresses only tcomplicatedep o vandel amoresimportant t than 01 pavement management is considered to b ment i Pavement design. Pavement manage s applied throughout the life of a pavement, whereas pavement design is completed and forgotten once the pavement is initially in service. 3.52 CHAPTER THREE 0.20 M 0.14 -- - - 100 - - -- - —_ -- - - V - - - - - 70 90 N — 2 �Nc 50 _ � r 0.12 70 „ 3 X 2 30 co ; 15 U 60 0.10 0.— - - — - -- - -- - — - -- - - - `0-- - - 14 U —20 13 50 ~ 12 0.08 2 10 4 11 10 40 cn 0.06 ------ — — -- — — — — -- ---- ------ — 5 30 25 5 ( II I I (1) Scale derived from correlations from Illinois. (2) Scale derived from correlations obtained from the Asphalt Institute, California, Nev., Mexico, and Wyoming. (3) Scale derived from correlations obtained from Texas. (4) Scale derived on NCHRP project. o f: F IGUR'F 3.20 Variation in -111-Ztnular base laver coefficient ((r�) with carious subhase stretl2th para- meters. (From Guide tier Design of N%'Cnlenl Strictures. American Assoc•irniurr n/'Shur Hi,lnrnr and 7-ruirsllnr•turirul O ir•iuLe. ""Clshingimi, 1).C.. /993. 11-irli permissiolr) 3.8.1 Pavement Deterioration Pavement deterioration or distress can be classified into two basic categories for all pavement tapes—structural and functional. The most serious Category is structural. Structural deterioration results In reduced ability to carry load and i decreased pave- ment life. Functional deterioration can lead to and accelerate structural deterioration, but it is only related to ride quality and frictional characteristics. A third and less .accepted tape of pavement deterioration is environmental deterioration, which most pavement enpncers lump With functional and structural deterioration. Environmental cleterioraljon affects only the pavement materials and will generally exhibit itself as cilher functional or structural deterioration. P.1venlent delerioraljon is ru) in)porlant n)easuren)ent for a pavement en,ineer. To - 0, Lj rr y r� j 'T�r fZ _. 7 t"� e.-... �y yc i!,f ii_. ti i! -r F. ( L_. ✓✓� v tJi.E .1:� L_ E .J' .Li �L.•_;,.Cl 7,rj" '— i Eh [4 Tf%e. d1 alit aQ e o`t_.i'vi�h 2M. The values of the reliability factors Z- and So depend on the ;�alidits% of the traffic and materials data used as input to the equa- tion. Values of ZR proposed for general use where a detailed analysis of such data is not made are given in Table 22.1. Where the variance ., of proposed future traffic is not to be considered in detail, the value of SO for flexible pavements is taken between 0.4 and 0.5. TABLE 22.1 Standard Normal Deviate (Z ) Values Corresponding to Selected Levels of Reliability R,eiiabiIity Z, To Standard nor m.al de�-iate Zp 50 —MOO 60 —0.253 70 —0.524 75 —0.674 80 —0.841 85 —1,03'7 90 —i.282 91 —1.3/0 92 —1.495 g3 —1476 95 —1.645 —1.751 97 -1.881, 98 -2.054 99 -2.327 99.9 -3.090 99.99 -3.750 1 Reliability, R (%) V CO (D CO i 1 _ coo O OOV cD (07) nddrd CD o y O C + CD H CD C) Estimated total 18-kip equivalent si gle axle load applications, W18 (millions) o ! _ — C/) I 14 r z + M p! - w ! I = E E �I II n m o R v O tz o C" + { _ = O Cn X O `D U O o cn li Effe tive roadbed soil +o resilient dUIUS, MR (kips/in2) z j N - + (OD i i - O O O (11 ro N 1 � � p I-.- - O i p N CD n i I = v CO I w I I I I I CD { O� O I G. I C: I C - 3 D CD N�- z1 I i t I (i i