Loading...
HomeMy WebLinkAbout13 - Design Report - Norton Ranch Ph 2A - Stormwater MORRISON MAIERLE, INC. An Employee-Owned Company STORMWATER DESIGN REPORT NORTON RANCH EAST SUBDIVISION PHASE 2A BOZEMAN, MONTANA December 2013 Prepared For: ^• s�I�BP Norton Properties, LLC AMES R. 63020 NE Lower Meadow, Suite A o NICKEL ON } r, 9063 P.E. Bend, OR 97701 , % 5 Ziz11lla��� Prepared By: Morrison-Maierle, Inc. 2880 Technology Boulevard West Bozeman, Montana 59718 NA5149\007\Reports\Storm Drainage Report.docx Introduction The Norton Ranch East Subdivision, Phase 2A is a portion of a project that was previously designed by Engineering, Inc. and approved in 2008 by the City of Bozeman under the project name of Norton Ranch East Subdivision, Phase 1. Since the approval in 2008, Engineering, Inc. separated a portion of the original Phase 1 into a new "Phase 1" project using the design work accomplished during the original Phase 1. In 2012 Morrison Maierle Inc. separated another portion "Phase 2" form the original Phase 1 designed by Engineering Inc. The design for Phase 2A uses the original approved Engineering, Inc. design as a basis and therefore this design report is limited to providing information to the specific components of Phase 2 and changes that are needed due to the changes in the City of Bozeman Design Standards. A copy of the approved design report by Engineering, Inc. dated January 2008, Revised 4/30/08 is attached to this report and is incorporated by reference and is referred to as the "approved design report" in this document. Phase 2 Description Phase 2A consists of 25 residential lots and a total area of 2.52 acres. It is located north and west of the platted Phase 1 and 2 and south of Phase 1. Phase 2A consists of extending West Babcock Street and Fallon Street both to the west and a portion of Laurel Parkway. The attached exhibit shows the location of Phase 2A relative to the overall Phase 1 project. Existing and Proposed Conditions The existing conditions are outlined in approved design report. The proposed conditions are identical to what is shown in the approved design report with the exception that the lot density is slightly less. The approved design report used a runoff coefficient of 0.5 which is a reasonable value to use for both the original proposed density and the current proposed density. Storm Drainage Basins The Phase 2A project drains to five of the basins in the original design. These include Basins 1, 2, 4, 6 and 7. For existing Basins 2 and 4 the stormwater conveyance, detention and treatment facilities were constructed as part of the platted Phase 1 and 2 projects and no further improvements are required. The drainage area for proposed Basins 1 includes a portion of future phases and the street extensions of May Fly Street and Laurel Parkway. The drainage area for proposed Basin 6 includes the street extensions of West Babcock Street and Laurel Parkway. And the drainage area for proposed Basin 7 includes a portion of future phases and the street extension of Laurel Parkway. Hydraulic Capacity The proposed pipes, inlets, curb grades and pond outlet structures will be as outlined in the approved design report. Maintenance The maintenance and inspection program approved with the approved design report will be followed by the Homeowner's Association. Modifications Required Due to Changes in City Design Standards A non-plastic prefabricated end section has been added to the end of the storm drain pipe(s). N:\5149\007\Reports\Storm Drainage Report.docx END N:\5149\007\Reports\Storm Drainage Report.docx ENGINM1RING , INC . �✓A Consulting Engineers and land Surmeyors "' Vn 8 43CM (d Stornawater Management Design Report For Norton East Ranch Subdivision, Phasel Bozeman, Montana Oti� January 2008 REVISED 4/30/08 °•' R rya ° E.I. No. BOZ-07004.01 = DA :1_�< � • . 13975PE �w r 0co� Q PrePrepared for: ,, NAiri \ P Norton Properties, LK 5�b 08 63020 Lower Meadow Road, Suite A Bend, OR 97701 705 Osterman Drive, Suite F Bozeman, SAT 59715 Phone 406.522.9876 Fox 406.922.2768 info.bozemon@enginc.com vivivi.enginc.com Morton East Ranch Subdivision, Phase I Bozeman, Montana Stormwater Management Design Report Table of Contents I. INTRODUCTION.......................................................................................................................... 1 11. EXISTING SITE CONDITIONS..............................................................................................2 111. PROPOSED SITE CONDITIONS............................................................................................2 IV. HYDROLOGICAL METHODOLOGY...................................................................................3 V. STORMWATER ANALYSIS AND DESIGN.........................................................................3 VI. CULVERT DESIGN.......................................................................................................................5 VII. MAINTENANCE CONSIDERATIONS.................................................................................6 VIII. CONCLUSION.................................I...............................................................................................7 REFERENCES List of Tables Table 1 10year,2 hour Pre-Developed Peak Flow Calculations .............................................................4 Table 2 Detention Pond Storag e Calculations.......................................................................................... 5 Appendices AppeudixA Vitihiy Map Drainag e Basin Ma.p Storm Sewer Layout Appendix B Detention Pond Calculations Inlet&Gutter Calculations Poe Si#n,g Calculations Culvert Siqng Calculations Gutter Capado Calculations Guffiall Strmaurr Suing Sidewalk Chase Si#n,g I'-.B4Z-07004,01 A A �1 [ENGUNF.IEROso INC. Consulting Engineers and land Surveyors January 2008 REVISED 4/30/08 E.I.No.BOZ-07004.01 STORMWATER MANAGEMENT DESIGN REPORT FOR NORTON EAST RANCH SUBDIVISION, PHASE 1 BOZEMAN, MONTANA I. INTRODUCTION The Norton East Ranch Subdivision—Phase I is a proposed residential development situated on approximately 39.386 acres in Bozeman,Montana. The development is located in Section 9, Township 2 South,Range 5 East,Principal Meridian Montana, Gallatin.County,Montana,as shown on the Vicinity Map in Appendix A. It is generally bounded by Babcock Street to the north,Fallon Street to the south and Laurel Parkway on the west. The development is planned for 314 residential dwelling units. The subject property is currently owned by: '" Norton Properties 63020 Lower Meadow Road,Suite A Bend, OR 97701 The purpose of this report is to analyze the stormwater drainage characteristics for the site and determine the appropriate storrawater management facilities required for the development,as required by state and local regulations. This analysis is being completed for the road and utility design submittal. The design standards governing this project are found in City of Bozeman Dejign Starrclarllr and Spec#7cations Policy,March 2004,and any addenda thereto. P.BOZ-07M.01_ rORNi_RfiPORI NORTON 1 705 Osterman Drive,Suite F ■ Bozeman,himlono 59715 - Rhone(406)522-9876 - Far(406)922-276$ ■ mrexengiacom II. EXISTING SITE CONDITIONS Site Features and Vegetation Currently, the property consists primarily of pasture land for grazing. The land is not being used for agricultural production at this time. The topography across the site slopes to the northwest at an approximate grade of 1-3%. There are approximately 4.02 acres of delineated wetlands situated on the northwest part of the property. Soils and Groundwater The Natural Resources Conservation Service (MRCS) Soil Survey had identified four soil types for the property:: Hyalite-Beaverton Complex (448A),Enbar Loam(509B),Meadowcreek Loam (510B),and Hyalite-Beaverton Complex (748A). These soils correlate to hydrologic group C (clay loam, shallow sandy loam,soils low in organic contents, soils usually high in clay). Accorduig to a Geotechnical Investigation,prepared by Rimrock Engineering, Inc. in April 2007, the following soil horizons were observed on the subject parcel. The top one foot was comprised of topsoil and vegetation. This horizon was underlain by a layer of lean clay and sandy lean clay ranging from 1.5 feet to 3 feet below the existing grades. Beneath the clay layer was gravel with sand and cobble that extended to the explored depth of 14.5 feet. Information obtained from Montana's Ground-Water Information Center(GWIC)website indicates that the static water level in the area of the proposed development ranges in depth from 50 feet to two feet below existing ground surfaces. The average groundwater depth was 11.24 feet. Sit groundwater wells were installed on the project site in December 2006. The wells indicate a static groundwater level of 1.5'below existing ground surfaces in the northwest corner. III. PROPOSED SITE CONDITIONS As previously mentioned, the development consists of a total of 314 dwelling units — including single family, duplex and multi-family units. Proposed site improvements include the construction of water and sewer mains, paved roads with curb and gutter, and storm drainage facilities, where necessary. All roads are proposed to be constructed to a crowned section with a three percent cross slope. Roadway drainage will be collected and conveyed via curb and gutter, curb inlets, and detention ponds. All local interior roads will be paved to a 33-foot wide section to back of curb. Laurel Parkway and Babcock will be paved to a 45-foot wide section to back of curb. Boulevard and sidewalk width vary between the two street sections. In general, the roads running north-south flow to the north at grades ranging from approximately 1% to 2%. The east-west roads vary from running parallel to the contours to a slight grade to the northwest. These roads have a minimum of 0.5% grade with high and low points to maintain minimum grades. Valley gutters are used to convey east-west stormwater across north-south running roads. In some areas, the east-west roads have been designed to flow to the north-south roads with valley gutters utilized to convey east-west stormwater to the north. P:Bo7 o7i4_tl1_S4'Ol LLN RL-'POR1_Noitl'o,Nt 2 IV. HYDROLOGICAL METHODOLOGY The calculations and recommendations within this report are based on the regulations set forth in the City of Bozeman Design Standads Bind Specifications Polig,March 2004,and any addenda thereto. Stormwater management will be addressed with the following conveyance facilities: surface flow, drainage swales,curb inlet,pipe conveyance and detention or retention ponds.Both open space within the development and offsite areas will be utilized for detention pond storage. All offsite detention ponds will be located on easements located outside of the public right-of-xvay. The Rational Method was used to determine the pre-developed release rate and,in turn, the developed minimum requited storage volume. All calculations associated with the release rate and required storage volumes were based on a 10-year,2-hour storm event. The conveyance facilities, described further in this report,are based on a 25-year,2-hour storm event. V. STORMWATER.ANALYSIS AND DESIGN The Rational Method was used to analyze stormwater runoff under conditions which include the property in both a pre-developed and developed state. Runoff Coefficient(C) Runoff coefficients were used from Table I-1 of the City of Bozeman Design Standards and Specifications Policy. A runoff coefficient of 0.20 was used for open land conditions and 0.50f was used for dense residential for developed conditions. Intensity (i) Rainfall intensity values were determined by using the Rainfall Intensity-Duration Curves (IDF) (Figures I-2 and I-3) from the City of Bozeman Design Standards and Specifications Policy. From the curves,specific intensities equal to the time of concentration were determined and used for peak flow calculations (see Appendix B for calculations). Time to Concentration (T.) Time to concentration for overland flow for each drainage basin was calculated using the Figure I-1 for distances less than 1200 feet. For distances greater than 1200 feet, the TR-55 method for shallow concentrated flow was used(see below). These times were then summed for a total time to concentration for each basin. Shallow Concentrated Flow (Channel Flow) To calculate shallow concentrated flow the TR-55 method assumes_that sheet flow becomes shallow concentrated flow after a in Saim��m of 300_feet,-The average velocity is derived as a function of water course slope and land use. The relationship is expressed as: V= k(100s)o.s where: V= average velocity(ft/sec) k=land use parameter(see Table 3-12,McCuen,page 121) s = average land slope (ft/ft) P:B07-07004.0t_s10R1%1_RRP0R1,;T0Rr03N 3 The travel time for shallow concentrated flow is then calculated as: T, =L/ (3600V) where:t, =time of travel for shallow concentrated flow(hours) L= flow length (ft) V = average velocity (ft/sec) Drainage Basins/Peak Flow Calculations Drainage areas which contribute runoff to the proposed development were delineated and analyzed for developed conditions to aid in the sizing of detention or retention ponds,culverts,and storm drainage conveyance facilities. Seven onsite drainage basins were delineated on the property. Each basin contributes storm runoff to a detention pond down gradient of the drainage basin. These basins are identified numerically, l- '�K(see Drainage Basin Map in Appendix A of this report). Additionally, three offsite drainage basins (OS-1 - OS-3)were delineated for the extensions of West Babcock Street and Fallon Street. Pre- development peak flow calculations were made for each basin for the 10 year,2 hour storm event. Detailed calculations are provided in Appendix B and are summarized in Table 3 below. Table 1 -10 Year,2 Hour Pre-Developed Peak Flow Calculations Area Rainfall Peak Basin Description (acres) C Intensity Discharge in/hour cfs 1 Open Land 5.278 0.20 1.00 1.06 2 Open Land 110.386' 0.20 0.96 2.00 3 Open Land 12.116 0.20 0.82 0.35 4 Open Land 718.576 0.20 0.73 2.71 5 Open Land 0992 0.20 0.41'; 6 Open Land 3.057 0.20 0.76 0.60 7 Open Land w0.917 0.20 0.41 OS-1 Open Land 1.436 0.20 1.13 0.32 OS-2 Open Land 1.06 0.20 0.82 0.17 OS-3 Open Land 1.01 0.20 1 1.93 0.39 4 A,7 r ..» i 4,'l r f C 1. ),�� � :i-1 i � j.:.,. 1 v 4 1, Detention Pond Sizing The City of Bozeman Design Standards and Spedfications Police requires that detention basins be designed to accommodate the difference in peak runoff between the pre-development and post- development 10-year design storm while limiting the release rates to pre-development runoff rates. The required storage is determined by subtracting the total basin release volume from the runoff volume at different storm intervals. The pond locations are shown on the attached Drainage Basin Map. A minimum basin area of 145 square feet per 1 cfs release rate is required for sediment control. Each detention pond will have an outlet pipe with an orifice plate sized to convey the pre- development flow from the 10-year,2-hour storm event. The volumes of the ponds are shown in Table 2 below. The pond depth totals 2.5 feet-allowing for 1.5 feet of storage,as acceptable by City design standards,and one foot of freeboard. Due to high static groundwater levels in the northwest corner of the subdivision,Ponds 3,4, 6,and 71vere designed with an overall depth of 1.5 1':BC?L tl�k $.42_SLOR�f_FiFiPo12T RQR`F`01�F 4 feet by eliminating the one foot of freeboard. The ponds were intentionally oversized,as shown in Table 2, to account for the lack of freeboard. The bottom of the outlet control structures on the shallow ponds will be sunk down below the pond bottom,with the inlet grate being located at the pond bottom elevation,to allow for the "T" fitting to be included. The sides of the ponds will be sloped to finished grade at 4H:1 V slope. Detailed calculations are provided in Appendix B. Table 2—Detention/Retention Pond Volumes Pond Min. Required Pond Volume Pond Min, Required Pond Volume Storage Vol. c c Storage Vol. c c 1 2,885 2,903 6 1,941 3,415 2 5,807 6,071 7* 1,353 V; 113 z 2,156 3 1,291 2,985 OS-1 1,819 1,952 4 12,058 16,288 OS-2 1,597 1,736 5* 1,440 1,482 OS-3 960 1,130 Ponds 5 and 7 are retention ponds. Roadside Drainage and Gutter Capacity Calculations The impact of storm water runoff on roadways is also an important design consideration.The City of Bozeman Design Standaizls and Speeifzcations Policy provides that for city streets,the flow in the gutters shall not be greater than 0.15 feet below the top of curb. Using this criteria, the available gutter capacity was calculated using Manning's Formula for the roadways running north-south and east-west (see Appendix B for Calculations). A 3%pavement crown slope was used as required by City design standards. Inlet Spacing and Capacity Calculations The proposed roadway design for the local streets includes 33-feet to back of curb, boulevard and sidewalk. Laurel Parkway and West Babcock Street will be paved to a 45-foot wide section to back of curb with a boulevard and sidewalk on each side of the road. Storm water runoff will be captured from the local streets through the use of storm drain inlets and direct it to the proposed detention ponds draining on-site basins. The location of curb inlets and storm sewer mains are shown on the Storm Sewer exhibit located in Appendix A of this report. Similarly, storm drain inlets will be used to capture runoff from West Babcock Street and Fallon Street (basins OS-1 -OS-3). The runoff will then be directed to the offsite ponds. Inlet spacing calculations were performed to determine minimum spacing requirements througho the development. The analysis included determining allowable capacity of both gutter and curb inlets. VI. CULVERT DESIGN Culverts will be installed in four locations along West Babcock Street and in one location along Fallon Street. Two 40" x 65" arch RCP culverts will be installed across Fallon Street and West Babcock Streets to convey water from Baxter Creek. J1 e culverts bane a design capacity of 150 cfs which exceeds the 25-year storm flow of 148 cfs from Baxter Creek. A second 40"x 65" arch RCP culvert will be installed in both locations to provide 100%overflow protection_ 1':BO2-4TAX1#01_5�l'ORd3_REPURT_N'OR7'O-N 5 In addition to the Baxter Creek culvert on West Babcock,a 12"RCP culvert was installed to provide connectivity to the wetlands near the northwest corner of Phase 1. The culvert has a design capacity of 3.57 cfs, which is more than adequate according to Barbara Vaughn, who prepared the wetland study for this project. There is natural swale, with no apparent beginning or end, that is currently passed under the existing two track road via an 18" CMP culvert. This culvert will be removed and replaced with an 1 S" RCP culvert with a design capacity of 10.03 cfs. Finally, a 36" RCP arch equivalent culvert will convey water from Baxter Ditch under West Babcock Street, just west of the intersection with Cottonwood Road. The culvert size matches the existing culvert immediately upstream from the crossing and a crossing into the soccer park just south of Durston Road. This culvert has a design capacity of 26.51 cfs. Detailed calculations are included in Appendix B of this report. VIL MAINTENANCE CONSIDERATIONS The storm drainage system within the Norton East Ranch Subdivision—Phase 1 is defined as a private and public system. The storm drainage facilities that lie within the publicly dedicated right- of-ways are defined as public systems. The public systems shall be maintained by the City of Bozeman. The private system, those facilities that do not lie within the publicly dedicated right-of- way,including the retention and detention ponds, will be maintained initially by the developer and then the Homeowner's Association, once established. Due to sediment in the storm runoff and other variables,regular maintenance will be required by the City to maintain proper performance of the conveyance network. The following steps are minimum requirements for the maintenance of the storm facilities. Inspection Program—On an annual basis,the following elements of the stormwater facilities should be inspected for excess sedimentation: 1) Curb Cut Openings 2) Drainage Swales-1 FI 0 A 3) Detention Ponds 4) Catch Basins Maintenance Ptngium—The following maintenance measures should be completed based on the inspection program: 1) Curb Cut Openings—excess sedimentation should be removed manually. n �-2) Drainage Swales—swales should be mowed when necessary and any excess sedimentation -r removed. 3) Detention Ponds—a stake should beset six inches above the original bottom of the basin. If sediment is over the stake,it should be removed and the basin should be re- vegetated according to the original landscape plan. 4) Catch Basins—excess sedimentation should be removed either manually or with a vacuum truck and flushed. nBOZ-07004.01_STOR.X!_RI FOXI-dSORTON 6 VIII. CONCLUSION The included analyses and calculations show that the proposed storm water management system for the Norton East Ranch Subdivision,Phase 1 development will adequately handle the 10-year and 25-year storm events. Available inlet capacity will limit encroachment of runoff on pavement surfaces to acceptable levels. REFERENCES 1.City Engineering Division. (2004). Design Standards and Specifications Policy and any addenda thereto. Bozeman, MT:Author. 2.Lindeburg,Michael R.,PE. (2003). Civil Engineering Reference Manual for the PE Exam Ninth Edition. Belmont, CA:Professional Publications,Inc. 3.McCuen,Richard H. (1998).1-I dti rologic Analysis and Design.Second Edition.Upper Saddle River,NJ:Prentice Hall. 4.Montana Department of Transportation.(1998).AASHTO Model Drainage Manual.Chapters 7,9-10 5.United States Department of Agriculture. Natural Resources Conservation Service. Conservation Engineering Division.(1986).Urban Hydrology for Small Watersheds:TR-55.Vlashington,DC:Author. P:3OI-0700 t.(1-.'lI ORN RFiPOR'C NORFON 7 I I Ii !1 I I I t i i I . I I I Appendix A i II � NORTON RANCH SUBDIVISION — PHASE 1 GALLATIN COUNTY, MONTANA i ----- — to — -- -� -- -� t ` 1 �I 3 j I h^ I >til i i I Ott ' 1-II � IF J �t ; •1� -- ITE -- -J. Ll dJj I�' � r - �I'.'�I ILi117:.11 _ t1 � r ilk �-. I. • 1 ♦Gi/G►i ._ ; „� AA 0 I IF I �I -- j!•• -7.i 9�297r..1.,. 11r1 all 0 0ff Lj - it 1 A829• HUF.fIFVE Lid. ., I � , . 9B99T IF • , , , e T -, - - -- --- VICINITY MAP I _. 1 o a o mmoommmamoff umc. w Corsullir;g Engineers cad load Surveyors 2000 1000 0 2000 NamoN vic:Nrrr MAF.VKG 80Z 07004 01 05/07/07 RDH NORTON RANCH SUBDIVISION - PHASE I BOZEMAN, MONTANA DETENTION POND 4 RETENTION DETENTIOkj POND7 PO D6 —---------------- ............................. ...... ...... •.............. ....... ....... OFF SITE BASIN 3 'E BASIN ...... �.i�'OAEIGOCKST7-�- OFF SITE• .... ...... . ...... ........ ...... .. ....................................... .. ..... ..... ......... 1*.-.-..,.-..-.-,................... . ............... RES .................I.................. .......... ............................. BASIN 6.vll:.............. 326 ACRES ...... DETENTION ............... DETENTION ................ POND OS-3 POND OS-2 .......... ......... ... ...... ............... . .. . ................. ................. ........... . . ......... .. .... ... BASIN 3 OPEN SPACE/ BASIN 4 2.12 ACRES S BASIN 7*,. WETLANDS AREA i 1 8.LB BAXTER CREEK 0.91 ACRES ...... 4.02 ACRES p IOD-YR FLOODPLAIN ....... ... WETLAND Lu BOUNDARY D UL ENTIO DETENTION POND �71101.1.111.11:.7 .......... ............. ............ BASIN I .............. BASIN 2 ............. ......- S ... ....... 5.28 ACRES 10,39ACR ...... ... .. . RETENTf0 N .............. ... .. ..........I POND 5 DETENTION POND OS-1 ........... ... ..... ...... ... ................... ....................... ...... ............. ............................... ....... ........p- ; • -.-4--,..- -..,---. 4-- -. -, ............. ................. OFF SITE BASIN 1--------- BASIN 5 1.44 ACRES ...... ........ ....... .... ....... 0.99ACUS DRAINAGE BASIN MAP LEGEND BASIN I BASIN 6 EXISTING CONTOUR U)E a m -off D Fm cc BASIN 2 BASIN 7 OFF STREET DRAINAGE ARROWS BASIN 3 OFFSITE BASIN 1 STREET DRAINAGE ARROWS cz BASIN 4 OFFSITE BASIN 2 NOT TO SCALE BASIN 5 OFFSITE BASIN 3 )0000um Boz-07W.03— C9/13/07 6z's 6 t f� f I I I I ,r I I I 1 t I I i 1 Appendix B Peak filt111 ', Detellfioll P011 ti, C'1II d G11 ttt?j i �, t�c7tl�)t �tr���111r'r�1C�.1I,i I DETEN'II'ON POND CALCU LAUONS 411% Norton East Ranch Subdivision -Phase I - ,4 Pond Basin I T Bozeman, WIT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 1 0-year 2-hour storm event_ Area= 5-278 Acre C= 0.2 Open Land Calculate Time of Concentration(T.) 47 7 3 Existing Conditions: 400 5 Va S=1.85% 39 d)/ = C=0.20 v Open Land Conditions Overland Flow: 0 Assume: L 481 ft.-(300 ft sheet flow/181 ft shallow flow) 0 6c) , From Figure 1-1,T�= 30 min.(overland flow) Total T,= 30.00 min Calculate Pre-developed Storm Intensity at T, From Figure 1-3,using the 10 year event,I=0.64T,;-0-61 0 K- 1= 1,00 in/hr Calculate Pre-developed Peak Runoff Rate Q10=ciA,using the above parameters 0,2 I o Y__T,2.7a,4 e- 010= 1.06 oK cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 Dense Residential � ~ f r l ' Developed Developed pre-ueve(oped Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage ' 11 � --` ~'^" "'^ 2558 �78 � ^= � zvv 3358 700 2658 13 1J295 4.56 3560 827 2733 15 1.5759 4.10 3743 95* 2788 / 17 1.4527 3.83 3910 1081 2829 18 1.3514 3.57 4066 1209 2857 21 1.2683 3.34 4211 1330 2875 23 1.1936 3.15 4347 1*63 2884 25 1.1308 v/ 2.98 og- 4476 e^^ 1590 2885 a4,: ur 1.0755 2.84 4598 1717 2880 � 29 1.0206 2.71 4714 1845 2870 31 0.9831 2.58 4820 1972 2854 ` 33 0.9438 2.49 4932 2088 2833 35 0.9085 2.40 5035 2228 2808 � 37 0.8703 2.31 5134 2353 2780 38 0.8468 2.20 5223 2*81 274e 41 0.8197 2.16 5322 2608 2714 ! � 43 07947 2.10 5411 2735 2676 ! 45 0.7716 2.04 5488 2802 2630 , 47 0J501 1.88 5582 2889 2593 ' 49 0J300 1.83 5604 3117 2547 . 51 0J113 1.88 5744 3244 2500 ) 53 0.6837 1.83 5822 3371 2451 . 55 0.6772 178 5838 3488 2400 57 0.6017 1.75 5972 3020 2347 ( 59 0.6470 1.71 6045 3753 2282 / , Storage Volume Required= 2085 of Detention Bas n Sizing Assume; 1. Non'Duonu|antparticles / 2.Settling velocity o(40 micron particles=U.O069 ft/oeo 3.Surface Area based on minimum volume using depth / Design Release Rate= 1.05 cfs / Minimum Area= 154v� of Since 1924mf»154of,use 1924sf (See Detention Pond Sizing Sheet for Area) | Surface Area= 1924nf »� / Volume Required= 2885K' - Depth Provided= 1.50ft(mmx) r� ! Side Slopes= 41 ~ } LonOth= 160ft vv/uN= 12ft } - ' Morton East stanch Subdivision -Phase 9 Pond Basin 2 L�e 4.11 Bozeman, MT The following calcutations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 10.386 0,4 Acre C= 0.2 Open Land Calculate Time of Concentration(TJ Existing Conditions: /90,, 'x7 47g4 - .47Y9jf1;70 = 1 3S7n S=1.35% C=0.20 ✓ Open Land Conditions Overland Flow: o K Assume: L=491 ft.-(300 ft sheet flow 1191 ft shallow flow) / ;, 7t ` From Figure 1-1,T,= 32 min.(overland flow) oo r<s a D1 l�w 41 Bo . Total T�= 32A0 min J K , T"G s rr Calculate Pre-developed Storm Intensity at T� From Figure 1-3,using the 10 year event, 1=0.64Tc-"5 I= 0.96 Off- in/hr Calculate Pre-developed Peak Runoff Rate 010= ciA,using the above parameters 010= 2.00 ° /- cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 or Dense Residential � ' Developed Developed Pre-developed ` Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage , _- _-._ r 2.5862 13.43 5041 840 4801 n 2.1964 11.41 6159 1080 5079 / 11 1.9278 10.01 6607 1320 5287 � 13 1.7295 8.98 7005 1560 5445 15 1.5759 8.18 7365 1800 5565 � 17 14527 7-54 7095 2040 5655 18 13514 7.02 8000 2280 5720 21 1.2663 6.58 8286 2520 5705 28 1.1930 620 8554 2761 5793 | 25 1.1306 5.07 8807 3001 OBOO 27 1.0755 ^ 5.58 we- 9047 nK- 3241 04 5807 119 � 29 1.0266 5.83 9277 3481 5798 31 0.9831 5.11 8496 3721 5775 > 33 0.9438 4.90 8708 3961 5745 |. ! 85 0.9085 4.72 9908 4201 5707 | 37 0.8763 4.55 10102 4441 5661 39 0.8468 4.40 10280 4881 5009 ' 41 08187 420 10472 4921 5551 i 43 07347 413 18648 5161 5407 ws 0.7716 4.01 10819 5401 5418 , 47 07501 3.90 10885 5841 5344 48 0J300 3.79 11148 5881 6285 . 51 0J113 3.68 11303 6121 5182 53 0.0937 3.60 11456 6361 5095 . 55 0.6772 3.52 11606 0601 5005 57 0.0617 3.44 11752 6841 4811 58 0.0470 3.36 11894 7081 4813 / Storage Volume Required= 5807 nf Detention Basin Sizing ` Assume: 1.Nu»fluoou|onuparticles | 2.Settling velocity o[4V micron particles O 3.Surface Area based nn minimum volume uoino 1 foot depth Design Release Rate= 2.00 cfs ( Minimum Area= 2900� mf Since 3871xf>2V0nC use 3D71of (See Detention Pond Sizing Sheet for Area) } Surface Area= 3871 sf »" 1 Volume Required= 5807 ft 3 - Depth Provided= 1.50ft(mm)v� | Side Slopes= 41v i LangUh= 160ft Yvidth= 24 ft / Norton East Ranch Subdivision -Phase I Pond Basin 3 Bozeman, MIT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 2.116 aK Acre C= 0.2 Open Land Calculate Time of Concentration(TJ Existing Conditions: 190 x'(6/ 4797- S=1.15% C=0.20 Open Land Conditions Overland Flow: Assume: L=790 ft.-(300 ft sheet flow/490 ft shallow How) "..�oe'4 From Figure 1-1,Tc .41 min.(overland flow) �ooE: 7- Total T.= i 41.00/ min Calculate Pre-developed Storm Intensity at Tc From Figure 1-3,using the 10 year event,I=0.64T,. 6' D K- 1= 0.82 in/hr Calculate Pre-developed Peak Runoff Rate Qio=ciA, using the above parameters Q10= 0.35 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 ov- Dense Residential � | Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage . -_- _. ..' 7 2.5802 2.74 1149 146 1004 . a 2.1864 2.32 1255 187 1068 11 1.9278 2.04 1340 229 1117 � 13 1.7285 1.83 1427 271 1157 15 1.5759 1.67 1501 312 1188 ` 17 14527 1.54 1508 354 1214 18 1.3514 1.43 1630 395 1234 � 21 1.2603 1.34 1888 437 1251 23 1.1830 1.26 1743 479 1204 ` 25 1.1308 1.20 1784 520 1274 � 27 1.0755 1.14 1843 562 1281 � 28 1.0266 1.09 1890 804 1286 81 0.8831 1.04 1935 645 1289 / 33 0.9439 °' 1/0nK 1877 09 687 09 1291 ^� 35 0.8085 0.90 2018 729 1290 37 0,8763 0.83 2058 770 1288 . 39 0.8468 0.90 2090 812 1285 41 0.8197 0.87 2133 853 1280 < 43 0J947 U4 2169 895 1274 45 0J710 0.82 2204 907 1267 47 0J501 OJg 2238 870 1260 � 49 0J300 0J7 2271 1020 1251 ` 51 0.7113 0.75 2303 1002 1241 53 0.0837 0.73 2334 1103 1231 , 55 0.0772 072 2365 1145 1220 57 0.6617 OJO 2394 1186 1208 59 0.6470 0.68 2423 1228 1185 � Storage Volume Required= 1291 of Detention Basin Sizing Assume: 1. Nnn-flonoulantparticles / 2.Settling velocity n[4O micron particles=VDVV9ft/oeo a.Surface Area based nn minimum volume using 1 foot depth } Design Release Rate= 0.35v~ nfs | Minimum Area= 50 «� o[ Since 8OOof>SOof,use O§0of (See Detention Pond Sizing Sheet for Area) ( Surface Area= 860of Volume Required= 1281 [r 3 - Depth Provided= 1.50ft(mmV ^� ) Side Slopes= 41 ~ > Lengtn= 160ft VVidN= 5ft ' ] / ' � Norton East Ranch Smbdivision-PhasaI ` Pond Basin � Bozeman, MT � The following calculations were used to determine the minimum required storage volume for storm ` water runoff. The volumes were calculated using the Rational Method,and the detention facilities were � sized based onm10-yeer2-hour storm event. l ' Amaa= 18.5760+ Acre ' C= 0.2 Open Land � i ` Calculate Time of Concentration<g / Existing Conditions* [ ! 8=1�5% 'u 8=O.20 p Open Land Conditions � . Overland Flow: »� Assume: L= 1O22 ft.-(3VUft sheet flow/722h shallow flow) �7��� 'f 29,5"' 7 From Figure 1-1.T"= 49 min.(overland flow) ^ Total T"= 49.00 ^V- min ` Calculate Pre-developed Storm Intensity atT, From Figure|-3. using the 1O year event, |=O.O4T,-»o, |= 073 »e in/hr � Calculate Pre-developed Peak Runoff Rate um= oiA.using the above parameters O`o= 2r1 n� c� / � Calculate Developed Minimum Required Volume Storage For 10-Yea,Event ' C= 0.50 »� Dense Residential ( � � / , i Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 29.89 8968 814 8154 7 2.5862 24.02 10089 1139 8950 9 2.1964 20.40 11016 1465 9552 11 1.9278 17.91 11818 1790 10028 13 1.7295 16.06 12529 2116 10414 15 1.5759 14.64 13173 2441 10732 17 1.4527 13.49 13763 2767 10996 19 1.3514 12.55 14309 3092 11217 21 1.2663 11.76 14819 3417 11402 23 1.1936 11.09 15299 3743 11556 25 1.1306 10.50 15752 4068 11683 27 1.0755 9.99 16182 4394 11788 29 1.0266 9.54 16592 4719 11872 31 0.9831 9.13 16984 5045 11939 33 0.9439 8.77 17359 5370 11989 35 0.9085 8.44 17720 5696 12025 37 0.8763 8.14 18069 6021 12047 39 0.8468 7.87 18405 6347 12058 41 0.8197 7.61 18729 6672 12057 43 0.7947 7.38 19044 6998 12047 45 0.7716 7.17 19350 7323 12027 47 0.7501 6.97 19647 7649 11998 49 0.7300 6.78 19935 7974 11961 51 0.7113 6.61 20216 8300 11917 53 0.6937 6.44 20490 8625 11865 55 0.6772 6.29 20758 8950 11807 57 0.6617 6.15 21019 9276 11743 59 0.6470 6.01 21274 9601 11673 Storage Volume Required= 12058 cf Detention Basin Sizing Assume: I.Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 fUsec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 2.71 cfs Minimum Area= 393 ' sf Since 8039 sf>393 sf,use 8039 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 8039 sf W-' Volume Required= 12058 1`0 Depth Provided= 1.50 ft(max) Side Slopes= 4 :1 ;. Length= 160 ft Width= 50 ft Norton East Ranch Subdivision-Phase I Pond Basin 5 .W-. . Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the retention facilities were sized based on a 10-year 2-hour storm event_ Area= 0.992 � Acre i= 0.41 In/Hr. C= 0.5,r_ Dense Residential Calculate Developed Peak Runoff Rate Q10=ciA,using the above parameters Q10= 0.20'`` cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event V= 7200 x Q10 Dense Residential V= 1440 cf Oil Norton East Ranch Subdivision-Phase 1 Fond Basin 6 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff_ The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 90-year 2-hour storm event. Area= 3.057 Acre C= 0.2 ✓ Open Land Calculate Time of Concentration(T,) Existing Conditions: 7 I S=1.35% too MG)�tEl ?�� Q 17� /7�0 C=0.20 Open Land Conditions Overland Flow: pt� Assume: L=885 ft.-(300 ft sheet flow/585 ft shallow flow) 7 0` T S f ptL- From Figure 1-1,Tc= 46 min.(overland flow) 0 14 Total T.= 46.00 min Calculate Pre-developed Storm Intensity at Tc From Figure 1-3,using the 10 year event, I=0.64T,-0-65 I= 0.76 in/hr Calculate Pre-developed Peak Runoff Rate Q10=ciA,using the above parameters Q10= 0.47 0�- cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 3K Dense Residential n+ y ct'u / s � Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage � -- 11 1.9278 I.95 1945 307 1638 - \ 13 1.7295 2.64 2062 363 |�� l 15 1�75S �41 2188 419 |""" 749 17 14527 222 2285 474 1791 19 1.3514 207 2855 530 1825 � 21 1.2663 1.94 2439 586 1853 ^ 23 1.1836 1.82 2518 642 1876 � zo 1.1300 1.73 2582 098 1895 27 1.0755 1.64 2063 753 1910 � . 29 1.0260 1.57 2730 800 1921 ^ 31 0.9831 1.50 2795 805 1930 i xx 0.9433 1.44 2857 921 1836 05 0.9085 139 2916 977 1340 37 0.8763 1.34 2973 1032 1941 � 39 0.8408 1.29 3028 1088 1941 41 0.8197 1.25 3082 1144 1938 | 43 0.7947 121 3134 1200 1934 ' 45 0J716 118 3184 1256 1829 47 07501 1.15 3233 1311 1922 | 48 0J300 1.12 3281 1367 1913 � 51 0J113 1.09 3327 1423 1804 53 0.6837 1.06 3372 1479 1893 ` 55 0,6772 1.04 3416 1535 1881 57 0,6617 1I1 3459 1591 1808 ' 59 0.6470 0.99 3501 1048 1855 ` Storage Volume Required= 1341 cf Detention Basin Sizing ' Assume: 1.Mon-fluonubmiparticles 2 Settling velocity of4O micron particles=O.0069 ft1sec � 3.Surface Area based on minimum volume using 1 foot depth � Design Release Rate= 047 ofs Minimum Area= 67 ef Since 1M82of>n8uf,use 1682uf (See Detention Pond Sizing Sheet for Area) ! Surface Area= 1294of | Volume Required= 13410/ - Depth Provided= 1.50 ft(max) w^ Side Slopes= 4 :1~ \ Length= 160ft YVidth= 8ft Norton East Ranch Subdivision-Phase I Pond Basin 7 p,4Y.-,4jr, Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the retention facilities were sized based on a I 0-year 2-hour storm event- Y2 Area= 0.917 Acre /3{65 s I= 0.41 / In/Hr. C= Dense Residential Calculate Developed Peak Runoff Rate 6- t 2215 "N Q10=ciA,using the above parameters t n Ira Q10= 0.199 cls 15 of 2 e,�-5 -- 4 Calculate Developed Minimum Required Volume Storage For 10-Year Event V= 7200 x Q,O Dense Residential V= 1353 Cf y L Norton East Ranch Subdivision-Phase I Pond Basin OS-1 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. 7 Area= 1.436 Acre ht7 2, C= 0.2 ✓ Open Land Calculate Time of Concentration(T.) Existing Conditions: S=1,25% C=0.20 914 Open Land Conditions Overland Flow: Assume: L=275 ft.-sheet flow 01/- From Figure 1-1,T,= 25 min.(overland flow) Total Tc= 25.00 min Calculate Pre-developed Storm Intensity at T. From Figure 1-3, using the 10 year event, I=0.64Tc-'-" I= 1.13 in/hr Calculate Pre-developed Peak Runoff Rate Q10=ciA,using the above parameters Q10= U2 D14 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.90 Road and Right-of-Way Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (inthr) (cfs) (cf) (CO (cf) 5 3.2185 4.16 1248 97 1150 7 2.5862 3.34 1404 136 1267 9 2.1964 2.84 1533 175 1358 11 1.9278 2.49 1644 214 1430 13 1.7295 2.24 1743 253 1490 15 1.5759 2.04 1833 292 1541 17 1.4527 1.88 1915 331 1584 19 1.3514 1.75 1991 370 1621 21 1.2663 1.64 2062 409 1653 23 1.1936 1.54 2129 448 1681 25 1.1306 1.46 2192 487 1705 27 1.0755 1.39 2252 526 1726 29 1.0266 1.33 2309 565 1744 31 0,9831 1.27 2363 604 1759 33 0.9439 1.22 2415 643 1773 35 0.9085 1.17 2466 682 1784 37 0.8763 1.13 2514 721 1793 39 0.8468 1.09 2561 760 1801 41 0.8197 1.06 2606 799 1807 43 0.7947 1.03 2650 838 1812 45 0.7716 1.00 2692 877 1816 47 0.7501 0.97 2734 916 1818 49 0.7300 0.94 2774 955 1819 51 0.7113 0.92 2813 994 1819 53 0.6937 0.90 2851 1033 1819 55 0.6772 0.88 2888 1072 1817 57 0.6617 0.86 2925 1111 1814 59 0.6470 0.84 2960 1149 1811 Storage Volume Required= 1819 cf Detention Basin Sizing Assume: 1. Nan-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.32 "` cfs Minimum Area= 47 sf Since 1213 sf>47 sf,use 1213 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1213 sf ° Volume Required= 1819 ft3 Depth Provided= 1.50 ft(max) c Side Slopes= 4 :1 Length= 160 ft Width= 8 ft Norton East Ranch Subdivision-Phase 1 Pond Basin OS-2 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff- The volumes were calculated using the Rational Method,and the detention facilities were sized based on a I 0-year 2-hour storm event. Area= 1.06 Acre 7,9 C= 0.2 Open Land Calculate Time of Concentration(TJ Existing Conditions. S=0.75% C=0.20 ov- Open Land Conditions Overland Flow: b/- Assume: L=523 ft.-(300 ft sheet flow/223 shallow flow) From Figure 1-1,T,= 41 min.(overland flow) Total T.= 41.00 Mill Calculate Pre-developed Storm Intensity at T° From Figure 1-3,using the 10 year event, I=0.64T,:-0-11 0.82 in/hr Calculate Pre-developed Peak Runoff Rate Q10=ciA,using the above parameters Q10= 0.17 17" cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.90 Road and Right-of-Way Developed Developed Pre-developed ` Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage , 2185 07 921 -_ .~9 r 2.5862 2,7 1036 /3 963 � e 2.1304 2.10 1132 94 1038 11 1.9278 1.84 1214 115 1099 � 13 1.7295 1.65 1287 136 1151 15 1.5759 1.50 1353 156 1197 � 17 1.4527 1.39 1414 177 1236 ` 19 1.3514 1.28 1470 198 1272 � 21 1.2660 1.21 1522 219 1303 23 1.1830 1.14 1571 240 1832 . 25 1.1308 1.08 1618 261 1357 � 27 1.0755 1.03 1062 282 1381 29 1.0266 0.98 1704 302 1402 31 0.9831 0.94 1744 323 1421 33 0.8439 0.90 1783 344 1439 35 0.9085 0.87 1820 305 1455 � 37 0.8768 0.84 1850 386 1470 38 0.8468 0.81 1880 407 1484 ) 41 0.8187 0.78 1924 428 1496 � 43 0.7947 0.76 1950 448 1500 45 0J716 0.74 1987 489 1518 � 47 07501 0.72 2018 490 1528 � 48 0.7300 0.70 2048 511 1537 '. 51 0.7113 0.68 2070 532 1545 53 0.6937 0.66 2105 553 1552 55 0.8772 0.65 2132 573 1559 57 0.6617 0.63 2158 584 1565 59 0.6470 0.02 2185 615 1570 81 0.6332 0.60 2211 036 1575 63 0.6200 0.58 2236 657 1579 65 0.0076 0.58 2260 078 1583 67 0.5957 0.57 2285 098 1586 68 M844 0.56 2308 718 1589 71 0.5737 0.55 2331 740 1591 ' 73 0.5634 0.54 2354 761 1583 75 0.5536 0.53 2377 782 1595 77 0.5442 0.52 2389 803 1596 . 79 0.5352 0.51 2420 824 1530 | 81 0.5266 0.50 2441 845 1537 DO 0.5183 0.49 2462 805 1587 05 0.5103 0.48 2483 886 1597 87 0.5027 0.48 2503 907 1590 } 88 0.4853 0.47 2523 928 1590 81 0.4882 0.47 2543 94e 1584 93 0.4814 0.48 2562 870 1593 | ' Storage Volume Required= 1e37 cf | Detention Basin Sizing Assume: 1.Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec; 3.Surface Area based on minimum volume using I foot depth Design Release Rate= 0.17 4rcfs Minimum Area= 25 sf Since 1065 sf>25 sf,use 1065 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1065 sf Volume Required= 1597 W Depth Provided= 1.50 ft(max) Side Slopes= 4 :1 ✓ Length= 160 ft Width= 7 ft Morton East Ranch Subdivision -Phase I Pond Basin OS-3 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 1.01 0 Acre r7 C J 0.2 Open Land Calculate Time of Concentration(Tj Existing Conditions: 5.00% C=0.20 Open Land Conditions Overland Flow: Assume: L=105 ft.-sheet flow From Figure 1-1,T, min.(overland flow) Total Tr= 11.00 min Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I=0.64T,-O-" 1= 1.93 in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA,using the above parameters Q10= 0.3991" cis Calculate Developed Minimum Required Volume Storage For 10-Year Event 0.90 Road and Right-of-Way Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) {inlhr} {cfs) (cf) (cf) (CO 5 3.2185 2.93 878 117 761 7 2.5862 2.35 987 164 824 9 2.1964 2.00 1078 210 868 11 1.9278 1.75 1157 257 900 13 1.7295 1.57 1226 304 922 15 1.5759 1.43 1289 350 939 17 1.4527 1.32 1347 397 950 19 1.3514 1.23 1400 444 956 21 1.2663 1.15 1450 491 960 23 1.1936 1.08 1497 537 960 25 1.1306 1.03 1542 584 957 27 1.0755 0.98 1584 631 953 29 1.0266 0.93 1624 678 946 31 0.9831 0.89 1662 724 938 33 0.9439 0.86 1699 771 928 35 0.9085 0.83 1734 818 916 37 0.8763 0.80 1768 865 904 39 0.8468 0.77 1801 911 890 41 0.8197 0.75 1833 958 875 43 0.7947 0.72 1864 1005 859 45 0.7716 0.70 1894 1051 842 47 0.7501 0.68 1923 1098 825 49 0.7300 0,66 1951 1145 806 51 0.7113 0.65 1979 1192 787 53 0.6937 0.63 2005 1238 767 55 0.6772 0.62 2032 1285 746 57 0.6617 0.60 2057 1332 725 59 0.6470 0.59 2082 1379 703 Storage Volume Required= 960 cf Detention Basin Sizing Assume: 1.Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.39 cfs Minimum Area= 56 D'' sf Since 640 sf>56 sf,use 640 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 640 sf Volume Required= 960 ft3 Depth Provided= 1.50 It(max) s G Side Slopes= 4 :1 ,,, Length= 160 It Width= 4 It Detention Pond Sizing The following tables were used to determine the detention pond volumes. The volumes were calculated by using the prismoidai method and are based on the detention pond configuration shown on the drainage basin map. All elevations are assumed. DETENTION POND OS-1 POND ELEV AREA VOLUME VOLUMEg,M, Comment DESIG I (fe Re fe 97 9 0 0 a 97.5 775 144.59 144.59 bottom oz 98 1049 45428 598.86 a 98.5 1350 59817 1,197.03 99 1678 765.62 1,952.65 VASE 0 99.5 2033 926„33 2,87888 w 100 2414 1,110.39 3,989.27 top E- w 0 DETENTION POND OS-2 POND ELEV AREA VOLUME JMEwj Comment DESIG fe fe f 97 9 0 0 97.5 632 11940 119.40 bottom z 98 918 386.28 504.69 d 98.5 1229 534.86 1,039.55 z 99 1566 697.05 1,796.60 WSE 7 1r 0 0 99.5 1929 67217 2; ." 100 2318 1,060.26 3,669.04 top W w 0 DETENTION POND OS-3 POND ELEV AREA VOLUME VOLUME,, , Comment DESIG ft2 ft ft3 97 9 0 0 97.5 321 63.96 63.96 bottom 98 570 219.79 283.75 98.5 845 351.50 635.25 z 99 1145 495.60 1,130.86' WSE o z r3. Y g 99.5 1472 652.54 -1�783.40 w 100 1823 822.19 2,605.68 top W u DETENTION POND 1 POND ELEV AREA VOLUME VOLUME.,,, Comment DESIG ft2 fta fta 97 9 0 0 97.5 1298 235.85 235.85 bottom z 98 1606 724.64 960.48 Q. 98.5 1939 884.94 1.845.43 Oz 99 2298 1,057.98 2,903.41 WSE _ _, .'� 1� /✓ �I 6`� t- 99.5 2683 1,244.01 4,147.41 w 100 3093 1,442.79 5,590.20 top t- w ❑ DETENTION POND 2 POND ELEV AREA VOLUME VOLUME,,,m Comment DESIG ft) fta fta 97 9 0 0 97.5 2854 503.88 503.88 bottom z 98 3414 1,564.91 2,068.79 a 98.5 4000 1,851.57 3,920.36 zz 99 4613 2,151.43 6,071.79 WSE 7 SB07 0 99.5 5253 2,464.77 87536.5 w 100 5919 2,791.34 11,327.90 top w w ❑ DETENTION POND 3 POND ELEV AREA VOLUME I VOLUMEj Comment DESIG ft2 fta fta 98 9 0 0 98.5 1157 211.34 211.34 bottom z 99 1608 688.16 899.50 a 99.5 2084 920.43 1,819.94 zz 100 2586 1,165.25 2,985.18 WSE/top 1,2o H z w w w DETENTION POND 4 POND ELEV AREA VOLUME VOLUME,,,,,, Comment DES[ ft3 ft3 98 9 0 0 98.5 8193 1,412.26 1,412.26 bottom z 99 9332 4,378.16 5,790.42 CL 0 99.5 10497 4,954.40 10.744.82 O 100 11687 5,543.34 16,288.15 WSEltop /�p r ^ n i� r✓ o Z z w f- w RETENTION POND 5 POND ELEV AREA VOLUME VOLUME81—. Comment DESIG ft' ft3 ft3 97 9 0 0 97.5 332 65.94 65.94 bottom z 98 732 259.50 325.44 0.. 98.5 1157 468.21 793.65 zz 99 1608 688.16 1,481.82 WSE > / ��O �'�1 "� 0 99.5 2084 920.43 2,402.25 w 100 2586 1,165.25 3,567.50 top t- w DETENTION POND 6 POND ELEV AREA VOLUME VOLUMES m Comment DESIG ft2 ft3 ft3 98 9 0 0 98.5 1507 272.08 272.08 bottom z 99 1886 846.48 1,118.56 n. 99.5 2293 1,043.09 2,161.65 n z100 2726 1,253.19 3,414.84 WSEltop > f / 0 t /V� 0 t= z u N w ❑ RETENTION POND 7 POND ELEV AREA VOLUME VOLUMES„m Comment DESIG ft2 ft3 ft3 98 9 0 0 98.5 827 153.71 153.71 bottom z 99 1153 492.75 646.46 O_ 99.5 1507 663.03 1,309.49 zz 100 1886 846.48 2,155.97 WSERop 1 0 S 3 C z +� f-7 ' c� w f-- w ❑ INLET & GUTTER CALCULATIONS !t 'Y c c ( 2 a a luj m LE IL 20 +S � u n u n a ern I3:fxU o �Q m LL to a e^ m ImL' 1 Wa. y V C1 ! qr tvj C ly a }} rn o a LL v O a LL 1 a _ m 3 d i Y,�i 4 x E C o Z •— m c > E g W 2 L C i �a t a � za a O c a J6 E E E $ $ f w o m 4 E 1 v Imp, m ® n i , � N LL � m .�Qi NlaG y O a - Yqpamt U Cp )� �i17 yZ~ I w V C [I n O a yj O a W C pQ m C<fU m4` kmi it p if it aiyN o O n O 00 tera OW a om E a z N oE to a c Ym Omo goo " b aCL in 3� ow o U. �J o I•= LU 8 o o N !p w r>U + 5 to OWO L] ca it-j U. II 11 II it it ly C to m ILL. 0 tQ a g 'ce z rn 13 IL 0 j a tU Y. e- m N o LL . C C E Lt.Q O d o L No�M� o �QrWrn rn -� m t0 CO c y- m + LL j� .y ' �° n u if It n @ U�X > �42aF m u n r" � I-� U.a w ur o rn m OG p) E m !3:gzU o o m LL v 0 o U. �a a. m o C L a c � � c rn °o it= I " Z _ w > r = i c�� o r t o,- O o m z O c 4 o a n m i 12 12 9 co 3 m iU N N m E .�C M m 0 e ++ O ^ d m 3 LL o m > > m�da o OQ� H F c .� c� E E c NW 3 t C o q mko N� m r ' OTIO o m 2 at c 3 E CD c+�l moo c $ c N 3 o'?.- r` to 'w o a rn 3,"Itt W QZ E Ot4 U O 0 p N O rt5 _ C 0O�O � H C U C mQU U C V IG m c O(n a 11 n It IF m n N 6 b v O 0 W. > _ — O 61 i9 ®i m o �A88 �� 9 o `2 2 e2 � � F �* p; �f70 yt ��j o CLt c W U m ® C/V O ,n e� U U F-- V tL A 1 o 4. O O a zt C3 It a N� = 3 c .� k' o o O t Z b m `u a 2C � Il a m �+ m LL 2 U U q v m > g Eo tOn n [-a1 t� 1 3G E m m c F 0 LL li U CU cWi # 2 a s C�7 C9 s o o� U riaa� {gyp 1N '3 OWN � LL. cw U. ,10 pis wo: JLL co p Y U � m � � 1 x N Oa m a N "0 Ci g 0 N y N F� �OOZU m m m > m w ;p er m 77 3 1n r o 3 N N m 'ul'..5._j o 3 p .0 �p K?U co o {y U 3 1 J gL m m E t a a N yo z m c° t ? E uj c �, c�W m p m o Z o 0 `m 3 a 0 U. ro Z cO LL U O m � .m m trf 7 W d d IL N Q" tf in b Q `C � N o € _ c ' c -SE N D asi c4� F E C9 a �� E m �3q O LL m� c" n s� E t 3k c 67 !0 If1 G n L " r a- N fti o7 m h y -pC-i m 0! m 1 {j ¢ 6 HN °'� n o N W Y$"o co c+i .o o ai .a teZ o RR for o a. Ci sIr z U rm o m a o y CCp_fV OO u � yy II I bO ®v �a O C CON yQt @ lu j d Z u. mOC p a Eti n n N n 3 •m r a o a i ® v N U t U' Q' u. a. m a i° `� z p 0 0 i U Q V O 1 0� LL d N � a �p UJ v 8 I�pW� S �LL LU no e- m p it 1 1 pI E Ul- U.1l � M p 11 d p ro m tF�rLL m n m IO L V Q h N Ig H m ON m iaOWwo cn c 1 � o U3 = ;Ozt4.1 0 . t C CO g t x? E 111 2 c tU. m gyp_ 3 ; 0.4 Z a O 0 z O U 4 I a� m zo 3 t" 1 O9! m Ys I uj O +Q M j ill N w M 1 C.1 W F ) L ` m a too a R m o, ji y�j1 Jj C cLo LL O N N� ; +YLY¢ O O C fn k$ C @ C g CS m O¢It _ o �+ it. gc tq 3N �QC a env ' �+' W in rn y � R �. W R v H o mU a_ pw Yo ooi N m m¢e- UZZ oCo .a c O .. G LL C 1 C• N G tJ U j .. If q o qr O m _O — O �` Y CY9 -<U G a U y :n a� a n u IM1 a m u u n u t0 �N o oep 3 C m '�� > $ F E o ._ loa I C t S' N u W a O Oy C W O F O L g if Of t }'712(7 b U c V! m U�c I o w a-- U U F .�°. LL 1 i1., r. O O @� rnUa a mN ' ' f° w E w i5 2 c 'c�m c m UL'L� U a J �U. a a ; ® M p1°p R a a my o p atU. is io U tj a ® N p } ® C iW q U �t - VC v v ? 0 c- 1 'Y. ° 0 t a 10 a Z..U vi Q 1y t VNV}} m a� Lu co �0. g H LL eU. 1ul g IF -LCO L OZU W tip. r C2 t H s 1 O- M C U. Ci CL O � C_ 1t.- I Q>41 C .0 'O .05 1,04 tg N n D cz ro to a V) M iU.0 j tNl o rn 3 K J EL m C C m u a W E a 'ro 1 b t Y=�) 4,7 x c m s 1 G Z i z t > t � b o =' € 1 Q° z 0 g z U 'm , E 3 v c $ 1 0 m m @ 1 IL i � N m , � m e 'j �Q' •'' o > q •� 3 ti o m � � � > 1 � a c m ce m := � Or M OK o cn v •E 4�s� E 3 w m a {P� 2 � � tN¢¢ W C� C m C q� flpat� Pam'+�N Q N®® N 0. � 1 10 ¢ E O31 Cit it 0 O '>; C LL C OO a �Ur ` 13 v m Q m �QU U oag t�il� ' aa a R m j a u 1 c�c ® gom r Q $ acf }a z A c Q o _E 11 § p = C 41 (Q b t t^�a w m r 16 b N U a ii a m m a m p b m a o. ii �j tl C3 V b N t�=,1 p 9k E r m 'u5 U U o C o 3 3 tTQ tt U -.x = o .a m jw 3 3 w 10W'u � m � Vl ION LL o tiZu.Gi 10 LU 1w3�U. o (0. r w.U. :..: N m ra H C; M . 1 a 41 0 �r 1� Iti iq .r J rj 0? 0 tQ m 11-•�J .y �O w N 3 !0 m o JU. o zu o i m m m rr E zc t0 y E to 2 c 0 , �LU 3 m OCL L` ONE '• @ N z0 ' E c'3 1 LL { U. m m 7!, w UI ri c r F c E 1 r m .8m m o r ro ma Ch a {3n 0 3 o rn o 4 c m mom ro 1 G � o E m e ,E c c' o + a o mu a tv E x 1 } t $rr o b vm s o°'� c' y, yy m pm, �� ' m Q y30 m0 m y� 6 Cm(!I O W O("JpQ' r Rk fn .ya 3 Ol .II a C Q' C C k U 0. y af$ g U •4 9Y U U O _ p v - =O 9 'ex 8 B U U C U it a m U it U a t�i �� ¢U o � uQ 3� F� o c m�J� � t m w mcya m 8 M. m °' 0N0 CC4 vu r o '� � z u a c m ii q to u a u 0 a cL a c $ .m Ck u. 2 00 C 1-m u u �❑ u_Q EL u V +j 1 0 � 3 � - IL a a IL it r5l Q—� IL z 00 LA. 2 C'i -�, NC m U) m Il -1 w .0 ILL F fc3a, tual to In M r IL v 4m, ozo 0 >3: It 11 If If It �0)-1 a: z Im o Ml C14 3cc 0 U- iit z 16 o I% 'ro %.j jL 0 r ad In m >0 U. rG x ul c 0 E o 0 co Nd- 0 Off 0 I? It \3 -z 0 IN 16 1A o .9 Ix 0 2o 4! L E 8 T or- 0 - M�Ippm sk E :, C— -M 'It cc 0 0 F.C5 vi cq 79 0 ED CL a If If r SO C u a It If It 0 it LU NJ > ol a CL 02 lu c C4� v 0 -2 iz 0 zp a 0 z 6 .9 E 0 0 0 E cm 0 ocs e 6 z LL -, `z- OSo 1� ly 6 W to o �3mze o t t i �tL ui w x w o w W tV LL r O14 �' \ W + \ LL W CO tl1 ? c w c ( A 1 ' N Q) CL ui Q m�. d�ti'7MO O 1� .NW,IL C!_ t` O LL m fim � It it ItU \g M It U. LL W E .. _ W C gg \ O E ; Zp O m o� c m m O C 1 3 C y bCL .0 ( a m g �_7 N N 'D (r ca (= t 1 z S Y A, o m « m p iik °� F m E Cc a u \ 3 ® @ an m m m a cn o to A 1 ," ak m @N� 0 mu rn t- Q oMa o •- m N m�� 'typs y W� m o M C'i rn ry � �^ 1 p ..i Z a y L O `.C-i C LL ch 0 C N CIL \ Q Z d >. H II n C G/\ Q.�... ca_07 C C. 3t n n n n N m it It n W N Zr¢U U C�o C 8 CGp' G� m ���� t° m - iQQ I p }`mf m U ty 0 m F U U 'e F W $ W 4 U o g'a to E a Z 'U X tsto� a-i E LL n 4 u_ 4 i o a m 3 w E EL m as \ 3- U III CL CL o p m �> 0 ou u o 1 .W.19tm m m \ r U U 1 ? z 'a a U. ,`Ui c'a U �Y V Y V 0 } 2 V Q 00 _ � 4 n 11 Ii II 11 61 cc W J > NC 5 'w o w o CL , w Q ..10 .: u - `oa � N F' N @ LLO�LL S G Yi m a etli '€ mr € is me o rC vl ao $ N O w o p�N m ^ }}�Ip Q_ pl Xx 1�J�mN 2 N y W z u Z w p' 1p fp x a _� em 3$ <U u p c tiiJa> yNr� > m r Zx m 0 Z>2 z CL �a u ci c �c ,. i u u 1 x tL i~ OY O !W� 4 � yyN Q w W o �cD CC�U G m Q L J a �LL 00 cK v � m jtE" o r � y NOo U$ cr m ct� t[7 m IQ N q t �._..... o r l3 ,zuo 0 > y' N a a+ � i X�Z E uj o E 2 , Q 1 m . o 0�4 2 � w m F8 N Fi 1 - ; a �� aaK � � �� E � c m���� •E E � m � ¢r'� V A b' w:,m C oC 4 pj b �1 ttttla ^ W d p O N c A NC -+ _� C C C K C,K OC�- •�F m C h n.u^ � Q Raj c4H _U o Ull� �,n° � le a m N > g ®Q O to[I r 6 R LL o� 1 m tp 3a LLL 33 FF E U OO O Ca I It- -!t I-N C�( (N J 0 U. z j n IQ U. w z 0 IA. m !r 1 mom_ LL 11 if I!- > IN 0 U) cq in Ftt tw 0 f 0 13> J 0 -4 IX LL a. IX IM 0 m uj 5 z E 0 0j 0 E 1— z (n T I"t LL 00 Z (D 0 CO Mt CZ 0 .2 > > tt OW c >1 t:2 cn) Or m ra 4:1 gli j� g g 12 cc� cr cQ 0— Z; C'sNt� Cq z &�• 9 , =C5 o C, CL.1 (D 0 it ul -8 0 rl if it it 8 ! 0 0 Z .2 > >.C4 C -M 0,6 u a 0 C4 0 ct 0 6 ii E T E z F It 12 0 a. 2 0 —�z I e LL C3 f.."1 j Uo J -4 IOC Z.0 V :a P co �m o r � o ZV d m 0 J !LL 2 ,Q O 1. �ui 1�3z, _ k R W I E: LLCD N 'H chi + o o �OO2U •- L i� o ,� Y a G m N m L pw 'uagIm o 0 p tV 0 !s'G�iz� c � V lz o 0.6 t�4 <0 6 !p a mmmt� w a Z m o ( Y `� x 111 2 E G m ts, O m 0 it $ Zp c`li m . c 0 o v N I � O U. m m Q; P, <� a m t MIDn N `,� N N li y A ca it to) 02 t=r s 0 r t- v M CL 3 W Z 3 c LL 2 �o & ofQ•- OZ m FL U i ' •C a1 It tl it u u 11 O @ t1 w m m t3 Q Im � ~ CA A t ff � •5' u 'ff 1 S. m V o a w E a 2 �' m $'� a O LL G 3 , m U v G C? V 0 � � '� � 0 c°;i a LL a p �LL •Y 0 G ,Ul ro !1� LU �24y. ti •�` VJ I 0 LU c 1mw 2 tl o ,0 Q Ul LL. w 1 1 °aucl? d `g + cc E u p N •� N m +ciPoN c' �00" T . x > ru Ir LL d -J Q > N L 3 c=n N 3 a !haw 0 9 Q v C`I- E !'S tiizv o �i N R > `pa— ww2' Gt w `o E Y Q t 2 > E c oo $ . 1 J� G _ c m {p O. t0 L i4 h 1 w�' U D 0 4 d 16 N n t! 11. o p o w m y pp m 3 W c c a� p� y iR �'c d �. v 3 �v �QMov u4i w C i24i iCOL _rn to a o o cm cti 13 L2u. $ 'Q u n u n n a a ° n n v y �N c¢U V .oZ` 2 g cm m �'�w > 1= m — add 1 O t Q 0 5.4N o m c� ci c�i h S "�q LU coca c `gym rialC) 7� t F- m O p16�, n a m m W m W p o L m O F LL m m } V () ci o n ¢ �` ? N 0 ILIo 3 IL z I- H (O�FU N a Fa `tS t�t7 1� t ID '}pWLL a fD J 0 4- H c Ia E tlt. i a{+ D A p 33 0 MORON O !- ..rLL ~ (°dnZc, ,- wLL 11 r c ¢mJ ° 11> ° t o 0 0 o 'aaz� V ;} 43 't-LL•_ 91 c p p `!t^ 3 N 3 0 (O U C E + o t3L}iz o LL d m (a pC 00 m to D C N c U. c0 p o H �N N C W g N��o i�i •- ; se� � c m� it 11 rr if 3 u. t 2 o c r"n It corcs- � _ O v m s � - �! a '` IDE ; dy U Q ? V O sit Yy" 4 N N it N V C L U Q= ti c m e w c c Ln C. m 1 m 2 m m !� '+'m 3�o rc € �rr� ta mMo Oc m 3 tL Qo �Q t" '+ ^ am tt gy C 3 a_5 \N. apa ,•x®. .. u Is C O O G :. LL ci COL N J a V F 9sn "QU C3 b Um a c � �� u u u u u m q m n n o U �N .N `a q oo �v c m 2 U. �� F o w too � t^ n t Q o °° E 3 oNo cw = Uri tg 4 LL 4 � Utiy o tq rm � i6q� fipp �o u m t f- U U cs c�i n ILL Q i� t`i � � � �__ C, cc sJ U N ♦ C {00 1!l p d N O 1 II U U U 17 in > ( 3Y Q F j LLJ ILL Y x v _0- CD G Q W G N Q A (Q '>-O W W o �M _j U - a� a� E qua N Iw o o a !G tJi. _ _j U. m to w _ 0 k p N E c o �S'{LLZG ci n G C otS gy�m// N ci N co h m b= W G O cl OR ! Y O (() O N O x W 2 n u u It w mto-Jm > u'i g w @ Fa 09�i oo z 0 m _ Q U.G •- �-�.. If N tl1 O O C '�_ �CO _b W K O e-C l+l O .Q � c•1.y.� 3 �J z w �QG G ao3e a '� t uK It u it E� n mn u ( u! m G J > V > In ttl c p 3 p N Q L w £ '� Z ' c �' }= b CJ • " rn If a'� F o g o ( z w c2 �i pp¢�mG aJ mi% ® U. 4 a Y U �=O µU lu J J ce 4. j tO W?U vi pj O W yWt,S 18 �=— n' mO�ON O ' ram`=tJ N V C 1 It It 11 11 ~y J,:' S O W O o co ' 0 c� ��JSUN O V o m S4 O N S j1 j 2 m tt ii O S � \ m cm 2 W ~LU zol Z � 3 o `n cli IS � m 4[ is `�j3 56t J p C O N rAp Oi Y Q s Sdy,W N US m C C C 'R R to ai n = Fr E �g..j E .� c Ng. - 9+� � .g Q �p (Sp 7 m ��0 0 m p~1.; C p N¢9�i\^y N m C,q h a C 1.•.6 H S � n n U 11 9 C m tl s tl 8 Y &na4a nt❑ u c O� U V \ N b C9 U y oz o u J J 4K Jy. � tv ' to o s o a `4' oo Lu IFu 2 �xud m �a r VN -� xx FF-- N t,s M b 6 c�i team c� a 4 ;a boo u o U w �w uja 8 mS V C?n; 2Uo m c�y w u P c @ R r w i �3z l C V h 1>1 'arse E '€` ` "' zfA m m n q:Us o 1 l�ffzLL � 3 or r'C? of w �m ImQ�LL 8 0 la o Ecc z i�ab,•�IL h Tna . 1°dU LL r o � °q o 00 0 ozv c LL U �O C o aS m coo �W o `o N {L' m ' ! w 3 E N '1 X o 9 u LLI S 2 ! > E a ! oo S 0 c m � m lr� c co ! W U o y _Q � 3 ZI u. m mm w 2 3 � 6cs onc c3 m rde 0 pffi w v o o Z O M\a CL A Vi G to u u Q p u Q u n v i) ! yNq`�o $ Q{ gp a`�-'� ? ~ Sco ao pp to ,�@Q gg W ' �C3 USU LL d 0. Z 4 m ® AY Jd: c u z, _ c $� is 1 s0 ._.U.U U m }to0ru �.Z, o m 10 LL 7S 00 1w H °1 a 3$ � q 1 O m p ° I 3 7 O a H `m aQzv o 0 tV E ' U o F' tL V G E t fK^ •N- o_ Al m C 4i W t O i z60, 0=,. c� W N � y m C4 V o � m 113 t N r' N V- � C v8 cQZ C H� E c' cc € L Si 3 0 0 N ° o cn, w 'w a w 4 3 N m 0 tm qw� O 03[?N 'TS 3 cti ym p t -j Z t1 �s _ �2 rL p, Q N ?< t ' z . a _ c oo C m to N Q U U � U v - g � s u n n n tU m rn N �Q¢aQp � m "'may H > C >OO tt .c C III C P n n to It tT. NU = G j 1-- p iT r. z �yqq •a '§ ..t iL72 O m " E i! N t3 O i+'.¢ U. � U m _C ti t otno� p , iLULU ia ,mo e ,gK�zu.� m to is r to m Lu O Jn n u It If a a U In > m m 1 qa rn .c 41 h op N mp' `-�° 100� U N 2 > N,.{ LO 0) N sty n v�'i ja 0�w o O s m * ua � 4 °° - low— ca m m � c� E ,tea In S l0 CI In ! IU E Ili Z; h. 1n t3 t2 Y m G t7 �- fV Yf LLI 2 m m E b u u n a u y J > ~ z ICA.� Z y10 --_. ix .10 m g r ci m 8f u C m C �i y G C 61t Un d Q 1 o il E 4; ix CT C-4 \n' �i+ ¢ a� ci ' b yc C c1 'COL cso �� .� Q c R ��J� > 0 F" a @ ItmC7Cf W fa CL m � E. ci c a � u) U. iu Y i ox o 1 dwg m a 14�Im o 1D 1�0 J LL p F � ���ZU o cry "E lLL c m 1 +N rri m°� i�Z...r F. to �"p N"' LL v 1U LL $ n It n u u Y > 1 Ir W o � O IL +' ,00.0 o 'a y m 1 y 0 H (o" 'w y O N to `0�3 iLL 2 V o LLo _m +� H C 10� " q'f CL N R �c� E 1U. o h C O N p A IX CO 1 zOF � 1 4 i� c c16 1s �C G mll. fj 01OC — x h ll `°nAS c¢U U ' U3m, a 'E n u u n u u m n "a a m m `— w ''7' O oa' ai' Fot OUJ� , a F' �i _§rn00 in3 c=i c c U N.o .e� r: U U �y F" a tz J 9L O C g lt3 u $G •w 9 m Fs O IV 0 LL F. U •FC U 0 cs IL i v Y =0 ;J Q g� J 5 ,q WZU ui y Cc f g c 3�zUo C ' a + 00 � ao�om o i�O2Uw m L W HE� m Vo n I el cm perw.' �p y w In N 3 m i Q E n a f0 LL y C E ® u C Ow 2G7 C c 0 8 ass ¢� E iwa.go ° � mo��� x� w � ra m JCC > m Ig G a � � � m w W ;Q « s 3N C �'m 6� Off•-��y0 t'1 4 o{ b I �S 0� �ntAUJ .;, Y V Y Oz o a W mi yyW2vo � O m Lu m ru 0EaN m o U. e- o � m r } .Q m ~ .O H m N ON Q is 0_��j{LLB O �f EL wN g wo4N ❑ m S 7 A c 3 m vg§�j g ooi ci to 'c` 3 m Y ti yY`'z ,i3 v cm Y Y U m ;QFU N �m U co Ix U !>o u S " o }to NCQc KZ VJ M mC�cc'011N 0 ��=U M m li 11 It II 11 N z - o i C'{ L t iW O 14O ' U. qe _ � 6 ES N m 1p y g} o Y' � ��4 O w 4L C t�q E CQa2Ua o tu O ® 4 II 11 11 tl � Z � ~v t o0�0 5 333 m � .Y1 , �� E V, � �ttpprcCzl E E 2t "'c woF: ty O P Via" jq� p6p � _ � � O .N2. gu ' O�•2 LU too e � � \�- � �. dew «&%� @ . ( %[�` k \3,_) + e? k §{�. °2 ) ; } �k /k k \ © — m s ; ) }#_ma, ! IN(K CD ^° - ) k &�r� f ® } m « 6 cs f _ aA\& ! / Uala _ . ! ` ! ! SIC e k k <?« $/ k\» ` ` 7 % ! i - ■o o ? ©° ' #& S\ / \ k k iz/ f ` \ ^ o } ) &) A 0 00 7J ƒ 7 k k / \ \ } U o m W of 0�O Cj to � it II 11N�Ja > _m .W!p LL p G vi S tLLi o awl E m wo ils30 1�+. m fill: n o oN a 5 we 'i ry ^90 c 0 c i E 1$, ar E E {m ¢ y w hip a n u mv>-'OC> HOi3 11 = n $ ilia I LL ~ m n y¢ G Y4 C f�N't7 CI ,1 II 11 i x Y W Tr S tQ W.Z.<7 S ci N �$LLzu c w .p b 00 th O t�'90 m p2Li m C x If of x u a =, o N Ix c a no 6� Yur w NC�D OIV 4 Cl tV } 2 q q 11 t dr}i�� > a a v m 4 a7 S ¢ p€ Q h K C C aD .ems a ;� s.�a�' E m � u 1 us R1"t�mef ep as n I,,l +kkQ 59'r m o 3 r !n Q IL S W U v MONK M ' TJ 7 [V 9pp o^J Qn.� go w b � tz w A U U « r`m Si }I rL U J J I�LLZU o g o s c W� �QzU•- U t'Ji. n T w ¢ w m ! wo o A t 5 a 1 s{{Wu. 0 . Q N �OQZ_tio g } ; 5 0 LL U C y n c �a l c C tQ ��MrrgM� $ wo Qci �+ C� C tl 11 R R 11 tp fr o � -j VS sa w w m C _ 3 N 0 V y C 'a O R R R R 9 p 0� B H R w ti S CC co U pp 5Q q O O 2~ v I ,\� 2 )�\ ! ao\ / ills I \ ` �m\: e i /#j_) # ° \ 2 ƒ Q f � � |§ $�� � • f ® .) { )§)aw � ° , � § ¢{[ �)(� � ail: `&. , . . | _ } e @ ! 2&G 2 ] ) }7 3 k ��\ , §)§q /- ° ) k��_ ^\ \ ! ° 2 % ` On k 0 \ § / k K /ƒ § ) §Jm ) j£_�a E! 2 _ 03 / a!;: y f c k ! `°~ 2 ® " } & ` 2 $ $ R°� | /ff 9 } ci \ 2{ \\© \ { k ® ! })« « k { f. ,00 ! ) % !/ k }k7` CL £ Z$ A k 00 )\ ƒ { k u ® k u __ 0 § U X R^'U ffK4'JVl im w z. s > (3uz o < o+ d c 41 g U yJ, c N y m X 3 40 c z g 3i�'�uzc3 c m u' V C E W � m Q m m _ <q o Y S K E E 0 0 gg E \ 3fi 2 0 6G o Z p� Ga m { LL L)CV G � 00 y tl N OO Q E •E N S m g tl W Y O cs ...R R g� 5 g• {Oy 4 Z5 ,c�i C3 C3 CL ¢ tc LL E i ! Aso J D..F m I3�XW a+ d m !?'cc g 1a 0 !LL m !LU p m Iky Y] k m N �w d a: d o lms _ •� � fa !F W— m 1� IXQ 0 m 30 Cs t�ii2t"i o m u jz V C m a9,— v' c «s12m o C w 0 awa Z j � W L Ix N ci $9 a�42 E c .+- �r�i € E ���ii,c �1tI� L � �ggm�� •.., I._ S�OPj @_ N � tV m�� t � 4 N 'Q U a01 _a B'i z N 9 H N O• 4 S ® tl tl a G� ffiffi qayy m >QQ C @ El Note:When specifying/ordering grates,refer to"Choosing the proper inlet grate"on pages 117-118. For a complete listing of FREE OPEN AREAS and WEIR PERIMETERS of all NEENAH grates, refer to pages 306-311. R-3067 Combination Inlet Frame,Grate,Curb Box Heavy Duty 1�-- 53/4' CURB BOX ADJUSTABLE B•709' 3 5 1/4' 5 Y4' 17 / 1 1/4 zR' Z 1�-11n• -�I 1�-1 f/4' 2 �{ 1 1/2'1n•I i- - t\ I 4' � a• _ Curb Plat.AwllaWc i WEIR Standard Grate(shown):Type R-diagonal 50.CATALOG GRATE FT. P LINEAL R Alternate Grate(s): NUMBER TYPE OPEN FEET R-3067 C O R-3067 L 21 5.B 0 --O� Typo C Type L Available Curb Boxes:2"Radius Open,3"Radius Open,6"Radius Open,10"Radius Open,Mountable/Barred Enviro-Curb Boxes available,see page 121. For Double and Triple units,refer to R-3295-2 and R-3295-3. R.-3067-C Combination Inlet Brame,Grate Heavy Duty 3B 1n' 1B 1/4- TI'P••I I I 1 3/4' 4' I I I�11t"-13/4' O�VV''. ��\ `O 0 33 3/2' 31' WEIR Standard Grate(shown):Type C SG. PERIMETER Alternate Grate(s): CATALOG GRATE FT. LINEAL NUMBER TYPE OPEN FEET if j R-3067-C C 2.1 fiE J1�I�Ij f�l11]11j�1 R-3067-C L 2.1 0.8 , Typo L Furnished without curb box for use at driveway locations. R,-3067-L Combination Inlet Frame,Grate,Curb Box Heavy Duty 969/L' CURB BOX AOJUSTAHLETI)O•HIGH >S 1!4'� 5914' _ 17 9!!' 6 ala• 2 R �•!E'".-tn•t e• Curb Plate Awllable ��`�. 43• 3L' WEIR \ r SO. PERIMETER CATALOG GRATE FT- LINEAL NUMBER TYPE OPEN FEET Available Curb Boxes:2'Radius Open,3'Radius Open. R3007-1- L 21 5.8 Enviro-Curb Boxes available,see page 121- NEENAFi FOUNDRY 10 9 8 Discharge vs Depth On Grate too 90 80 70 0 60 < 4 lu s 40 LU 6 z 99 5 . b 30 � U. 0 �= 4ui 1 t: a. 20 u 3 hluv��h 30��•� � kuj 2 w < W ad 0 10 c 0 U- x ui sad W 4 Lu oft 3 .91 ,. r pp .3 f� —r'(aw�s1AQJ . �F 4S go mass" ■ ■■ ni■rr�■■■ u■nu=■a ■MEN■■usar■s■■■■■a ■w■ i■■i ■■ ■ ■■ ■■ w■■■■ ■sw ■sss■■■si s■■w■ss■■ aimMUMKEiHE Miisuaii iatsiiattaii■■ ■�!�i+��r""""■■■■■■■■ so■■■■mug■■im its■■■s■s■■ .■a�■ sirs■■■■■■■■ ■■■■■■■■u■.t■■■osa�n■■Q■■■■ i■■amar=u■■illGusi■■■u■■■ i■■rr.■■■rws■■w ■ riR■■ "■■■ ■■■ ■■■■■�■ n■■ ■■ m■srg■■ ■i1■�■r,lss■■■�s■■■ rw■■ ■■■_■ ■■ r■ ■i■■ ■iii i■■■ i■r■ ■ii■■■■mzr■■■■■■■■■ gia■ ■■o■nrs■■�g■ n■■rE■ awrttr■is�ai■■ri■■■isrs■■■■■■■■ ■■■■■siso■et,■risimn■■�■■ r►. ssi:■wsass■s■■■■ura■■■■■■■■ ■jg■ a ■■ ■■1■son r®■i *■,.�=r■rns■■swswwtrssi■■■■r■■w■i:l■■ ■■ mal a ..■ 1'�■g► IR■■■■i■■■■iu■■■■■r■■■■■ ice! tlii �. ■■ ■ nos■ ■=���i'��+y .10110aw Ono [■■■■w■■■■.ii ■■■■ w■■w .■a.I■g■li■"■a.■""N"■■■■■■■. ■■■ ,ems "y��a -. ■■ ■■ .i . --+s n■■imu Rir b; �01INI" SEEN Is�1`■ Q i it ■ i■s■ ■■iRnHE ■■hi=219 �3+■sO■■i Low ■■■are_ .�1.��+ a .w+■r■R■sass=■■■■■sz,r�.:es •■ ■■■.e�ier■■ g■■i■isf■i��, , ■■Mw. ■■ss■■a��-�ius■rs�.�� i■■■■�■■o■ MINIMUM ...__ ■■ iii■ar■■IBM ...._�Y"r;1[■m■■■■■ra: .■■■i■o■'rir■ �� siiA.,3oiii■aass ■■■iamarnm"■s""■■■Cr■■a�l■■gs.1-30 ms ■gg■■■ n■■■■tii ■s■- ■■■■a=■■i■a■i■■■■o■ao■■u■s� , m■rs■is■■■i■s■siussr■r�i■■■� ■■■■■■■O■Q■w■QQ!■■■■i#lliwi7 O■■■■■■■■■■■w■R■a MEMO ■wY.■■■■■■■■■ ■■■■■■■■■■�n■■.■■■■■u■■ ■■ ■swats■g■■■■■■■■our■■■■■■■■■■ ■■■■■■■■■■■ � ON �mnmmmossom a■= vaiaauaaa 1111�� 11 � 111i111 1111� 1 1 ' ■■■ ■■ ■■u■■m■i■a■ ■■ ' ■■■■■■si■■s■iri■ UM Nowak Emma ■■os ■■ �■ its■��i■■ ■ ■■ ■ ■ i■■.i■m■m a■■iis■■sn "avows MWERN some mommommmC■■ ■■r■■miss■■ man VIIIIINI ■■■NUNN= ■i■■■■i■■=■ii■ ■■■r■■ ■iff=■ui ■■■■■■i an no■ ouC .C1E■■m■■■Qwi■■■ s■...■.■wrri■■ Q■■g■■■=■■iQ■■i■■■ ■=mama■mmmi■■■■ ■■■sir=■■■ �1 ■■■■■■■■■■■i■■■■■W■■a■■ ■.A=■n■i■■ii■■■W\■■■■iZ•■■■ iQ ii■iii■Q■7■ ■■■,rss■■i■ ' '1■tl. ■n■■■■■ri■■■Q■■Q■r■r.. to ones ■ri ■■Q■p■■■ 1 ■AAw■■g■■■■■■■■■■■i■S■■E �:.■�. ■ ■■■■ Y■■ ■■■i ■i■ AA■i■■■sr■■■■r1■s■■"■■1■■ ■ii�� ■ err■■■■■■■■■■iigaCw INIUM91UHHUM Oman imam ■ � m� �u��i�r■o■■■■ratrrr■■■i■■si■ ■■�� awmw wiiss■i■rw■■� f■■ a swr■i■■s mom w■i ■■■■"a was comma■ 0—uQss,�rrr •aa■�1F■■a■■■■■■■.arid■■ ■■�itr:iL�o■■■■■.M i■■.aam- V■■■ate �►■■:�gr■■■■r■■gi■■r ■■■!■■■ri.`7!�" �ssir i■ a'�r"■r■h am mmm=m■■ ■■■■■�■■■■�■■ li�i■■riliz=wQ "■r.r'a�lt3li■i �<r''�4�>e■MENE ii ■■■■i■i■■■ i■�ir■i.:..'�.��i■■a Man an 'a `i� r *iV9 ■iiQrO■i 1■r■■■■■■■■gs■■i■rr: ■■rnYY■■■i■=�Rrra�iYii�+�"`�= ■■i■■.■i■i�i■i=■i■■■■■r■s■■Rti■ ■■■■■1■u■tirr.■■■■S■■i��� ■■■r■■ii■■■i11=■i■Q■1■iiiiA■■ ■■■■■mono■■ga■■■■r■gm■■■■=m■a. �sr■iru■■■i■i■i■g��r■s.ri■■■ r■■■■■■■■s■1■mmrrr■■■m■■s■■r■i ■■■■■■Eg■■oo■ ■ii nossig■■■ "ws■.g■s■■ tir■i■■i■s■m"■■■■sso ■■o■■s■■■■■mms ■ N■■rsu■u■■■ si■w■iii■■C■. ■r■■■■Qm■as■rii ■■■gsg■■■...■■ .C■■i■■i■.s■.■■ m■■■i■■■.■tii ■ww■rig■■■■ Eggs PIPE SIZING cCALCU LAUONO Pipe Sizing Worksheet Norton East Ranch Subdivision-Phase 1 Pipe Capacity and Velocity Calculated Using Mannino Equation Pipe Material add be PVC:n=.013 Wet Hydraulk: Pipe Pipe 25-Year Flow Flow Flow VekTcity Pipe Pipe LocaSun Diameter Manning Area Perimeter Radius Slope Capacity in Pipe Check Verity Check From TO in n e) ((Q I h 8tft) (cfs) (cls) (ra aftw tVsec (wil> s 1 INLETOS-1A INLET0SAB 15 0.013 1,2272 3.927 0.312E 0.00350 3.822 1,980 OK 3.114 OK 2 INLET OS-18 POND OS-1 15 0.013 12272 3227 0.3125 0,00940 6.263 3.970 OK SA04 OK 3 POND OS-1 OUTFALL 15 0.013 1.2272 3.927 0.312E p.06250 16./49 3.970 OK 13.160 0K 4 INLET OS-2A INLET OS-20 15 0.013 12272 3.927 0.3125 0,00350 3,822 1.830 OK 3,114 OK 5 INLET OS 28 POND OS-2 15 OA13 12272 3.927 0.3125 0.00450 4.333 3.660 OK 3,531 OK 6 POND OS-2 OUTFALL 15 0.013 1.2272 3.927 0.3125 0,00540 4.747 3.660 OK 3,868 OK 7 INLET OS-3A INLET OS-3B 15 0.013 12272 3.927 0.3125 0.00350 3.822 1.740 OK 3.114 OK 8 INLET 03-38 POND OS-3 15 0.013 1.2272 3.927 0. 1125 0,01340 7.478 3.480 OK 6.093 OK 9 POND OS-3 OUTFALL 15 0.013 1.2272 3.927 0.3125 0.00450 4.333 3.480 OK 3.531 OK 10 INLET 1A INLET 1B 15 0.013 1.2272 3.927 0,3125 0.00350 3.822 1.240 OK 3.114 OK 11 INLET 18 INLET 1D 15 0.013 1.2272 3.927 0.3125 0.00510 4.613 2.420 OK 3.759 OK 12 INLET I INLET 1D 15 0,013 1.2272 3.927 0.3125 0.00350 3.822 2.880 OK 3.114 OK 13 INLET ID POND 18 0.013 1.7671 4.712 0.3750 0.00570 7.931 6.140 m 4.486 OK 14 POND 1 OUTFALL 18 0.013 1.7671 4.712 0.3750 0.00750 9.097 6.1405.14$ OK 15 INLET2A INLET28 15 0.013 1.2272 3,92T 0.3125 0.00350 3.822 1.4803.114 OK 16 INLET2B MH 1 15 0.013 1.2272 3,927 0.3125 0.00360 3.822 2.3303.114 OK 17 MH1 MI-12 15 0.013 1,2272 3.927 0.3125 0,00480 4.47E 2,3303.647 OK 18 INLET2C MH2 15 0.013 1.2272 3.927 0.3125 0.00350 3.822 1.3703114 OK 19 MH 2 MH 3 15 0.013 1.2272 3.927 0.3125 0.00510 4,613 3.7003.759 OK 20 INLET2D MH3 15 0.013 1.2272 3.927 0,3125 0.00350 3.822 1.5703.114 OK 21 MH 3 MH 4 18 0.013 1.7671 4.712 0,3750 0.00600 7.428 5,270 4203 OK 22 INLET2E MH4 15 0.013 1.2272 3,927 0.3125 0.00680 5.327 1,320 OK 4.341 OK 23 MH 4 MH 5 18 0.013 1.7671 4,712 0.3750 0.00540 7.719 6599 OK 4.368 OK 24 INLET 2F MI-15 15 0.013 1.22T2 3.927 0.312E 0,06000 15A23 2.240 OK 12.894 OK 25 INLET2G MH5 15 0.013 1.2272 3.927 0.3125 0.00810 5.04E 0300 OK 4,111 OK 26 MI-15 MH 6 21 0.013 2.4053 5.498 0,4375 0.00370 9.638 9.530 OK 4,007 OK 27 INLET2H MH6 15 0.013 1.2272 3.927 0.3125 0.06000 15.823 0.520 OK 12.894 OK 28 MH6 INLET 21 21 0.013 2.4053 5A98 0.4375 0.00460 10,629 1 10.050 OK 4A19 OK 29 INLET 21 POND 2 21 0.013 2.4053 6.498 0.4375 0.00450 10.629 10A 50 OK 4.419 OK 30 POND OUTFALL 21 0.013 2.4053 6.498 0.4375 0.00720 13.44E 10.150 OK 5.590 1 OK 31 INLET41A MH 10 1S 0.013 1,2272 3.927 0.3125 0.00875 6.043 2.470 OK 4.924 OK t 33 MH 10 MH i 32 INLET 40 MH i 15 0.013 1.2272 3.927 0.3125 0.00350 3.822 1.390 OK 3.114 OK 15 0.013 1.2272 3.927 0.312E 0.00400 4.086 3.860 OK 3.329 OK 34 MH 11 MH 12 15 0.013 12272 3.927 0.312E 0,00541 4.751 3,860 OK 3.072 OK 35 INLET 41 MH 7 15 0.013 1.2272 3,927 0.3125 0.0 6000 10214 1.840 OK 8.323 OK 36 MH 7 MHO 15 0.013 1.2272 3.927 0,3125 0.00660 5.248 1,840 OK 4.276 OK 37 INLET 4J MH 8 15 0.013 1.2272 3.927 0.312E 0.02000 9.136 2,380 OK 7.444 OK 38 MH 8 MH 9 15 0.013 1.2272 3.927 0.3125 0.00678 5.319 4,220 OK 4.334 OK 39 INLET 4K MH 9 15 0.013 1,2272 3,927 0.312E 0.01730 1 8,497 2.700 OK 6.924 OK 40 INLET 4L MH 9 15 0.013 1.2272 3.227 0.3126 0.00350 3.622 2.600 OK 3.114 OK 41 MH 9 MH 1221 0.013 2.4053 5.498 0.4375 0,00825 14.392 9.720 OK 5,983 OK 42 INLET4C MH 12 15 0,013 1.2272 3.927 0.3125 0.00522 4.667 3.310 OK 3.803 OK 43 WLET40 MH 12 15 0.013 1.2272 3.927 0.3125 0.00350 3.822 2890 OK 3.114 OK 44 MH 12 POND 24 0.013 3.1416 6,283 0.5000 0,00730 19.329 19.320 OK 6A52 OK 45 INLET SA INLET 5B 15 0.013 1.2272 3.927 0.3125 0.00340 3.767 1 S10 OK 3.069 OK 46 INLET58 PONDS 15 0,013 1.2272 3.927 1 0.3125 0.00340 3.767 i,510 OK 3.069 OK 47 INLET6A INLET68 15 0,013 1.2272 3.927 0.3125 0.00400 4.086 2,490 OK 3.329 OK 48 INLET68 INLET6C 15 0.013 1.2272 3.927 0.312E 0A0541 4.751 d.690 OK 3.872 OK 49 INLET BC POND 16 0.073 1.2272 3,927 0.3125 0.00650 5.956 5. 440 OK 4,653 OK 57 POND 3 OUTFACE 15 0.073 1.2272 3.927 0.3125 0.00690 6.366 1.050 OK 4.373 OK 52 POND 4 OUTFALL 24 0.013 3.1416 6.283 0.6000 0.00730 19.329 19.320 OK 6.162 OK 53 PONO 6 OUTFACE 15 0.013 1.22T2 3,927 0.3125 0-00850 5.956 5d140 OK 4.853 OK CULVERT SIZRNG SCS i Unit Hydrograph .d baxter creek-25yr.scs Description jBaxter Creek_25yr Dimensionless Hydrograph „ Edit Distribution tr20t2:Type 2,24 Ms Iv Edit Antecendent Moisture Condition Type II w Runoff Curve Number 75 Select Duration min 160.0000 Drainage Area ac 1700.0000 Select Rainfall in 12.4500 Select Time Increment min 6.0000 Time of Concentration min 188.5000 Select Peak Discharge,qp cfs 147.9359 Time to Peak min 778.2549 i New Load Save Hydrograph Output" OK Cancel Help Culvert Calculator Report Baxter Creek -Culvert Crossing L � �� Solve For:Discharge QI10/0 7 Culvert Summary Allowable HW Elevation 84.11 ft Headwater Depth/Height 1.76 0 Computed Headwater Elew 84.11 ft Discharge 149.94 cfs Inlet Control HW Elev. 84.11 ft Tailwater Elevation 76.00 ft G Outlet Control HW Elev_ 83.57 ft Control Type Inlet Control Grades Upstream Invert 78.25 ft Downstream Invert 76.00 ft Length 90.00 ft Constructed Slope 0.025000 ft/ft Hydraulic Profile Profile S2 Depth,Downstream 1.94 ft Slope Type Steep Normal Depth 1.68 ft Flow Regime Supercritical Critical Depth 2.84 ft Velocity Downstream 16.09 ft/s Critical Slope 0.007840 ft/ft Section Section Shape Arch Mannings Coefficient 0.013 Section Material Concrete Span 5.42 ft Section Size 65.0 x 40.0 inch Rise 3.33 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 83.57 ft Upstream Velocity Head 2.06 ft Ke 0.20 Entrance Loss 0.41 ft Inlet Control Properties Inlet Control HW Elev. 84.11 ft Flow Control Submerged Inlet Type Groove end projecting(arch) Area Full 14.1 ft' K 0.00450 HDS 5 Chart 0 M 2.00000 HDS 5 Scale 0 C 0.03170 Equation Form 1 Y 0.69000 Title:Norton Ranch Subdivision-Phase 1 Project Engineer_Dax Simek p:\-..lstormwater\baxter fallon xing.cvm CutvertMaster v3_1[03.01.009.001 05/05/08 03.44:10 FCVBentley Systems,Inc. Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 pawl of 1 Culvert Calculator Report Baxter Ditch -Babcock Str Solve For.Discharge Culvert Summary Allowable HW Elevation 4.783.84 ft Headwater Depth/Height 1.01 Computed Headwater Elevi 4,783.84 ft Discharge 26.51 cfs Inlet Control HW Elev. 4,783.68 It Tailwater Elevation 4,780.28 ft Outlet Control HW Elev. 4,783.84 It Control Type Entrance Control Grades Upstream Invert 4,781.60 ft Downstream Invert 4,780.28 It Length 89.00 ft Constructed Slope 0.014831 ft/ft Hydraulic Profile Profile S2 Depth,Downstream 0.89 ft Slope Type Steep Normal Depth 0.87 It Flow Regime Supercritical Critical Depth 1.28 ft Velocity Downstream 9.48 ft/s Critical Slope 0,004588 ft/ft Section Section Shape Arch Mannings Coefficient 0.013 Section Material Concrete Span 3.65 It Section Size 43.75 x 26.62 inch Rise 2.22 It Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,783.84 It Upstream Velocity Head 0.64 It Ke 0.50 Entrance Loss 0.32 ft Inlet Control Properties Inlet Control HW Elev. 4,783.68 It Flow Control Unsubmerged Inlet TypSquare edge w/headwall(arch) Area Full 6.3 ft= K 0.00980 HDS 5 Chart 0 M 2.00000 HDS 5 Scale 0 C 0.03980 Equation Form 1 Y 0.67000 Title:Norton Ranch Subdivision-Phase 1 Project Engineer Dax Simek p:\._lstormwateAbaxter Fallon xing_cvm CulvertMasterv3.1 [03.01.009.00] 04/30/08 11:35:37 AMSentley Systems,Inc_ Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Wetlands - Babcock Str Solve For.Discharge Culvert Summary Allowable HW Elevation 4,778.84 ft Headwater Depth/Height 1.34 Computed Headwater Elew 4,778.84 ft Discharge 3.57 ds Inlet Control HW Elev_ 4,778.84 ft Tailwater Elevation 4,776.50 ft Outlet Control HW Elev. 4,778.82 ft Control Type Inlet Control Grades Upstream Invert 4,777.50 ft Downstream Invert 4,776.50 ft Length 102.00 ft Constructed Slope 0.009804 ft/ft Hydraulic Profile Profile M2 Depth, Downstream 0.81 ft Slope Type Mild Normal Depth 0.83 ft Flow Regime Subcritical Critical Depth 0.81 ft Velocity Downstream 5.26 ft/s Critical Slope 0.010341 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1.00 ft Section Size 12 inch Rise 1.00 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,778.82 ft Upstream Velocity Head 0.41 ft Ke 0.20 Entrance Loss 0.08 ft Inlet Control Properties Inlet Control HW Elev. 4,778.84 ft Flow Control Submerged Inlet Type Groove end projecting Area Full 0.8 ft2 K 0,00450 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 3 C 0.03170 Equation Form 1 Y 0.69000 Te1le:Norton Ranch Subdivision-Phase 1 Project Engineer Dax Simek p:l._Xstormwaterlbaxier fallon_xing.cvm CulvertMasterv3.1[03.01.008.001 04/30/08 04:13:23 FRSentley Systems,Inc. Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-7554666 Page 1 of 1 Culvert Calculator Report Unknown Swale-Babcock Str Solve For Discharge Culvert Summary Allowable HW Elevation 4,784.83 ft Headwater Depth/Height 1.36 Computed Headwater Elew 4,784.83 ft Discharge 10.03 cis Inlet Control HW Elev. 4,784.83 ft Tailwater Elevation 4,781.45 ft Outlet Control HW Elev. 4,784.80 ft Control Type Inlet Control Grades Upstream Invert 4,782.79 it Downstream Invert 4,780.95 ft Length 89.00 ft Constructed Slope 0.020674 ft/ft Hydraulic Profile Profile S2 Depth,Downstream 0.90 ft Slope Type Steep Normal Depth 0.89 ft Flow Regime Supercritical Critical Depth 1.22 ft Velocity Downstream 9.11 fUs Critical Slope 0.009234 ft/ft Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 1.50 it Section Size 18 inch Rise 1.50 it Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,784.80 ft Upstream Velocity Head 0.66 ft Ke 0.20 Entrance Loss 0.13 ft Inlet Control Properties Inlet Control HW Elev. 4,784.83 ft Flow Control Submerged Inlet Type Groove end projecting Area Full 1.8 ft= K 0.00450 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 3 C 0.03170 Equation Form 1 Y 0.69000 Title:Norton Ranch Subdivision-Phase 1 Project Engineer Dax Simek p:t...Wormwaterlbaxter faI10 xing.cvrn CuNwMaster v3.1 103.01.009.001 04130108 11:52:38 AASentley Systems.Inc- Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 GUTTER cC PACffT Y CAILCULATffONS Gutter Capacity Calculation Norton Ranch, Phase 1 West Babcock Street ..gyp 14-0.5'—s}f---- 1 5' 7.5' T.O.C_ oas — o�a2s o 7T 4,3 o.125y 3%Crown Slope Catch Curb Not to Scale W.Babcock St STA.0+43.93-1+50 W.Babcock St STA.1+50-6+00 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 ri Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Ca act (Manning's Equation) Gutter Capacity Manning's Equation) Q=(1.49/n)(A)(R^213)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.73 cis Q= 2.73 cis W.Babcock St.STA.6+00-8+47.73 W.Babcock SL STA.8+47.73-12+00 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9,35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT1FT Longitudinal Slope(S)= 0.006 FT/FT Gutter Ca acitv Mannin 's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(S1.5) Q=(1.491n)(A)(RA2/3)(SA.5) Q= 2.73 cis Q= 2.99 ofs W.Babcock St STA. -15+47.73 W.Babcock St.STA.15+47.73-17+01.62 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross SectionalArea(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.006 FT/FT Gutter Capacity( (Manning's Equation) Gutter Capacity(Manning's E uation Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.491n)(A)(RA2/3)(SA.5) Q= 2.73 cfs Q= 2.99 cfs W.Babcock St.STA.17+01.62-19+13.07 W.Babcock St.STA.19+13.07-21+45 _ Parameters _ Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0195 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1,491n)(A)(RA2/3)(SA.5) Q= 5.40 cfs Q= 2.73 cfs W.Babcock St.STA.21+45-25+50.88 W.Babcock St.STA.25+50.88-End Parameters _ Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0075 FT/FT Longitudinal Slope(S)= U07 FT/FT Gutter Capacity Mannin 's E uation Gutter Ca aci (Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1,49/n)(A)(RA2/3)(SA.5) Q= 3.35 cfs Q= 3.23 cis Gutter Capacity Calculation Norton Ranch, Phase 1 Fallon Street N- 0.5'— -- 1.5' 7.5' T.O.C. 0.15' 0�25' 0 aA257 3%Crown Slope Catch Curb Not to Scale Fallon Street STA.0+00-3+16.81 _ Fallon Street STA.3+15.81-7+25.81 Parameters _ _ Parameters Cross Sectional Area(A)_ `1.275 SF^ Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0058 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2i3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.94 cfs Q= 2.73 cfs Fallon Street STA.7+25.81 -7+75.81 Fallon Street STA.7+75.81-10+18.31 Parameters Parameters _ Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0123 FT/FT Longitudinal Slope(S)= 0.0065 FT/FT Gutter ca aci (Manning's Equation) Gutter Capacity Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.6) Q=(1.49/n)(A)(RA2/3)(S4.5) Q= 4.29 cis Q= 3.12 cis Fallon Street STA.10+18.31-11+50 Fallon Street STA.11+50.12+96.93 Parameters _ _ Parameters Cross Sectional Wet Perimeter= 1.275 SF 5 FT Cross Sectional — Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0111 FT/FT Longitudinal Slope(S)= 0.0066 FT/FT Gutter Capacity(Manning's E uation Gutter Capacity(Manning's Equation) Q=(1.49in)(A)(R^2/3)(SA.5) Q=(1.49/n)(A)(R^2/3)(SA.5) Q= 4.07 cfs Q= 3.14 cis Fallon Street STA.12+96.93—17+00 Fallon Street STA.17+00—18+92.16 Parameters Parameters _ Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1,275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.006 FT/FT Longitudinal Slope(S)= 0.0096 FT/FT Gutter Ca aci (Manning's Equation) Gutter Capacity(Manning's E uation Q=(1,49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.99 cfs Q= 3.79 cfs Fallon Street STA.18+92.16-23+67.47 Fallon Street STA.23+67.47-26+50 Parameters Parameters Gross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0075 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's E uation Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.6) Q= 3.35 cfs Q= 2.73 cfs Fallon Street STA.26+50-END Parameters Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Longitudinal Slope(S)= 0.0111 FT/FT Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.07 cis Gutter Capacity Calculation Norton Ranch, Phase 1 Laurel Parkway 14- 0.5'—H --- 1.5' 7.5' T.O.C. OA 5' 0.35' -� > 0.126 3%Crown Slope Catch Curb Not to Scale Laurel Parkway STA.0+65.04-445.26 Laurel Parkway STA.4+65.26-9+14.51 Parameters Parameters _ Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0,0103 FT/FT Longitudinal Slope(S)= 0.015 FT/FT Gutter Capacity(Manning's E uation Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(S4.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 3.92 cfs Q= 4.73 cis Laurel Parkway STA.9+14.51-10+86.16 Laurel Parkway STA.10+86.16-13+25.06 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.01 FT/FT Longitudinal Slope(S)= 0.0121 FT/FT Gutter Capacity(Manning's Equation) Gufter Capacity( Mannin 's E uation Q=(1.49/n)(A)(RA213)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 3.86 cfs Q= 4.25 cfs Gutter Capacity Calculation Norton Ranch,Phase 1 A Street t4-0.6—1+F—— 1.5' --+1 7.5` T.O.C. 0.95' 0T5' 0 —� 0.125` 3%Crown Slope Catch Curb Not to Scale A Street STA.0+72.24-1+78.96 A Street STA.1+78.96-6+06 Parameters Parameters _ Cross Sectional Area(A)= 1.275 SF Cross Sectional Area( ) 5SSF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.005 F17FT Gutter Ca aci (Manning's E uation Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA213)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.73 cis Q= 2.73 cfs A Street STA.6+06-7+30—" A Street STA.7+30-13+7.45 _ Parameters _ Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0075 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity Mannin 's E uation Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA213)(SA.5) Q=(1.49/n)(A)(RA2/3XSA.5) Q= 3.35 cis Q= 2.73 cis A Street STA.13+49.46-End Parameters Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 2.73 cfs Gutter Capacity Calculation Morton Ranch,Phase 1 B Street (4-0.5'—1014 — 1.5' 7.5' T.O.C. 0.15' 0. 5 0.35' 0.126 3°!o Crown Slope Catch Curb Not to Scale B Street STA.0+75.1+22.38 8 Street STA.1+28.38-2+6.90 Parameters Parameters_ Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0,013 Longitudinal Slope(S)= 0.0051 FTIFT Longitudinal Slope(S)= 0.0056 FT/FT Gutter Capacity(Manning's E uation Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(5^.5) Q=(1.49/n)(A)(R^2/3)(SA,5) Q. 2.76 cfs Q= 2.89 cfs B Street STA.2+6.90.3+34.50 8 Street STA.33+75,50.6+15 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0107 FT/FT Longitudinal Slope(S)= 0.01 FT/FT Gutter Ca aci Mannin %E nation Gutter Capacity(Manning's Equation) Q=(1.49/n)(A)(R^2/3)(S^.5) Q=(1.49/n)(A)(R^P/3)(S^.5) Q= 4.00 cfs Q= 3.66 cfs B Street STA.6+15-8+86.39 B Street STA.9+29A1-END Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.005 FT/FT Longitudinal Slope(S)= 0.005 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity Manni 's Equation) Q=(1.49/n)(AXR^2/3)(S^.5) Q=(I.49/n)(A)(R"2/3)(S^.5) Cr-- 2.73 cfs Q= 2.73 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 C Street 14-0.6-H --- 1.6 itl 7.5' T.O.C. 0.75' 0ts 0.3' -T 0125' 3%Crown Slope Catch Curb Not to Scale C Street STA.0+50.50-4+29.50 Parameters Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Longitudinal Slope(S)= 0.0165 FT/FT Gutter Capacity Mannin 's Equation) Q=(1.49/n)(A)(R^2/3)(SA.5) Q= 4.96 cis Gutter Capacity Calculation Norton Ranch,Phase 1 ©Street 14-0.5'—►1* — 1.5' 7.6 T.O.C. oAs d ' o--w—' 3°�Crown Slope Catch Curb Not to Scale 0 Street STA.0+50.50-2+80 D Street STA.2+80-7+05.11 Parameters _ Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.018 FT/FT Longitudinal Slope(S)= 0,0105 FT/FT Gutter Capacity,(Manning's Equation) butter Ca ac( (Manning's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2J3)(SA.5) Q= 5.18 cfs Q= 3.96 cfs Gutter Capacity Calculation Norton Ranch, Phase 1 E Street 14- 0.6— 14--- 1.5' st 4 7.5' 0.1 T.O.C. 0.15' 117 0225 0 -�- f 0.125' 3%Grown Slope Catch Curb Not to Scale E Street STA.0+50.50—1+61.25 E Street STA.1+61.25-4+29.50 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0297 FT/FT Longitudinal Slope(S)= 0.0171 FT/FT Gutter Capacity Mannin `s Equation) Gutter Capacity(Manning's E uation Q=(1.49/n)(A)(R^2/3)(SA.5) Q=(1.49/n)(A)(R112/3)(SA.5) Q= 6.66 cis Q= 5.05 cis E Street STA.4+29.50-7+50 E Street STA.7+50.9+00._ Parameters Parameters Cross Sectional ot Perimeter= 1.275 SF 5 FT Cross Sectional Area(A) 1.275 SF Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0056 FT/FT Longitudinal Slope(S)= 0.0213 FT/FT Gutter Capacity(Manning's Equation) Gutter Capacity Mannin 's Equation) Q=(1.49/n)(A)(RA2/3)(SA.S) Q=(1.49/n)(A)(RA2/3)(SA.S) Q= 2.89 cis Q= 5.64 cis E Street STA.9+00-11+5.03 E Street STA.11+5.03-13+10.03 Parameters Parameters .275 SF CrossAWet rea Gras Sectional mter 15 FT Wet Perimeter 1FTHydraulic Radius 03 FT Hydraulic (e)= 035 Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0152 FT/FT Longitudinal Slope(S)= 0.0113 FT/FT Gutter Capacity(Manning's Equation) Gutter Ca (Manning's;Equation) Q=(1.49/n)(A)(RA213)(SA.5) Q=(1.49fn)(A)(RA2/3)(SA.S) Q= 4.76 cis Q= 4.11 cis Gutter Capacity Calculation Norton Ranch,Phase 1 F Street 14-0.5—*14---- 1.5 7.5' T.O.C. D.95' 0.35' 1 D.t2s 3%Crown Slope Catch Curb Not to Scale F Street STA.0+50.50-2+36.19 F Street STA.2+36.19-4+29.50 _ Parameters Parameters Gross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0063 FT/FT Longitudinal Slope(S)= 0.0151 FT/FT Gutter Capacity(Manning's Equation) Gutter Ca aci Mannin 's E uation Q=(1.49/n)(A)(RA2/3)(SA.5) fl=(1.491n)(A)(111,2i3)(SA.5) Q= 3.07 cis Q= 4.75 cfs F Street STA.4+70.50-8+90.51 F Street STA.6+90.51-11+5.43 . Parameters__ Gross Sectional Area Parameters (A)= 1.275 SF Cross Sectional Area(A)_ 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0.0118 FT/FT Longitudinal Slope(S)= 0.017 FT/FT Gutter Capacity (Manning's Equation) Gutter Ca aci Mannin 's Equation) Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(RA2/3)(SA.5) Q= 4.20 cis fl= 5.04 cis Gutter Capacity Calculation Norton Ranch, Phase 1 G Street 14-0.5'— 14---- 1.5 1014 7.5' T.O.C. 0. s' 0'j 5' KI 0.125' 3%Crown Slope Catch Curb Not to Scale G Street STA.0+60.52-4+50.20 G Street STA.4+50.20—5+40.48 `— Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0,0101 FT/FT Longitudinal Slope(S)= 0.0231 FT/FT Gutter Ca aci (Manning's E uation Gutter Ca aci (Manning's E uation Q=(1.49/n)(A)(RA2/3)(SA.5) Q=(1.49/n)(A)(R^2/3)(SA.5) Q= 3.86 cis Q= 5.87 cfs G Street STA.5+40.48-8+50 G Street STA.8+50-11+26.87 Parameters Parameters Cross Sectional Area(A)= 1.275 SF Cross Sectional Area(A)= 1.275 SF Wet Perimeter= 9.35 FT Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Manning's n= 0.013 Longitudinal Slope(S)= 0,015 FT/FT Longitudinal Slope(S)= 0.0066 FT/FT Gutter Capacity(Manning's EauationI I Gutter.Capacity Mannin 's E ation Q=(1.49/n)(A)(R"2/3)(SA,5) Q=(1.49/n)(A)(RA2/3)(S^.5) Q= 4.73 cfs Q= 3.14 cfs G Street STA.11+2! 6.87-13+5.46 ----- Parameters . Cross Sectional Area 1= 275 SF Wet Perimeter= 9.35 FT Hydraulic Radius(R)= 0.136 FT Manning's n= 0.013 Longitudinal Slope(S)= 0.0161 FT/FT Gutter Ca cl 3 's E uation Q=(1.49/n)(AHR"2/3)(SA.5) Q= 4.90 cfs ®YJTFA LIL STRUCTURE SIZING Dorton East Ranch Subdivision - Phase I Outfall Structure Sizing Used weir equation in Section I1-2D of City of Bozeman Design Standards and Specifications Policy Q=CLHi-5 L=Q/(CH,.S) Q values from Pre-developed runoff conditions Basin 1 Q= 1.06 cfs Basin 2 Q= 2.00 cfs Basin 3 Q= 0.35 cfs Basin 4 Q= 2.71 cfs Basin 6 Q= 0.47 cfs Basin OS-1 Q= 0.32 cfs Basin OS-2 Q= 0.17 cfs Basin OS-3 Q= 0.39 cfs H= 1.5 FT C= 3.33 FT Weir Lengths Pond 1 L= 0.173271 FT 2.1 Inches Pond 2 L= 0,326926 FT 3.9 Inches Pond 3 L= 0.057212 FT 0.7 Inches Pond 4 L= 0.442984 FT 5.3 Inches Pond 6 L= 0.076828 FT 0.9 Inches Pond OS-1 L= 0.052308 FT 0.6 Inches Pond OS-2 L= 0.027789 FT 0.3 Inches Pond OS-3 L= 0.06375 FT 0.8 Inches SIDEWALK CHASE SIZING Norton East Ranch Subdivision - Phase I Sidewalk Chase Sizing Cnase h(ft) Rational Capacity jwidth Boulevard @1.5% Method Intensity Area 25-Yr w(ft) (cfs) SW Chase Width(ft) min slope "C"Value (in/hr) (Acres) Flow(cfs) (0.5'min.) (Manning`s)Pond 3 7 1.5 050 4.4 2.12 4.64 1.50 4.72 OK A=(1.5 ft x 0.5 ft)=0.75 sf P=0.5ft+ 1.5 ft+0.5 ft=2.5 ft 0.5 ft R=A/P=0.30ft 1.5 ft Using Mannings Equation,Q=4.72 cfs o�. R i,48 b 2h 'lz 6 0,0�3 Norton East Ranch Subdivision -Phase 9 Sidewalk Chase Sizing Bozeman, MT The following calculations were used to determine the sidewalk chase sizing(rased on a 25-year 2-hour storm event. Area= 2.116 r Acre C= 0.5 V5` Dense Residential Calculate Time of Concentration(TJ Existing Conditions: S=1.15% C=0.50 Dense Residential Overland Flow: Assume: L=16 ft.-sheet flow From Figure 1-1,T,= 1 min. (overland flow) D Street (0+50.50-2+80) Cul-de-sac S= 0.018 ft/ft S= 0.0094 ft/ft L= 80.34 ft L= 117.64 ft R= 0.136 ft R= 0.136 ft v= 4.06 ft/sec v= 2.93 ft/sec Tl:(CF)= 0.33 min TcicFt= 0.67 min D Street(2+80-7+05.11) S= 0.0105 ft/ft L= 377.73 ft R= 0.136 ft v= 3.10 ft/sec TC(cF)= 2.03 min Total T.= 4.03 min Calculate Pre-developed Storm Intensity at T, From Figure 1-3,using the 25 year event, 1=0.78Tr" z I= 4.39 inlhr Calculate Pre-developed Peak Runoff Rate 025=eiA,using the above parameters tt O25= 4.65 - cis w i + 11 `rk 4 I _ j - \ n f" � \ \ 0 STORAGE SH OWNN=16,288 CF \ POND 4 I \ 1 �'�.^� 41 SIDE SLOPE`- J \ \OVIRED BTORt GE 12058 CF V I rum � POND 5 RcoulREp sroRAGE=1353 cF REOSTOUI ED 5TORAG_-4194i OF TO AGE SHOW 4T1 SIDE SLO,'E N S 155 OF h1 GE S(. 3 C _ SIDE SLOPES ` 1 v STOrtM DRAIN INLET .. \..- - -_ '.®:se:. CB-6C - CB-4D R.DRAIN INLET i. ..,` STORM DRAIN:INLETII � I Lam ..... 1 - ,earwzc mvn era cicr CB OS3A ..-STORh1 DRAIN 105EA _".•, _ ;i,- I �^ lG.4kl _--------_—_—_STORMED.AIN -- R 3 ,rm sraew<mar T--.—_—.—_—_—_— —_—_—_ MH'12•-�. _—_—_'_"_—_— _—.—_—_— ._ .— - fll STORM DRAIN INLET _ _ _--- r � T RA AIN_.�._ --_'-_�O MHOR;DRAN :�.'- -._, m ,,.,--r11 ,'_— -...:, ',, _— —_— - STERN pRAIN INLET-. ....... MH -- T -._.. )e _._--__ .-- _. •..- _- CB-4C..._- -. -'.:' STORM DRAIN INLET .,' l! ', ,I .- STORl.1 DRAIN INET ,I BTORMDRAIN INLET '�` ^" _ I.,. '" :' :STORM DRAIN:INLET o�.. STORM DRAIN INLET CB-0530; 1 CB-OS2B CB-6A CB-48 N CB-4A POND3DRAIN <",`.;::' ` �� ��Cj MT 10 . POND OS-S � --` j REOVIRED STORAGE 1291.CFryi. 'I 5i GRACE SHOW'N-2965 CF R POND OS-2 �� 1,@1•, ,. .\' 3'✓ I.III I .a ." ,'I, STORAGE SHOWNREQUIRED . Or O6 CF K^ ¢�. '�"�c�" 47 SIDE SLOPES .;r ,T -'4:i SIDE-SLOPES REQUIRED SHOWN=E1736 9CF CF � '-�1 4:1 SIDE SLOPES 3 11 _—_—_—_----- STORM DRAIN_ STORM pRAIN__ __.— - _STORM DRAIN — MH 7 f J STORM DRAIN INLET STORM DRAIN INLET STORM pRAIN.INLET STORM DRAIN INLET Ipi i ,E CB 4L � GB-4K CB>4J Ivry I I - --.-G .�.,... I CB 41 III ! — I i I I . I r 1 r BAXTER CREEK iDO-VR FLDODPLAIN .. ....._-.. �� POND z REOU RED STORAGE=580>CF I Pf I ____________ __ -- _..•.. -'--may +. I STORAGE SHON.M= - 1 - - ---- I Ed REND 1 I j // ,\RAGED-SHOASGE 2903BOFC II STORM DRAINu1 LE: �J B'OE SI-GPF a �(4\//�� STORM DRAIN INLET1 .. P STORM.DRAIN INLET �_. 13 _r.."}. ,., J 1 a rI CB-21Y DO—"..., "^,.„n._r. ram.,,. I -. ......... ._....__ _ STORM DRAIN ,LFT�I_L STORM DRAM IVET`CBCRMD ORAININLET'-I a M11H 6 -- ---- ----- STORM MHAIN STORM pRAIN —STORM DRAIN 'STORM DRAINCB`2B STORM.pRAIN INLETx �- C9-1A I STORM DRAIV STORM DRAIN -- - q _ _ n, - —`M NORM ORAIN?A-----INL - pp CB-1(; 11H 5� CB'-2TE CB-2D �y a _ I -. _.. pl CB-2H N ETMCBR2F STORM DRAIN INLEB-2 STORM DRAIN.-I'D STORM DRAINCB L20'�f I - I p STORM DRAIN INLET " -- 4 uj I ' lul� o I _.- — =- - - �T —=- - - - J_ v) z I) : 1 SI o _ -. I O FOND 5 FE01I1E1 S ORA E 1110 CF 'POND os 1 l SORACE SHO N 1482 Cr REQUIRED STORAGE-1819 CF STGRACE SHOWN-1952 CFC hI- DE STORM DRAIN INLET 1 SIDE SLOPES >x,a aca, -.--� CB 5A swav mr _—.—_� CB-OSIBRAIN.INLET ..-STORM DRAIN INLEII _- —.._ —_—_—_—.__ .—_—_— CB_ I IDS aos �I DATE: oz/oa/oe l I R SIONS APPROVED BY: QUALITY ASSURANCE: I I, o' k SCALE: LL=—� I T FILE:: NORTON_ensE oo so 0o zo II �o o PROJECT NO Boz o7iE �. SHEET I OF