Loading...
HomeMy WebLinkAbout98 - Design Report - Bridger Peaks Town Center - Drainage vF Revised Drainage Design Report for Bridger Peaks Town Center BOZEMAN, MONTANA October, 1998 Prepared by.• 1Vote: Bid form shall not be removed from this ❑ MOB SON bozo7d copy. [� ❑❑ MAIERLE,IBC. ❑ Bid Form Signed ❑ Addendums Acknowledged ❑ 10% Bid Security Enclosed Bo�emcm, Alontcrncr Name of Bidder Address Telephone Number Montana Contractor Registration Project No. 3121.001.040.0310 Set No. y°+T9� i n -"AJ3xw kr: Y Tl 9 as r i `. — r' e P e t�h 1 tg�. t, , K 1'� ] 11 - r , -�-1-,v:���i I IP�'.�-'I�,,".-�"""'��*"�;'�-'�.''�"'!�,l�-[�"Ti---�.�'—:��It'-�"-,.�-�—-.-���',�,,'I I:-"--."�"'.,i�.II�"�--��-�!, ',.-,:I,�'-�-I�1,P'.-�-..,I ...'-�I ---�-�'i�T�..I.,��.-�,:�";'�I'--�."�,�".�-I1�I.-�'��--::-,',,-,�" F>,x-F.�s �ll-Ii•{ •M`l ^S FA�••y1'i jT i . 1 �' I f 4 , 1'. Ill: - �a Yt� Ik Ai F 9 - �r a4 f t - �X. �L-s -,t c A _ • L i s q�(l�m ,� ]Ilt�" _ - AI T! E t' i ' �u vi f� l -"th'� �.3 ,C t.tip _ - _ - . x 4r - t Eu >� I` 1 �— T I - J i 't� Y h - - / 1 1-qi' `i vll l`� 4 F T - V -,L �f`� ,k 1 - 7 a _ •i r i a � n X,�41� - :,y` Yl 1. t _ :I �F r �,l t - - - i S 1 .�' .q$-I r I �f e : V: - :.S C { r 33 c'. r Y ';' �f = - l tiff,° �Yr,�6F Yli t t s - a4 r �, � h� ', .rI ' - � rt a _, Flf - T ' - r t t -- ' :-t � J .., w. o ' h ;' fi s `, -3- .'.y,; l M�4 yfr ia. {}'ifk2J y f -t f -'-r r... rn�;wk��{zjla.li� .- � r�u� '',,fir_{ a. ,� _ AJ r.-- 1h r - �.:� } 7 r� [ t p I � , �, 'f n r _ - / I I I r x'�. f ��v �" 3' 1 1 t+ ... - 7 VM ,-�' + is'r r�' ` 11 fl�• r - 1 f fi l.i ;' �j. Y i '�^4 1 - _ _ r �tl J, k y {-t '� _ f _ _ _ _ _ t r L Y —r 1 6 , rd ti t-e ur H j3. Y`�1 { ' of - - - r r -' +,�f -- i - ",1 S - - - _ _ ,.Y r '' t niA -v . 4 U S',, u F -1 'f r i1 •r ( ,. It � - o I - - - r i t < :, L�17�`F`'t'`f _ r�' - 3 � r 5 \ �, f - ,�' f 11, Y ✓'r 1 i I - CI s I. 1 T ij ' — _ - ; r t �:' it ww '4-Q ..'. n," k <„Ik S Y,£ w!, >' L- - yzi r i i'ts 't�- x y'S" <.. 3::1 4-Yi �' '.rr,•" _•{, f,r - s r,.,•_ - N._ a N� �--' , I 4- C•. 4J BRIDGER PEAKS TOWN CENTER _ DRAINAGE CALCULATIONS ri ,��i LOctober 16, 19981 i- 1; 'r L7, MAR 01.0 INTRODUCTION ,�.,___ ____...... �i,.•.,.,✓ Preliminary hydrologic and hydraulic design for the Bridger Peaks Town Center was included as - Appendix J of the Preliminary Plat/PUD application dated June 1998. Revisions to the site plan were made after the June 1998 submittal to address city review comments. These revisions and additional survey information were used in preparing the following revised calculations. The project site's building arrangement and flat terrain make grading difficult. A system of storm drainpipes will be used to collect runoff. The majority of the site will be graded to drain through the storm drain and surface ditches to a large detention basin at the northeast corner of the site (Pond 2). The storage and outlet elevations for Pond 2 were designed to be as low in elevation as possible. Lower basin storage elevations will allow lower pavement surface and building elevations in Phase IV of the project, thus minimizing import fill requirements. Lower outlet elevations will allow adequate slopes and cover for on-site storm drain piping and ditches. 2.0 DESIGN FLOWS Design flow estimates were calculated using the culvert capacity charts in the Concrete Pipe Design Mcintral (American Concrete Pipe Association). Normal flow depths were obtained using Manning's equation. Design flow estimates are based on existing pipe capacities using Manning's n= 0.012. This is conservative for estimating the capacities of existing pipes, as compared ton= 0.013 which is often used in designing new concrete pipes. To be consistent, proposed concrete pipes were also designed using n= 0.012. Similar results would occur using n= 0.013 for both existing and proposed strictures. As discussed in Appendix J of the Preliminary Plat/PUD application for this project, complexities of the contributing basins forced a simplistic, conservative approach to estimating design flows. The same assumptions, described below, were used in these calculations to estimate design flows, Design flows for storm "run-on" from culverts were estimated based on the assumption that the existing culverts and storm drains were sized to convey the 25-year peak runoff with zero freeboard to the road overtopping elevation. Design flows for the Farmers Canal pipeline were estimated based on full flow conditions. To determine the 10-year design flows, the method used in the Preliminary Plat/PUD application will be applied. This method uses the intensity-duration curves from Bozeman's 1982 Stormwater Master Plan to develop a multiplier based on the estimated time of concentration for the Farmers Canal basin. To obtain a conservatively high estimate, the time of concentration for the Farmers Canal basin was estimated to be one hour, yielding a multiplier of 0.82. In equation form, Qio/Q25 = 0.82 2.1 60" RCP (Farmers Canal) Using Manning's Equation with n= 0.012 and the surveyed slope (s) =0.41 percent, full-flow capacity of the existing 60".RCP is Q25 = 181 cfs For the 10-year storm, it is conservative to assume a base flow prior to applying the 0.82 multiplier to the 25-year peak flow(Q,;). During June and July of 1998, base flow was observed at less than one foot depth in the pipe. Assuming a conservative normal depth of 1.5 feet, Manning's Equation estimates base flow to be approximately 35 cfs. Therefore, Q,o = 35 + 0.82 (181 - 35) = 155 cfs See Appendix 1, pages 1 and 2 for calculations. 2.2 30" RCP Crossing Oak Street on East Side of North 17th Avenue The 25-year storm flow was estimated to be equal to the culvert's capacity with zero freeboard to the overtopping elevation(low point) on Oak Street. To arrive at a conservative higher value for the pipe capacity, estimates of maximum headwater available and minimum tailwater values were used as inputs to the culvert capacity charts for circular concrete pipe. Maximum headwater available is Max. HW = 34.38 - 29.44 = 4.94 feet Based on an 8-foot-wide trapezoidal outlet ditch with 4H:1 V side slopes, n= 0.030 and channel slope s= 1.0 percent, Manning's equation gives Min. TW = 0.77 feet Using the culvert capacity charts for circular concrete pipe to calculate the pipe capacity (Q,;) and applying the 0.82 multiplier to estimate Q10, Q25 = 43 cfs and Q,o = 36 cfs See Appendix 1, pages 3 through 8 for calculations. 2.3 18" RCP Crossing Oak Street on West Side of North 17th Avenue Similarly to the 30" RCP above, the 25-year storm flow was estimated to be equal to the culvert's capacity with zero freeboard to the overtopping elevation (low point) on Oak Street. Maximum headwater available is Max. HW = 34.38 - 30.12 = 4.26 feet Based on a 4-foot-wide trapezoidal outlet ditch with 3H:1V side slopes, n= 0.030 and channel slope s = 0.010 ft/ft, Manning's Equation gives Min. TW = 0.74 feet Using the culvert capacity charts for circular concrete pipe to calculate the pipe capacity (Q25) and applying the 0.82 multiplier to estimate Q10i Q25 = 15 cfs and Q10 = 12 cfs See Appendix 1,pages 3 through 9 for calculations. 2.4 On-Site Design Flows During a 25-year, 24-hour storm event, the effect of the proposed on-site detention basins in attenuating peak flows is assumed to be zero (i.e., it is assumed the ponds will be full before the 25-year peak flow arrives). Therefore, from Appendix J of the Preliminary Plat/PUD application, the peak runoff from the project site is Q25 = 53 cfs In a 10-year, 24-hour storm event, on-site detention basins will be designed to limit overall peak flows to pre-development values. From Appendix J, the pre-development peak runoff is Q,o = 6.4 cfs 2.5 Farmers Canal - Storm Drain Extension The three existing pipe outfalls near the eastern Oak Street entrance road (60", 18" and 30" RCP) will be connected to a large concrete vault. An outlet conduit for this vault will convey the runoff north to a new outfall approximately 500 feet north of Oak Street. A triple 42" RCP is proposed as the most economical outlet conduit that will minimize the height of the conveyance structure so the entrance road will meet site grading constraints. The design flow for the triple 42" RCP is estimated by adding the peak flows from the 60", 30" and 18" pipes, which conservatively assumes that the peak flows coincide in time. Q25 = 181 +43 + 15 = 239 cfs Use Q25 = 240 cfs Qjo = 155 + 12 + 36 = 203 cfs 2.6 Farmers Canal -Tschache Lane Culvert When Tschache Lane is extended across Farmers Canal, a culvert will be required. Total design flows for this culvert are estimated by adding the peak flows from the Farmers Canal Storm Drain Extension (calculated above)to on-site runoff. Almost all of the site will drain to the Tschache Lane culvert, so if on-site detention effects are ignored in a 25-year storm event,the peak runoff from the site will be 53 cfs. Assuming the peak flows coincide in time, Q25 =240+ 53 =293 cfs In a 10-year storm, on-site flows will be routed through the on-site detention basins. The entire site will be graded to drain to the Tschache Lane culvert. The total peak runoff from the site, routed through the on-site detention basins,will be equal to or less than the pre-development peak runoff rate of 6.41 cfs (see the Preliminary Plat/PUD application). Assuming the peak flows coincide in time, Q10 =203 + 6.41 =209.41 cfs Use Q,o =210 cfs 3.0 FARMERS CANAL - STORM DRAIN EXTENSION (Preliminary Design) Due to traffic safety considerations, an entrance drive to the site will be located directly above the existing 60" RCP outfall. Site grading requires a low-profile extension of this culvert; otherwise, the ability to pass the 100-year flood east over the entrance drive into Farmers Canal without inundating buildings may be compromised. A multiple-pipe storm drain is proposed as the most economical way to minimize the height of the storm drain. Structurally, the pipes will be designed to handle H-20 (highway) loading with one foot minimum cover. Using Manning's Equation with Q=240 cfs, n= 0.012 and slope (s)= 0.005 ft/ft, a triple 42" RCP is required. Other conveyance structures with comparable flow capacities, such as round pipes of different materials, arch pipes, box culverts and structural arches, were also considered. The triple 42" RCP was selected based on cost, durability and ease of installation. See Appendix 1, pages 10 through 15 for calculations. 4.0 FARMERS CANAL - TSCHACHE LANE CULVERTS (Preliminary Design) As discussed in Section 1.0, the basin storage and outlet elevations for Pond 2 (to be located in the northeast corner of the site) will be designed to be as low in elevation as possible. The outlet pipe for Pond 2 must gravity drain to the Farmers Canal waterway; therefore reducing the 10-year water surface elevation of Farmers Canal at this connection point is critical to reducing site grading and detention storage elevations. A multiple storm drain pipe is proposed as the most economical way to minimize the 10-year water surface elevation of Farmers Canal at the Tschache Lane crossing. Using Manning's Equation with Q =240 cfs, n= 0.012 and slope (s) = 0.005 ft/ft, a triple 48" RCP is required. Other conveyance structures with comparable flow capacities, such as round pipes of different materials, arch pipes, box culverts and structural arches, were also considered. The triple 48" RCP was selected based on cost, durability and ease of installation. In addition, high tailwater depths in the existing channel downstream of the Tschache Lane culverts negate the hydraulic advantages of some of the other conveyance structures that were considered. Calculations for a triple 40" x 65" RCP Arch (equivalent to a circular 54"-diameter pipe) are included to demonstrate this. To minimize elevations of the detention basin and its outlet structure, the proposed design will connect the detention basin's outlet pipe to the western 48" RCP with a manhole located 20 feet downstream of the inlet end of the 48" RCP, thus allowing adequate distance for normal flow depth to develop in the 48" RCP. Since the 48" RCP's normal flow depth (2.46 feet) is significantly lower than its headwater depth (3.90 feet), the detention basin can be constructed at a lower elevation and still have adequate head to drive the flow out into the Tschache Lane culverts. Because the detention pipe connects to the western 48" RCP only, the normal depth in this pipe will be greater to account for the additional inflow from the detention basin. In conclusion, a triple 48" RCP culvert system (each pipe 140 feet long at 0.50 percent slope) is proposed for the Tschache Lane crossing. The culverts are designed to convey the 25-year peak runoff with a one-foot minimum freeboard to the overtopping elevation (low point) on Tschache Lane. Structurally, the pipes will be designed to handle H-20 (highway) loading with one foot minimum cover. See Appendix 1,pages 16 through 30 for calculations. 5.0 POND 2 DETENTION BASIN OUTLET STRUCTURE The detention basin outlet structure for Pond 2 will be located under the berm which impounds Pond 2, and will consist of 15-inch inlet and outlet pipes connected to a 24-inch riser within a concrete manhole. The pipe and riser will be made of corrugated outer wall, smooth interior High Density Polyethylene (HDPE)pipe. The control structure's inlet and outlet pipes were sized to convey the maximum allowable site release rate (equal to the pre-development release rate of 6.41 cfs, as calculated in the the Preliminary Plat/PUD application) under maximum tailwater conditions, as detailed in the Appendix. The orifices on the riser will be placed such that the maximum release rate will not be exceeded during periods of low tailwater. Pond 2 will be constructed in two phases. The first phase of construction will coincide with the construction of Phases I and II as detailed in the Preliminary Plat/PUD application. When the remainder of the site is developed, Pond 2 will be modified as needed to control runoff under . fully developed conditions. Elevations critical to site grading and Pond 2 performance, for both phases of pond construction, are as follows: Requirements - Phase I/II Conditions: Minimum Bottom of Pond/Inlet Pipe Elevation: Farmers Canal conveys a base flow, estimated conservatively high at 35 cfs in this analysis. To keep the assumed maximum Farmers Canal base flow from backing up into the detention basin, Minimum Bottom of Pond/Inlet Pipe Elevation (Phase 1/II) = 4716.2 Bottom Elevation of Available Detention Storage: Farmers Canal will convey runoff past the detention basin outlet pipe and ditch. To keep the assumed"worst-case" (10-year) tailwater from backing up into the area (air space)reserved for detention storage, Bottom Elevation of Available Detention Storage = 4718.5 Maximum Detention Basin Storage Elevation: Based on the use of a 15" HDPE pipe projecting from a fill slope, the maximum detention basin storage elevation is 4718.28, which would provide only 1.18 feet (4718.28 - 4717.10) of depth for detention. However,this maximum storage: elevation can be increased by designing a release structure with an orifice sized to increase the headwater depth for a given maximum release rate. Requirements - Fully Developed Conditions: Minimum Bottom of Pond/Inlet Pipe Elevation: The Tschache Lane culverts will convey a base flow, estimated conservatively high at 35 cfs in this analysis. To keep the assumed maximum base flow from backing up into the detention basin from the western 48" RCP, Minimum Bottom of Pond/Inlef Pipe Elevation (Phase I/II) = 4715.7 Bottom Elevation of Available Detention Storage: The Tschache Lane culverts will convey Farmers Canal runoff past the detention basin outlet pipe. To keep the assumed "worst-case" (I 0-year) tailwater from backing up into the area (air space) reserved for detention storage, Bottom Elevation of Available Detention Storage = 4717.1 See Appendix 1, pages 31 through 37 for calculations. 6.0 PHASE I/II DRAINAGE CALCULATIONS Hydrologic calculations for construction of Phases I and II are provided in Appendix 2,pages 1 through 24. These calculations were used to size proposed on-site conveyance structures (ditches, pipes and catch basins). All on-site storm drain is proposed to be corrugated outer wall, smooth interior High Density Polyethylene (HDPE) pipe. A Manning's "n" value (roughness coefficient) of 0.012 was used in the calculations. The SCS unit hydrograph (TR-55) method was used to estimate peak flows and runoff volumes for the 10-year, 24-hour design storm. The site was broken into several drainage basins (See Figure 2). Computer printouts are from WaterWorks HMS, a program which creates-event hydrographs for each basin, then routes the runoff through pipe/ditch networks. The program accounts for time lags between basins, structure losses, and backwater effects to determine the resulting hydraulic grade line through the system. Reaches (conveyance structures such as pipes and ditches) and Nodes (connecting points between reaches such as curb inlets, grade breaks and pipe outfalls) are identified in Figure 2, and correspond to the computer output. The program selects the minimum pipe size for each pipe reach; some pipe sizes were increased to provide a minimum 15-inch diameter and to reduce the number of different sizes used on the project. See Appendix 2,pages 1 through 24 for Phase I/II post-development drainage calculations used in sizing drainage conveyance structures. 7.0 DETENTION CALCULATIONS (Phase I/II and Full), Developed Conditions) As described in the Preliminary Plat/PUD application dated June 1998, the project will be constructed in phases. Phases I and II will be constructed per the plans included with this submittal. The remaining phases will be constructed sometime in the future, detailed detention calculations for future phases will be provided during the design review for these future phases. The project site is situated on a drainage divide. Referring to Figure 1, Basin H-1 (H-lA and H-1B combined) currently drains to the roadside ditch along North 19th Avenue/Simmental Way. Basin H-2 (H-2A, H-2B and H-2C combined) currently drains to the northeast corner of the site and eventually into the Walton Ditch/Farmers Canal drainageway (referred to herein as Farmers Canal). Basin H-3 currently drains directly to Farmers Canal via roadside ditches along Oak Street. 7.1 Basin H-1 Typically, city design standards allow a maximum post-development release rate equal to the pre-development peak runoff for the same drainage basin, based on a 10-year design storm. For this project the above criteria will be met. However, Basin H-113 will be re-graded to drain to Farmers Canal rather than to the North 19th Avenue ditch, for both the 10-year storm and for larger storms. This basin transfer will help to minimize the nuisance flooding that now occurs in the vicinity of the North 19th Avenue/Baxter Lane intersection. Using the Rational Method, peak release rates from Basin H-1 to the North 19th Avenue ditch are: 10-year peak release (existing conditions) = 2.18 cfs 10-year peak release (Phase I/II post-development conditions) = 2.03 cfs Because the post-development release rate is less than that for existing conditions, detention is not necessary. Treatment will be provided by biofiltration through grass-lined ditches as it is now. Detention and treatment for Basin H-lB will be provided along with Basin H-2. 7.2 Basin H-2 The "frilly developed" detention calculations in this submittal show that Pond 2 can be enlarged to provide adequate detention for Phase IV. Detention for Basins H-lB and H-2 is provided by Pond 2 (See Figure 2). All the detention requirements for Basins H-1B and H-2 can be met with the use of Pond 2 exclusively. Pond 1 will be used primarily to attenuate peak flows in order to reduce pipe sizes in the on-site storm drain system. Detention storage in Pond 1 is neglected in the Pond 2 design; therefore no detention calculations are provided for Pond 1. Pond 3 exists for sediment retention during construction of Phases I and II, and may be modified in the future for use as a permanent detention pond. Pond 2 will limit the combined 10-year release rate of Basins H-1B and H-2 to a peak rate less than or equal to the pre-development rate for Basin H-2 alone. This requirement will be met for Phase I/II construction and also tinder future, fully developed conditions. Pond volumes were first estimated on a spreadsheet using the mass balance (time step) method for a triangle and for a constant release rate, then averaging the two results. Next, a conservative maximum pond volume was estimated by iterating on the storm duration to maximize pond volume. Using the Rational Method,the following results were obtained: Results -Phases I and II: 10-yr. peak release rate (pre-development) = 3.80 cfs 10-yr. peak release rate (post-development) = 3.80 cfs Required Detention Volume = 41,400 cubic feet Pond Outlet Elevation = 16.4 Detention Storage Elevation Range = 18.5 to 20.6 Control Structure: Top of Riser Elevation = 20.6 min. (use 20.7) Dewatering Orifice = 2.0" diameter, center elev. 15.00 Primary Orifice = 8.6" square, center elev. 18.50 Emergency Spillway Crest Elevation = 21.0 Top of Pond Dike Elevation = 22.0 (1 ft. freeboard) Results -Fully Developed Conditions: 10-yr. peak release rate(pre-development) = 4.08 cfs 10-yr. peak release rate (post-development) = 4.08 cfs Required Detention Volume = 63,800 cubic feet Pond Outlet Elevation = 16.4 Detention Storage Elevation Range = 17.1 to 20.7 Control Structure: Top of Riser Elevation = 20.7 Dewatering Orifice = 2.0" diameter, center elev. 15.00 Primary Orifice = 8.0" square, center elev. 17.10 Emergency Spillway Crest Elevation = 21.0 Top of Pond Dike Elevation = 22.0 (1 ft. freeboard) 7.3 Basin H-3 Basin H-3 covers a portion of the Oak Street right-of-way and entryway corridor. A retention pond (Pond 4) will be used to filly contain the 10-year, 2-hour storm runoff from this area. Using the Rational Method, 10-yr. peak release rate @ Tc (pre-development) = 1.51 cfs 10-yr. peak release rate (post-development) = 0.00 cfs 10-yr., 2-hr. peak rainfall = 0.41 cfs Required Retention Volume = 3,120 cubic feet Retention Storage Elevation Range = 31.5 to 34.0 DESIGN FLOW CALCULATIONS �t-�,,!,I,....`&4,.....1�-"*,. a;;;'-...,,�'-�-';�-�.........-",,-,'',.-1�;;;,��,,,,-,;,,`�,-'-�i .�- .f,+ ,� a n "' I r r i i d 4 r i J�r `f s. - tip '+ v 1 i t+.1 �4} 7 :fix l .y `"Y, - , , J —, b.V"-,�-:,!-. ^rx rl t fj i� v i _ +� 1 �I `I f!H S t .Y - - k' F V jIj �t i :1 1 111""sv �I �k"N-^c a - - 41 T{ a ti j4' � Jam' "k� -1 *r 1'T i Sri i :C L r r 1 _ r c ilk r rw t + - i� 1 a 5 i1, - n P t x - r _ _ _ - .' r Y t _ - 4 14 "' y � �i �i r rL n y - - 6v� r 1, ,i Stif4 T s�9 I t,-I ?,. Ir 1H; tJr f 1 _ r 7 i d.SrI S -. - - ,I+ I r J.,. J - - - - _ _ - r t VR sty r� ��}xLr iy Ir t• _ - d. �� }, y tl r 41• I - }f '1"'fi A 1 l_ _ L {I Z., „sty�� .:. - _ 1.,,__;� I , r '{7 j� l+ ..yy 1 k-) - { r 't iX1�r11. -} _ i - akr!'-—fah i V9.- L - i 'SS y % a'`. az-� I d ,I" = c _ n I r;l Jl y r �r 1 _ �'t u , _,+ _ c.' r �. ,J �}, yV c-'f 1 - rII )hft - - - L r `" - - - L , u�r y , I i'WF s - - I. - r . Y rt a i r ., 4 3 .- f ., �, — c; � .ti ?t ? �I! t f' r c - ry2 - h[ vif t - r Y J e - - 1 r t} i Y G Ift} { t - 'i �I 1 { '` U "' , 1,i- r 1 F - - J) .'.� ,S rt _ k 1 I _ - - , }, � _e - ' _ -. _ 1V U ry - a`1 Y _ _ - i _ r z' f�L r: _ ri F1- '• ... r .1 s: i fi - - r - - J 'r. a7 x L a Vi'.I'1_r 3", ' �,'` ':..�> 1 f '' �:c._ .�i c , Farmers Canal - Exist. 60" RCP Capacity Worksheet for Circular Channel Project Description. Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal - Exist. 60" RCP Capacity Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Capacity Input Data Mannings Coefficient 0.012 Channel Slope 0.410000 % Diameter 60.00 in Results Depth 5.00 ft Discharge 180.65 ft3/S Flow Area 19.63 ft2 Wetted Perimeter 15.71 ft Top Width 0.00 ft Critical Depth 3.85 ft Percent Full 100.00 % Critical Slope 0.004647 ft/ft Velocity 9.20 ft/s Velocity Head 1.32 ft Specific Energy FULL ft Froude Number FULL Maximum Discharge 194.33 ft3/s Full Flow Capacity 180.65 ft3/S Full Flow Slope 0.004100 ft/f', Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:49:52 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 2137 Farmers Canal - Exist. 60" RCP Base Flow Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal - Exist. 60" RCP Base Flow Flow Element Circular Channel Method Manning's Formula —Solve For Discharge —input Data Mannings Coefficient 0.012 Channel Slope 0.410000 % Depth 1.50 ft —Diameter 60.00 in Results Discharge 35.38 ftl/s Flow Area 4.95 ft2 Wetted Perimeter 5.80 ft Top Width 4.58 ft Critical Depth 1.66 ft Percent Full 30.00 % Critical Slope 0.002805 ft/ft Velocity 7.14 fus Velocity Head 0.79 ft Specific Energy 2.29 ft Froude Number 1.21 Maximum Discharge 194.33 ftl/s Full Flow Capacity 180.65 ft3/S Full Flow Slope 0.000 157 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:49:34 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 �RT �T PROJECT: MIM01�1t1�oltl BY. DATE PROJ.NO. ME MERLE,INC. CHK: DATE PAGE: OF 37 �jESl G!V- -�LQw Gil LG VI-A7-IoA j EX/5 T I NG 3Q - )Z.c n /Ir L,F: 3�7N XGP 0 36 /o� iv+G(• F-E-S �7` eqr� �.v�� 50 = 27.by - 2,7- ©2 ��lpf cc�f�r� = p 2.5 DUt1�f t.��t�e/ Tr/ Q = L/y ��� y = 3,�� d, f-D z,5-t 2 5 Z Z a 0-77 N w = N { 3,l 2.3s' - o,yZ _ ,hod > y7L .. & < yy �f Ll 3,p dL� P 2.23�z,5 2 ,37' = h 2- 2. o w - 3,0 t 2,37- 0-y2- = y,9-5- > l/.9y Ab/� 6� < Ll3 � s .. PIPt, rs pllr«T cr,UTnoL - Use Q _ `/3 �.fs 2 (qq) USE Qro 3 6 ifs ��T PROJECT: IVIOFMSON BY: DATE PROD.NO. MMERLE,INC. CHK: DATE PAGE: Of 3 7 FX'1577N6 lzcP 0. yZ �� l ��_ S. t � e�J Zh le f CIO 114y n OGArlef GokT-"y0/ 7w - O 7`/ I r 1Y f6 I N w = 3,l t l,q5" - 4,L/D = L/,15 < y.Zd /p dle ., Q > f Y J5 f 1 PE 15 OUTLET foNitR 0L- - U5E Q - 15- "f, ( 2.5' = P.�Z�is� = I2,3 v5c �ia - � , 0 I I I I 230 CONCRETE pTPF DF.STC;N MANTTAT /37 FIGURE 33 � i HEADWATER DEPTH FOR CIRCULAR CONCRETE PIPE CULVERTS WITH INLET CONTROL 180 10000 168 8000 EXAMPLE (1) (2) (3) 156 6000 D=36 inches (3.0 feet) 6.0 6,0 144 5000 Q=66 cfs 132 4000 Hw• HW 6.0 5'0 5.0 120 3000 D feet 5.0 4.0 4.0 20nn (1) 1.8 5.4 108 (2) 1.55 4.1 -- 4.0 102 (3) 1.6 4.8 3 0 3.0 96 1000 *D in feet 3 gy--,� 3.0 90 800 84 cn 7$ 600 / 9g p^ - 2.0 2.0 w 500 v 72 400 ( ; y3"Gfs 2.0 66 300 1.5 0 60 z 200 QLE /.�/&' 1.5 1.5 2 6 UJ 54 U 1.0 1.0 u -� v_�i 0 �- 1.0 O 4'0 To use scale(2)or(3) H(✓ w 36 30 draw a straight tine 9 9 ➢ = b•`f75 W 33 through known values 9 of size and discharge HL✓= 3.010 � 30 to intersect scale(1). ►W- _2 From point on scale(1) < $ .8 N elr✓ 39+ /tl C) 27 project horizontally to = 1 solution on either scale ¢ = 1 g6 24 8 (2)or(3). = 7 6 Q - 16 .7 .7 21 5 4 HW/D ENTRANCE 3 SCALE TYPE .6 .6 I$ (1) Square edge/�FE$ .6- 2 (2) Groove end with 15 headwall (3) Groove end 1.0 projecting ___.5 5 12 BUREAU OF PUBLIC ROADS JAN. 1963 HEADWATER SCALES 2&3 REVISED MAY 1964 FIGURES 235 FIGURE 38 /3 HEAD FOR CIRCULAR CONCRETE PIPE (3) CULVERTS FLOWING FULL 10 n = 0.012 8 1 2000 6 ` z 7W = H 5 -�-.�— —�'~ h w 4 1000 144=32 J Slope So —. o '4 1 �. SUBMERGED OUTLET CULVERT FLOWING FULL 'S 20 3 800 114 HW=H+ho—SoL .6 600 108 For outlet crown not submerged, compute HW by 500 102 methods described in the design procedure 8 2 400 84 1.0 78 1.5 300 72 cn 66 O v 200 60 Uj w z w 54 '�___ oo-z 2 1.0 N= 3.0 W 9 (D 80 z 42 0 — �� 4 `r m o 36 `� `— 00 .�, w 8 cv 50 � 3—' �1`Z�%EXp,MPL 30 ..- — 0 = 5 y3 A.--�- 40 % w / p�00 �0 6 7 :5; 27 500 8 30 0 24 © 6 s 10 20 2] 5-A, — 18 .5 20 10 15 8 4 6 12 35 I' 5 4 eject then through se as I i i 1963 i 224 CONCRETE PIPE DESIGN MANUAL �3 7 FIGURE 28 FI CRITICAL DEPTH CIRCULAR PIPE i 3 2 1 .0 2.0'2'S 51 d'c CANNOT EXCEED TOP OF PIPE ll• 0 L.0' DIA, 0 10 15 20 30 40 t43 50 60 70 80 90 100 DISCHARGE Q CFS 6 8 �-' 5 — 7 w w w 9, Lu e ;,,, --- --- Lu 4 9' 7' �T 6 u- 8' a 3ADI d CANNOT EXCEED TOP OF PIPE 50 2 . �- v 0 100 200 300 400 500 600 700 800 900 1000 0 ►= DISCHARGE Q CFS d cr- 14 _ U 12 10 8 6 X do CANNOT EXCEED TOP OF PIPE 4 . 0 1000 2000 3000 4000 DISCHARGE Q CFS BUREAU OF PUBLIC ROADS JAN. 1964 Oak Street - 30" RCP Outlet Ditch Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Oak Street- 30" RCP Outlet Ditch Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.030 Channel Slope 1.000000 % Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 8.00 ft Discharge 43.00 ftl/s Results Depth 0.94 ft Flow Area 11.01 ft2 Wetted Perimeter 15.73 ft Top Width 15.50 ft Critical Depth 0.83 ft Critical Slope 0.015470 ft/ft Velocity 3.91 fus Velocity Head 0.24 ft Specific Energy 1.17 ft Froude Number 0.82 Flow is subcritical. Aug 24, 1998 Morrison-Maierie,lnc. FlowMaster v4.1 16:51:49 Haested Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 137 Oak Street - 18" RCP Outlet Ditch Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\br0ksJm2 Worksheet Oak Street- 18" RCP Outlet Ditch Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.030 Channel Slope 1.000000 % Left Side Slope 3.00 H : V Right Side Slope 3.00 H : V Bottom Width 4.00 ft Discharge 15.00 ft3/S Results Depth 0.74 ft Flow Area 4.62 ft2 Wetted Perimeter 8.69 ft Top Width 8.45 ft Critical Depth 0.64 ft Critical Slope 0.0 17294 ft/ft Velocity 3.25 fus Velocity Head 0.16 ft Specific Energy 0.91 ft Froude Number 0.77 Flow is subcritical. Aug 24, 1998 Morrison-Maierle,lnc. FlowMaster v4.1 16:51:32 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 PROJECT: EiMO R"RT SON BY: GATE PROJ.NO. MMERLE,INC. CHK: DATE PAGE: /o OF 37 Fl"EYZ5 C-4YA L - .S7-o/2/Al PANXI E x 7- N,�16?N FlN• GRADE EL- 36.0 Tlz1PLE 1/2"/Z6P @ 0_5-0 74 Il (Q = KV cf3 PC- 10;pc = 2yG c`{-S f16L 31,y3 � I EX. do RcP Ai � r.E. 26.1 � `—--------- 26.0 ( Ir-T.E. 23,70 6p� DUi LI T GoWr9vL- 1 ,-lt11 fie.- 6+d1N,vlGl,j �G/tiLi���� (23.70 = 2_ gy USE 7'w= 3.o .Z - 2 - �o I _ rr-i,f;on 1.o s5 - Lee Ft-0 0, l ct Yt v+;hc)9 cri ct'Hokll I H ^ 2cl h' 1 / V z 'VA R - /2 1,75 ft L Sio ft. V 9 = 32.2. -Fv5ec x PROACT: JIMORMSON BY: DATE PROD NO. MERLE INC. CHK: DATE PAGE: `( OF .3 7 F/i/Z M E IZ 5 G A/yi4 L — 5 %®RM PIZA IN -x I''i'Uy I oAl -OUT-LET C0A17-IZOL �f F,-,I(,,.12 z (5/0� P - � rhvEv-f" 7�0 spY;n,l�'he f D. 3 [1Z 32.2) - VZ„ RCP vid ivt Ke H - 0.5 Ey 3 2, O1 5-V P - H e. Z(3a-z) e New,d wa e� El e v ©t. f/e.f 23.70 4- 3,1y + J,0 f + 0,37 fl.5y — (z6.25-,23.7G�} 26,z9 .tAIL 157r ('AA/ r-/Z 0 L -> f�G�= 3.5�.�/8> = Sf FS' ffWe%v. - 26.2 y-t 5 jg' - 31.y3 e lev, PROJECT: MIMORRISON BY: DATE PROD.NO. MAIERLE,INC. CHK: DATE PAGE: /Z OF J FA CA JY A L DAMN Etc i 6N51 PN HY1I�AULl c 6;PAPE Ai V&J f le f l /16L --t 49 = 2 3.70 +- 3./t/ = 2 6.8"t/ A f lqi-/1 H6L /,07 60 5J0 ) 26.97 �ac(t/et) NGL = 26.97 t 0.37 = 27.3V Ct'o le�� H6-L = U.25 ,�- 3. ©1 = .29,26 KING COUNTY, WA , _,INGTON, SURFACE W AT — R DESIGN MANUAL FIGURE 4.3.4E* BEND HEAD LASSES IN STRUCTURES 1.4 l �/37 I I i 1.2 r D-..�,�` 1.0 I 0.8 `c ►— Bend at Manhole, no Special Shaping C y Deflector O i Curved I I I y Bend at Manhole, Curved or Deflector) 0.4 3y --�- Curved Sewer r/D=2 _ 0.2 Sewer r/D>6 I 0.0 I I 00 200 400 600 800 900 1000 Deflection Angle y , Degrees 'From'Modern Sewer Design',copyright 1980,American Iron and Steel Institute 4.3.4-22 1190 V13 7 Farmers Canal SD Ext. - Trpl. 42" r<CP Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Oak St. -Triple 42" RCP Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 42.00 in Discharge 80.00 ft3/S Results Depth 3.01 ft Flow Area 8.79 ft2 Wetted Perimeter 8.30 ft Top Width 2.44 ft Critical Depth 2.79 ft Percent Full 85.87 % Critical Slope 0.005661 ft/ft Velocity 9.10 ft/s Velocity Head 1.29 ft Specific Energy 4.29 ft Froude Number 0.84 Maximum Discharge 82.90 ft3/S Full Flow Capacity 77.07 ft3/S Full Flow Slope 0.005388 ft/ft Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:51:10 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 1512�;7 Farmers Canal - S.D. Ext. Outfall Ditch Worksheet for Irregular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal -S.D. Ext. Outfall Ditch Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 1.000000 % Elevation range: 24.00 ft to 28.90 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 28.90 0.00 70.00 0,035 8.00 26.25 30.50 25.00 38.50 24.00 40.50 24.00 41.50 25.00 47.50 26.00 63.00 26.25 70.00 28.60 Discharge 240.00 ft3/S Results Wtd. Mannings Coefficient -- 0.035 Water Surface Elevation 26.54 ft Flow Area 56.89 ft2 Wetted Perimeter 57.42 ft Top Width 56.73 ft Depth 2.54 ft Critical Water Elev. 26.35 ft Critical Slope 0.019255 ft/ft Velocity 4.22 fus Velocity Head 0.28 ft Specific Energy 26.82 ft Froude Number 0.74 Full Flow Capacity 1787.80 ft3/s Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:50:42 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 RRT`�` N PROACT: ORRI 'O'T,•T BY: DATE PROD NO. MAIERLE,INC. CHK: DATE PAGE: /6 OF 37 T 5C /'/fl G He )L !. 21.3 ly0 14 2 5--yr 7'ti/ : q /o -yf rw= ,2,F' ALA: A - TAIPL- qg" gcF &tee flow TV= r;,0 C"n lr o/ - avail Q 293 _ Nu/ = 1.9 I p H = 2.02- - Z = TO/ do k!W= H + Mcf0kI v+JsI (' r 'h0� 5 r /�' r/v. nr�G� ��r5 E 't"�OL✓ G'cG'rt �.�i�L'� A = 9 C13 _ 097 cff �ae� �a`�c� �r� = 2_32 ff A4 Q 11.1 =T5 pf� lot�vez � P-F-g fj� kl3cfhl PROJECT: MORRISONBY: DATE PROD.NO. MAIERLE,INC. CHK: DATE PAGE: /7 OF 3 75e�f/FC//E LAIvC CULVEAi5 O l� l P h tI -cs� � j��P) lrwt�, @ /�, Novw �/ dr,/0 /rC- e,lful�rfi`o.,S for 1-4 I've 5feP,4 2cp w));!'/ l ri c /k�c Y/Cv�,$ 7'✓CM '�''hG// D��•�--f ?�E.( C/o Ve,;I r6's; L�,h�l h �e m�S nl� Gl(��YO X t�'til ^•�C � !) vel l61 e, 't[�c, N�G,k(t'�I to M �l/G of nod GrV� ell/"ll 'ed To'-- ¢4G we5f" f 7 - 76.7 ifs = 2 q �f. r h J" c of 1e q o�, p;�c a�.�/e f will 6e /©e c,1�e� 1V fec 4 ct mwr^s 4-cG, (4 14 c. l✓e5 L/S""SZCPs ivl le l ev�cl. The cfC evi�iovl f''!'c3 t�rflwgi<ev' 1, e/ev�,rio;� e�¢ /(� ;y cod. e'v4e� -kAe V10r-mo,/ de,494 Gr lve!, /c elcvAA'rr) C`A 111E ire ceiv;V, cAc!"Yt��S �ct�lwc�fy a/c, vt��iro ;c cvCY i 3 ��, j V �✓ (l 0-y,, I LI, 7 - 2 0(oc�) + 2.L16 = 17 0 7-W,6 A/.7 - 20(o�s) { /_12 = /y, 2 = 'T V 6asc ���SE. otii f�v vece;✓im� f v, f c,7 ��c �K / C, ov ��lCT� Tw (lo yam) = iy-0 z, bd = 16- F'6 < 1706 (ill TW 6,5e fl-) _ /�/.0 1. I z - l5, l 2 4 /.;7z T fi PROJECT: NIMORR ISnN BY: DATE PROD.NO. MAIERLE,INC. CHK: DATE PAGE: l OF 3 7 7"S�5 f/A c A-/E Z.A N� CvL VC,2 i 35 e o �t) ALT. U - Tn I PLE yo X65 /ICI' ARCH 5-q Jo/e� Croce�✓o a ou/(et 674v-/ l� = 55 =/, demo z,z 2 2 _ .2 .77 Tw= Nb✓= H t ho L5 �— pi Pr s AnE 3. 0.7 = y 2- 5 5.6 ✓ A17-1-C T t'c,�7r eL, Fr°A, t°' 26� Q��li 122 ifs 76.7 r-4 d Qbcse 1 F1.7 D,15- Q{utt t 2z al�,u i2 Z Z7 , d 0.52, ���Z 1 = 1,73 �'1. t2eceiv%o e,6",Vrn oL NoVwm flee CAm"Md+h/ Tw FCEV,4T1oti TW fo Y ��/,7- 2t� ,Doti + 1. 73 - 10 $ I 8.7-2o 0.Fi - 15, y0 15,1 Z 7l✓ _ l51 Z base. V L t 7"rLE ,gpv ANTA6E G�lN 11 �;' U51NG 4f2Gf1 p/PC �5c 7y21lIL yg`' pcp -�— Al' Tschache Lane - Triple 48" RCP (25-yr) Worksheet for Circular Channel —Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane-Triple 48" RCP (25-yr) Flow Element Circular Channel Method Manning's Formula —Solve For Channel Depth —input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 48.00 in Discharge 97.70 ftl/s Results Depth 2.93 ft Flow Area 9.88 ft2 Wetted Perimeter 8.23 ft Top Width 3.54 ft Critical Depth 3.00 ft Percent Full 73.34 % Critical Slope 0.004755 ft/ft Velocity 9.89 ft/s Velocity Head 1.52 ft Specific Energy 4.45 ft Froude Number 1.04 Maximum Discharge 118.36 ft3/S Full Flow Capacity 110.03 ft3/S Full Flow Slope 0.003942 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierie,lnc. FlowMaster v4.1 16:56:26 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 2 C13; I schache Lane - Triple 48" RCP (1 u-yr) Worksheet for Circular Channel —Project Description Project File h:\3121\00 1\sto rm\brpks.fm2 Worksheet Tschache Lane-Triple 48" RCP (1 1 O-yr) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 48.00 in Discharge 70.00 ftl/s Results Depth 2.32 ft Flow Area 7.55 ft2 Wetted Perimeter 6.92 ft Top Width 3.95 ft Critical Depth 2.53 ft Percent Full 57.93 % Critical Slope 0.003831 ft/ft Velocity 9.28 fus Velocity Head 1.34 ft Specific Energy 3.65 ft Froude Number 1.18 Maximum Discharge 118.36 ftl/s Full Flow Capacity 110.03 ft3/S Full Flow Slope 0,002024 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierfe,Inc. FlowMaster v4.1 16:56:54 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 .211 Tschache Lane -West 48" RCP (base flow) Worksheet for Circular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Ln. -West 48" RCP (base flow) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0,012 Channel Slope 0.500000% Diameter 48.00 in Discharge 11.70 ft3/S Results Depth 0.88 ft Flow Area 2.05 ft2 Wetted Perimeter 3.91 ft Top Width 3.32 ft Critical Depth 1.00 ft Percent Full 22.02 % Critical Slope 0.003032 ft/ft Velocity 5.70 fus Velocity Head 0.50 ft Specific Energy 1.39 ft Froude Number 1.28 Maximum Discharge 118.36 ft3/S Full Flow Capacity 110.03 ft3/S Full Flow Slope 0.000057 ft/ft —Flow is supercritical. Aug 24, 1998 Morrison-M aierle,Inc. FlowMaster V4.1 16:59:44 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Tschache Lane -West 48" RCP (base flow) 22-1 37 Worksheet for Circular Channel —Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Ln. -West 48" RCP (base flow) Flow Element Circular Channel Method Manning's Formula —Solve For Channel Depth —input Data Mannings Coefficient 0.012 Channel Slope 0.500000 % Diameter 48.00 in Discharge 18.10 ft3/S Results Depth 1.10 ft Flow Area 2.80 ft2 Wetted Perimeter 4.41 ft Top Width 3.57 ft Critical Depth 1.25 ft Percent Full 27.43 % Critical Slope 0.003014 fUft Velocity 6.47 ft/s Velocity Head 0.65 ft Specific Energy 1.75 ft Froucle Number 1.29 Maximum Discharge 118.36 ft3/S Full Flow Capacity 110.03 ftl/s Full Flow Slope 0.000135 ft/ft Flow is supercritical. Aug 24, 1998 Morrison-Maierie,Inc. FlowMaster v4.1 16:59:17 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 FIGURES 233 FIGURE 3S 23 X� HEADWATER DEPTH FOR CONCRETE ARCH CULVERTS WITH INLET CONTROL (c I 169 x 106 154 x 97 3,000 138 x 88 2,000 (1) (2) (3) I _ 122 x 78 EXAMPLE 4'0 F4.0 115 x 72 1,000 Size: 44" x 27" 4.0 3.0 Q=30cfs 3.0 800 0 3.0 D 102 x 62 600 HW 500 (feet) = 2'0 2.0 .1 88 x 54 300 (1)1.02 2.30 ui 2.0 (2)0.99 2.23 co 1.5 1.5 W 200 (3)1.01 2.27 U- 1.5 _ *D in feet 0 _Z 73x45 `� � Z FS x 0 _--� Go--- Y W � 80 UJ 1.G 1.0 F 58 x 36 50 �X�,MpL� z 9 .9 .9 o x 140 •8 I-- W 51 X 31 Z 30 To use scale(2)or(3) n---.8 .8. �- C ) U draw a straight line •7 •7 CO 20 through known values W 7 X p of size and discharge F- 44 x 27 to intersect scale(1). `z QFrom point on scale(1) © .6 ,6 n_ LJO Project horizontally to Q •6 solution on either scale W r w 36 x 22 6 (2)or(3). = I 5 -�.5 {--.5 .5 4 HW/D ENTRANCE 3 SCALE TYPE 29 x 18 (1) Square edge 2 1.4 .4 .4 (2) Groove end with headwall (3) Groove end C L 22 X 13 prolecting D FIGURES 237 FIGURE 40 ,-/ HEAD FOR CONCRETE ARCH CULVERTS FLOWING FULL n = 0.012 51000 HW H 4,000 --V77rWCfn- ho Slope So 3,000 SUBMERGED OUTLET CULVERT FLOWING FULL -2,000 Z Uj HW H+ho-SoL :7 Z For outlet crown not submerged, compute HW by methods described in the design procedure 1,000 - .4 -.5 800 169 x 106 -.6 154 x 97 600 00 —138x88 Ir .8 5 -VA, 400 r122 x 78 0 4, 0 1.0 115 x 72 CZ) /4 z 300 �' pFF`y6/ UJ F— Ir-- LIJ 102 x 62 0200 -- z 88x54 2 -13 z rp 73x45 r 3 0 < 5 x 40 C/) 10 8 < Fr 58 x 36 NQP Is, U) 80 5 X 51 x 31 QP 0 1— <� -6 60 - z - 50 - 44x27 :-8 40 - 10 - W — 36 x 22 30 N C/) — 28 x 18 20 20 L 22 x 13 B 10 D 8 5 moo= FIGURES 227 FIGURE 31.1 CRITICAL DEPTH ARCH PIPE 2.0 1.8 w u- 1.6 U = 1.4 n. 0 1.2 o 1.0 d A 0 X E 0 PP 0 0.3 — D0 a 0.6 i 1 ��� 2 RISE X SPAN 0.40 10 20 30 40 50 DISCHARGE Q CFS 60 I 3.4 3.2 3.0 w 2.8 u- 2.6 -o 2.4 = 2.2 w 2.0 1.8 i v 1.6 A N TEX E DT P FPI E 1.4 j 1.2 - I v 1.0 4 6 0.8 2 „RISE X PAN 0.6 2 5/e' x 3 4" - - 0 20 40 60 80 100 120 140 160 180 200 220 240 DISCHARGE Q CFS BUREAU OF PUBLIC ROADS,JAN.1964 I . I I ' FIGURES 203 2, 137 FIGURE 16 FLOW FOR ARCH PIPE FLOWING FULL BASED ON MANNING'S EQUATION n 0.012 5000 4000 I i 3000 Numbers in parentheses indicate approx. equivalent circular size — tXi 2000 I 1000 i , 800 i lilt ' i I 600 ( I 500 400 16 -r-- � 300 z NON! 200 U.1 I ` -T 5 , l I w /2 2 z , ��_ _ I 26 U- 100 24 80 t ► I � 22 z 50 20 e� 0 40 30 ro 20 - I -� ( I 16 `�6 1 � 1 9 �� 0 i 8 6 5 , 3 2 j .01 .02 .03.04.05 .1 .2 .3 .4.5.6 .8 1 2 3 4 5 6 810 SLOPE OF PIPE IN FEET PER 100 FEET 1 i 212 CONCRETE PIPE DESIGN MANUAL Z 7X37 i FIGURE 23 RELATIVE VELOCITY AND FLOW IN ARCH PIPE FOR ANY DEPTH OF FLOW i 1 ' i I , ; 1 ! i --r-- 0 I I O]\ , co o, \ I J 1 � I o o W I > I CDp i• ! ' ' � 1 Z Lo CL b CD I 1 O Cal co �`- Ln M N O �—i O O O O O O O N O O MOIJ 30 Hld3Cl � S/3� Tschache Lane - Outlet Ditch (26 yr) Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane - Outlet Ditch (25-yr) Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 1.000000 % Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Bottom Width 6.00 ft Discharge 293.00 ft3/S Results Depth 3.37 ft Flow Area 42.94 ft2 Wetted Perimeter 21.07 ft Top Width 19.48 ft Critical Depth 3.02 ft Critical Slope 0.015644 ft/ft Velocity 6.82 fus Velocity Head 0.72 ft Specific Energy 4.09 ft Froude Number 0.81 Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:52:34 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Tschache Lane - Outlet Ditch (10-yr) Worksheet for Trapezoidal Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane - Outlet Ditch (10-yr) Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 1.000000 % Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Bottom Width 6.00 ft —Discharge 210.00 ft3/S Results Depth 2.86 ft Flow Area 33.60 ft2 Wetted Perimeter 18.81 ft Top Width 17.46 ft Critical Depth 2.54 ft Critical Slope 0.016330 ft/ft Velocity 6.25 fus Velocity Head 0.61 ft Specific Energy 3.47 ft Froude Number 0.79 —Flow is subcritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:52:16 Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 Tschache Lane - Outlet Ditch (base flow) Worksheet for Trapezoidal Channel —Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Tschache Lane- Outlet Ditch (base flow) Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth —input Data Mannings Coefficient 0.035 Channel Slope 1.000000 % Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Bottom Width 6.00 ft —Discharge 35.00 ftl/s Results Depth 1.12 ft Flow Area 9.26 ft2 Wetted Perimeter 11.02 ft Top Width 10.49 ft Critical Depth 0.92 ft Critical Slope 0.020904 ft/ft Velocity 3.78 ft/s Velocity Head 0.22 ft Specific Energy 1.34 ft Froude Number 0.71 Flow is subcritical. Aug 24, 1998 Morrison-Maierie,Inc. FlowMaster v4.1 16:53:08 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 0��T(� �T PROJECT: MT1�j�1��iT1 J�jOl V BY; DATE PROJ.NO. 1IE LL E,INC. CNK: DATE PAGE: OF .37 DC rEIV 7r l- V Wv av 7"L. E T' �7p Uc 7 A MIN. CGEV. of 1, Us6aBLE 0CTt'N�o� r 60 MH lV 7wfio-yr) - /7,06 70 c,� 15 riAPE + 16,y0.} RA56 FLou/ TW (a,K> 0 P/,?C plvc77aly 1v. 6o Norpnol Pe.e14 = /S „ I.E. 15,7F V/ ; y M�,��;h�s CafN�>;ollh w,lh 'F/Cw �'-IVc. ec(c1,'i/ �a l�C w1�X%✓�u��, cr�loa.trrq�� /o�yv Sr�e ✓'e%G,Sc ✓Gt/c c� 0-00 Tom NPPE f;pcl d� _ /.of ¢/. dh ('e le v) /.nl = /6.97 < 17.04 Oke Owk L�ot� rsrc� Tc�1'wn�ev _ 7"r✓ = 17.46— - 2 Frrcfi0h Z055 o, M m /Gle V/ IV /PC = 9.2 7 0 Pipe - pl = o.olp R = /"2 5 = 0,625 L= 7o' l/= / - 5 zz MORRIn� ��1� PROJECT: SON BY: DATE PRO1.NO. min MERLE,INC. CHK: DATE PAGE: 3 z_ OF DE7"EN7—/9N vLc r l T 6"Z/l / rra'l f d) v i I I�+il L 0 55 r/I f(�Gf v,t:C u LL 1 Z �leGdwm�e� E/ems. OHS/ef `e�/s~cl = 2 5 * 0/V + 0. 2/ - jl6.Ila—15. 7$l I �tAlelly_ = 17 28' Us,�J scr�,e c4,vi o5 -rov �,11,,c)e.e j r✓4cly GCw d,r iOrr-S In,/ I e15 p- = /• H�ete✓ - y0 t l �� �� 2 7j/�LE% GON7"�z.rL I I co)vccv5t9a l� / � iUlr✓hv-, delPii .l C «/ei+ V/ r 7 V1 I/ I p,� e vor�ia� t 1, �Q keela c,55-ke /v-, ;,xij-.l",kT base. b ct t k oy v1q r ¢ kv4fi`/o� 0 1oyccfev'f,'#,, 51/0va l ; 5f q7I7, /0 [ 75C „ ��+lJ✓ve17�Gv tvGry I �4 ck;(nj f p 4 1 bet51�,. 3_ M eocib v' ' Q /c v-I �/'on 3�eY,7yc i t1719' 2Y o✓ is NPPL Prvjec�;�� %//. M;y rlt,l e,75ily be.. 141C-Cm37 b/ 145e I o f a rc Ie�TSc Sfy�c�ti116 yo c/�EcncrsE Ve�euSe l/�T7�e �o✓ � J,�C�T heG�dv✓a7eV- de" 't h 33/'37 KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL FIGURE 4.3.4F JUNCTION HEADLOSS IN STRUCTURES 3.4 3.2 Q3 _ 2.8 Q3 2.6 Typical junction ciumbtr Ut - 130.(11 - 195,Uj ®65 Yt m 13.5.Yt.® 12.3 2.4 "'" Q/Q'=0.50(50%) Head Loss_0.94' Qt = 501,7, 0 1.8 n v 1.6 -_.. 1.4 Q 3 = 30^ Q1 1.2 1.0 Graphic Example .8 .6 Q3 (31 = 10: .4 0 1_ 4 6 8 10 12 14 16 18 20 Velocity in upstream pipe, V(fps) Source: Baltimore County Department of Public Works d 2 A_)2 CHART 5 180 10,000 168 B4OOo EXAMPLE t I 156 6,000 0.36 inches(3.0 feet) 5,000 0.66cfs (3) 144 4,000 'ttw" Hw 5, 6. 1 132 3,000 0 (feet) 6 � 5. (1) 1.8 5.4 , 120 2,000 (2) 2.1 6.3 4 5, a (3) 2.2 6.6 108 i *0 in test 'S• 4. a 98 =1 1,000 3. 800 3. 0 84 u~i 600 2 500 400 N 72 / Jr -� 2' 2. w 300 x 3 1.5 (> LL / 2 z 60t 0 200 E�P�E� 1.5 1.5 54 a w w 100 / 2 a w 48 w 80l-' o a 7 i v 60 42 J�cn 50 = 1.0 1.0 0 o tCL — �. 40 1.0 � � o w r346 30 HW ENTRANCE a:w pSCA TYPE .9 320 Neadwail .8 •8 0 (2) Mitered to conform Q 1i't 8 to slops x U 0 27 IO (3) projecting a ? •7 o . = 24 7 6 Vf 5 To use scale(2) or(3) project 21 4 hari2ontally to scale (1),then .6 use straight inclined line through •6 3 D and 0 scales, or revers* as 6 18 — illustrated. 2 15 .5 1.0 .5 f - 12 HEADWATER DEPTH FOR C. M. PIPE CULVERTS WITH INLET CONTROL BUREAU OF PUBLIC ROADS JAN.1963 5-25 Detention Basin - 15" HDPE Outlet Pipe Worksheet for Circular Channel Project Description Project File U3121\001\storm\brpks.fm2 Worksheet Detention Pond - 15" HDPE Outlet Pipe Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.010 Channel Slope 0.006000 ft/ft Diameter 1.25 ft Discharge 6.41 ft3/s Results Depth 1.01 ft Flow Area 1.06 ft2 Wetted Perimeter 2.79 ft. Top Width 0.99 ft Critical Depth 1.02 ft Percent Full 80.68 % Critical Slope 0.005865 ft/ft Velocity 6.04 ft/s Velocity Head 0.57 ft Specific Energy 1.58 ft Froude Number 1.03 Maximum Discharge 7.00 ft3/s Full Flow Capacity 6.50 ft3/s Full Flow Slope 0.005827 fUft Flow is supercritical. Aug 24, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 16:48:51 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 F. Canal at Pond 2 Outlet (Base Fiow) Worksheet for Irregular Channel Project Description Project File h:\3121\001\storm\brpks.fm2 Worksheet Farmers Canal with Dike- Sta. 14+00 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 2.200000 % Elevation range: 15.00 ft to 20.00 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 20.00 0.00 40.00 0.035 4.00 15.00 8.00 15.00 10.50 17.00 18.00 18.00 40.00 18.50 Discharge 35.00 ft3/S Results Wtd. Mannings Coefficient 0,035 Water Surface Elevation 16.20 ft Flow Area 6.25 ft2 Wetted Perimeter 7.44 ft Top Width 6.45 ft Depth 1.20 ft Critical Water Elev. 16.20 ft Critical Slope 0.021833 ft/ft Velocity 5.60 fus Velocity Head 0.49 ft Specific Energy 16.68 ft Froude Number 1.00 Full Flow Capacity 1028.57 ftl/s -Flow is supercritical. Oct 16, 1998 Morrison-Maierle,Inc. FlowMaster v4.1 10:38:00 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 (203)755-1666 Page 1 of 1 / ) � ^. /// � F. Canal at Pond 2 Outlet (10-nr Worksheet for Irregular Channel Project Description Worksheet Farmers Canal with Dike - Sta. 14+00 Flow Element Irregular Channel Method MaDDiDg'SFo[OOU}a Solve For Water Elevation Input Data Channel Slope 2.200000 % Elevation range: 15.00ftto2O.00ft. 8tation (ft) E|evoUon (ft) Start Station End Station Roughness 0.00 20.00 0.00 40.00 0.035 4.00 15.00 8.00 15.00 10.50 17.00 10.00 18.00 40.00 18.50 Discharge 21000 ft3/S Results Water Surface Elevation 18.41 ft Flow Area 34.82 ft2 Wetted Perimeter 37.18 ft Top Width 34.75 ft Depth 3.41 ft Critical Water Elev. 18.48 ft Critical Slope 0.019404ft/ft Velocity 6.03 fue Velocity Head 0.57 ft Specific Energy 18.87 ft FnJudeNUnnbe[ 1.06 Full Flow Capacity 1028.57 ft9S —Flow is supercritical. Oct16. 1988 Morris on-Meiedo.Inc. FlowMuoterv4.1 DRAINAGE SYSTEM AND DETENTION CAJLCUILATIONS 3j4 [+ri7 a ;r.-+r .5L ,.'.J, —x+r,yl t f - - �,l.} n r -°I ^r Sp_�G }"i r I .� r i f 1 �� `4. - M1 S! -1� `f 4 b r- i �- C P S'r kalF L r , x 7 �` ry �, r -,s,r - r - 1 I t s,,yip-r-4 yNx ,u,,. ti tr tir r t,r Y ,( S ��1 r F h' - a. i'� .H , r ., I I , t , 1, I y ' , '; £, - UI I f �� z 1. I. 1. } rlA � I - r - .s` t 4F7 _ - _ 5 l a *I -..__, Q ``F „r 3 e ,G."i r P _ r 'c 4 , _ xA 'k ¢� I v1: I�1 Y _ - ! - 1� �I 5 - I - r t j Y tyy r'I r ` sA a .. - _., ., , r r`.4 r rl`_Ct 7 'c r �r. - _ .. - - , 'a°n. L"T r sFp-i T0 I-- r_x f - tl i - - i'-;, 1( R r A RwY T ✓k r M1 1 tY �4 — 1 - 1 t rP w rrrl '-in r`^>>ic- x. r r^.i 'I •f- _ r - r _ i- - -><" q.. iF t -1 f h �IxhY - 2 -f y I r p _ _ - '. k I' c� e - ; v a.. . aI t , :1 ti P c_,h , 4 7 . } kIi. 1. _ :; �N - v I - - S yl v " � ,, xrl `� r a R Y _ _ f _ - M1 t, C dl-i' r u5 r r r k T k l - V _,LL Ly. Y..,T .i. _ Y - - _ } , h Y S - 1, k L R II t 3l; Z i 'l'.r _ k 1 -� - - 5 :1 . I� I I w r F`,.1' 3! �}' t7 Y'n r rllg 7 ��- 'I t i 1 - Ye 1I - i i I. f «k ' '_�. �?� Li_ �;# �� r -°++'x F f f ci r,�r7+n d'", °z ! �.'� C.�a.-a ;:1 1J - s. -v r�:,;x. Fs, Sf .� •{L.. -''<c- .a5i N��v.,141' .i�T 4 ! y _ }2 3 i i• Project Precips [2 yr] 1.20 in [5 yr] 1.60 in [10 yr] 1. 0 in Af+ [25 yr] 2.30 in [100 yr] 2.80 in [Other] 1.27 in _MAR 0,) 2�i21 LAYOUT 1 SUMMARY DATA: ` ROUTEHYD 0 THRU [Layout1] USING TYPE2 AND [10 yr] NOTZERO RELATIVE Reach Area Flow Full Q % Full nDepth Size nVel Wel Cl3asin/ Hyd ----- ac cfs cfs ratio ft ---- ft/s ft/s ------------ D7 2.1000 1.0230 1.0230 1.00 0.3438 Ditch 1.7315 ---- E2E3 D6 2.1000 1.0230 1.0230 1.00 0.2715 Ditch 3.4700 ----- P10 2.1000 1.0230 12.2868 0.08 0.3906 24"Diam 2.3661 3.9110 D5 2.7000 1.0230 1.0230 1.00 0.3770 Ditch 1.4399 ---- E1 P9 2.7000 1.0230 16.9362 0.06 0.3320 24"Diam 2.9893 5.3909 D4 2.7000 1.0230 1.0230 1.00 0.3809 Ditch 1.7631 ----- ----- ----- Rch App Bend Junct HW Max El/ ----- ----- Loss Head Loss Loss Elev Rim El From Node To Node ft ft ft ft ft ft DN-D4 21.8809 DN-P9 DN-D4 22.4808 --na-- --na-- --na-- 22,4808 24.1000 DN-D5 DN-P9 24.7480 --na-- --na-- --na-- 24.7480 27.0000 DN-P10 DN-D5 29.0680 -na-- --na-- --na-- 29,0680 30.6000 DN-D6 DN-1010 30.1378 --na-- --na-- --na-- 30.1378 32.8000 DN-D7 DN-D6 31.2327 --na-- --na-- --na-- 31.2327 33.2000 DN-D7up DN-D7 37.4726 -na-- --na-- --na-- 37.4726 38.2000 LAYOUT 2 SUMMARY DATA: ROUTEHYD O THRU OLmxmut2 USING TYPE2 AND [10yr] NOlZERO RELATIVE Reach Area Flow Full Q % FmU nDepthSice nVa/ Ww| CBae}o/Hvd --- ac ofa ofs ratio ft -- ftfs ƒUa ------ P21 2.6000 4�8294 4.4379 0.98 0.8985 15^Diam 4.1184 3,6103 AJ P20 3.6000 5.8128 72165 0.81 1.0195 18^Diam 4.5448 4.0837 A6 P13 5.0000 �,0048 10.8856 0.74 1.1211 21^Dium 4.9551 4.5257 A5 P18 5.8000 0.8463 10.0856 0.01 1.1880 �n''Diom 5.0*12 4.5257 82 P17 O7VOO 1.4161 1.4379 0.88 0.5417 8^Diam 4.8619 4J198 A4 p16 1.6000 32819 3.4729 0.9* 0.5104 8''Diom 11.3746 9.9492 A3 P15 7.4000 121081 15.5417 0.78 1.3271 24rDiam 5.4708 4�9471 on 92000 12.1081 12.1081 1.00 1.0364 Ditch 2.8183 --- Al D8 92000 12.1081 12100 1.00 0.933 Ditch 3.4768 --- P14 0.8000 11184 4.5792 0.35 04102 12^Diam 5.3352 5.8304 C8 p13 0.8000 1.8184 5.4731 0.30 0.3711 12^Diam 6.1017 6.9086 P12 2.0000 4.0790 54353 0.75 0.8081 15^Diam 4.8608 4A291 C5 p11 31000 6.3288 8,5940 0.74 0.7983 15"Diam 7.6483 7.0030 C4 pu 4J100 91643 10.8850 0.84 12305 21"Diam 5.0711 4.5257 D4 pr 5�5100 10.6025 10.8856 0.97 1.39*5 21^Oiam 5./580 4�5257 D3 pu. 6.7100 12.640 15.5417 0.81 1.389 24"Diam 5.5150 �9471 D2 uo 2.2000 3.2756 3.2756 1.00 0.5273 Ditch 1.8121 --' DI po 8.9100 15.9157 18.4262 0.86 1.6139 ZrDiam 5,2142 4�6343 P4 0,9100 15.9157 18.4262 0.88 1.6139 ZrDiam 5.2142 4,6343 pn 10.8100 19.3218 24.4037 0.73 1.6785 30rDiam 5.5139 4.8715 C7 pz 11.1100 18.6961 244037 0.81 1J029 30rOiam 5.5306 4.9715 O2 P1 14.5100 2I6394 39.6831 0.67 17988 36"Diam 6�0205 5,6140 C0 oz 22.5100 28.6394 26.6394 1.00 1.5214 Ditch 2.8774 -- C1 cn 225100 28.6394 26,6394 1.00 1.393 Ditch 3.4318 --' pz2 31J100 38.7475 60.6169 0.64 1,7432 36rDiam 3.0944 8.5755 D10 31J100 38.7475 38.7475 1.00 1.5375 Ditch 4,0980 --' --- --- Rnh App Bend Junct HYv Max Ell --- --' Loss ypau Loss Lnea s}ov Rim El From Node To Node ft ft ft ft u ft DN'D10 17.2375 ON-P22 DN-D10 17.5374 -na- -na- -no- 17.5374 20.0000 Pond2 DN'P22 19.5601 -no- -na- -na- 19.5601 23.0000 DN-DS Pund2 28J180 -na- -nu- -na- 22.6000 22.5000 DN-P15 DN'D3 25.8559 -na- -na- -na- 25,6000 25.5000 Pond3 DN-P15 26.4962 -na- -na- -na- 264962 30.0000 CB12 Pond3 27.9275 0.3813 0.5074 ---- 28.0537 30.8600 C813 CB12 29.1988 0,3207 0,4289 ---' 28.3049 30.5000 CB14 CB13 30.3133 02635 0.0056 '--- 38.0554 31.1000 CB15 CB14 31.3249 -'-' --- ------ 30.9000 30,8008 CB11 Pnnd3 31,9388 0.5375 0.4491 '-- 31.2000 31.1000 DN'P17 CB11 33.4677 -na- -no- -na- 33.0000 32,9000 oN'D2 Punu2 20.0720 -no- -na- -no- 20.8720 22.0000 oN-P1 DN'D2 22.8719 -na- -na- -na- 22.1000 22.0000 CB1 DN'P1 231119 0,8083 12088 0.2111 23.0236 25.40VO oB8 CB1 25.9381 0.3669 0.4883 --- 26.0595 27.5000 o89 CB8 282887 0.5781 0J694 '--- 284900 29.0000 CB10 CB9 30.4248 0.4420 0.5883 --- 30,2600 30.1600 DN-P14 CB10 , 33.8555 -na- -na- -nu- 33,0000 32.9000 nB2 CB1 24.6063 --- --- --- 24,6063 25.8000 C83 CB2 25.6438 0.4222 0.0029 --- 23.5000 23,4000 CB4 C83 24J782 0.4222 0.5619 '--- 24.9179 37.1000 Pund1 CB4 25.5812 -nu- -na- -no- 25.5812 27.0000 CB5 Pund1 27.7295 0.4133 0.5500 --- 27.�000 27.5000 CB0 CB5 28.2435 0.3895 0.5315 --- 28.5000 28.4000 C87 CB6 292590 --- '--- '--- 28.0000 20.9000 DN-D3 Pond1 27.5011 -na- -na- -nu- 25.5000 25.4000 / } � ���� °/ -~ � REACH RECORDS: Reach ID: D1 Section ; Shope: Ditch Routing Method: Travel Time Translation Size K8atohe| K8anninDan Hyd pooenlaBv Corr Metal -nonno| 0.0300 yNanninga Formula Length Slope Entrance Loss 164.0000ft 0.80 96 Span Rise es1 os2 0.0000 ft 2.0000 ft 4D0h:1v 4.00h:1v Up Node DnNode DN-D2 Pond2 Reach [D: D2 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material yWonnings n Hyd parannn By Corr Metal - normal 0.0300 k4onninQa Formula Length Slope Entrance Loss 420.0000 ft 0.50 96 Span Rise aal os2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node DnNode ON-131 DN-D2 Reach ID: D3 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material Manninga n Hyd params By Corr Metal -normal 0.0300 K4anninga Formula Length Slope Entrance Loss 240.0000 ft 0.80 96 Span Rise oa7 ao2 | 0.0000 ft 2.0000ft 10.00h:1v 3.00h:1v Up Node OnNodo DN-O3 Pond1 Reach ID: D4 Section Properties: Shape: Ohrh Routing Method: Travel Time Translation Size Material K8onninga n Hyd pananlm By ' Corr Metal- normal 0.0300 KAanninga Formula Length Slope Entrance Loss 50.0000 ft 1.20 Y6 Span Rise as1 on2 0.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node DO Node DN-P9 ON'D4 Ly�7 Reach ID: D5 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size PWabaho| K8onningan HvdpanernaBv Corr Metal - normal 0.0300 K8anningnFonnu|a Length Slope Entrance Loss 540.0000ft 0.8096 ' Span Rise oo1 ao2 O.OUUOft 2.0000ft 6.00h:1v 4.00h:1v Up Node On Node ON-P1O DN-D5 Reach ID: D6 Section Properties: Shope: Ditch Routing Method: Travel Time Translation Sbra Mobaha| Manningmn HydparornoBy Corr Metal- normal 0.0300 K0anninQoFonnu|e Length Slope Entrance Loss 15.0000ft 73096 Span Rise oo1 sa2 O.00OOft 2.0000ft 4.00h:1v 4.00h:1v Up Node On Node DN-D7 DN-D8 Reach ID: D7 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material K8anningan HydponanlnBy Corr Metal' normal 0.0300 MgnningaFormu|a Length Slope Entrance Loss 480.0000ft 1.3096 Span Rise oe1 ao2 D.00OOft ZOOOOft 6.00h:1v 4.00h:1v Up Node DnNode DN-D7up DN-O7 Reach ID: D8 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size yWobaho| yNanningon Hydpononls8v � Corr Metal-normal 0.0300 yNonningmFonnu|a Length Slope Entrance Loss 297.0000ft 1.40 % Span Rise oo1 ao2 0.0000ft 2.0000ft 4.00h:1v 4.00h:1v Up Node DnNode DN-OS Pond2 Reach ID: D9 Section Properties: Shape: Ditch Routing Method: Travel Time Translation ) ' Size Material ;Wonningon HvdpanannoBv Corr Metal-normal 0.0300 ManninQsFunnu}o Length Slope Entrance Loss 382.0000ft 0.80Y6 Span Rise oo1 ms2 O.00OOft 2.0000ft 4.00h:1v 4.00h:1v Up Node On Node DN-P15 DN-O8 Reach ID: D10 Section Properties: Shape: Ditch Routing Method: Travel Time Translation Size Material K8anningon Hydpa[arnoBy CorrMeto/-norma| 0.0300 K0anningaFormu|a Length Slope Entrance Loss 30.0000ft 1.0096 Span Rise oo1 ea2 O.00OUft 2.0000ft 4.00h:1v 4.00h:1v Up Node DnNoda ON-P32 DN-D1O Reach ID: PI Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material W1enningon Hydpon3rnaBy 36" Diam Cono-SteelFornn 0.0120 W1anningeFormu|o Length Slope Entrance Loss 148.0000ft 0.30 % Square Edge w/HeadwoU Span Rise ma1 se2 3.0000ft 3.0000ft 4.00h:1v 4.00h:1v Up Node DnNode CB1 ON-P1 Reach ID: P2 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material yWanningsn HydporarnnBy 30" Dianl Conc'8tem| Form 0.0120 W1anninge Formula Length Slope Entrance Loss 90.0000ft 0.3096 Square Edge wYHeadwaU Span Rise aa1 as2 � 2.5000 2.5000ft 4.00h1v 4.00h1v � Up Node DO Node CB2 CB1 Reach ID: P3 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material &1onningon Hydpan3rnoBy 30" Diam Cono-SteelFornn 0.0130 K4aDninOaFo[nnu}e Length Slope Entrance Loss 110.0000ft 0.30 % Square Edge w/HeadvvaU ) ) � Span Rise ss1 mo2 2.5000 ft 2.5000 ft 4.00hjv 4.00h1v Up Node Om Node CB3 CB2 Reach ID: P4 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material yWanningo n Hyd panarna By 27" Diann Conc-Steel Form 0.0120 PNonnings Formula Length Slope Entrance Loss 215.0000 ft 0.30 % Square Edgam/Headwa|| Span Rise ao1 oe2 2.2500 ft 2.2500 ft 4.00h:1v 4.00h:1v Up Node On Node CB4 CB3 Reach ID: P5 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material K8onningan Hyd panannoBy 27" Diorn Plastic 0.0120 yWanningo Formula Length Slope Entrance Loss 10.0000 ft 0.30 96 Square Edgew/HemdvvaU Span Rise ao1 ao2 2.2500 ft 2.2500 ft 4.00h:1v 4.00h:1v Up Node On Node Pond1 CB4 Reach ID: P6 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size K8ob*ha| K8onningo n Hyd pename By 24" Oiam P|oaUo 0.0120 ManningsFomnu|a Length Slope Entrance Loss 360.0000ft 0.40 96 Square EdQew/Heedvva|| Span Rise es1 oo3 2.0008ft 2.0000ft 4.00h:1v 4.00h:1v � Up Node On Node C85 Pond1 Reach ID: P7 Section Properties: Shape: Circular Routing Method: Travel Time Tnane)atioh Size K8obohal K8onn|ngu n Hyd pananna By 21" Diann P|aaUo 0.0120 [Nonnings Formula Length Slope Entrance Loss 255.0000 ft O.4D 96 Square Edgew/HeodweU Span Rise ao1 sm2 1,7500 ft 1.7500 ft 4.00h:1v 4.00h:1v Up Node DnNode CBG CB5 Reach IM P8 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size K8abeha| K8onningsn HvdpanarnsBv 21" Dimnn P|ooUo 0.0120 &4onninguFormula Length Slope Entrance Loss 40D000ft 0.4096 Square Edge w/HeedvveU Span Rise sa1 aa2 17500ft 17500ft 4.00h:1v 4.00h:1v Up Node DnNode CB7 CBO Reach [M P9 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size k8abeha| K8anningan HydponarnoBy 24" Dienn Corr Metal- normal 0.0240 K8onninQoFonnu|a Length Slope Entrance Loss 115.0000ft 1.90 Y6 K8ibanad to slope Span Rine oo1 sm2 2.0000ft 2.0000ft 4.00h:1v 4.00h:1v Up Node DnNode DN-D5 DN'PS Reach IM PIO Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material K8anningon HydparennaBy 24" Diam CorrMaba|-nornna| 0.0240 K8onningn Formula Length Slope Entrance Loss 100,0000ft 1.0096 Mitered toslope Span Rise oa1 ao2 2.0000ft 2.0000ft 4.00h:1v 4.00h:1v Up Node DnNoda DN-[]O DN'P1O Reach IM P11 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size K8absha| Monningon HydpongnnoBy 15'' Dionn Plastic 0,0120 K8onningsFormu|o Length Slope Entrance Loss 187.0000ft 1.50Y6 Square Edge wYHoadvvoU Span Rise so1 ao2 1.2500ft 1.2500ft 4.00h:1v 4.00h:1v Up Node On Node CB8 CB1 Reach IM P12 Section Properties: Shape: Circular Routing Method: Travel Time Translation / ) Size Material Monningan Hyd ponannnBv 15" Oionn P|aabo 0.0120 K8anninga Formula Length Slope Entrance Loss 283.0000 ft 0.80 % Square EdgevWHendwoU Span Rise ao1 sa2 1.2500 ft 1.2500 ft 4.00h:1v 4.00h:1v Up Node DnNode CBS CB8 Reach ID: P13 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material yNanninge n Hyd ponamo By 12" Oionn Plastic 0.0120 K8anningo Formula Length Slope Entrance Loss 55.0000ft 2.00 96 Square Edgew/HeadvvaU Span Rise aa1 oe2 . 1.0000 ft 1.0000 ft 4.00h:1v 4.00h:1v Up Node DnNode CB1O CB9 Reach ID: PI4 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material yWanninQa n Hyd panams By 12" Diann Plastic 0.0120 W1onninQo Formula Length Slope Entrance Loss 196.0000 ft 1.40 % Square Edge w/Headwo|| Span Rise aa1 so2 1.0000 ft 1.0000 ft 4.00h:1v 4.00h:1v Up Node On Node DN-P14 CB1O Reach ID: P15 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material W1annings n Hyd parame By 24" Diann Plastic 0.0120 K8annings Formula Length Slope Entrance Lmma � 50.0000ft 0.40 96 Square EdgewyHeadvvo|| Span Rime oo1 om2 2.0000 ft 2.0000 ft 4.00h:1v 4.00h:1v Up Node On Node Pond3 ON-P15 Reach ID: P16 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material W1anninga n Hyd panams By 8" Diann P)mSt|o 0.0120 K8anningm Formula Length Slope Entrance Loss 32.0000 ft lOO Y6 Square Edgew/Headwo| Span Rise ma1 oo2 0.8807ft 0.6667ft 4.00h:1v 4.00h:1v Up Node [)n Node CB11 Pond3 Reach IM PW Section Properties: Shape: Circular Routing Method: Travel Time Translation Size K8otehe| Menningon Hyd ponarnoBy 8" Diann Plastic 0.0120 K0annings Formula Length Slope Entrance Loss 148.0000 ft 1.20 Y6 Square Edgew/HeadvvoU Span Rise na1 oa2 0.8867 ft 0.6667 ft 4.00h:1v 4.00h:1v Up Node On Node DN-P17 C611 ReachIMP18 Section Properties: Shape: Circular Routing Method: Travel Time Translation Giza Material K8anningu n Hyd panama By 21" [}iern P|ooUo 0.0120 Mann)nga Formula Length Slope Entrance Loos 210.0000ft 0.40 Y6 Square Edgaw/HeadvvaU Span Rise as1 ae2 1.7500 ft 1.7500ft 4.00h:1v 4.80h:1v Up Node On Node CB12 Pond3 Reach IM P19 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size Material K4anninga n Hyd panamo By 21" Dionn P|ooUo 0.0120 NYanningmForiu/a Length Slope Entrance Loss 143.0000 ft 0.40 Y6 Square Edgev/HeodvxaU Span Rise sa1 ss2 17500 ft 17500 ft 4.00h:1v 4.00h:1v Up Node On Node CB13 CB12 Reach IM P20 Section Properties: Shape: Circular Routing Method: Travel Time Translation 3bce yWateho| K8anningo n Hyd ponanna By 18" Diann Plastic 0.0120 K8ann|Dga Formula LanOUl Slope Entrance Loss 132.0000 ft 0.40 Y6 Square Edgew/He@dvvaU Span Rise na1 as2 1.5000 ft 1.5000ft 4.00h:1v 4.00h:1v Up Node DnNode CB14 CB13 Reach ID: P21 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size K8abaha| PWann|ngnn HydponammBv 15" Oionn Plastic 0.0120 K8anningsFornOu|a Length Slope Entrance Loss 202.0000ft 0.40Y6 Square Edge w/HeadvvaU Span Rise oo1 ao2 1.2500ft 1.2500ft 4.00h:1v 4.00h:1v Up Node On Node CB15 CB14 ReachID: P22 Section Properties: Shape: Circular Routing Method: Travel Time Translation Size K8ahyha| KAonn|ngan HydpananneBy 36" [Jiann Plastic 0.0120 yNonninge Formula Length Slope Entrance Loss OU.00OOft 0.7096 Square Edge w/HnadvvoU Span Rise ao1 aa2 3.0000ft 3.0000ft 4.00h:1v 4.00h:1v Up Node DnNode Pond2 DN-P22 � NODE RECORDS: Node ID: DN-D2 Desc: D2/D1 Grade Break Start El: 17.7000 ft Max El: 22.0000 ft Contrib Basin: Contrib Hyd: HgI Elev: 20.8720 ft Node ID: DN-D3 Desc: D3 Inlet Start El: 23.4000 ft Max El: 25.4000 ft Contrib Basin: D1 Contrib Hyd: HgI Elev: 25.5000 ft Node ID: DN-D4 Desc: D4 Outlet Start El: 21.5000 ft Max El: 23.5000 ft Contrib Basin: Contrib Hyd: HgI Elev: 21.8809 ft Node ID: DN-D5 Desc: D5 Outlet Start El: 25.0000 ft Max El: 27.0000 ft Contrib Basin: Contrib Hyd: HgI Elev: 24.7480 ft Node ID: DN-D6 Desc: D6 Outlet Start El: 29.6000 ft Max El: 32.8000 ft Contrib Basin: Contrib Hyd: HqI Elev: 30.1378 ft Node ID: DN-D7 Desc: D7 Inlet Start El: 30.7000 ft Max El: 33.2000 ft Contrib Basin: Contrib Hyd: HgI Elev: 31.2327 ft Node ID: DN-D7up Desc: D7 Inlet Start El: 37.0000 ft Max El: 38.2000 ft Contrib Basin: E2E3 Contrib Hyd: HgI Elev: 37,4726 ft Node ID: DN-D9 Desc: D91D8 Grade Break Start El: 20.5000 ft Max El: 22.5000 ft Contrib Basin: Contrib Hyd: HgI Elev: 22.6000 ft Node ID: DN-D10 Desc: DIO Outlet Start El: 15.7000 ft Max El: 20.0000 ft Contrib Basin: Contrib Hyd: HgI Elev: 17.2375 ft Node ID: DN-P1 Desc: P1 Outlet Start El: 19.8000 ft Max El: 22.0000 ft Contrib Basin: C1 Contrib Hyd: HgI Elev: 22.1000 ft Node ID: DN-P9 Desc: P9 Outlet Start El: 22.1000 ft Max El: 24.1000 ft Contrib Basin: Contrib Hyd: HgI Elev: 22.4808 ft Node ID: DN-P10 Desc: P10 Outlet Start El: 28,6000 ft Max El: 30.6000 ft Contrib Basin: El Contrib Hyd: HgI Elev: 29.0680 ft Node ID: DN-P14 Desc: P14 Inlet Start El: 29.5900 ft Max El: 32.9000 ft Contrib Basin: C6 Contrib Hyd: HgI Elev: 33.0000 ft Node ID: DN-P15 Desc: P15 Outlet Start El: 23.5000 ft Max El: 25,5000 ft Contrib Basin: Al Contrib Hyd: HgI Elev: 25.6000 ft Node ID: DN-P17 Desc: P17 Inlet Start El: 29.8300 ft Max El: 32.9000 ft Contrib Basin: A4 Contrib Hyd: HgI Elev: 33.0000 ft Node ID: DN-P22 Desc: P22 Outlet Start El: 16.0000 ft Max El: 20.0000 ft Contrib Basin: Contrib Hyd: HgI Elev: 17.5374 ft Node ID: CB1 Desc: Curb Inlet Start El: 20.2400 ft Max El: 25.4000 ft Contrib Basin: C3 Contrib Hyd: HgI Elev: 23.6236 ft Struct Type: CB-TYPE-1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.9083 ft Bend Loss: 1.2089 ft Junction Loss: 0.2111 ft Node ID: CB2 Desc: Curb Inlet Start El: 17.5700 ft Max El: 25.3000 ft Contrib Basin: C2 Contrib Hyd: HgI Elev: 24.6063 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.0000 ft Node ID: CB3 Desc: Curb Inlet Start El: 17.9000 ft Max El: 23.4000 ft Contrib Basin: C7 Contrib Hyd: HgI Elev: 23.5000 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.4222 ft Node ID: CB4 Desc: Manhole Start El: 21.0300 ft Max El: 27.1000 ft Contrib Basin: Contrib Hyd: HgI Elev: 24.9179 ft Struct Type: CB-TYPE 1-48 Classification Manhole Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.4222 ft Node ID: CB5 Desc: Curb Inlet Start El: 23.4400 ft Max El: 27,5000 ft Contrib Basin: D2 Contrib Hyd: HgI Elev: 27.6000 ft Struct Type: CB-TYPE 148 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &Wingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.4133ft Node ID: CB6 Deoc: Curb Inlet Start El: 34.4600ft Max El: 28/1080ft ContribBaain: D3 CVnhibHvd: Hg| Elev: 28.5000ft 8truc Type: CB-TYPE148 Classification Catch Basin KeDeoorp: CK8P: Headwall or Headwall &VWngwaUaqedge;.ke=O.5 Catch Depth: 1.5000ft BotArea: 12.5664af Condition: No particular shape. Status: Structure Approach Credit: 03993ft Node ID: CB7 Desc: Curb Inlet Start El: 248200ft Max El: 28.9000ft ConthbBoein: O4 ContribHvd: HcdElev 29.0000ft Struct Type: CB-TYPE148 Classification Catch Basin KeDaaurp: CK8P: Headwall or Headwall &VWngvvaUaqadge;.ka=D.5 Catch Depth: 1.5000ft BotArea: 12.5684af Condition: No particular shape. Status: Existing Structure Approach Credit: O.00OOft Node ID: CB8 Doac: Curb Inlet Start El: 24.0500ft Max El: 27.6000ft CbnLhbBoein: C4 ConbibHvd: Ho| Elev 26.0585ft 8tructTvpe: CB-TYPE1-48 Classification Catch Basin KeDaachp: CW1P: Headwall or Headwall &VWngvvaUaqedge;.he=O.b Catch Depth: 1.5000ft 8otAnao: 12.5684of Condition: No particular shape. Status: Existing Structure Approach Credit: 0.3669ft Node ID: CB9 Daoc: Curb Inlet Start El: 25.7400ft Max El: 29.0000ft ConhibBaoin: C5 ConthbHyd: Hg| E|ev: 28.4900ft SbuctTvpo: CB-TYPE 1-48 Classification Catch Basin � KeDeochp: CK8P: Headwall or Headwall &VWngvvaUaqmdQe;.ka=O.5 Catch Depth: 1.5000ft BotArea: 12.5064af Condition: No particular shape. Status: Existing Structure Approach Credit: 0.5781ft Node ID: CB10 Demo: Curb Inlet Start El: 26.8400ft Max El: 30.1600ft ContribBasin: ConthbHyd: HQ} E|ev: 30.2600ft ) ) � . / ~��^/� SbuctType CB-TYPE1-48 Classification Catch Basin KeOeonrp: CMP: Headwall or Headwall &VNngvYaUoqedge;.he=O.5 Catch Depth: 1.5000ft BotAnao: 12.5864ef Condition: No particular shape. Status: Existing Structure Approach Credit: 0.4420ft Node ID: CB11 Deac Curb Inlet Start El: 28.0400ft Max El: 31.1000ft ConbibBooin: A3 ConthbHyd: Hg| Bev: 31.2000ft GtnuotTvpe: CB'TYPE1-48 Classification Catch Basin KeOesorip: CPWP: Headwall or Headwall &V0ngvvaUoqedge;.ke=O.5 Catch Depth: 1.5000ft BotArea: 12.5664of Condition: No particular shape. Status: Structure Approach Credit: O.3375� - Node ID: CB12 Oesc: Curb Inlet Start El: 25/4400ft Max El: 30.8600ft ContribBaain: A2 CunthbHyd: Ho1Elev 28.0537ft Struct Type: CB-TYPE148 Classification Catch Basin KeDeaorp CMP: Headwall Vr Headwall &V0ngvvoUeqedoe;.he=O.5 Catch Depth: 1.5000ft BotAree 12.5864of CoVdition: No particular shape. Status: Existing Structure Approach Credit: 0,3813ft Node ID: CB13 Dsmc: Curb Inlet Start El: 26.0100ft Max El: 30.5000ft Conthb800in: A5 CoObibHvd: Hg| Ele« 2Ei3049ft 8tnuotTvpa: CB-TYPE1-48 Classification Catch Basin KeDaschp: CK0P: Headwall or Headwall QVWnQvvoUuqodge;.he=O.5 Catch Depth: 1.5000ft Bo{Areo: 12.5664of Condition: No particular shape. Status: Existing Structure � Approach Credit: 0.3307ft Node ID: CB14 Oeso: Curb Inlet Start El: 28.5400ft Max El: 31.1000ft CoDtdbBaoin: AO ConbibHyd: HQ| E1ev: 30.0554ft GtructTvpe: CB-TYPE1-48 Classification Catch Basin KeDasorip: CK8P: Headwall or Headwall &VWOgvvaUeqedge;.ka=O.5 Catch Depth: 1.5000ft 8otAnaa: 12.5664of Condition: No particular shape. Status: Existing Structure Approach Credit: 0.2635ft Node ID: CB15 Desc: Area Inlet Start El: 27.3500 ft Max El: 30.8000 ft Contrib Basin: A7 Contrib Hyd: HgI Elev: 30.9000 ft Struct Type: CB-TYPE 1-48 Classification Catch Basin Ke Descrip: CMP: Headwall or Headwall &VVingwall sq edge;.ke=0.5 Catch Depth: 1.5000 ft Bot Area: 12.5664 sf Condition: No particular shape. Status: Existing Structure Approach Credit: 0.0000 ft Node ID: Pondl Desc: Detention Pond I Start El: 21.0600 ft Max El: 27.0000 ft Contrib Basin: Contrib Hyd: HgI Elev: 25.5812 ft Node ID: Pond2 Desc: Detention Pond 2 Start El: 16.0000 ft Max El: 22.0000 ft Contrib Basin: Contrib Hyd: HgI Elev: 19.5601 ft Node ID: Pond3 Desc: Detention Pond 3 Start El: 23.8020 ft Max El: 30.0000 ft Contrib Basin: Contrib Hyd: HgI Elev: 26.4962 ft / ) / / �� 5F , CONTRIBUTING DRAINAGE AREAS: Drainage Area: Al Hyd Method: SC8 UnitHvd Loss Method: 8C8CN Number Peak Factor: 484.00 8C8Aba: O�20 Storm Our 24.00hra Area CN TC 1.8000ac 61.00 0.33hno Supporting Data: CN Data: range/grass 81.00 1.8000ao TC Data: Flow type: Description: Length: Slope: Coeff-. Travel Time Sheet range/grass 100.00ft 6.0096 0i1500 10.31 min Shallow nanga/onooa 300.00ft 1.1096 8.0000 5.30nin Channel grass 490.00ft 1.2096 17.0000 4.39nnin 10 yr Flow Time Volume Summary: 0.7072cfm 12.17hro 4251.92of'0.0976acft Drainage Area: A2 HydK8ethod: 8CG Unit Hyd Loss Method: 8CGCNNumber Peak Factor: 484.00 SCSAba: 0.20 Storm Dur 24.00hrs Area CN TC 0.8000ao 83.20 0.08hro Supporting Data: {:N Data: pavement/rooftop 98.00 0.4800ac gnyaa 61.00 0.3200eu TC Data: Flow type: Description: Length: Slope: Coeft Travel Time Sheet rooftop 80.00ft 0.50% 0.0110 2.88niD Shallow pavement GO.OUft 14096 27.0000 0.31mnin Channel gutter 80.00ft 2,2096 40.0000 0.22nl/n TCof3.42 min « 5 min, program will use ab:of5 min incomputations. 10yr Flow Time Volume Summary: 1.1325ofs 12.00hns 5745.67of-0.1319eoft Drainage Area: A3 HydK8ethVd: GC8 Unit Hyd Loss Method: 8C8CNNumber Peak Factor: 484.00 GCSAbo: 0.20 Storm Our 24.00 hra Area CN TC 0.8000ac 98.00 O.00hro Supporting Data: CN Data: pavement/rooftop 98.00 O.SDOOoc TC Data: Flow type: Description: Length: Sboa Coeff: Travel Time Sheet rooftop 7000ft 0.50Y6 0.0110 2.59ndn Channel gutter 205.00ft 1.0096 40.0000 0.85min TCof3.44 min < 5 min, program will use atcof5 min incomputations. 10yr Flow Time Volume Sornrna,y: 2.1796cfm 12.00hro 8368.76cf-0.2151acft Drainage Area: A4 HydK8ethod: SC8 Unit Hyd Loss Method: 8C8CNNumber Peak Factor: 484.00 SC8Aba: 0.20 Storm Ou, 24.00hna Area CN TC 0.7000oc 98.00 0.12 hro Supporting Data: CN Data: pevement/rooOop 98.00 0.7000on TC Data: Flow type: Description: Length: Slope: Coeft Travel Time Sheet rooftop 240.00ft 0.50Y6 0.0110 6.94min Channel pavement 60.00ft 1.0096 40.0000 0.25nnin 10yr Flow Time Volume Summary: 1.4161cfo 12.00hro 4179.43nf-0.0959ocft Drainage Area: A5 HydK8ethod: SCG Unit Hyd Loss Method: 8CSC|NNumber Peak Factor: 484.00 SC8Abn: 0.20 Storm Dur 24.00hra Area CN TC 1.4000ac 92.45 0.11hro Supporting [Jwta; CN Data: pavement/rooftop 98.00 1.1900ec grass 81.00 0.2100ac TCData: Flow type: Description: Length: Slope: Coaf[ Travel Time Sheet grass 35.00ft 8.30Y6 0.1500 3.91 min Channel grass 210.00ft 0.8096 17.0000 2.30min Channel pavement 46.00ft 1.00Y6 40.0000 0.19nn|n � 10y, Flow Time Volume Summary: 2.2519ofo 12.00hra 5893.05cf-0.1353acD Drainage Area: A6 HydMothod: GCS Unit Hyd Loss Method: 8C8CNNumber Peak Factor: 484.00 8C8Aba: 0.20 StonnOur 24.00hro Area CN TC 1.0000ao 90.60 O.OShro Supporting Data: CNDmta: pavement/rooftop 88.00 0.8000mo grass 61.00 0.2000oc TC [>ato: Flow type: : Length: Slone Coeff: Travel Time Sheet grass 35.00ft S ( Y6 0.1500 4.71nnin Shallow pavement 58.00ft 3.1096 27.0000 020nnin Channel pavement 106.00ft 2.8096 40.0000 0.20nn/n 10yr Flow Time Volume Summary: 14834ofe 12.00hro 3803-30of-0.0873acft Drainage Area: A7 HydK8ethod: SCG Unit Hyd Loss Method: 8CGCNNumber Peak Factor: 484.00 GC8Abm: 0.20 Storm Dur 24.00hna Area CN TC 2.8000oc 82.45 D.00hro Supporting Data: CNDmtm: pavement/rooftop 98.00 2.2100ac grass 81.00 0.3980oo TCOatm: Flow type: Description: Length: Slope: Coett Travel Time Sheet grass 30.00ft 1370Y6 0.1500 2.83rnin Shallow pavement 85.00ft 1.9096 27.0000 0.38nnin Channel pavement 153.00ft 2.80Y6 40.0000 0.38nn|n TC of3.5S min < b nn)n, program will use a tc of min in computations. 10 yr Flow Time Volume Summary: 4.3295nfm 12.00hro 11510.93of-0.2643aoft Drainage Area: C1 HydK8ethod: GCS Unit Hyd Loss Method: SCS CNNumbar Peak Factor: 484.00 SC8/\ba: 0.20 GbznnOur 24.00hrs Area CN TC 8.0000eo 61.00 0.61hns Supporting Data: CNOmta: range/onaaa G1�DU 8�OOOOau- � TC Data: Flow type: Description: Length: Slope: Coaff: Travel Time Sheet grass 25000ft 3,00% 0.1500 28.32min Shallow grass 495.00ft 1.50Y6 11-0000 0.12nnin Channel grass 215.00ft 0.8096 17.0000 2.36nnin 10yr Flow Time Volume Summary: 0.0574chy 13.50hra 1585.34cf-0.0364acft Drainage Area: C2 / 20152 HydK8ethod: SC3 Unit Hvd Loss Method: SCS CN Number Peak Factor: 484.00 8CGAbo: 0.20 GbonnDur 24.00hre Area CN TC 0.3000ao 86.90 0.03hrs Supporting Data: CN Data: rooftop/pavement 98.00 02100oo grass 61.00 O.OSOOan TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 55.00ft 1.3096 0.0110 1.48nin Channel gutter 65.00ft 0.60Y6 40.0000 0.35nn|n TCof1.B1 min < 5 min, program will use atoof5 min incomputations, 10 yr Flow Time Vn|unna Summary: 0.3743cfo 12.00hrs 839.33cf-0.0318acft Drainage Area: C3 HydW1eUhod: GC8 Unit Hyd Loss Method: GCGCNNumber Peak Factor: 484.00 GCGAba: 0.20 Storm Dur 24.00 hro Area CN TC 0.3000au 98.00 0.07hna Supporting Data: CN Data: rooftop/pavement 98.00 0.3000ao TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 120.00K 0.5096 0.0110 3.99rnin Channel pavement 30.00ft 1.00Y6 40.0000 0.13OniO TC of4.11 min <5 min, program will use atoof5 min in computations. 10yr Flow Time Volume Summary: 0.6147ofe 12.00hrs 1860.40of-0.0427aoft Drainage Area: C4 HydMathod: SCG Unit Hyd Loss Method: SCSCNNumber Peak Factor: 484.00 8C8Abo: 0.20 Storm Dur 24.00hne Area CN TC � 1.1000oc 98.00 O.Oghre Supporting Data: CN Data: ' rooftop/pavement 98.00 1.1000ac TC Data: Flow type: Description: Length: Slope: Coeff. Travel Time Sheet pavement 180.00ft 0.5096 0.0110 5.02Ooin Channel pavement 30.00ft 1.00% 40.0000 0.13nnin 10yr Flow Time Volume Summary: 2.2487cfs 12.00hm 669138of'0.1536acft \ � y^��� ) ~ / ~`�. � Drainage Area: C5 HydMethod: SCS Unit Hyd Loss Method: GCSCNNumber Peak Factor: 484.00 GCSAbo: 020 SbonnDur 24.00hna Area CN TC 1.2000ao 98.00 0.08hns Supporting Data: CNDeta: rooftop/pavement 88.00 1.2000ac TC Data: Flow type: Description: Length: Slope: Cooff: Travel Time Ghaad pavement 80.00ft 0.5096 0.0110 2.88m|n Channel pavement/gutter 200.00ft 1.3096 40.0000 0.73min TCof3.01 min < 5 min, program will use atc0f5 min incomputations. 10yr Flow Time Volume Summary: 2.4606cfa 12.00hro 7515.18cf-0.1725ocft Drainage Area: C6 HydMethod: S{}S Unit Hyd Loss Method: GCSCNNumber Peak Factor: 484.00 8CSAbo: 0.20 Storm Dur 24.00bro Area CN TC 0.8000oc 98.00 0.12 hre Supporting Data: CNDmta: rooftop/pavement 98.00 0.8000oo TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet pavement 240.00ft 0.5096 0.0110 6.94nn|n Channel pavement/gutter 80.00D 1.00Y6 40.0000 0.25m|n 10 yr Flow Time Volume Summary: 1.6184ohy 12.00hna 4776.48cf-0.1087acft Drainage Area: C7 HydK8othod: SCS Unit Hyd Loss Method: 8C3CNNumber Peak Factor: 484.00 GCGAbe: 0.20 Storm Dur 24.00 hro � Area CN TC 1.9000ac 94.30 0.08hro Supporting Data: CN Data: rooftop/pavement 98.00 1.7100ac grass 61.00 0.1900oc TC Data: Flow type: Description: Length: Slope: Coaft Travel Time Sheet pavement 155.00ft 1.30Y6 0.0110 3.34Dlin Channel pavement 230.00ft 1.00Y6 40,0000 0.98nn|n Channel grass 80.00ft 1.0096 17.0000 0.59 [nin TCof4.88 min < 5 min, program will use otcof5 min incomputations. 10yr Flow Time Volume Summary: 3,4061ufa 12.00hrs 8206.78cf-0.2114acft Drainage Area: D1 HvdK8ethod: SC8 Unit Hyd Loss Method: SC8CNNumber Peak Factor: 484.00 SCSAbs: 0.20 Gbornn Dur 24.00 hro Area CN TC 2.2000ac 30.80 0.08hre Supporting Data: CNDota: rooftop/pavement 98.00 1.7600ao grass 61.00 0.4400oo TC Data: Flow type: Description: Length: Slope: Coof[ Travel Time Sheet grass 12.00ft 14.20Y6 0.1500 1.34nniO Channel grass 60.00ft 1.2096 17.0000 0.54nniO Channel pavement 285.00ft 1.3096 40.0000 1.04nnin Channel grass 260.00ft 1.8096 17,0000 2.02nnin TC of4.Q3 min < 5 nlin, program will use abzof5 min in computations. 10yr Flow Time Volume Summary: 3.2758ofs 12.00hno 8404.28of-0.1929ooft Drainage Area: D2 HydMethod: 8CG Unit Hyd Loss Method: 8CSCNNumber Peak Factor: 484.00 SCGAbo: 0.20 StonnDur 24.00hre Area CN TC 1.2000ao 83.10 0.08hro Supporting Data: CNData: rooftop/pavement 98.00 1.1400ac grass 0.00 0.0600ac TC Data: Flow type: OeoohpUun: Length: Slope: Coef[ Travel Time Sheet pavement 200.00ft 1.20% 0.0110 4.28mnin Channel pavement 11U.00ft 0.8096 40.000G 0.51nlin TC of4.74 min « 5 nnin, program will use utoof5 min in computations. 18yx F|mm Time Volume Summary: 2.0376cfo 12.00 hrs 5388.71 cf-O.1239aoft Drainage Area: D3 . HydK8ethod: 8CS Unit Hyd Loss Method: 8C8CNNumber Peak Factor: 484.00 SC8Aba: 020 8tomnDu[ 24.00hra Area CN TC 0.8000ac 84.30 0.08hra Supporting Data: CN Data: rooftop/pavement 98.00 0.7208ac grass 61.00 0.0800 ac TC Data: Flow type: : Length: Slope: Coeff- Travel Time Sheet grass 20.00 ft 10-00% 0.1500 2.32 min Channel grass 190.00 ft 11096 17.0000 1.78 min Channel pavement 120.00 ft 1.40Y6 40-0000 0.42 min TCof4.52 min < 5 min, program will use ah:of5 min incomputations. 10 yr Flow Time Volume Summary: 14382cfe 12.00hro 3900.92of- 0.0886acft Drainage Area: D4 Hyd Method: SC8 Unit Hyd Loss Method: 8C8CNNumber Peak Factor: 484.00 GCS Abs: 0.20 Storm Our 24.00hrs Area CN TC 4.7100oc 96.11 0.05hre Supporting Data: 10 yr Flow Time Volume Summary: 8.1643 ufs 12.00 hna 26437.41 cf-0.6088 ocft Drainage Area: El Hyd Method: GCG Unit Hyd Loss Method: GCS CN Number Peak Factor: 484.00 3C8 Abs: 0.20 Ghomn Our 24.00 hrs Area CN TC 0.6000 ac 61.00 0.16 hns Supporting Data: CN Data: Qroen 61�00 0.6000 ac TC Data: Flow type: Description: Length: Slope: Coeff: Travel Time Sheet grass 40 OOft 12.30Y6 01500 3.72 min Channel grass 540.00 ft 0.8096 17.0000 5.82 min 10 yr Flow Time Volume � Summary: 0.0046 cfa 12.83 hre 118.09 of-D.0027 ooft Drainage Area: E2E3 Hyd Method: GCO Unit Hyd Loss Method: G[|8CNNumber Peak Factor: 484.00 GCG Abs: 0.20 Storm Dur 24.00 h:e Area CN TC 2.1000 ac 78.50 0.33 hra Supporting Data: CNDota: pavement 88.00 1.0500 ac grass 61.00 1.0500 ac TC Data: Sheet grass 38.00 ft 2.00% 0.1500 7.38 min Channel gutter 500.00 ft 0.60% 40.0000 2.69 min Channel grass 460.00 ft 1.40% 17.0000 3.81 min Channel grass 15.00 ft 10.70% 17.0000 0.04 min 10 yr Flow Time Volume Summary: 1.0230 cfs 12.17 hrs 3649.37 cf-0.0838 acft PROJECT: EIMO-R'`RT SO TN�i BY: DATE PROD.NO. MERLE,INC. CHK: DATE PAGE: Z S OF 3 DE i ENr/aN GALLS - H15r—VizlG OA151N p �A I'l CC n f�r ti 7�I t,�i ( T Wel e. coc l" b,rt 1 of 5%t y kiie�A' do/c�/ = _ '7� _ / 7; = o/rev l�n d f/ov✓ �;�M� (3�C'��max.) 'G to r5 , �✓hev¢ = sha�fpw c°htrceyf��r�e� �Io,✓ ,`,�G rT c�ghnC� 7��K �i►n 0 8' n = roUq4he55 Cceff,f ie j� f, L) �--i ve J ! 'Give rj/O�tJE1 i�/T� )s = L w�eve Craw 0 v �raUc� Ve�°c;1`y (�f SPC�i �rc. , 10. T = c t°+h v,c'1 �r i�•��� f v-OVVI 1✓c, a c� Wna��a '�FJ {�E 5 v+f�S G ` &Ah o (f e o@ 1 ; ;e h o tNtd t c� W 5 ` (�t/°r�Ph �✓a�, s �l/L'J` ✓I11LA7` c/°, 'el cr✓i d 511 �ff57`i�14 li7 iv. leht 11CYW coel r ie!�'E`> TcY` 5c.5 y'tnoof crY�'e �1vt✓�n C i No rC= For e. (p h o7y a ) �c ve'1 Pf? �; F? g 0 '^ior5 u5 e d °� c� +t�Cvc;°a�/ve far r aveo5. 7��f / rr ! e.<1Vo/er,y/r }LC Y'�C GOtMwtt'!/G,�ot jo"/Pl yot✓io rtiL( Yt/foo J�otr ✓" A4 P, 1 `oq, PROJECT: MOR�.{R�IT S�.OjN BY: DATE PROD.NO. min �1J1 LE,INC. CHK: j DATE PAGE: 26 OF O p� T� /Ni/CIV 1W5 7-0n.J G 014 5IN P,4 i,4 I 54 IN H- cl e ve/e yrrevl�) 14 - 2,7 Y- '7,2 " -- 1.2, i' �{�, G _ �,9( a 6 + 2- •J1,5" P,23 - C R12.! ( .I2. 1� 111.7 3Z5' c --- 2. S 60 2-- A = 2. 17 Ate. 115,-49 lr/ldev ld/o�.�s c�a���, �Qv �,5,`�5 El E 2 t I - 0' 2- 9 �' 2 2 ,9 0.53 T. /f 7 O Y E2 E f f 1 G✓I✓ ( I i!n C � 1r (o. 73 his x 6�' �"l 4- S. 92 �;�. 101,7 5A 5// - Z Pre, c(Q ve o e I A = 2Z 7 t I-0 + O-K = 2y. 3 Ac. G = CI 20 D•y2�0,t 7 X 300 ° $ r I T ~ , 0.5 �y 36, 7 (1.2) (p,030) -�- yf7� (G ��T PROJECT: = MORRISON BY: DATE PROD.NO. ®�'MMERLE INC. � CHK: j DATE PAGE: Z 7 OF 3 1iE i EN r"fON 51451N PAT, 014 51 N N-101H 2A 065, A - - 2 + 2Z,7 lase I,✓���� WoYkS ��1� fog CJ�,Si�s fll�f17 C. 1—� C7 qN/ �! v G)YriSS�y�!C i�G/'f'c �%LAC•"$ 0,70 + 67.$o 2.21 3 + 0,Z! + 0 30 + /.lo f /.20+ 0.60 + 1.71 P.72 ���/� 3 Gv�.5 crsre�t = 0, 32- r 0,2 I f- 0,2 0 f- 0.3 y + ©,07+ 0.19 s tV yy * 0.04 f- 0.0 St 0,2q = 2.2-Z A, Nodcvelaved act,, = 600 /.Sp = 9 Flo Al. II II 3 f. 70 /16 ✓ AdJ,f%""1 pnvvj avcrn (��1�� 9-/4 /✓ Allif Of ��c/lc,��e) 0.20 A 31.qo A� ✓ 1 C = 319 [0,cl(/?,6 t0) t0,z5(z,1Z)f-0n20�9.�0)J o,z USE ""4liet- V lovl // Umi- // fe c " (G Ule,ic i",(1 TG / a�lOv✓ .,pol7�// i} YhUoH� G vc�5ih L9 � �Un (���lnvoln��j rec�C[�CS LA V l° c 01lf,�1AiCo rcu�� ti cs 601,4 + I yv + 25-5 360 f /0 7-15 = 0. 05 �l✓s ( l,Y d C, (5 07 516 5 5.-7 5.21 52-1 l 10 t .70 I q 2r qz o + I6 y 551 5.53 6.02- z,�� 3.y3 = 99 vn�v,. N PROJECT: = M0 `�o+' BY: DATE PROD.NO. ■�I MAIERLE INC. � CHK: DATE PAGE: 2$ OF 3 DE T E Al r/01J (!!�AL s - NO i 0yrc BA5/N TIA T19 ulg51/V fl-IV14.2 (P--I/j Peve/opj) /4 = 92 , ZZ_74- /, 0 �- 0.6 Re c,i✓li,�� c�r��evela/>ed /�,�,d (�,1t�e�. P�crse I/Y i5 <c�Tff✓��cT�e� j-s �I 6o 4- /.0 + P, = �/ /9cref. ffssu�1C l= O. S for roc C r 33 5 L�' (I°�,s�) f 0.z �2-1 zz) D.ro�l r.y� = 0,S Z = C T 1 r 2 V 56 mph. � US� IG ` O � Y`�ItN• bA51 �7 " 213 Ps1 aSe Po %- dev . n N ( ��]� 5 e�rvnc yl r / I A = l 0 Ac. C. = , '- L0,9 0, 0--2 0(0.9)J = 0,27 - C 31q 5 I N 11- 2 C (Pre-c t.yt 4 D,b A - G - V z® � To r_z) `� PROJECT; MIMO O� BY: DATE PROJ.NO. lU7AIERI,E,INC. CHK: DATE PAGE: Z OF 35 pE TFNrlOAJ CAL07 - H lSToxlc 3A51n/ PArq 5 (1°ye `jet/ef��v�eto 1) _ o,t(2.(p_17 �z)° S (1•2) o /I s (0.12)0 v 6 b":. T 60(/ 5115IN ry-3 (Folly Pie %y e d� = 1, t A,- C = id [a.9 ) a- 25-` V 6)] = p. 6� ^G _ Q.t,1Z (0,17 x , � 7T 7_ Wtjh. 3%HISTORIC BASIN � - MODIFIED RATIONAL METHOD Qp = CiA PRE-DEVELOPMENT i = a *(DURATION)^-(b) BASIN AREA PRE= 12.1 ACRES (Basins H-1A and H-1 B) STORM EVENT NTENSIT (YR) (IN/HR) PRE-DEV TC= 43.90 MIN 0.73 HR 2 0.43 5 0.64 PRE-DEV C= 023 10 0.78 25 0.95 STORM A= 0.64 50 1.13 B= ' ' A.65 100 1.25 STORM INTENSITY= 0.78 IN/HR PRE-DEV Qp= 2.18 CFS POST-DEVELOPMENT (Basin HAA) BASIN AREA POST= 2.9+ACRES POST-DEV TC= 19.70 MIN 0.33 HR POST-DEV C= 0.53, STORM A= 0.64 B= 0.65, STORM INTENSITY= 1.32 IN/HR POST-DEV Qp= 2.03 CFS G HWO M BASH H-2 Ce9c for Pond 2 Maximum ReDeese fate (Phase VH Bost-Development) MODIFIED RATIONAL METHOD QP = CiA PRE-DEVELOPMENT(Basin H-2) i = a * (DURATION) ^ -(b) BASIN AREA PRE = 24.3 ACRES (Basins H-1A and H-1 B) STORM EVENT INTENSITY (YR) (IN/HR) PRE-DEV TC= 39.50 MIN 0.66 HR 2 0.46 5 0.68 PRE-DEV C= 0.2 10 0.84 25 1.02 STORM A= 0.64 50 1.21 B= 0.65 100 1.34 STORM INTENSITY= 0.84 IN/HR PRE-DEV Qp = 4.08 CFS PHASE 1/II POST-DEVELOPMENT (Direct runoff from Basin H-213) BASIN AREA POST= 1 ACRES POST-DEV TC= 56.00 MIN 0.93 HR POST-DEV C= 0.27 STORM A= 0.64 B= 0.65 STORM INTENSITY= 0.67 IN/HR POST-DEV Qp = 0.18 CFS PRE-DEVELOPMENT (Direct runoff from Basin H-2C) BASIN AREA PRE = 0.6 ACRES (Basins H-1A and H-1 B) PRE-DEV TC= 40.60 MIN 0.68 HR PRE-DEV C= 0.2 STORM A= 0.64 B= 0.65 STORM INTENSITY= 0.82 IN/HR PRE-DEV Qp = 0.10 CFS MAXIMUM POND 2 RELEASE RATE m 3.80 CFS POND 2 DETENTION (Phase I/ll Post-Development) POST-DEVELOPMENT BASIN AREA POST= 31.9 ACRES POST-DEV TC= 9.90 'MIN 0.17 HR POST-DEV C= 0.64 STORM INTENSITY= 2.06 IN/HR 10 YR POST-DEV Qp= 42.15 CFS DELTA DURATION = MAX VOLUME MAX VOLUME AVERAGE VOL POND VOLUME CALCULATIONS: (CFT) (CFT) (CFT) 47922.94 32315.95 40119.44 Triangle Release Constant Release DURATION INTENSITY Qp POND VOLUME POND VOLUME RETENTION VOL (MIN) (IN/HR) (CFS) (CFT) (CFT) (CFT) 9.41 2.13 43.58 22389.14 20384.32 60268.03 10.41 2.00 40.81 23160.32 21054.83 11.41 1.88 38.44 23877.79 21671.17 12.41 1.78 36.40 24549.12 22240.98 TIME TO PEAK STORAGE: 13.41 1.70 34.61 25180.30 22770.30 Triangle Release 231.41 14.41 1.62 33.03 25776.16 23263.98 Constant release 83.41 15.41 1.55 31.62 26340.67 23726.02 Average 157.41 16.41 1.49 30.35 26877.11 24159.74 17.41 1.43 29.21 27388.27 24567.93 18.41 1.38 28.17 27876.49 24952.97 19.41 1.33 27.21 28343.80 25316.89 20.41 1.29 26.34 28791.94 25661.45 21.41 1.25 25.53 29222.45 25988.20 22.41 1.21 24.79 29636.67 26298.49 23.41 1.18 24.09 30035.77 26593.51 24.41 1.15 23.45 30420.81 26874.32 25.41 1.12 22.84 30792.73 27141.87 26.41 1.09 22.28 31152.37 27397.00 27.41 1.07 21.75 31500.49 27640.49 28.41' 1.04 21.24 31837.77 27873.02 29.41 1.02 20.77 32164.83 28095.23 30.41 1.00 20.33 32482.25 28307.67 31.41 0.97 19.90 32790.55 28510.89 32.41 0.96 19.50 33090.19 28705.35 33.41 0.94 19.12 33381.61 28891.50 34.41 0.92 18.76 33665.21 29069.75 35.41 0.90 18.41 33941.38 29240.46 36.41 0.89 18.08 34210.44 29403.99 37.41 0.87 17.76 34472.72 29560.65 38.41 0.86 17.46 34728.52 29710.76 39.41 0.84 17.17 34978.11 29854.57 40.41 0.83 16.90 35221.75 29992.37 HISTORIC Calc for Pond 2 Maximum Release Rate (Fully Developed) MODIFIED RATIONAL METHOD QP= CiA PRE-DEVELOPMENT(Basin H-2) i = a * (DURATION) ^-(b) BASIN AREA PRE = 24.3 ACRES (Basins H-1A and H-1B) STORM EVENT INTENSITY (YR) (IN/HR) PRE-DEV TC= 3950 MIN 0.66 HR 2 0.46 5 0.68 PRE-DEV C= 0.2` 10 0.84 STORM A= 0.64 25 1.0250 1.21 B= 065 100 1.84 STORM INTENSITY= 0.84 IN/HR PRE-DEV QP= 4.08 CFS J7L�3 $ DETENTIONPOND 2 (Fully evel e POST-DEVELOPMENT BASIN AREA POST= 33.5 ACRES POST-DEV TC= 9.90 MIN 0.17 HR POST-DEV C= 0.82 STORM INTENSITY= 2.06 IN/HR 10 YR POST-DEV Qp= 56.71 CFS DELTA DURATION = MAX VOLUME MAX VOLUME AVERAGE VOL POND VOLUME CALCULATIONS: (CFT) (CFT) (CFT) 73320.08 49748.48 61534.28 Triangle Release Constant Release DURATION INTENSITY Qp POND VOLUME POND VOLUME RETENTION VOL (MIN) (IN/HR) (CFS) (CFT) (CFT) (CFT) 9.41 2.13 58.63 30723.65 28528.58 81091.44 10.41 2.00 54.91 31792.30 29486.24 11.41 1.88 51.73 32788.68 30371.25 12.41 1.78 48.98 33722.98 31193.84 TIME TO PEAK STORAGE: 13.41 1.70 46.57 34603.25 31962.11 Triangle Release 327.41 14.41 1.62 44.44 35436.01 32682.60 Constant release 116.41 15.41 1.55 42.55 36226.58 33360.65 Average 221,91 16.41 1.49 40.84 36979.39 34000.71 17.41 1.43 39.30 37698.17 34606.55 18.41 1.38 37.90 38386.09 35181.34 19.41 1.33 36.62 39045.88 35727.81 20.41 1.29 35.44 39679.88 36248.34 21.41 1,25 34.36 40290.16 36744.99 22.41 1.21 33.35 40878.50 37219.56 23.41 1.18 32.42 41446.52 37673.67 24.41 1.15 31.55 41995.61 38108.73 25.41 1.12 30.74 42527.05 38526.02 26.41 1.09 29.97 43041.96 38926.67 27.41 1.07 29.26 43541.37 39311.71 28.41 1.04 28.58 44026.21 39682.06 29.41 1.02 27.95 4449729 40038.58 30.41 1.00 27.35 449515.40 40382.02 31.41 0.97 26.78 45401.23 40713.10 32.41 0.96 26.24 45835.42 41032.44 33.41 0.94 25.73 46258.54 41340.64 34.41 0.92 25.24 46671.15 41638.25 35.41 0.90 24.77 47073.75 41925.78 36.41 0.89 24.33 47466.80 42203.67 37.41 0.87 23.90 47850.71 42472.37 38.41 0.86 23.50 48225.91 42732.28 39.41 0.84 23.11 48592.75 42983.77 40.41 0.83 22.73 48951.59 43227.20 HISTORIC BASIN H-3 MODIFIED RATIONAL METHOD Qp= CiA PRE-DEVELOPMENT i =a*(DURATION)"-(b) BASIN AREA PRE= 1.6 ACRES (Basins H-1A and H-1 B) STORM EVENT NTENSIT (YR) (IN/HR) PRE-DEV TC= 8.70 MIN 0.15 HR 2 1.15 5 1.79 PRE-DEV C= 0.42 10 2.25 25 2.68 STORM A= 6.64 50 3.29 B= 0.65 100 3.68 STORM INTENSITY= 2.25 IN/HR PRE-DEV Qp= 1.51 CFS RETENTIONPOND 4 (Fully eel ) POST-DEVELOPMENT BASIN AREA POST= 1.6 ACRES POST-DEV TC= 10.70 MIN 0.18 HR POST-DEV C= 0.66 STORM INTENSITY= 1.96 IN/HR 10 YR POST-DEV CIP= 2.07 CFS DELTA DURATION = MAX VOLUME MAX VOLUME AVERAGE VOL POND VOLUME CALCULATIONS: (CFT), (CFT) {CFT) 362.52< 100.10 231.31 Triangle Release Constant Release DURATION INTENSITY Qp POND VOLUME POND VOLUME RETENTION VOL (MIN) (IN/HR) (CFS) (CFT) (CFT) (CFT) 10.17 2.03 2.14 362.52 100.10 3117.31 11.17 1.91 2.02 360.89 96.10 12.17 1.81 1.91 356.79 88.30 13.17 1.72 1.81 350.54 77.18 TIME TO PEAK STORAGE: 14.17 1.64 1.73 342.41 63.11 Triangle Release 10.17 15.17 1.56 1.65 332.62" 46.42 Constant release 10.17 16.17 1.50 1.59 321.33 27.35 Average 10.17 17.17 1.44 1.52 308.71 6.15 18.17 1.39 1.47 294.87 -17.01 19.17 1.34 1.42 279.92 -41.96 20.17 1.30 1.37 263.96 -68.56 21.17 1.26 1.33 247.07 ' -96.69 22.17 1.22 1.29 229.33' -126.24 23.17 1.19 1.25 210.79 -157.10 24.17 1.16 1.22 191.50 189.20 25.17 1.13 1.19 171.53 222.46 26.17 1.10 1.16 150.92 256.80 27.17 1.07 1.13 129:69 292.17 28.17 1.05 1.10 107.90 -328.50 29.17 1.02 1.08 85.58 . 365.75 30.17 1.00 1.06 62.75 -403.87 31.17 0.98 1.03 39.44 442.81 32.17 0.96 1.01 15.67 482.54 33.17 0.94 0.99 -8.52' 523.01 34.17 0.92 0.97 -33.13 -564.20 35.17 0.91 0.96 `-58.12 606.07 36.17 0.89 0.94 -83.48 648.59 37.17 0.87 0.92 A 09.20 -691.74 38.17 0.86 0.91 -135.26 735.49 39.17 0.84 0.89 -161.64 -779.81 �T PRO.kCT: IVIORRISONBy; DATE PROJ.NO. MMERLE,INC. CHK: DATE PAGE: ? OF 3 .DE 7-tN7"i0N POL/P PV*P ,VO. I ELEV,4i791u I t1Rclq- (T-f I AV6. AREA i DEp r// VOL., (Tt3� I(yM- VOL &tl) 1 2/.5z V 22,0 y 26 2/ 102 102, z3,o y M3 213,75 3G/.5 .21�/97 Zvi. 0 6, 6�6 525' 1. 0 5; �25 F ozz_ Z6.o /2,Z60 c), V73 26, 9dr 27. o fist.) 15, Dy7 /3/ 65-11 1. l31 6�y yo, 622 2. (N o 17.5 t, 650 8'25 0y7 (N/- l95 ia1, 6Z� ll, S"o0 /0 {_7© /©/�Zo 20, 0 Z3 727 21,6711 0•5 /0 5D7 2/ y5l R o vi, v�y 32 603 1. 0 32, 6 43 ;y,o6 r 22.0 � , 7 Y 0 /23, '/lr /,o /Z3/ y/F 177117F z�,rrr duel) m.v 0 /7.1 1,05"0 525 0.7 36S (N/-kck"e4'-r) /75 /21126 OFsr 0 y 2, 635 21635- 19.5 lGI16Zo l5 6-73 2-0 31, 7`f6 3y 37/ 2 0,0 23 o/0 2/� 35S p,5 /o, 6?r y51 05 2/.Q 3o, 2-7F 2�,65 � �• 0 26, 65% 7/ 71F 22,0 y217yo 36 of rV k o 36 vS`/ /o F zo z 3 23.7 0 2V.0 566 2F3 0.3 S'S F5 25,0 61 jr/z 316?-/ /. o 31bl 3,7 v 2 6. 93 S 7/ ?75 /'o 7 F73- 30 j5, yl _q 356 �/.o G17Y21� ro J, 073 �T PROJECT: = MORRISON BY: DATE PROJ.NO. ■�'MAIERLE iNc. � CHK: DATE PAGE: 5 B' OF 3 POND 2 VX2—I FI CE 51 Z I N& 77vo o,,",F;ces wall be Ge e, lQ'yea;� veleel5( YO PeC(H(veg e.c(ct C = 0,6a - C Z where a = 0v f,4e = 32,2 {_�15cc z ceki�eN So1vi`2 `��� Side c1iN+ehsjo�l Q 0.5 = C 2� Y > 3/PE )lM6N3/ON = C Zy� A N& T lie v e o w, f _ / n e (Z�' 2 t15"0v7'j-F— 3. 0,2-Z o.5- D.6�t 141/(z o.d - ��5� — p 72 K 6o SQu,n IzE �—CENr&2 E-L Ev F-v 1/y beKe; o�e i Coh OF on.ifi/cc 1 I DewaIcri1r9 Z ��'�evi cEr PIPE T-E- 5/PE DID. = y.0E- o_�3 �'� _ 0-67 ' _ F,02," sa��pF 0 6 6y y (2 0-7 —17 v9) t-- JNcEY conrrRo(, op S"ovree7 PIpe 1 FDN-P9 DN-D10 CB4 C63 CB2 CB1 1 I DN-P1 i DN-D2 _ DN P22 PONO _ y �_ Jam. -� _ �L .♦ I j�� DN=.D5 1� I f POND 2�',Ijc P�� - t J.• J; may.- .i•— � 4 /63 I� L /i/ TSChjACHE CB8 f:= SANE CULVERTS (3-14 a, RCP) LEGEND �1 2 A &A. c-4DN-D9 n, BASIN NAME / BASIN AREA BASIN BOUNDARY LINE • �!,�t �--•-fr. CBS � �_: � - - � ,,�/ i � f . ;p / - DN-P15 NODE NAME 2 '�. i C89 ®� r j r P13 PIPE NAME ''2"` D8 DITCH NAME - � 9 ®/`� DN-O'14 DN-P17 POND1 DETENTION/RETENTION TNAMERETENTION D 6 P B r CB-11 / - or B� DN=D7 DN-P15 I+ J O PONl r` {F Up A [ � �UTUf2E FARMERS/ CANAL \— — t STORM�DRAIN E)(TENSION A. (3-42" RCP-),--'!. DN-D7up FIGS I r' PHASE I/II DEVELOPED - _ DRAINAGE MAP EXISTING &0" RCP D1gRE65 GRAPHIC SCALE 2E (FARMERS CANAL P1PELINE) �� EXIST�NG'3S'=�� 0 MORRISON SURVEYOM RCP CULVERT_ �D MAIERLE INC. SME 19� EXISTING 19 An aM -ou .d >20 1>� 200 rc RCP CULVERT PA O.It13 901 T h-dV BVA 6®,,�5iT,1•P6 (405)597-M F.(0)SU-1175 _ REVISION DATE REVISION DATE DRAWN BY:KW DATE 10/16/98 CHECKED BY: DRAWING NO.: GIDWC --- JOB NO.: 3121.001/010/0110 SHEET 1 OF 1 k POND 1 _A 1.0 AC ....� ..no mo is i i _........ -'t •� ' , + f��_'• .""'•..+� POND 2 _. LEGEND BASIN NAME 92ACJ BASIN AREA (ACRES) 1 BASIN BOUNDARY r ` g RY DA LINE H° 1A@-2A SUB-BASIN BOUNDARY LINE J 1. _ +. POND 00 '� � �� ,- __ Uzi-in FIGURE 2 P HIST CiDETE TION _ . : _ _ _ _. DRAINAGE MAP POND 4 >�, d _. - -4- um Emu= == _ - ow am No mm RPM BMWs GRAPHIC SCALE AIMAIERMINC. _.. ea sse,fft..-Owwd Ce , , ( 77- IX sm.} PA B.1113 901 udjow%A ltimnyt,Yf S07Tt•Phx 1 seen- 200 et ( 517-ant fas(108J ssr-un RENSION DATE: RENSION DATE: DRAWN BY.KW DAM 10/16/98 C}1EcKED BY: ORAWNG NO.: NSTORIC.ONG J08 NO.: 3121.001 010 0310 SHEET 1 OF 1