HomeMy WebLinkAboutFlood Hazard Evaluation 6-10-2020 WEST SIDE FLATS MASTER SIDE PLAN - FLOOD HAZARD EVALUATION
June 25, 2020
#180820 1
TABLE OF CONTENTS
REPORT
Introduction ..........................................................................................................................1
Hydrology ............................................................................................................................1
Hydraulics ............................................................................................................................4
Conclusion ...........................................................................................................................5
APPENDICES
Appendix A: Contributing Areas Map
Appendix B: AutoCAD SSA Output Files
Appendix C: HEC-RAS Output Files
Appendix D: 100-Year Floodplain Boundary
Appendix E: 2006 Loyal Garden Subdivision – Design Report for Water, Sewer, and
Pavement Improvements (TD&H Engineering)
Appendix F: 2007 Norton Ranch Subdivision, Phase 1 – Flood Hazard Evaluation of Baxter
Creek (Engineering, Inc.)
Appendix G: 2009 Norton East Ranch Subdivision, Phase 1 – Stormwater Management Design
Report (Sanderson Stewart Engineering)
WEST SIDE FLATS MASTER SIDE PLAN - FLOOD HAZARD EVALUATION
June 25, 2020
#180820 2
INTRODUCTION
Overview
The West Side Flats is a proposed residential development on Lot R-2 of the J & D Family
Subdivision, Phase 2. The property is located in the southwest portion of the City of Bozeman.
The development will consist of residential apartments in a series of 12-plex and 18-plex
apartment buildings. Access improvements, dry and wet utilities, and landscaping/park
improvements will be installed with the proposed development.
Baxter Creek runs north/south along the eastern boundary line of the property. Since there is no
official floodplain delineation for Baxter Creek, this flood hazard evaluation was prepared in
accordance with Section 38.600.090 BMC. The purpose of this study was to delineate the 100-
year floodplain for the portion of Baxter Creek that runs through the subject property.
HYDROLOGY
Background and Methodology
Baxter Creek is a pseudo-natural stream that now receives a large portion of its flow from the
Farmers Canal irrigation ditch south of Huffine Lane. The creek then runs north from Farmers
Canal through the Loyal Garden Subdivision along the west side of Cottonwood Road and
crosses under Huffine Lane. It then flows north through a vacant parcel along the west side of the
Billion Auto Complex and crosses under Fallon Street, through the subject property, then under
West Babcock, Durston Road, Annie Street, and West Oak Street before draining to undeveloped
farmland north of Oak Street.
No stream gauge data exists along Baxter Creek, so a combination of previous flood studies and
hydrologic analysis were used to estimate the 100-year peak flows transmitted by Baxter Creek.
AutoCAD Storm and Sanitary Analysis 2018 (SSA) was used to produce hydrographs for the
100-year storm event over the contributing area. The analysis is based on the Soil Conservation
Service (SCS) hydrograph method variables that are outlined in this section.
Contributing Areas
The contributing area analyzed for this flood study was limited to the area between Huffine Lane
and West Babcock Street, that drain to Baxter Creek. The drainage area south of Huffine Lane
will be accounted for by using the 100-year peak flow developed from the 2006 Design Report
for Loyal Garden Subdivision done by TD&H Engineering. Refer to the Peak Flows section of
this report for a full summary of the flows used for this hydraulic analysis. Land use for the
contributing area was determined via aerial imagery taken from City of Bozeman GIS
department.
The contributing area for this study was divided into three drainage areas. Drainage Area 1
accounts for the area between Huffine Lane and Fallon Street. Drainage Area 1 has a total area
1,570,879 sf, of which 712,163 sf was assumed to be commercial and 858,716 was assumed to
be undeveloped. The area of the Billion Auto Complex lying east of Automotive Avenue
between Fallon Street and West Babcock Street, and Common Open Space B were excluded
WEST SIDE FLATS MASTER SIDE PLAN - FLOOD HAZARD EVALUATION
June 25, 2020
#180820 3
from this analysis. Common Open Space B has a detention pond and outlet structure that
discharges the pre-development runoff from this area into Baxter Creek just south of the 2 – 40”
x 65” RCP culverts under West Babcock Street. Drainage Area 2 has a total area of 378,172 sf,
of which 275,594 sf were assumed to be commercial and 102,578 sf were assumed to be
undeveloped. Drainage Area 3 accounts for the subject property; this was assumed to be dense
residential and has a total area 596,656 sf. A map showing the contributing area for this analysis
is included in Appendix A of this report.
SCS Curve Number
For each drainage area the SCS runoff Curve Number (CN) was estimated using a weighted
average approach. Approximately 45% of Drainage Area 1 was determined to be commercial
while 55% remained undeveloped. Using standard CN values listed in the TR-55 Urban
Hydrology for Small Watersheds Table 2-2a, Drainage Area 1 was given a composite CN of
79.43. Applying the same method to Drainage Area 2, which is 73% commercial and 27%
undeveloped, generates a composite CN of 85.76. Drainage Area 3 was assumed to be 100%
dense residential, which has a CN of 85. These CN values account for existing conditions around
the subject property and the proposed development within the subject property. These values do
not account for future development between Fallon Street and Huffine Lane.
Time of Concentration
A time of concentration (TOC) path was developed for each drainage area. Elevation contours
from a 2017 LiDAR survey of Bozeman were combined with a site topographic survey
conducted in 2018. This was the composite surface used in developing slopes for TOC
calculations. For Drainage Area 1 the longest TOC path was calculated from the southwest
corner of the drainage area, across a field and into Baxter Creek, with a portion of the path in the
channel of Baxter Creek. The first 875 feet of the path through the undeveloped field was
assumed to be sheet flow. Using a slope of 1.53%, a Manning’s “n” of 0.15 for short grass
pasture, and the 2-year 24-hour rainfall of 1.20 inches yielded a TOC of 101.08 minutes for the
first part of the path. The second 752 feet of the TOC path for Drainage Area 1 was from its
entrance into Baxter Creek to the flow line of the Fallon Street culverts. Channel Flow was used
for this portion, with an assumed “V” cross-section that yielded a cross-sectional area of 2 sq. ft.
and a wetted perimeter of 4 feet. Using the slope of the channel yielded a TOC of 6.94 minutes
for the second portion of the Drainage Area 1 path. Therefore, the total TOC for Drainage Area 1
was calculated to be 108.02 minutes.
The same method for calculating TOC above was applied to Drainage Areas 2 & 3 excluding the
channel flow portion. For Drainage Area 2 the first 633 feet of the path was calculated as sheet
flow over a paved surface (n = 0.011) with a slope of 1.35%. The next 365 feet was calculated as
sheet flow over short grass pasture (n=0.15) with a slope of 1.79%. Using the 2-year 24-hour
rainfall of 1.20 inches the total TOC for Drainage Area 2 was found to be 57.26 minutes. For
Drainage Area 3 the path was a single 886-foot segment across short grass pasture (n=0.15).
Applying the same rainfall as before the TOC for Drainage Area 3 was found to be 106.30
minutes. Drainage Areas 2 & 3 do not include a channel flow portion because their peak flows
were assumed to enter Baxter Creek at positions in the hydraulic model. The Peak Flows and
Hydraulics sections of this report summarizes the assumptions used. A map showing TOC paths
WEST SIDE FLATS MASTER SIDE PLAN - FLOOD HAZARD EVALUATION
June 25, 2020
#180820 4
for all drainage areas can be found in Appendix A of this report. Time of concentration
calculations can be found in the SSA output calculations in Appendix B of this report.
These TOC estimates and the following flow projections are considered to be conservative as
they do not account for the holding time in the stormwater facilities in the Billion Auto Complex
or the proposed Sundry Station development. Instead this model assumes that the runoff
produced over these drainage areas sheet flow and deposit directly into Baxter Creek.
100-Year Peak Flows
As stated in the previous section, AutoCAD SSA was used to produce the hydrographs for the
100-year storm events over each drainage area. To produce the hydrographs an SCS Type II 24-
hour rainfall curve was used. Using the 100-year return period for the storm a rainfall depth of
2.80 inches was determined. Applying the rainfall depth and the parameters outlined above
produced peak runoff volumes for each drainage area. The peak runoff for Drainage Areas 1, 2,
& 3 were calculated to be 13.12 cfs, 7.32 cfs, and 6.98 cfs respectively. The output file with the
runoff hydrographs are included in Appendix B of this report.
To account for the contributing area south of Huffine Lane, the 100-year storm flow from the
2006 TD&H report was used (see Appendix E for the 2006 report). TD&H calculated the peak
flow that would cross Huffine Lane as 106.2 cfs. This flow was combined with the peak runoff
produced from Drainage Area 1 and rounded up for contingency for a total of 124 cfs that will be
used as the initial input to the hydraulic model. Drainage Areas 2 & 3 deposit into Baxter Creek
at a secondary point along the stream segment through the subject property. The peak flows for
these two drainage areas were combined and rounded to 19 cfs. Therefore, the 100-year flows
that were used in the hydraulic model were 124 cfs at the initial point, and 143 cfs at the
convergence point of Drainage Areas 2 & 3. A full summary of the hydraulic analysis is
provided in the Hydraulics section of this report.
It should be noted that a similar flood hazard evaluation on Baxter Creek was done by
Engineering, Inc. for Norton Ranch Subdivision, Phase 1 in 2007. This report estimated the peak
flow for this portion Baxter Creek as 232 cfs. It is our opinion that this flow is an over-estimation
for the Baxter Creek 100-year storm flow through this property. It is our opinion that the flows
used in the 2006 report done by TD&H more accurately reflect the real-world conditions. The
2007 Engineering, Inc. report is included in Appendix F of this report.
HYDRAULICS
Methodology
The hydraulic modeling of the portion of Baxter Creek that runs through the subject property
was completed in HEC-RAS Version 5.0.5. The stream model was an approximately 1,200-foot
segment of Baxter Creek. The upstream (beginning) station 12+62 is located at the outlet of the
Fallon Street culvert. The downstream (end) station 0+00 is located at the inlet of the West
Babcock culverts. Cross-sectional data was input into the program for 8 cross sections through
the site. Similar to the hydrograph development, elevation data for the cross-sections was
gathered from the combined 2017 Bozeman LiDAR and 2018 site topographic survey. The
Manning’s roughness coefficients for the model were determined from aerial photography and
WEST SIDE FLATS MASTER SIDE PLAN - FLOOD HAZARD EVALUATION
June 25, 2020
#180820 5
site survey done in August, 2018. The channel through the entire site was modeled with an
n=0.045, while the left and right overbank values were modeled as n=0.05.
The culvert crossings beneath Fallon Street and West Babcock Street were excluded from the
analysis. Each crossing has two 40” x 65” RCP culverts. Based on the Norton East Ranch
Subdivision, Phase 1 Design Report prepared by Engineering Inc. (now Sanderson Stewart),
each 40” x 65” RCP culvert has a design capacity of 150 cfs, for a total capacity of 300 cfs at
each street. Therefore, it can reasonably be assumed that the each street crossing can adequately
transmit the 100-year flows of 124 cfs and 143 cfs respectively, including the detention pond
outflow from Common Open Space B.
Modeling
Steady state flow analysis was used to determine the 100-year flood elevations in the creek. At
the upstream station 124 cfs was input into the model. As discussed above, the contributing flow
from Drainage Areas 2 & 3 was added downstream at station 4+67.71 where the total flow was
modeled as 143 cfs. Cross-sectional data and stream profile outputs can be found in Appendix C
of this report. The 100-year floodplain boundary is shown on the map overlay included in
Appendix D of this report.
CONCLUSION
Summary
Based on the results provided from the HEC-RAS output the 100-year floodplain boundary of
Baxter Creek will not affect the proposed development within the subject property. As depicted
on the map in Appendix D, the 100-year floodplain lies entirely within the current wetland and
watercourse setbacks which will remain undeveloped. Therefore, all proposed buildings and
stormwater facilities are well outside of the 100-year floodplain, and no flooding risk is
anticipated to the proposed development.
Limitations
This flood hazard evaluation was prepared for the West Side Flats project only and should not be
used for planning of any other future developments along Baxter Creek. This report assumes that
future developments along Baxter Creek will be subject to City of Bozeman design standards to
ensure no increase in flood risk to downstream developments. Any modification to the stream
itself shall be analyzed independently to ensure no increase to the floodplain elevations for
existing developments.
APPENDIX A
CONTRIBUTING AREAS MAP
APPENDIX B
AUTOCAD SSA OUTPUT FILES
Project Description
Baxter Creek.SPF
Project Options
CFS
Elevation
SCS TR-20
SCS TR-55
Kinematic Wave
YES
NO
Analysis Options
May 02, 2019 00:00:00
May 04, 2019 00:00:00
May 02, 2019 00:00:00
0 days
0 01:00:00 days hh:mm:ss
0 00:05:00 days hh:mm:ss
0 00:05:00 days hh:mm:ss
30 seconds
Number of Elements
Qty
1
3
3
0
3
0
0
0
0
0
0
0
0
0
0
0
0
Rainfall Details
SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall
ID Source ID Type Units Period Depth Distribution
(years)(inches)
1 Rain Gage-01 Time Series TS-01 Cumulative inches Montana Gallatin 100 2.80 SCS Type II 24-hr
Outlets .....................................................
Pollutants .........................................................
Land Uses ........................................................
Links..................................................................
Channels .................................................
Pipes ........................................................
Pumps .....................................................
Orifices ....................................................
Weirs .......................................................
Nodes................................................................
Junctions .................................................
Outfalls ....................................................
Flow Diversions .......................................
Inlets ........................................................
Storage Nodes .........................................
Runoff (Dry Weather) Time Step .....................
Runoff (Wet Weather) Time Step ....................
Reporting Time Step ........................................
Routing Time Step ...........................................
Rain Gages ......................................................
Subbasins.........................................................
Enable Overflow Ponding at Nodes .................
Skip Steady State Analysis Time Periods ........
Start Analysis On .............................................
End Analysis On ...............................................
Start Reporting On ...........................................
Antecedent Dry Days .......................................
File Name .........................................................
Flow Units ........................................................
Elevation Type .................................................
Hydrology Method ............................................
Time of Concentration (TOC) Method .............
Link Routing Method ........................................
Subbasin Summary
SN Subbasin Area Weighted Total Total Total Peak Time of
ID Curve Rainfall Runoff Runoff Runoff Concentration
Number Volume
(ft²)(in)(in)(ac-in)(cfs)(days hh:mm:ss)
1 DA1 1570879.02 79.43 2.80 1.07 38.55 13.12 0 01:48:01
2 DA2 378172.02 85.76 2.80 1.48 12.81 7.32 0 00:57:15
3 DA3 596656.00 85.00 2.80 1.42 19.48 6.98 0 01:46:18
Node Summary
SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak Max HGL Max Min Time of Total Total Time
ID Type Elevation (Max)Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded
Elevation Elevation Attained Depth Attained Flooding Volume
Attained Occurrence
(ft)(ft)(ft)(ft)(ft²)(cfs)(ft)(ft)(ft)(days hh:mm)(ac-in)(min)
1 Out-02 Outfall 0.00 0.00 0.00
2 Out-03 Outfall 0.00 0.00 0.00
3 Out-04 Outfall 0.00 0.00 0.00
Subbasin Hydrology
Subbasin : DA1
Input Data
Area (ft²) .........................................................................1570879.02
Weighted Curve Number ...............................................79.43
Rain Gage ID .................................................................Rain Gage-01
Composite Curve Number
Area Soil Curve
Soil/Surface Description (ft²)Group Number
Undeveloped 858716.01 B 69.00
Billion 712163.01 B 92.00
Composite Area & Weighted CN 1570879.02 79.43
Time of Concentration
TOC Method : SCS TR-55
Sheet Flow Equation :
Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))
Where :
Tc = Time of Concentration (hr)
n = Manning's roughness
Lf = Flow Length (ft)
P = 2 yr, 24 hr Rainfall (inches)
Sf = Slope (ft/ft)
Shallow Concentrated Flow Equation :
V = 16.1345 * (Sf^0.5) (unpaved surface)
V = 20.3282 * (Sf^0.5) (paved surface)
V = 15.0 * (Sf^0.5) (grassed waterway surface)
V = 10.0 * (Sf^0.5) (nearly bare & untilled surface)
V = 9.0 * (Sf^0.5) (cultivated straight rows surface)
V = 7.0 * (Sf^0.5) (short grass pasture surface)
V = 5.0 * (Sf^0.5) (woodland surface)
V = 2.5 * (Sf^0.5) (forest w/heavy litter surface)
Tc = (Lf / V) / (3600 sec/hr)
Where:
Tc = Time of Concentration (hr)
Lf = Flow Length (ft)
V = Velocity (ft/sec)
Sf = Slope (ft/ft)
Channel Flow Equation :
V = (1.49 * (R^(2/3)) * (Sf^0.5)) / n
R = Aq / Wp
Tc = (Lf / V) / (3600 sec/hr)
Where :
Tc = Time of Concentration (hr)
Lf = Flow Length (ft)
R = Hydraulic Radius (ft)
Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)
Sf = Slope (ft/ft)
n = Manning's roughness
Subarea Subarea Subarea
Sheet Flow Computations A B C
Manning's Roughness :0.15 0.00 0.00
Flow Length (ft) :876 0.00 0.00
Slope (%) :1.53 0.00 0.00
2 yr, 24 hr Rainfall (in) :1.20 0.00 0.00
Velocity (ft/sec) :0.14 0.00 0.00
Computed Flow Time (min) :101.08 0.00 0.00
Subarea Subarea Subarea
Channel Flow Computations A B C
Manning's Roughness :.045 0.00 0.00
Flow Length (ft) :752 0.00 0.00
Channel Slope (%) :0.75 0.00 0.00
Cross Section Area (ft²) :2 0.00 0.00
Wetted Perimeter (ft) :4 0.00 0.00
Velocity (ft/sec) :1.81 0.00 0.00
Computed Flow Time (min) :6.94 0.00 0.00
Total TOC (min) ..................108.02
Subbasin Runoff Results
Total Rainfall (in) ............................................................2.80
Total Runoff (in) .............................................................1.07
Peak Runoff (cfs) ...........................................................13.12
Weighted Curve Number ...............................................79.43
Time of Concentration (days hh:mm:ss) ........................0 01:48:01
Subbasin : DA1
Subbasin : DA2
Input Data
Area (ft²) .........................................................................378172.02
Weighted Curve Number ...............................................85.76
Rain Gage ID .................................................................Rain Gage-01
Composite Curve Number
Area Soil Curve
Soil/Surface Description (ft²)Group Number
-275594.01 B 92.00
-102578.01 B 69.00
Composite Area & Weighted CN 378172.02 85.76
Time of Concentration
Subarea Subarea Subarea
Sheet Flow Computations A B C
Manning's Roughness :.011 .15 0.00
Flow Length (ft) :633 365 0.00
Slope (%) :1.35 1.79 0.00
2 yr, 24 hr Rainfall (in) :1.20 1.20 0.00
Velocity (ft/sec) :1.04 0.13 0.00
Computed Flow Time (min) :10.13 47.12 0.00
Total TOC (min) ..................57.26
Subbasin Runoff Results
Total Rainfall (in) ............................................................2.80
Total Runoff (in) .............................................................1.48
Peak Runoff (cfs) ...........................................................7.32
Weighted Curve Number ...............................................85.76
Time of Concentration (days hh:mm:ss) ........................0 00:57:16
Subbasin : DA2
Subbasin : DA3
Input Data
Area (ft²) .........................................................................596656.00
Weighted Curve Number ...............................................85.00
Rain Gage ID .................................................................Rain Gage-01
Composite Curve Number
Area Soil Curve
Soil/Surface Description (ft²)Group Number
-596656.00 -85.00
Composite Area & Weighted CN 596656.00 85.00
Time of Concentration
Subarea Subarea Subarea
Sheet Flow Computations A B C
Manning's Roughness :.15 0.00 0.00
Flow Length (ft) :886 0.00 0.00
Slope (%) :1.38 0.00 0.00
2 yr, 24 hr Rainfall (in) :1.20 0.00 0.00
Velocity (ft/sec) :0.14 0.00 0.00
Computed Flow Time (min) :106.30 0.00 0.00
Total TOC (min) ..................106.30
Subbasin Runoff Results
Total Rainfall (in) ............................................................2.80
Total Runoff (in) .............................................................1.42
Peak Runoff (cfs) ...........................................................6.98
Weighted Curve Number ...............................................85.00
Time of Concentration (days hh:mm:ss) ........................0 01:46:18
Subbasin : DA3
APPENDIX C
HEC-RAS OUTPUT FILES
HEC-RAS Plan: (COMBINED SURFACES) River: Baxter Creek Reach: Baxter Creek CL Profile: 100 YEAR STORM
Reach River Sta Profile Q Total Min Ch El W.S. Elev Crit W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl
(cfs) (ft) (ft) (ft) (ft) (ft/ft) (ft/s) (sq ft) (ft)
Baxter Creek CL 1262.07 100 YEAR STORM 124.00 4811.56 4813.51 4813.27 4813.76 0.009976 4.77 37.22 57.22 0.64
Baxter Creek CL 1191.15* 100 YEAR STORM 124.00 4810.78 4812.75 4813.05 0.010225 4.87 34.23 39.02 0.64
Baxter Creek CL 1120.23 100 YEAR STORM 124.00 4810.00 4811.81 4811.64 4812.21 0.013758 5.33 27.50 26.36 0.74
Baxter Creek CL 1027.50* 100 YEAR STORM 124.00 4808.67 4810.61 4810.99 0.012521 5.24 28.13 26.06 0.71
Baxter Creek CL 934.78* 100 YEAR STORM 124.00 4807.33 4809.32 4809.15 4809.75 0.014430 5.55 26.24 24.35 0.75
Baxter Creek CL 842.05 100 YEAR STORM 124.00 4806.00 4808.20 4808.57 0.011270 5.17 28.72 25.28 0.67
Baxter Creek CL 763.85* 100 YEAR STORM 124.00 4805.00 4807.29 4807.68 0.011492 5.36 27.76 23.47 0.68
Baxter Creek CL 685.65 100 YEAR STORM 124.00 4804.00 4806.43 4806.09 4806.82 0.010597 5.37 28.05 22.45 0.66
Baxter Creek CL 607.46* 100 YEAR STORM 124.00 4803.06 4805.23 4805.16 4805.77 0.017305 6.28 23.60 20.81 0.83
Baxter Creek CL 529.26 100 YEAR STORM 124.00 4802.13 4804.71 4804.97 0.006797 4.54 34.81 26.38 0.54
Baxter Creek CL 467.71* 100 YEAR STORM 143.00 4801.67 4804.12 4804.47 0.009738 5.27 35.39 29.48 0.64
Baxter Creek CL 406.16 100 YEAR STORM 143.00 4801.20 4803.54 4803.86 0.009904 5.19 37.54 35.50 0.64
Baxter Creek CL 334.57* 100 YEAR STORM 143.00 4800.47 4802.74 4803.10 0.011288 5.36 34.14 31.04 0.68
Baxter Creek CL 262.97* 100 YEAR STORM 143.00 4799.73 4802.13 4801.72 4802.42 0.008217 4.73 38.01 32.02 0.59
Baxter Creek CL 191.38 100 YEAR STORM 143.00 4799.00 4800.95 4800.95 4801.52 0.021199 6.37 25.75 24.83 0.90
Baxter Creek CL 95.69* 100 YEAR STORM 143.00 4798.21 4800.07 4799.65 4800.27 0.007834 3.72 42.72 40.52 0.55
Baxter Creek CL 0 100 YEAR STORM 143.00 4797.43 4798.61 4798.61 4798.97 0.029322 4.86 30.59 45.87 0.96
0 200 400 600 800 1000 1200 14004796
4798
4800
4802
4804
4806
4808
4810
4812
4814
BaxterCreek Plan: BaxterCreek 5/16/2019
Main Channel Distance (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Crit 100 YEAR STORM
Ground
Baxter Creek Baxter Creek CL
0 100 200 300 4004811
4812
4813
4814
4815
4816
4817
BaxterCreek Plan: BaxterCreek 5/16/2019
XS STA 12+62
Station (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Crit 100 YEAR STORM
Ground
Bank Sta
.05 .045
.05
0 100 200 300 4004810
4811
4812
4813
4814
4815
4816
BaxterCreek Plan: BaxterCreek 5/16/2019
XS STA 11+20
Station (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Crit 100 YEAR STORM
Ground
Bank Sta
.05 .045
.05
0 100 200 300 4004806
4807
4808
4809
4810
4811
BaxterCreek Plan: BaxterCreek 5/16/2019
XS STA 8+42
Station (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Ground
Bank Sta
.05 .045
.05
0 100 200 300 4004804
4805
4806
4807
4808
4809
4810
BaxterCreek Plan: BaxterCreek 5/16/2019
XS STA 6+85
Station (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Crit 100 YEAR STORM
Ground
Bank Sta
.05 .045
.05
0 100 200 300 4004802
4803
4804
4805
4806
4807
4808
4809
BaxterCreek Plan: BaxterCreek 5/16/2019
XS STA 5+29
Station (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Ground
Bank Sta
.05 .045
.05
0 100 200 300 4004801
4802
4803
4804
4805
4806
4807
4808
BaxterCreek Plan: BaxterCreek 5/16/2019
XS STA 4+06
Station (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Ground
Bank Sta
.05 .045
.05
0 100 200 300 4004799
4800
4801
4802
4803
4804
4805
4806
BaxterCreek Plan: BaxterCreek 5/16/2019
XS STA 1+91
Station (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Crit 100 YEAR STORM
Ground
Bank Sta
.05 .045
.05
0 100 200 300 4004797
4798
4799
4800
4801
4802
4803
BaxterCreek Plan: BaxterCreek 5/16/2019
XS STA 0+00
Station (ft)
Ele
v
a
t
i
o
n
(
f
t
)
Legend
EG 100 YEAR STORM
WS 100 YEAR STORM
Crit 100 YEAR STORM
Ground
Bank Sta
.05 .045 .05
APPENDIX D
100-YEAR FLOODPLAIN BOUNDARY
APPENDIX E
2006 LOYAL GARDEN SUBDIVISION
DESIGN REPORT FOR WATER, SEWER, AND
PAVEMENT IMPROVEMENTS
(TD&H ENGINEERING)
APPENDIX F
2007 NORTON RANCH SUBDIVISION, PHASE 1
FLOOD HAZARD EVALUATION OF
BAXTER CREEK
(ENGINEERING, INC.)
t\
n
w
a
s
S
K
0
E
N
G
I
N
E
E
R
I
N
O
^
I
N
C
.
C
o
n
s
u
l
t
i
n
g
E
n
g
i
n
e
e
r
s
a
n
d
L
a
n
d
S
u
r
v
e
y
o
r
s
S
e
p
t
e
m
b
e
r
1
0
,
2
0
0
7
S
u
s
a
n
S
t
o
d
o
k
,
P
E
P
r
o
j
e
c
t
E
n
g
t
a
e
e
r
C
i
t
y
o
f
B
o
z
e
m
a
n
2
0
E
a
s
t
O
l
i
v
e
B
o
z
e
m
a
n
,
M
T
5
9
7
1
5
R
e
f
e
r
e
n
c
e
:
C
e
r
d
f
i
c
a
r
i
o
n
o
f
B
a
x
t
e
r
C
r
e
e
k
F
l
o
o
d
p
l
a
i
a
B
o
u
n
d
a
r
y
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
E
.
I
.
N
o
.
B
O
Z
-
0
7
0
0
4
D
e
a
r
S
u
s
a
n
:
I
n
a
c
c
o
r
d
a
n
c
e
-
w
i
t
h
C
h
a
p
t
e
r
1
8
.
5
8
(
F
l
o
o
d
p
l
a
m
R
e
g
u
l
a
t
i
o
n
s
)
o
f
t
h
e
C
i
t
y
o
f
B
o
z
e
m
a
n
U
n
i
f
i
e
d
D
e
v
e
l
o
p
m
e
n
t
O
t
d
i
n
a
n
c
e
(
U
D
O
)
,
E
n
g
m
e
e
r
i
n
g
,
I
n
c
.
c
o
m
p
l
e
t
e
d
a
F
l
o
o
d
H
a
.
z
a
.
t
d
E
v
a
l
u
a
t
i
o
n
o
f
B
a
x
t
e
r
C
r
e
e
k
f
o
r
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
.
T
h
i
s
l
e
t
t
e
r
i
s
t
o
c
e
t
t
i
f
y
t
h
a
t
d
i
e
f
l
o
o
d
p
l
a
i
a
b
o
u
n
d
a
r
y
o
f
B
a
x
t
e
r
C
r
e
e
k
,
a
s
d
e
l
i
n
e
a
t
e
d
o
n
E
x
h
i
b
i
t
2
o
f
t
h
e
F
l
o
o
d
H
a
z
a
r
d
E
v
a
l
u
a
t
i
o
n
,
h
a
s
b
e
e
n
m
a
p
p
e
d
u
s
i
n
g
a
p
p
r
o
p
r
i
a
t
e
e
n
g
i
n
e
e
r
i
n
g
m
e
t
h
o
d
s
f
o
r
h
y
d
t
o
l
o
g
y
a
n
d
h
y
d
r
a
u
l
i
c
m
o
d
e
l
i
n
g
a
n
d
t
h
e
r
e
f
o
r
e
s
h
o
u
l
d
p
r
o
t
e
c
t
a
g
a
i
n
s
t
d
a
m
a
g
e
t
o
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
,
b
y
t
h
e
1
0
0
-
y
e
a
r
f
l
o
o
d
o
f
B
a
x
t
e
r
C
r
e
e
k
.
R
e
f
e
r
t
o
t
h
e
a
t
t
a
c
h
e
d
F
l
o
o
d
H
a
z
a
r
d
E
v
a
l
u
a
t
i
o
n
o
f
B
a
x
t
e
r
C
r
e
e
k
f
o
r
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
,
d
a
t
e
d
S
e
p
t
e
r
a
b
e
t
1
0
,
2
0
0
7
,
f
o
r
m
o
r
e
i
n
f
o
r
m
a
t
i
o
n
.
S
i
n
c
e
r
e
l
y
,
^
%
^
-
7
J
^
H
e
i
d
n
e
r
,
P
E
P
r
o
j
e
c
t
E
n
g
i
n
e
e
r
J
H
/
s
k
w
E
n
c
.
P
:
B
O
Z
_
0
7
0
0
4
_
S
t
o
d
o
l
a
_
L
t
r
_
0
9
1
0
0
7
'
J
;
1
3
0
0
N
o
r
t
h
T
r
Q
n
s
t
e
c
h
W
o
y
•
B
i
l
!
i
n
(
)
s
,
M
T
5
9
1
0
2
•
P
h
o
n
e
(
4
0
6
1
6
5
6
-
5
2
5
5
•
f
m
i
.
W
M
M
-
M
h
J
.
u
^
p
n
n
i
n
r
.
n
m
(
n
o
^
J
M
/
^
^
D
.
J
E
F
F
R
&
)
:
^
t
i
E
i
D
N
E
?
^
c
-
•
o
.
\
"
,
^
<
^
'
x
<
3
^
T
w
^
{
.
n
w
a
s
n
E
N
O
I
N
E
E
R
I
N
O
,
I
N
C
.
C
o
n
s
u
l
t
i
n
g
E
n
g
i
n
e
e
r
s
o
n
d
L
a
n
d
S
u
r
v
e
y
o
r
s
S
e
p
t
e
m
b
e
r
1
0
,
2
0
0
7
E
.
I
.
N
o
.
B
O
Z
-
0
7
0
0
4
F
L
O
O
D
H
A
Z
A
R
D
E
V
A
L
U
A
T
I
O
N
O
F
B
A
X
T
E
R
C
R
E
E
K
F
O
R
N
O
R
T
O
N
R
A
N
C
H
S
U
B
D
I
V
I
S
I
O
N
,
P
H
A
S
E
I
I
N
T
R
O
D
U
C
T
I
O
N
I
n
a
c
c
o
r
d
a
n
c
e
w
i
t
h
C
h
a
p
t
e
r
1
8
.
5
8
(
F
l
o
o
d
p
l
a
i
a
R
e
g
u
l
a
t
i
o
n
s
)
o
f
t
h
e
C
i
t
y
o
f
B
o
z
e
m
a
n
U
n
i
f
i
e
d
D
e
v
e
l
o
p
m
e
n
t
O
r
d
i
n
a
n
c
e
(
U
D
O
)
,
E
n
g
i
n
e
e
r
m
g
,
I
n
c
.
c
o
m
p
l
e
t
e
d
a
F
l
o
o
d
H
a
z
a
r
d
E
v
a
l
u
a
t
i
o
n
f
o
t
B
a
x
t
e
r
C
r
e
e
k
i
n
r
e
l
a
t
i
o
n
t
o
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
.
T
h
e
p
u
r
p
o
s
e
o
f
t
h
i
s
F
l
o
o
d
H
a
z
a
r
d
E
v
a
l
u
a
t
i
o
n
i
s
t
o
e
s
t
i
n
i
a
t
e
w
h
e
r
e
t
h
e
1
0
0
-
y
e
a
r
f
l
o
o
d
p
l
a
m
o
f
B
a
x
t
e
r
C
r
e
e
k
i
s
l
o
c
a
t
e
d
i
n
r
e
l
a
t
i
o
n
t
o
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
.
S
i
n
c
e
t
h
e
d
r
a
i
n
a
g
e
a
r
e
a
o
f
B
a
x
t
e
r
C
r
e
e
k
i
s
l
e
s
s
t
h
a
n
2
5
s
q
u
a
r
e
a
i
d
e
s
,
a
n
d
n
o
o
f
f
i
c
i
a
l
f
l
o
o
d
p
l
a
i
n
o
r
f
l
o
o
d
w
a
y
d
e
l
i
n
e
a
t
i
o
n
s
t
u
d
y
h
a
s
b
e
e
n
m
a
d
e
f
o
r
B
a
x
t
e
r
C
r
e
e
k
,
t
h
e
l
e
q
u
i
t
e
m
e
n
t
s
o
u
t
l
i
n
e
d
i
n
S
e
c
t
i
o
n
1
8
.
5
8
.
0
9
0
.
B
.
2
.
c
&
d
o
f
t
h
e
C
i
t
y
o
f
B
o
z
e
m
a
n
U
D
O
(
O
c
t
o
b
e
r
1
,
2
0
0
5
)
w
e
r
e
f
o
l
l
o
w
e
d
f
o
r
t
h
i
s
F
l
o
o
d
H
a
z
a
r
d
E
v
a
l
u
a
t
i
o
n
.
T
h
e
f
o
l
l
o
w
i
n
g
i
s
s
u
m
m
a
r
y
o
f
t
h
e
h
y
d
i
o
l
o
g
y
a
n
d
h
y
d
c
a
u
l
i
c
m
o
d
e
l
i
n
g
p
e
r
f
o
r
m
e
d
f
o
r
B
a
x
t
e
r
C
r
e
e
k
t
a
r
e
l
a
t
i
o
n
t
o
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
.
H
Y
D
R
O
L
O
G
Y
B
a
x
t
e
r
C
r
e
e
k
i
s
n
a
t
u
r
a
l
s
t
r
e
a
m
t
h
a
t
f
l
o
w
s
a
p
p
r
o
x
i
m
a
t
e
l
y
5
0
0
f
e
e
t
e
a
s
t
o
f
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
^
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
,
a
n
d
o
r
i
g
m
a
t
e
s
n
o
r
t
h
o
f
B
l
a
c
k
w
o
o
d
R
o
a
d
a
p
p
r
o
x
i
r
a
a
t
e
l
y
2
.
5
m
i
l
e
s
s
o
u
t
h
e
a
s
t
o
f
t
h
e
p
r
o
p
o
s
e
d
s
i
t
e
.
S
i
n
c
e
t
h
e
r
e
i
s
n
o
k
n
o
w
n
s
t
r
e
a
m
g
a
g
e
d
a
t
a
a
v
a
i
l
a
b
l
e
f
o
r
B
a
x
t
e
r
C
r
e
e
k
,
t
h
e
1
0
0
-
y
e
a
r
p
e
a
k
f
l
o
w
w
a
s
e
s
t
i
m
a
t
e
d
u
s
i
t
l
g
t
h
e
S
o
i
l
C
o
n
s
e
r
v
a
t
i
o
n
S
e
r
v
i
c
e
(
S
C
S
)
h
y
d
t
o
g
r
a
p
h
m
e
t
h
o
d
.
T
h
e
i
n
p
u
t
p
a
r
a
m
e
t
e
r
s
n
e
e
d
e
d
f
o
r
t
h
e
S
C
S
h
y
d
c
o
g
i
-
a
p
h
m
e
t
h
o
d
i
n
c
l
u
d
e
:
d
r
a
m
a
g
e
a
r
e
a
,
r
a
m
f
a
U
d
a
t
a
,
S
C
S
t
u
n
o
f
f
c
u
r
v
e
n
u
m
b
e
r
,
a
n
d
t
i
m
e
o
f
c
o
n
c
e
n
t
r
a
t
i
o
n
.
D
R
A
I
N
A
G
E
A
R
E
A
T
h
e
B
a
x
t
e
r
C
r
e
e
k
d
r
a
i
n
a
g
e
a
i
-
e
a
w
a
s
d
e
l
b
e
a
t
e
d
f
r
o
m
i
t
s
o
r
i
g
i
a
a
t
B
l
a
c
k
w
^
o
o
d
R
o
a
d
s
o
u
t
h
t
o
a
p
p
r
o
x
i
t
n
a
t
e
l
y
5
0
0
f
e
e
t
d
o
w
n
s
t
r
e
a
m
f
r
o
t
n
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
,
u
s
i
n
g
t
h
e
U
S
G
S
B
o
z
e
r
a
a
n
Q
u
a
d
r
a
n
g
l
e
m
a
p
a
s
s
h
o
w
n
o
n
t
h
e
a
t
t
a
c
h
e
d
E
x
h
i
b
i
t
1
.
T
h
e
d
r
a
i
n
a
g
e
a
r
e
a
f
o
r
t
h
e
a
b
o
v
e
d
e
s
c
r
i
b
e
d
p
o
r
t
i
o
n
o
f
B
a
x
t
e
r
C
r
e
e
k
w
a
s
e
s
t
i
m
a
t
e
d
t
o
b
e
a
p
p
r
o
x
i
t
n
a
t
e
l
y
7
0
0
a
c
r
e
s
.
1
3
0
0
N
o
r
t
h
T
r
a
n
s
t
e
c
h
W
a
v
•
B
i
l
l
i
n
o
s
.
M
T
5
9
1
0
7
•
P
h
n
n
B
M
n
^
U
^
-
v
?
^
C
n
,
,
I
A
!
\
i
\
L
i
L
n
o
Z
7
-
n
0
R
A
I
N
F
A
L
L
D
A
T
A
T
h
e
r
a
i
n
f
a
l
l
d
a
t
a
w
a
s
o
b
t
a
i
n
e
d
f
r
o
m
t
h
e
R
a
i
n
f
a
U
I
n
t
e
n
s
i
t
y
-
D
u
c
a
r
i
o
n
C
u
r
v
e
s
(
I
D
F
)
f
r
o
m
F
i
g
u
r
e
s
1
-
2
a
n
d
1
-
3
o
f
t
h
e
C
i
t
y
o
f
B
o
z
e
m
a
n
D
e
s
i
g
n
S
t
a
n
d
a
r
d
s
a
n
d
S
p
e
c
i
f
i
c
a
r
i
o
n
s
P
o
l
i
c
y
.
F
r
o
m
t
h
e
p
o
w
e
r
c
u
r
v
e
e
q
u
a
t
i
o
n
p
r
o
v
i
d
e
d
f
o
r
d
i
e
1
0
0
-
y
e
a
r
f
r
e
q
u
e
n
c
y
a
n
d
i
n
p
u
t
t
i
n
g
2
4
h
o
u
r
s
a
s
t
h
e
d
u
r
a
t
i
o
n
,
t
h
e
1
0
0
-
y
e
a
r
,
2
4
-
h
o
i
u
:
p
r
e
c
i
p
i
t
a
t
i
o
n
w
a
s
d
e
t
e
r
m
i
n
e
d
t
o
b
e
2
.
8
8
i
n
c
h
e
s
.
S
C
S
R
U
N
O
F
F
C
U
R
V
E
N
U
M
B
E
R
T
h
e
S
C
S
r
u
n
o
f
f
c
u
r
y
e
n
u
m
b
e
r
(
C
N
)
f
o
r
t
h
e
B
a
x
t
e
r
C
r
e
e
k
d
r
a
i
n
a
g
e
a
r
e
a
w
a
s
d
e
t
e
r
m
i
n
e
d
u
s
i
n
g
a
w
e
i
g
h
t
e
d
a
v
e
r
a
g
e
o
f
t
h
e
h
y
d
r
o
l
o
g
i
c
s
o
i
l
g
r
o
u
p
s
a
n
d
l
a
n
d
u
s
e
s
w
i
t
h
i
n
t
h
e
d
r
a
i
n
a
g
e
a
r
e
a
.
H
y
d
r
o
l
o
g
i
c
s
o
i
l
g
r
o
u
p
d
a
t
a
f
o
r
t
h
e
d
r
a
i
n
a
g
e
a
r
e
a
w
a
s
o
b
t
a
i
n
e
d
f
r
o
m
t
h
e
N
a
t
u
r
a
l
R
e
s
o
u
r
c
e
s
C
o
n
s
e
r
y
a
r
i
o
n
S
e
r
v
i
c
e
(
N
R
C
S
)
W
e
b
S
o
i
l
S
u
r
v
T
e
y
.
T
h
e
s
o
i
l
g
r
o
u
p
s
w
i
t
h
i
n
t
h
e
d
r
a
i
n
a
g
e
a
r
e
a
r
a
n
g
e
d
f
r
o
m
B
t
o
D
,
w
i
t
h
B
h
a
v
i
n
g
a
l
o
w
e
r
r
u
n
o
f
f
p
o
t
e
n
t
i
a
l
t
h
a
n
D
.
T
h
e
s
o
i
l
g
r
o
u
p
p
e
r
c
e
n
t
a
g
e
s
w
e
r
e
c
a
l
c
u
l
a
t
e
d
a
s
f
o
l
l
o
w
s
:
B
=
3
3
p
e
r
c
e
n
t
,
C
=
6
0
p
e
r
c
e
n
t
,
a
n
d
D
=
7
p
e
r
c
e
n
t
.
T
h
e
l
a
n
d
u
s
e
d
a
t
a
w
a
s
b
a
s
e
d
o
n
a
s
i
t
e
o
b
s
e
r
y
a
d
o
n
o
n
J
u
l
y
1
8
,
2
0
0
7
,
a
n
d
t
h
e
m
o
s
t
r
e
c
e
n
t
s
a
t
e
l
l
i
t
e
i
m
a
g
e
r
y
o
f
t
h
e
d
r
a
i
n
a
g
e
a
r
e
a
a
s
o
f
S
e
p
t
e
m
b
e
r
1
0
,
2
0
0
7
.
A
p
p
r
o
x
i
m
a
t
e
l
y
8
0
p
e
r
c
e
n
t
o
f
t
h
e
d
r
a
i
n
a
g
e
a
r
e
a
w
a
s
e
s
t
i
m
a
t
e
d
t
o
b
e
p
a
s
t
u
r
e
o
r
h
a
y
c
r
o
p
p
i
o
d
u
c
d
o
n
i
n
f
a
i
r
t
o
g
o
o
d
c
o
n
d
i
d
o
n
,
1
7
p
e
r
c
e
n
t
w
a
s
e
s
t
i
m
a
t
e
d
t
o
b
e
r
e
s
i
d
e
n
t
i
a
l
d
e
v
e
l
o
p
m
e
n
t
w
i
t
h
3
8
p
e
r
c
e
n
t
i
m
p
e
r
y
i
o
u
s
n
e
s
s
,
a
n
d
3
p
e
r
c
e
n
t
w
a
s
e
s
t
i
m
a
t
e
d
t
o
b
e
c
o
m
m
e
r
c
i
a
l
w
i
t
h
8
5
p
e
r
c
e
n
t
i
m
p
e
r
y
i
o
u
s
n
e
s
s
.
U
s
i
n
g
T
a
b
l
e
2
-
2
o
f
T
R
-
5
5
U
r
b
a
n
H
y
d
r
o
l
o
g
y
f
o
r
S
m
a
U
W
a
t
e
r
s
h
e
d
s
(
1
9
8
6
)
f
o
r
t
h
e
a
b
o
v
e
m
e
n
t
i
o
n
e
d
h
y
d
r
o
l
o
g
i
c
s
o
i
l
g
r
o
u
p
s
a
n
d
l
a
n
d
u
s
e
s
,
a
w
e
i
g
h
t
e
d
c
u
r
v
e
n
u
m
b
e
r
o
f
7
5
w
a
s
c
a
l
c
u
l
a
t
e
d
.
T
h
i
s
i
s
t
h
e
e
s
t
i
t
n
a
t
e
d
S
C
S
r
u
n
o
f
f
c
u
r
y
e
n
u
m
b
e
r
f
o
r
t
h
e
B
a
x
t
e
r
C
r
e
e
k
d
r
a
i
n
a
g
e
a
r
e
a
u
n
d
e
r
e
x
i
s
t
i
n
g
c
o
n
d
i
t
i
o
n
s
a
n
d
d
o
e
s
n
o
t
t
a
k
e
i
n
t
o
a
c
c
o
u
n
t
f
u
t
u
r
e
d
e
v
e
l
o
p
m
e
n
t
.
T
I
M
E
O
F
C
O
N
C
E
N
T
R
A
T
I
O
N
T
i
m
e
o
f
c
o
n
c
e
n
t
r
a
t
i
o
n
w
a
s
e
s
t
i
m
a
t
e
d
f
r
o
m
w
h
e
r
e
B
a
x
t
e
r
C
r
e
e
k
o
r
i
g
i
n
a
t
e
s
a
t
B
l
a
c
k
w
o
o
d
R
o
a
d
t
o
a
p
p
r
o
x
i
m
a
t
e
l
y
5
0
0
f
e
e
t
d
o
w
n
s
t
r
e
a
m
o
f
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
.
T
h
e
f
i
r
s
t
3
0
0
f
e
e
t
o
f
t
h
e
d
r
a
i
n
a
g
e
w
a
s
e
s
t
i
m
a
t
e
d
t
o
b
e
s
h
e
e
t
f
l
o
w
,
a
n
d
M
a
n
n
i
n
g
'
s
k
i
n
e
m
a
t
i
c
s
e
q
u
a
t
i
o
n
f
r
o
m
T
R
-
5
5
U
r
b
a
n
H
y
d
r
o
l
o
g
}
r
f
o
r
S
m
a
U
W
a
t
e
r
s
h
e
d
s
(
1
9
8
6
)
w
a
s
u
s
e
d
t
o
c
a
l
c
u
l
a
t
e
t
h
e
r
i
m
e
o
f
t
r
a
v
e
l
.
A
s
s
u
m
i
n
g
a
M
a
n
n
i
n
g
'
s
"
n
"
v
a
l
u
e
o
f
0
.
1
5
(
s
h
o
r
t
g
r
a
s
s
p
a
s
t
u
r
e
)
,
a
l
e
n
g
t
h
o
f
3
0
0
f
e
e
t
,
a
2
-
y
e
a
r
,
2
4
-
h
o
u
r
r
a
i
n
f
a
U
o
f
1
.
2
8
i
n
c
h
e
s
,
a
n
d
a
s
l
o
p
e
o
f
1
.
4
3
p
e
r
c
e
n
t
,
a
t
r
a
v
e
l
t
i
m
e
o
f
4
2
.
7
m
i
n
u
t
e
s
w
a
s
c
a
l
c
i
i
l
a
t
e
d
f
o
r
s
h
e
e
t
f
l
o
w
.
F
r
o
m
t
h
a
t
p
o
i
n
t
,
s
h
a
l
l
o
w
c
o
n
c
e
n
t
r
a
t
e
d
f
l
o
w
w
a
s
e
s
t
i
m
a
t
e
d
f
o
r
7
0
0
f
e
e
t
d
o
w
n
s
t
r
e
a
m
t
o
t
h
e
s
t
a
r
t
o
f
t
h
e
B
a
x
t
e
r
C
r
e
e
k
c
h
a
n
n
e
l
a
s
i
d
e
n
t
i
f
i
e
d
o
n
t
h
e
U
S
G
S
B
o
z
e
m
.
a
n
Q
u
a
d
r
a
n
g
l
e
m
a
p
.
T
i
m
e
o
f
t
r
a
v
e
l
f
o
r
s
h
a
l
l
o
w
c
o
n
c
e
n
t
r
a
t
e
d
f
l
o
w
w
a
s
d
e
t
e
r
m
i
n
e
d
t
o
b
e
5
.
8
m
i
n
u
t
e
s
f
r
o
m
F
i
g
u
r
e
3
-
1
o
f
T
R
-
5
5
U
r
b
a
n
H
y
d
r
o
l
o
g
y
f
o
r
S
m
a
U
W
a
t
e
r
s
h
e
d
s
(
1
9
8
6
)
u
s
i
n
g
t
h
e
c
u
r
v
e
f
o
r
a
n
u
n
p
a
v
e
d
s
u
r
f
a
c
e
.
C
h
a
n
n
e
l
f
l
o
w
w
a
s
e
s
t
i
m
a
t
e
d
f
o
r
t
h
e
r
e
m
a
i
n
i
n
g
1
3
,
7
7
0
f
e
e
t
f
r
o
m
w
h
e
r
e
U
S
G
S
i
d
e
n
t
i
f
i
e
s
t
h
e
s
t
a
r
t
o
f
B
a
x
t
e
r
C
r
e
e
k
d
o
w
n
s
t
r
e
a
i
n
t
o
a
p
p
r
o
x
i
m
a
t
e
l
y
5
0
0
f
e
e
t
n
o
r
t
h
o
f
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
.
T
h
e
c
h
a
n
n
e
l
v
e
l
o
c
i
t
y
w
a
s
e
s
t
i
m
a
t
e
d
u
s
i
n
g
a
n
i
t
e
r
a
d
v
e
p
r
o
c
e
s
s
w
i
t
h
t
h
e
h
y
d
r
a
u
l
i
c
m
o
d
e
l
d
i
s
c
u
s
s
e
d
b
e
l
o
w
t
o
d
e
t
e
r
m
i
n
e
a
n
a
v
e
r
a
g
e
c
h
a
n
n
e
l
v
e
l
o
c
i
t
y
.
A
n
a
v
e
r
a
g
e
c
h
a
n
n
e
l
v
e
l
o
c
i
t
y
o
f
5
.
7
4
f
t
/
s
w
a
s
e
s
t
u
n
a
t
e
d
a
n
d
t
h
e
t
i
m
e
o
f
t
r
a
v
e
l
f
o
r
t
h
e
c
h
a
n
n
e
l
f
l
o
w
w
a
s
c
a
l
c
u
l
a
t
e
d
t
o
b
e
4
0
m
i
n
u
t
e
s
(
1
3
,
7
7
0
f
t
/
(
6
0
x
5
.
7
4
f
t
/
s
)
)
.
T
h
e
t
o
t
a
l
t
i
m
e
o
f
c
o
n
c
e
n
t
r
a
t
i
o
n
w
a
s
t
h
e
n
c
a
l
c
u
l
a
t
e
d
a
s
t
h
e
s
u
m
o
f
t
h
e
t
r
a
v
e
l
t
i
m
e
s
f
o
r
s
h
e
e
t
f
l
o
w
,
s
h
a
l
l
o
w
c
o
n
c
e
n
t
r
a
t
e
d
f
l
o
w
,
a
n
d
c
h
a
n
n
e
l
f
l
o
w
,
w
h
i
c
h
e
q
u
a
t
e
s
t
o
a
p
p
r
o
x
i
m
a
t
e
l
y
8
8
.
5
m
i
n
u
t
e
s
o
r
1
.
4
8
h
o
u
r
s
f
o
r
t
h
e
B
a
x
t
e
r
C
r
e
e
k
d
r
a
i
n
a
g
e
a
r
e
a
.
P
:
B
O
X
_
0
7
0
0
4
_
F
l
o
o
d
_
I
]
a
2
a
r
d
_
I
i
v
a
l
2
(
0
9
/
1
0
/
2
0
0
7
)
J
D
I
l
/
s
k
w
n
n
P
E
A
K
F
L
O
W
A
N
A
L
Y
S
I
S
T
h
e
a
b
o
v
e
d
e
s
c
r
i
b
e
d
S
C
S
h
y
d
r
o
g
i
-
a
p
h
p
a
r
a
m
e
t
e
r
s
w
e
r
e
i
n
p
u
t
i
n
t
o
t
h
e
S
C
S
T
R
-
2
0
c
o
m
p
u
t
e
r
p
r
o
g
r
a
m
i
n
A
u
t
o
C
A
D
t
o
g
e
n
e
r
a
t
e
a
p
e
a
k
f
l
o
w
h
y
d
r
o
g
c
a
p
h
(
s
e
e
a
t
t
a
c
h
e
d
o
u
t
p
u
t
)
.
T
h
e
1
0
0
-
y
e
a
r
,
2
4
-
h
o
u
r
p
e
a
k
f
l
o
w
w
a
s
e
s
t
i
m
a
t
e
d
a
t
2
2
3
c
u
b
i
c
f
e
e
t
p
e
r
s
e
c
o
n
d
(
c
f
s
)
f
o
r
B
a
x
t
e
r
C
r
e
e
k
f
o
r
t
h
e
a
b
o
v
e
d
e
s
c
r
i
b
e
d
d
r
a
i
n
a
g
e
a
r
e
a
r
e
l
a
d
v
e
t
o
d
i
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
.
T
h
i
s
e
s
t
i
m
a
t
e
d
p
e
a
k
f
l
o
w
w
a
s
c
o
m
p
a
r
e
d
t
o
o
t
h
e
r
m
e
t
h
o
d
s
o
f
p
e
a
k
f
l
o
w
c
a
l
c
u
l
a
t
i
o
n
t
o
v
e
r
i
f
y
t
h
e
a
c
c
u
r
a
c
y
o
f
t
h
e
r
e
s
u
l
t
s
.
T
h
e
U
n
i
t
e
d
S
t
a
t
e
s
G
e
o
l
o
g
i
c
a
l
S
u
r
v
e
y
(
U
S
G
S
)
r
e
g
r
e
s
s
i
o
n
e
q
u
a
t
i
o
n
f
o
r
t
h
e
U
p
p
e
r
Y
e
U
o
w
s
t
o
n
e
-
C
e
n
t
r
a
l
M
o
u
n
t
a
i
n
R
e
g
i
o
n
u
s
i
t
i
g
b
a
s
i
n
a
n
d
c
l
i
n
i
a
d
c
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
e
s
t
i
m
a
t
e
d
t
h
e
1
0
0
-
y
e
a
r
p
e
a
k
f
l
o
w
t
o
b
e
a
p
p
r
o
x
i
m
a
t
e
l
y
1
9
3
-
_
c
f
s
.
T
h
e
r
a
t
i
o
n
a
l
m
e
d
i
o
d
c
a
l
c
i
i
l
a
t
e
d
t
h
e
1
0
0
-
y
e
a
r
p
e
a
k
f
l
o
w
t
o
b
e
a
p
p
r
o
x
i
m
a
t
e
l
y
l
_
8
6
,
c
f
s
.
T
h
e
s
e
e
s
r
i
n
i
a
t
e
d
p
e
a
k
f
l
o
w
s
w
e
r
e
a
l
s
o
c
o
m
p
a
r
e
d
t
o
t
h
e
p
e
a
k
f
l
o
w
s
e
s
t
i
m
a
t
e
d
b
y
T
h
o
m
a
s
,
D
e
a
n
,
a
n
d
H
o
s
k
i
n
s
,
I
n
c
.
(
T
D
&
H
)
f
o
r
t
h
e
B
a
x
t
e
r
C
r
e
e
k
c
u
l
v
e
r
t
c
r
o
s
s
i
n
g
a
t
H
u
f
f
i
n
e
L
a
n
e
f
o
r
t
h
e
L
o
y
a
l
G
a
r
d
e
n
S
u
b
d
i
v
i
s
i
o
n
(
A
p
p
e
n
d
b
r
-
S
e
c
t
i
o
n
8
,
J
u
n
e
2
0
,
2
0
0
6
)
.
T
h
e
c
u
l
v
e
r
t
a
t
H
u
f
f
i
n
e
L
a
n
e
w
a
s
d
e
s
i
g
n
e
d
a
s
a
5
4
-
i
n
c
h
d
i
a
m
e
t
e
r
c
u
l
v
e
r
t
,
a
n
d
d
i
e
1
0
0
-
y
e
a
r
w
a
t
e
r
s
u
r
f
a
c
e
e
l
e
v
a
t
i
o
n
w
a
s
c
a
l
c
u
l
a
t
e
d
a
s
4
,
8
1
3
.
3
7
f
e
e
t
.
B
a
s
e
d
o
n
T
D
&
H
'
s
c
u
l
v
e
r
t
a
n
a
l
y
s
i
s
r
e
s
u
l
t
s
,
a
1
0
0
-
y
e
a
r
p
e
a
k
f
l
o
w
o
f
a
p
p
r
o
x
i
m
a
t
e
l
y
1
1
0
c
f
s
a
t
P
I
u
f
f
i
n
e
L
a
n
e
w
a
s
d
e
t
e
r
m
i
n
e
d
.
A
p
p
l
y
i
n
g
a
s
c
a
l
e
f
a
c
t
o
r
o
f
1
.
2
t
o
a
c
c
o
u
n
t
f
o
r
t
h
e
a
d
d
i
t
i
o
n
a
l
d
r
a
i
n
a
g
e
a
r
e
a
n
o
r
t
h
o
f
H
u
f
f
i
n
e
L
a
n
e
c
o
n
t
r
i
b
u
t
i
n
g
t
o
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
,
a
1
0
0
-
y
e
a
r
p
e
a
k
f
l
o
w
o
f
1
3
2
c
f
s
w
a
s
e
s
t
i
m
a
t
e
d
f
o
r
t
h
e
B
a
x
t
e
r
C
r
e
e
k
d
r
a
i
n
a
g
e
a
r
e
a
u
s
i
n
g
T
D
&
H
'
s
c
a
l
c
u
l
a
t
i
o
n
s
.
T
h
e
r
e
f
o
r
e
,
t
h
e
p
e
a
k
f
l
o
w
o
f
2
2
3
c
f
s
u
s
i
n
g
t
h
e
S
C
S
h
y
d
r
o
g
r
a
p
h
m
e
t
h
o
d
i
s
t
h
e
h
i
g
h
e
s
t
f
l
o
w
p
r
e
d
i
c
t
e
d
b
y
s
e
v
e
r
a
l
e
s
t
u
n
a
t
e
s
f
o
r
t
h
e
1
0
0
-
y
e
a
r
p
e
a
k
o
f
B
a
x
t
e
r
C
r
e
e
k
a
n
d
w
f
f
l
b
e
u
t
i
l
i
z
e
d
f
o
r
h
y
d
r
a
u
l
i
c
m
o
d
e
l
i
n
g
o
f
B
a
x
t
e
r
C
r
e
e
k
a
s
d
i
s
c
u
s
s
e
d
b
e
l
o
w
.
H
Y
D
R
A
U
L
I
C
M
O
D
E
L
I
N
G
T
h
e
h
y
d
r
a
u
l
i
c
m
o
d
e
l
i
n
g
o
f
B
a
x
t
e
r
C
r
e
e
k
w
a
s
p
e
r
f
o
r
m
e
d
u
s
i
n
g
H
E
C
-
R
A
S
V
e
r
s
i
o
n
3
.
1
.
2
(
A
p
r
i
l
2
0
0
4
)
,
t
h
e
U
n
i
t
e
d
S
t
a
t
e
s
A
r
m
y
C
o
r
p
s
o
f
E
n
g
i
n
e
e
r
s
(
U
S
A
G
E
)
r
i
v
e
r
a
n
a
l
y
s
i
s
s
o
f
t
w
a
r
e
f
o
r
o
n
e
-
d
i
m
e
n
s
i
o
n
a
l
h
y
d
r
a
u
l
i
c
m
o
d
e
U
n
g
.
C
r
o
s
s
s
e
c
t
i
o
n
d
a
t
a
f
o
r
B
a
x
t
e
r
C
r
e
e
k
c
o
n
s
i
s
t
e
d
o
f
e
i
g
h
t
s
u
r
v
e
y
e
d
c
r
o
s
s
s
e
c
t
i
o
n
s
a
n
d
f
o
u
r
i
n
t
e
r
m
e
d
i
a
t
e
i
n
t
e
r
p
o
l
a
t
e
d
c
r
o
s
s
s
e
c
t
i
o
n
s
,
w
h
i
c
h
w
e
r
e
i
n
p
u
t
i
n
t
o
H
E
C
-
R
A
S
.
T
h
e
u
p
s
t
r
e
a
m
c
r
o
s
s
s
e
c
t
i
o
n
(
X
S
-
8
)
i
s
l
o
c
a
t
e
d
a
p
p
r
o
x
i
m
a
t
e
l
y
3
8
0
f
e
e
t
s
o
u
t
h
o
f
F
a
U
o
n
S
t
r
e
e
t
a
n
d
t
h
e
d
o
w
n
s
t
r
e
a
m
c
r
o
s
s
s
e
c
t
i
o
n
(
X
S
-
1
)
i
s
l
o
c
a
t
e
d
a
p
p
r
o
x
i
m
a
t
e
l
y
5
0
0
f
e
e
t
n
o
r
t
h
o
f
W
e
s
t
B
a
b
c
o
c
k
S
t
r
e
e
t
.
T
h
e
M
a
n
n
i
n
g
'
s
r
o
u
g
h
n
e
s
s
c
o
e
f
f
i
c
i
e
n
t
s
(
"
n
"
v
a
l
u
e
s
)
f
o
r
B
a
x
t
e
r
C
r
e
e
k
w
e
r
e
e
s
t
i
m
a
t
e
d
b
a
s
e
d
o
n
s
i
t
e
p
i
c
t
u
r
e
s
t
a
k
e
n
o
n
J
u
l
y
1
8
,
2
0
0
7
,
a
t
e
a
c
h
c
r
o
s
s
s
e
c
t
i
o
n
a
n
d
u
s
i
n
g
T
a
b
l
e
5
-
6
o
f
C
h
o
w
'
s
O
p
e
n
C
h
a
n
n
e
l
H
y
d
r
a
i
i
l
i
c
s
(
1
9
5
9
)
b
o
o
k
.
T
h
e
"
n
"
v
a
l
u
e
s
w
e
r
e
e
s
r
i
m
a
t
e
d
t
o
b
e
0
.
0
4
5
f
o
r
t
h
e
c
h
a
n
n
e
l
a
n
d
0
.
0
5
f
o
r
t
h
e
o
v
e
r
b
a
n
k
s
f
o
r
c
r
o
s
s
s
e
c
t
i
o
n
s
4
t
h
r
o
u
g
h
8
.
C
r
o
s
s
s
e
c
t
i
o
n
s
1
t
l
i
r
o
u
g
h
3
i
n
c
l
u
d
e
d
s
o
m
e
t
r
e
e
s
a
l
o
n
g
d
i
e
l
e
f
t
o
v
e
r
b
a
n
k
(
w
e
s
t
)
a
n
d
a
n
"
n
"
v
a
l
u
e
o
f
0
.
1
2
w
a
s
e
s
t
i
m
a
t
e
d
f
o
r
t
h
e
l
e
f
t
o
v
e
r
b
a
n
k
f
o
r
c
r
o
s
s
s
e
c
t
i
o
n
s
1
t
h
r
o
u
g
h
3
,
w
h
i
l
e
t
h
e
m
a
i
n
c
h
a
n
n
e
l
a
n
d
r
i
g
h
t
o
v
e
r
b
a
n
k
m
a
i
n
t
a
i
n
e
d
"
n
"
v
a
l
u
e
s
o
f
0
.
0
4
5
a
n
d
0
.
0
5
r
e
s
p
e
c
t
i
v
e
l
y
.
A
s
t
e
a
d
y
s
t
a
t
e
f
l
o
w
m
o
d
e
l
w
a
s
d
e
v
e
l
o
p
e
d
i
n
H
E
C
-
R
A
S
a
f
t
e
r
i
n
p
u
t
t
i
n
g
t
h
e
a
b
o
v
e
p
a
r
a
m
e
t
e
r
s
,
a
n
d
w
a
t
e
r
s
u
r
f
a
c
e
e
l
e
v
a
t
i
o
n
s
w
e
r
e
c
o
m
p
u
t
e
d
a
t
e
a
c
h
c
r
o
s
s
s
e
c
t
i
o
n
f
o
r
t
h
e
e
s
t
i
i
n
a
t
e
d
1
0
0
-
y
e
a
r
p
e
a
k
f
l
o
w
o
f
2
2
3
c
f
s
.
T
h
e
r
e
s
u
l
t
s
o
f
t
h
i
s
h
y
d
r
a
u
l
i
c
m
o
d
e
l
a
r
e
i
n
c
l
u
d
e
d
a
s
a
n
a
t
t
a
c
h
m
e
n
t
t
o
t
h
i
s
F
l
o
o
d
H
a
z
a
r
d
E
v
a
l
u
a
t
i
o
n
.
T
h
e
w
a
t
e
r
s
u
r
f
a
c
e
e
l
e
v
a
t
i
o
n
s
w
e
r
e
m
a
p
p
e
d
o
n
p
l
a
n
v
i
e
w
a
t
e
a
c
h
c
r
o
s
s
s
e
c
t
i
o
n
l
o
c
a
t
i
o
n
a
s
s
h
o
w
n
o
n
E
x
h
i
b
i
t
2
,
t
o
s
h
o
w
t
h
e
a
p
p
r
o
x
i
m
a
t
e
f
l
o
o
d
p
l
a
i
n
b
o
u
n
d
a
r
y
o
f
t
h
e
1
0
0
-
y
e
a
r
s
t
o
r
m
i
n
P
:
B
0
7
_
0
7
0
0
4
_
F
I
o
o
d
_
J
I
a
/
.
a
r
d
_
R
v
!
i
l
3
(
0
9
/
1
0
/
2
0
n
7
)
J
U
l
l
/
s
k
w
n
n
r
e
l
a
t
i
o
n
t
o
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
.
T
h
e
r
e
s
u
l
t
s
i
n
d
i
c
a
t
e
t
h
a
t
t
h
e
1
0
0
-
y
e
a
r
f
l
o
o
d
p
l
a
i
n
b
o
u
n
d
a
r
y
o
f
B
a
x
t
e
r
C
r
e
e
k
s
h
o
u
l
d
n
o
t
i
n
u
n
d
a
t
e
l
o
t
s
w
i
t
h
i
n
t
h
e
p
r
o
p
o
s
e
d
s
u
b
d
i
v
i
s
i
o
n
.
I
t
s
h
o
u
l
d
b
e
n
o
t
e
d
t
h
a
t
a
l
t
h
o
u
g
h
t
h
e
r
e
s
u
l
t
s
o
f
t
h
e
h
y
d
r
a
u
l
i
c
m
o
d
e
l
i
n
g
d
o
n
o
t
i
n
d
i
c
a
t
e
f
l
o
o
d
i
n
g
w
i
t
h
i
n
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
,
f
o
r
t
h
e
1
0
0
-
y
e
a
r
p
e
a
k
f
l
o
w
f
r
o
m
B
a
x
t
e
r
C
r
e
e
k
,
d
i
e
p
o
t
e
n
t
i
a
l
s
f
c
i
U
e
x
i
s
t
s
f
o
r
s
t
o
r
m
e
v
e
n
t
s
g
r
e
a
t
e
r
t
h
a
n
t
h
e
1
0
0
-
y
e
a
r
s
t
o
r
m
.
I
t
i
s
r
e
c
o
m
m
e
n
d
e
d
t
h
a
t
h
o
m
e
s
i
t
e
s
w
i
t
h
i
n
t
h
e
p
r
o
p
o
s
e
d
s
u
b
d
i
v
i
s
i
o
n
b
e
c
o
n
s
t
r
u
c
t
e
d
w
i
t
h
a
f
i
n
i
s
h
e
d
f
l
o
o
r
e
l
e
v
a
t
i
o
n
a
m
i
n
i
m
u
m
o
f
1
8
i
n
c
h
e
s
a
b
o
v
e
t
h
e
t
o
p
o
f
c
u
r
b
,
w
h
i
c
h
w
i
U
p
r
o
v
i
d
e
a
n
a
d
d
i
t
i
o
n
a
l
f
a
c
t
o
r
o
f
s
a
f
e
t
y
a
g
a
i
n
s
t
f
l
o
o
d
i
n
g
.
S
U
M
M
A
R
Y
T
h
e
r
e
s
u
l
t
s
o
u
t
l
i
n
e
d
h
e
r
e
i
n
a
n
d
t
h
e
a
t
t
a
c
h
e
d
e
x
h
i
b
i
t
s
d
e
m
o
n
s
t
r
a
t
e
t
h
a
t
t
h
e
1
0
0
-
y
e
a
r
p
e
a
k
r
u
n
o
f
f
f
r
o
m
B
a
x
t
e
r
C
r
e
e
k
u
n
d
e
r
e
x
i
s
t
i
n
g
c
o
n
d
i
t
i
o
n
s
s
h
o
u
l
d
n
o
t
a
d
v
e
r
s
e
l
y
a
f
f
e
c
t
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
,
b
a
s
e
d
o
n
t
h
e
c
r
i
t
e
r
i
a
o
u
t
l
i
n
e
d
m
S
e
c
t
i
o
n
1
8
.
5
8
.
0
9
0
.
B
.
2
.
C
o
f
t
h
e
C
i
t
y
o
f
B
o
2
e
m
a
n
U
D
O
.
T
h
i
s
F
l
o
o
d
H
a
2
a
r
d
E
v
a
l
u
a
d
o
n
h
a
s
b
e
e
n
p
r
e
p
a
r
e
d
f
o
r
t
h
e
p
r
o
p
o
s
e
d
N
o
r
t
o
n
R
a
n
c
h
S
u
b
d
i
v
i
s
i
o
n
,
P
h
a
s
e
I
,
a
n
d
i
s
n
o
t
i
n
t
e
n
d
e
d
f
o
r
f
u
t
u
r
e
p
l
a
n
n
i
n
g
o
f
d
e
v
e
l
o
p
m
e
n
t
s
a
l
o
n
g
B
a
x
t
e
r
C
r
e
e
k
.
A
n
y
f
u
t
u
r
e
d
e
v
e
l
o
p
m
e
n
t
s
a
l
o
n
g
B
a
x
t
e
r
C
r
e
e
k
s
h
a
U
b
e
f
u
r
t
h
e
r
a
n
a
l
y
z
e
d
t
o
e
n
s
u
r
e
p
r
o
t
e
c
t
i
o
n
a
g
a
i
n
s
t
f
l
o
o
d
i
n
g
a
n
d
s
h
a
U
b
e
r
e
q
u
i
r
e
d
t
o
h
a
v
e
t
h
e
n
e
c
e
s
s
a
r
y
d
e
t
e
n
t
i
o
n
f
a
c
i
l
i
t
i
e
s
t
o
e
n
s
u
r
e
t
h
a
t
t
h
e
1
0
0
-
y
e
a
r
p
e
a
k
f
l
o
w
o
f
B
a
x
t
e
r
C
r
e
e
k
i
s
n
o
t
i
n
c
r
e
a
s
e
d
a
s
a
r
e
s
u
l
t
o
f
a
d
d
i
t
i
o
n
a
l
i
m
p
e
n
^
i
o
u
s
a
r
e
a
.
F
u
r
t
h
e
r
m
o
r
e
,
a
n
y
o
b
s
t
r
u
c
d
o
n
s
s
u
c
h
a
s
c
u
l
v
e
r
t
s
,
s
t
r
e
e
t
e
m
b
a
n
k
m
e
n
t
s
,
e
t
c
.
,
p
l
a
c
e
d
i
n
t
h
e
d
e
l
i
n
e
a
t
e
d
f
l
o
o
d
p
l
a
i
n
o
f
B
a
x
t
e
r
C
r
e
e
k
s
h
a
l
l
b
e
a
n
a
l
y
z
e
d
t
o
e
n
s
u
r
e
t
h
a
t
t
h
e
b
a
s
e
f
l
o
o
d
e
l
e
v
a
t
i
o
n
i
s
n
o
t
i
n
c
r
e
a
s
e
d
b
y
m
o
r
e
t
h
a
n
o
n
e
h
a
l
f
f
o
o
t
a
s
r
e
q
u
i
r
e
d
i
n
C
h
a
p
t
e
r
1
8
.
5
8
(
F
l
o
o
d
p
l
a
i
n
R
e
g
u
l
a
t
i
o
n
s
)
o
f
t
h
e
C
i
t
y
o
f
B
o
2
e
m
a
n
U
D
O
.
R
E
F
E
R
E
N
C
E
S
1
.
C
h
o
w
,
V
e
n
T
e
(
1
9
5
9
)
.
O
p
e
n
C
h
a
n
n
e
l
H
y
d
r
a
u
l
i
c
s
.
N
e
w
Y
o
r
k
:
M
c
G
r
a
w
-
H
i
l
l
B
o
o
k
C
o
m
p
a
n
y
,
I
n
c
.
2
.
C
i
t
y
E
n
g
i
n
e
e
r
i
n
g
D
h
n
s
i
o
a
.
(
2
0
0
5
)
.
D
e
s
i
g
n
S
t
a
n
d
a
r
d
s
a
n
d
S
p
e
c
i
f
i
c
a
t
i
o
n
s
P
o
l
i
c
y
.
B
o
2
e
m
a
n
,
M
T
:
A
u
t
h
o
r
.
3
.
U
i
u
t
e
d
S
t
a
t
e
s
D
e
p
a
r
t
n
i
e
n
t
o
f
A
g
r
i
c
u
l
t
u
r
e
.
N
a
t
u
r
a
l
R
e
s
o
u
r
c
e
s
C
o
n
s
e
r
v
a
t
i
o
n
S
e
r
v
i
c
e
.
C
o
n
s
e
n
^
a
r
i
o
n
E
n
g
i
n
e
e
r
i
n
g
D
i
v
i
s
i
o
n
.
(
1
9
8
6
)
.
U
r
b
a
n
H
y
d
r
o
l
o
g
y
f
o
r
S
m
a
U
W
a
t
e
r
s
h
e
d
s
:
T
R
-
5
5
.
W
a
s
h
i
n
g
t
o
n
,
D
C
:
A
u
t
h
o
r
.
P
:
B
O
Z
_
(
)
7
0
0
4
J
'
l
o
o
d
_
I
I
a
z
a
r
c
l
_
E
v
a
I
4
(
0
9
/
1
0
/
2
0
0
7
)
J
D
I
-
I
/
s
k
w
:
1
"
-
£
%
f
-
\.~v.
\
\
PQL<
\
x, •
r
Km
\
^
Q
\
s-
o
-
I
-
h
-
I
M
^
^
/ -\\-i
^
(
\
J
^
• '-—~1?=i
'
Q
0
\
<
-
^
i^--^^^.
^
^
r
^
.
^
!
1
r-
^
"*r^
\
»
•
"
•
r
4^e^M
l
i
A
\
^
0
J
I
M
A
T
E
D
I
T
E
I
^
C
R
E
^
[
3
|
R
4
L
N
A
^
.
E
A
B
t
A
I
!
_...—l,_...l-
»
,
1
1
w
IQ
•
t
e
.
s
^
s
%
»
f
7
a:
/
/
Q
^
^)
\
50
^
y
•
>
<
\
.
n
g
k
.
^
K
K
.
'
i
n
K
<
c
\
s
^
c
w
.
0s
<
/
Y
M
'
L
sLU
•
^
.
0
t
^
\
I
LL
^
y
^
T
C
.
\
I-K
^
)
•f?cbNs
^
-
^
'
0
^
\
.
.
-
'
^(~^\
/
-
^
r
......nj
r
\
irr^
•
f
N
W
O
O
D
R
D
C
O
T
T
C
^
»
•
b
'
.
•
h
-
^
Q
B'.
Q
w
a
:
\
^
f
e
C
-
l
m
o
r
\
\
'
•
5
/
0
}
0
1
^
\
>
-
v
(
D
^
3";
u
^s&»
^
=
)
'.;
\
\
L
i
J
\
m
m
^
w
\
w
<
C
D
I
C
4
)
&
k
<",
3
:
x
<
C
L
L
d
//; i •I '\' li 'Vaw^i iti\
s
%
•
•
ysfe
<
^
^
)
U
J
0
^
-
!
Q
:
L
d
^
(
7
)
<
K
\
u
..:.-.
^
^
L
^
Q
u
e
Q
:
c
^
.
1
c
o
<
G
^
3
2
<
^
'
s
w
<
x
^
<
w.
L
d
Q
:
^
s
^
^
I
m
\
N
Q
f
c
D
o
n
a
^
:
u
J 9^0 V
^
[
D
0
z
Q
i
C
D
<
0
<:•q-
-
^
-
1
1
•
I
Q
:
tVJ
p
"
-
CD
\
\
"
l
a
I
.
00CO
%
L
O
1
^
,
inr--.
5
5
'
C
^
J
1
0
<r
0
3
t
£
^
»
s
^
^
>
0
.
A
,
O
T
\
•
O
T
*
G
O
O
C
H
H
}
i
C
"
^
.
.
.
—
•
•
.
•
.
^
c
o
C
D
^
fo-
f
?
°
<
^
-
^
^
^
\
I
R
D
\
:
Q
:
I
<
r
X-.
0
x
^
"
^
•
"
•
"
^
l
i
-
"
:
.
1
!
ou
^
L
d
\
.
<
•
^
M
.
-
4
•
*
>
«
a
m
(
r
l
\
\
v
,
\
4
k
-
^
.
-
.
—
-
^
-
-
.
.
*
.
X
^
.
-
"
-
.
X
<
^
^
!
)
1
'
^
^
^
-
^
J
?
^
s
\
^
\
'
A
\
s?
'
'
•
»
k\..
\
\®
-
,---^^.,.''"" v~~"^?..-—^.=^':^..es
^
^ \
•
\
3?--!
?
.
?
:
C
A
D
.
O
A
I
E
:
S
/
1
0
/
0
7
K
E
V
I
S
I
O
N
S
:
_
J
D
H
^
-
I
:
"
»
•
\
\
^
•
s
S
f
:
'
<
\
r
^
A
P
P
R
O
V
E
D
S
T
:
'!>...
^
•^
O
U
A
I
I
H
A
S
S
U
R
A
N
C
E
:
—
I
^
*
.
•;
:
T
^
•
'
-
.
,
^
'
-
t
r
r
-
~
\
t
&
^;^_..
^
v
&
T
J
U
F
-
-
S
S
H
O
-
H
L
[
:
N
O
f
?
T
O
N
_
F
L
O
O
O
_
E
X
H
P
R
O
J
E
C
I
N
O
.
:
B
0
2
.
o
7
o
o
<
S
H
E
E
1
_
_
O
F
_
c
^
"
y
^
•
C
T
0
y
?
-
—
\
)
-
i
300015001500
!
-
\
.
7500
\
i
\
.
"
\
J
A
^
^
J
y
"
\
<
»
1
;
^
h
-
^
/
<
\
.
/
/
1500'SCALE: 1
n
X
S
-
1
w
^
®
1
z
^
—
-
X
S
-
2
8
S
@
,
:
X
S
^
s
;
r
.
.
.
:
r
:
.
.
;
.
.
.
...,^ ...,. ,. .. ^...; _..._..
.
.
.
.
.
.
.
,
J
,
r-WES'T^ABGOG
K
-
e
^
^
•
•
w
<
:
•
^
-
f
r
.
.
!
^
S
;
»
A
K
<
c
w
] _,,
,
.
.
B
L
O
C
K
1
2
'
BLOtK )..
-
X
S
-
4
3
§
s
^
ir-
A
P
P
R
O
X
I
M
A
T
E
1
0
0
-
Y
E
A
R
F
L
O
O
D
P
L
A
I
N
B
O
U
N
D
A
R
Y
O
F
B
A
X
T
E
R
C
R
E
E
K
~l!:-
•
'
•
:
'
•
|
;
y
B
:
i
i
d
e
K
-
4
-
^
: ^
W
!
!
1
•
s
-
X
S
-
5
.,-£li.-irs.^
^
j
i
!
iU-L.Sffi
.
'
.
ifiIBTE
E
B
l
lip^.jif
a
^
.
l
-
X
S
-
5
.
5
I
!
'
'
•
V
•
•
-
B
-
f
c
e
C
K
y
"
;
f
l
.
S
U
R
V
E
Y
E
D
C
R
O
S
S
S
E
C
T
I
O
N
;
(
X
S
)
L
O
C
A
T
I
O
N
A
N
D
N
U
M
B
E
R
(
T
Y
P
.
)
^
Q
'
a
:
<
-
1
-
1
f
t
1
)
I
D
O
L
X
S
-
6
1
0
:
Q
u
i
0
0
a •*;.i m
V
)
0
^
<
..-»•"^~:
^
I
L
J
Q
-
0
C
d
Q
:
<
2
u
-
X
S
-
6
.
3
3
0
>
!
,
j
!
{
j
[
B
L
O
C
K
!
l
|
^1'
L
O
Q
:
0
s - -
0
0
2
|[ B17X''K';
k
7
^•L. .f ^...
^
^
.
.
J
I
N
T
E
R
P
O
L
A
T
E
D
C
R
O
S
S
S
E
C
T
I
O
N
(
X
S
)
L
O
C
A
T
I
O
N
A
N
D
N
U
M
B
E
R
(
T
Y
P
.
)
0
X
Q
<
0
0
m
3
Q
<
II
w
L
J
BI.OiCK f^' •
5
I"-"
Q
:
X
S
-
6
'
.
6
6
'
;
"
:
.
.
.
-
i
t
.
.
^
.
.
.
J
i
;
I
.
^
B
E
O
C
K
S
/
J
^
.
J
J
.
-
-
-
<
0
.
.
.
.
.
i
I
-^
N
u
0
:HC-
O
D
<
^
m
C
d
_
x
&
^
.
_
,
;
;
_
L
d
^
I
:
x
0
U
J
C
M
e
c
0
z
m
3
:
X
S
-
7
,
5
.
.
x
L
J
C
A
D
.
J
O
H
O
A
I
[
:
S
/
1
0
/
0
7
R
E
W
O
N
S
:
.
s
•
'
X
S
-
8
'
A
P
P
B
O
V
E
B
B
Y
:
Q
U
A
I
I
I
Y
A
S
S
U
R
A
N
C
E
:
S
U
l
E
:
_
s
j
B
o
»
i
_
f
]
[
[
:
N
O
f
l
T
O
N
_
F
L
O
O
O
_
E
X
M
P
R
O
J
E
O
N
n
-
B
O
?
_
0
7
G
S
H
E
E
I
i
O
f
500250 1252500SCALE: 1" = 250'
0
n
H
y
d
r
o
l
o
g
y
a
n
d
H
y
d
r
a
u
l
i
c
M
o
d
e
l
i
n
g
R
e
s
u
l
t
s
I
0
f
t
m
p
#
5
.
t
x
t
S
C
S
M
e
t
h
o
d
G
i
v
e
n
i
n
p
u
t
D
a
t
a
:
D
e
s
c
r
i
p
t
i
o
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
B
a
x
t
e
r
C
r
e
e
k
D
r
a
~
i
n
a
g
e
a
r
e
a
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
0
0
.
0
0
0
0
a
c
R
u
n
o
f
f
c
u
r
v
e
n
u
m
b
e
r
,
C
N
.
.
.
.
.
.
.
.
.
7
5
T
i
m
e
o
f
c
o
n
c
e
n
t
r
a
t
i
o
n
,
T
c
.
.
.
.
.
.
.
8
8
.
5
0
0
0
m
i
n
D
l
m
e
n
s
i
o
n
l
e
s
s
H
y
d
r
o
g
r
a
p
h
.
.
.
.
.
.
.
.
s
c
s
d
-
i
m
R
a
i
n
f
a
l
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
.
8
8
0
0
i
n
D
i
s
t
r
i
b
u
t
i
o
n
C
u
r
v
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
t
r
2
0
t
2
:
T
y
p
e
2
,
2
4
h
r
s
D
u
r
a
t
i
o
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
4
4
0
.
0
0
0
0
m
i
n
A
n
t
e
c
e
n
d
e
n
t
M
o
i
s
t
u
r
e
C
o
n
d
i
t
i
o
n
.
.
T
y
p
e
I
I
T
i
m
e
i
n
c
r
e
m
e
n
t
,
T
p
.
.
.
.
.
.
.
.
.
.
.
.
.
.
6
.
0
0
0
0
m
-
i
n
C
o
m
p
u
t
e
d
R
e
s
u
l
t
s
:
P
e
a
k
d
i
s
c
h
a
r
g
e
,
q
p
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
2
2
.
4
1
9
1
c
f
s
P
e
a
k
T
i
m
e
,
T
p
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
7
6
.
2
3
3
2
m
i
n
P
e
a
k
r
a
t
e
f
a
c
t
o
r
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
8
4
C
o
n
s
t
a
n
t
,
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
.
7
5
0
0
R
u
n
o
f
f
V
o
l
u
m
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
.
8
8
3
0
i
"
n
6
2
3
.
2
9
0
4
c
f
s
-
h
r
s
5
1
.
5
0
8
7
a
c
f
t
P
a
g
e
1
0
n
B
a
x
t
e
r
C
r
e
e
k
S
C
S
H
y
d
r
o
g
r
a
p
h
P
e
a
k
F
l
o
w
2
2
2
.
4
1
9
1
c
f
s
-
T
i
m
e
7
7
6
.
2
5
5
2
m
i
n
2
2
2
.
0
1
1
7
7
.
6
1
h
^
u
<
u
-
1
-
1
0
I
-
?
0
1
3
3
.
2
1
8
8
.
8
1
h
4
4
.
4
1
h
0
.
0
1
6
6
6
.
0
0
I
I
8
7
4
.
8
0
1
0
8
5
.
6
0
1
2
9
2
.
4
0
1
5
0
1
.
2
0
1
7
1
0
.
0
0
T
i
m
e
-
m
i
n
0
0
?
?
u
.
L
L
s
a
.
Q
-
Q
-
g
>
§
^
c
o
s
5
2
u
%
§
0
L
U
8
s
\
\
\
§
^
^
\
v
•
T
O
c
§
\
^
1
0
u
g
^
c
5
S
.
s
C
t
:
u
c
£
S
3
S
N
^
0
)
Q
5
^
^
-
<
B
z
§
E
\
l
i
t
C
L
5
-
t
:
(
D
^
0
K
2
c
1
U
u
\
^
Y
S
)
£
£
8
v
0
m
m
^
!
^
\
'
'
0
^
s
s
0
s
s
?
^
?
?
^
&
•
i
t
(
U
)
u
o
i
i
e
A
9
|
3
n
0
c
D
i
^
l
i
^
i
T
l
n
i
-
t
r
i
-
^
l
r
-
j
l
c
o
l
(
D
]
S
.
I
(
p
i
t
^
|
c
O
|
r
>
.
i
(
D
i
(
D
d
j
o
j
o
|
5
'
o
j
o
j
o
|
5
j
5
|
o
|
3
!
o
u
»
^
2
I
—
^
!
n
|
o
•
c
r
!
i
~
-
f
c
?
s
C
T
)
g
r
~
?
.
l
1
0
•
f
l
-
I
0
"
I
c
o
;
c
o
o
o
!
o
o
!
^
d
c
o
i
?
s
s
s
I
?
)
s
(
^
0
g
&
c
n
g
g
S
I
S
8
g
c
o
K
i
^
t
>
~
'
<
3
-
C
O
r
>
-
c
d
:
i
c
r
i
(
D
o
i
1
^
w
r
i
&
^
s
3
S
I
S
3
s
1
0
C
D
U
-
l
C
D
1
^
-
(
D
<
t
0
-
s
•
s
E
o
j
^
l
s
i
n
i
c
o
!
i
r
i
s
s
c
o
i
§
i
K
!
§
0
0
1
I
~
~
.
•
<
t
C
N
I
•
E
i
r
i
u
-
i
1
0
c
d
i
n
1
0
s
c
£
•
5
>
n
l
S
!
§
s
i
s
^
I
S
l
i
t
I
s
~
-
§
S
!
F
:
s
a
1
0
s
s
s
.
s
i
s
C
M
I
1
0
•
^
5
0
0
O
l
i
C
M
s
^
I
s
^
-
1
§
°
°
0
y
~
°
!
q
0
0
°
£
0
d
i
d
|
d
0
0
0
0
0
0
0
0
C
3
U
J
i
s
s
s
§
s
f
e
3
;
g
f
e
s
T
~
c
o
r
>
-
•
f
l
:
c
d
0
4
d
r
o
8
C
N
g
g
l
s
U
J
§
S
i
g
0
g
9
?
!
?
?
?
0
0
?
!
^
^
1
•
d
-
^
f
!
•
y
•
q
-
0
L
U
r
-
T
^
—
i
-
{
-
_
r
^
T
?
s
I
c
o
f
e
c
o
5
T
-
[
1
0
i
n
M
C
M
c
d
c
i
^
g
&
s
§
?
?
i
£
?
^
^
0
0
•
»
•
^
T
•
f
l
-
•
•
E
0
T
-
o
-
1
s
n
s
;
s
n
s
n
r
M
0
F
:
n
0
r
~
<
°
0
)
c
°
c
°
-
1
5
c
d
n
0
1
c
d
C
D
^
s
§
s
s
§
s
s
s
u
.
U
J
5
£
9
?
9
!
?
9
9
!
?
;
D
.
S
l
"
t
•
d
-
i
•
<
t
•
»
f
^
§
s
C
L
w
,
S
I
S
j
^
i
s
i
f
e
3
f
e
5
s
f
e
§
s
^
"
U
J
1
0
n
N
0
)
d
c
o
C
M
s
s
g
X
:
g
g
§
s
^
u
0
0
$
?
?
?
^
•
<
f
•
^
•
t
!
•
^
•
^
s
.
s
2
Q
:
€
§
§
s
§
§
S
l
g
§
§
§
§
§
s
'
I
n
2
r
i
r
i
c
o
r
i
r
i
n
s
s
a
a
s
Q
:
9
C
M
r
j
C
M
S
!
^
!
r
s
j
•
§
1
°
M
N
N
M
C
M
C
M
C
M
c
s
0
t
t
:
L
U
^
C
C
L
:
s
s
£
a
.
i
^
l
y
-
1
o
-
i
a
.
1
a
-
i
a
.
1
a
.
y
.
1
y
-
[
y
.
1
y
.
|
y
.
a
-
l
(
L
I
a
-
1
D
-
l
Q
-
s
s
a
.
'
S
\
3
-
c
w
s
a
s
s
!
o
h
-
I
S
s
:
i
d
(
D
1
0
0
0
h
~
(
0
u
i
l
t
l
n
i
C
M
a
:
w
^
T
T
V
V
T
7
<
^
£
£
^
^
€
5
°
?
s
^
^
u
u
s
s
s
B
:
0
(
0
s
s
s
(
0
g
a
>
<
u
<
u
(
2
L
U
a
:
a
:
(
K
Q
;
Q
:
a
:
1
£
C
K
Q
:
0
:
1
0
:
3
:
0
0
B
a
x
t
e
r
C
r
e
e
k
_
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
8
F
l
o
w
=
2
2
3
c
f
s
0
5
?
t
^
-
.
0
4
5
^
^
»
.
0
5
4
8
2
2
-
1
4
8
2
1
-
1
4
8
2
0
-
1
g
4
8
1
9
s
<
D
4
8
1
8
^
s
-
n
;
^
s
4
8
1
7
-
1
4
8
1
6
-
1
4
8
1
5
2
0
4
0
6
0
8
0
1
0
0
0
S
t
a
t
i
o
n
(
f
t
)
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
7
.
5
*
F
l
o
w
=
2
2
3
c
f
s
4
8
1
3
0
1
0
0
S
t
a
t
i
o
n
(
f
t
)
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
7
F
l
o
w
=
2
2
3
c
f
s
-
^
.
0
4
5
-
^
—
.
0
5
-
L
e
g
e
n
d
E
G
P
F
1
W
S
P
F
1
-
»
•
G
r
o
u
n
d
B
a
n
k
S
t
a
K
.
0
5
i
^
-
.
0
4
5
^
.
0
5
?
4
8
1
8
-
1
4
8
1
7
-
1
g
4
8
1
6
-
1
s
%
s
4
8
1
5
-
1
U
J
4
8
1
4
-
1
2
0
4
0
6
0
8
0
L
e
g
e
n
d
E
G
P
F
1
W
S
P
F
1
G
r
o
u
n
d
B
a
n
k
S
t
a
1
2
0
0
5
4
8
1
6
.
0
-
1
L
e
g
e
n
d
4
8
1
5
.
5
-
j
E
G
P
F
1
W
S
P
F
1
4
8
1
5
.
0
-
1
g
C
r
i
t
P
F
1
4
8
1
4
.
5
-
1
i
>
:
g
%
G
r
o
u
n
d
B
a
n
k
S
t
a
f
t
T
S
4
8
1
4
.
0
d
E
i
%
T
?
4
8
1
3
.
5
d
4
8
1
3
.
0
^
4
8
1
2
.
5
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
0
S
t
a
t
i
o
n
(
f
t
)
0
n
4
8
1
3
.
5
-
]
4
8
1
3
.
0
-
)
4
8
1
2
.
5
-
1
g
4
8
1
2
.
0
-
1
•
I
4
8
1
1
.
5
^
i
5
4
8
1
1
.
0
-
1
4
8
1
0
.
5
-
1
4
8
1
0
.
0
-
1
4
8
0
9
.
5
-
1
0
0
4
8
1
1
.
5
-
)
4
8
1
1
.
0
-
1
4
8
1
0
.
5
-
1
g
.
4
8
1
0
.
0
-
j
g
4
8
0
9
.
5
-
j
g
4
8
0
9
.
0
-
j
4
8
0
8
.
5
-
)
4
8
0
8
.
0
-
1
4
8
0
7
.
5
-
1
4
8
0
7
.
0
-
-
2
0
0
4
8
0
4
-
3
0
0
B
a
x
t
e
r
C
r
e
e
k
.
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
6
.
6
6
6
6
6
*
F
l
o
w
=
2
2
3
c
f
s
0
5
.
0
5
0
4
5
-
5
0
T
0
T
5
0
T
1
0
0
S
t
a
t
i
o
n
(
f
t
)
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
6
.
3
3
3
3
3
*
F
l
o
w
=
2
2
3
c
f
s
-
.
0
5
-
.
0
5
)
0
4
5
.
.
.
•
"
T
T
-
1
5
0
T
0
-
1
0
0
-
5
0
0
5
0
S
t
a
t
i
o
n
(
f
t
)
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
6
F
l
o
w
=
2
2
3
c
f
s
-
.
0
5
-
T
1
0
0
-
2
0
0
-
1
0
0
1
0
0
S
t
a
t
i
o
n
(
f
t
)
L
e
g
e
n
d
E
G
P
F
1
W
S
P
F
1
C
r
i
t
P
F
1
G
r
o
u
n
d
•
B
a
n
k
S
t
a
^
1
5
0
L
e
g
e
n
d
E
G
P
F
1
W
S
P
F
1
C
r
i
t
P
F
1
G
r
o
u
n
d
B
a
n
k
S
t
a
^
1
5
0
.
0
5
4
8
0
9
-
]
L
e
g
e
n
d
4
5
E
G
P
F
1
4
8
0
8
-
1
i
W
S
P
F
1
s
'
-
e
G
r
i
t
P
F
1
4
8
0
7
-
1
§
%
G
r
o
u
n
d
B
a
n
k
S
t
a
s
4
8
0
6
-
1
U
J
4
8
0
5
-
1
0
1
2
0
0
0
n
4
8
0
8
-
]
4
8
0
7
-
1
4
8
0
6
H
I
4
8
0
5
|
I
1
s
4
8
0
4
^
4
8
0
3
-
1
<
-
4
8
0
2
-
-
1
5
0
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
5
.
5
*
F
l
o
w
=
2
2
3
c
f
s
.
0
5
-
0
0
0
4
5
-
—
.
-
—
-
^
^
-
T
-
1
0
0
T
-
5
0
T
0
5
0
T
1
0
0
S
t
a
t
i
o
n
(
f
t
)
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
5
F
l
o
w
=
2
2
3
c
f
s
-
*
f
^
.
0
4
5
-
^
2
0
1
6
0
S
t
a
t
i
o
n
(
f
t
)
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
4
F
l
o
w
=
2
2
3
c
f
s
-
^
.
0
4
5
^
5
0
1
0
0
S
t
a
t
i
o
n
(
f
t
)
L
e
g
e
n
d
E
G
P
F
1
W
S
P
F
1
G
r
o
u
n
d
B
a
n
k
S
t
a
-
I
1
5
0
.
0
5
.
0
5
4
8
0
7
-
1
L
e
g
e
n
d
4
8
0
6
-
1
E
G
P
F
1
4
8
0
5
1
W
S
P
F
1
e
G
r
o
u
n
d
•
B
a
n
k
S
t
a
4
8
0
4
-
1
g
%
i
4
8
0
3
-
j
U
J
4
8
0
2
-
1
4
8
0
1
-
1
4
8
0
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
8
0
0
5
.
0
5
4
8
0
4
H
L
e
g
e
n
d
4
8
0
3
E
G
P
F
1
W
S
P
F
1
4
8
0
2
-
1
C
r
i
t
P
F
1
s
•
S
4
8
0
1
-
1
G
r
o
u
n
d
B
a
n
k
S
t
a
(
0
s
i
5
4
8
0
0
-
1
4
7
9
9
-
1
4
7
9
8
1
5
0
2
0
0
0
0
I
0
0
0
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
3
F
l
o
w
=
2
2
3
c
f
s
.
1
2
»
<
.
0
5
4
8
0
2
-
1
0
4
5
4
8
0
1
-
1
4
8
0
0
-
1
g
§
f
4
7
9
9
^
s
t
i
r
E
D
m
4
7
9
8
-
1
.
^
-
'
1
4
7
9
7
-
1
4
7
9
6
4
0
6
0
8
0
1
0
0
L
e
g
e
n
d
E
G
P
F
1
W
S
P
F
1
G
r
i
t
P
F
1
G
r
o
u
n
d
-
&
-
L
e
v
e
e
B
a
n
k
S
t
a
2
0
1
2
0
1
4
0
1
6
0
S
t
a
t
i
o
n
(
f
t
)
B
a
x
t
e
r
C
r
e
e
k
_
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
2
F
l
o
w
=
2
2
3
c
f
s
<
1
2
<
.
0
5
i
4
7
9
9
-
1
0
L
e
g
e
n
d
4
5
4
7
9
8
-
1
E
G
P
F
1
W
S
P
F
1
4
7
9
7
d
g
G
r
o
u
n
d
B
a
n
k
S
t
a
4
7
9
6
-
1
g
•
•
s
4
7
9
5
^
s
i
u
4
7
9
4
-
1
4
7
9
3
-
1
4
7
9
2
5
0
1
0
0
1
5
0
1
2
0
0
2
5
0
.
1
2
-
S
t
a
t
i
o
n
(
f
t
)
B
a
x
t
e
r
C
r
e
e
k
N
o
r
t
o
n
R
a
n
c
h
F
i
n
a
l
R
S
=
1
F
l
o
w
=
2
2
3
c
f
s
^
-
.
0
4
5
-
^
—
.
0
5
-
^
4
7
9
5
-
1
L
e
g
e
n
d
4
7
9
4
^
E
G
P
F
1
W
S
P
F
1
4
7
9
3
-
1
g
C
r
i
t
P
F
1
g
4
7
9
2
-
1
r
o
G
r
o
u
n
d
•
B
a
n
k
S
t
a
a
s
f
f
l
4
7
9
1
-
1
•
s
*
:
y
*
4
7
9
0
-
1
4
7
8
9
2
0
4
0
6
0
8
0
1
0
0
1
2
0
1
4
0
1
1
6
0
1
8
0
S
t
a
t
i
o
n
(
f
t
)
APPENDIX G
2009 NORTON EAST RANCH SUBDIVISION
PHASE 1 STORMWATER MANAGEMENT
DESIGN REPORT
(SANDERSON STEWART)