Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
19 - Design Report - Nelson Meadows - Comprehensive Drainage Plan (with addendum)
Morrison Maierle engineers surveyors planners scientists �. -.�• �� r. 7 . • _� I _ Mw ;. zy_ ; Comprehensive Drainage Plan NELSON MEADOWS SUBDIVISION w Y �}+jl�h•�; •'yam% - - .. - - .cr i0^SYJ �_ • Y Bozeman, Gallatin County, Montana 4: � Y 'f^ + to t 3h#r r ` s• March 2019 MMI No. 2286.009 e q'. I I i Morrison Maierle - _____ _ 2880 Technology Blvd.W. • PO Box 1113 • Bozeman,MT 59771 engineers surveyors planners scientists (406)587-0721 www.m-m.net F Comprehensive Drainage Plan Nelson Meadows Bozeman, Gallatin County, Montana March 2079 Prepared For: Barnard Investments, LLC 701 Gold Avenue ^1�b� A����''�,, " Bozeman, MT 59715 HO ' D No.14769 PE L y. MMI Project No. 2286.009 (f' cENs';�9 <<ttkONAL,,.�� We create solutions that build better communities. AN EMPLOYEE-OWNED COMPANY • AN EQUAL OPPORTUNITY EMPLOYER-MINORITIES/FEMALES I DISABLED/VETERANS Morrison Preliminary Drainage Plan II. Maierle engineers-surveyors-plan Nelson Meadows I Bozeman y,ners scie� mi,ts , Gallatin Count Montana Table of Contents Introduction.......................................................1 Appendices Proposed Development....................................1 Appendix A Project Location & Description ........................1 Post-Development Runoff Analyses Development Description ................................1 A-1 Nelson Road Major Drainage Basin Development Horizon......................................4 A-2 Royal Wolf Way& Prince Lane Major Drainage Basin Existing Area Conditions .................................4 Existing Land Cover& Slopes.........................4 Appendix B NRCS Soils.....................................................4 Inlet Interception Analyses Site Groundwater Levels.................................6 B-1 Nelson Road Inlet Interception Analyses Existing Drainage Features.............................8 B-2 Royal Wolf Way& Prince Lane Inlet Interception Analyses Major Drainage Basins.....................................8 Appendix C Proposed Major Drainage Basins....................8 Pipe Sizing Summaries Nelson Road (NR) Major Basin....................8 Royal Wolf Way& Prince Lane....................8 C-1 Nelson Road Pipe Sizing Summaries Areas Outside Proposed Major Drainage C-2 Royal Wolf Way& Prince Lane Basins........................................................12 Pipe Sizing Summaries Methodologies 12 Appendix D Design Methodology Culvert Analyses Storm Water Runoff Analyses .......................12 Appendix E Storm Water Conveyance Facilities...............13 Storm Water Retention Analyses Inlets..........................................................13 Site Storm Drain Piping..............................14 Cattail Creek Road Crossing Culverts........16 Storm Water Retention Facilities...................20 Maintenance Considerations .........................20 Storm Water Conveyance Facilities...............20 Storm Water Retention Facilities...................21 Conclusions....................................................21 References......................................................22 Table of Contents 1 Preliminary Drainage Plan Morrison Nelson Meadows I Bozeman, Gallatin County, Montana � Maler�e enylnrers�survr o s planners-scienbsls List-of Figures Figure1: Site Location ........................................................................................................................2 Figure2: Subdivision Layout.............................................................................................................. 3 Figure3: Site NRCS Soils ................................................................................................................... 5 Figure 4: Summary of Groundwater Depth Observations.................................................................6 Figure 5: Groundwater Observation Well Locations.........................................................................7 Figure 6: Post-Development Major Drainage Basins ........................................................................9 Figure 7: Nelson Road Major Drainage Basin I Sub-basin Designations....................................... 10 Figure 8: Royal Wolf Way & Prince Lane Major Drainage Basin I Sub-basin Designations ......... 11 Figure 9: Inlet Locations & Designations......................................................................................... 15 Figure 10: Storm Drain Pipe Network............................................................................................... 17 List of Tables Table 1: Site Soils NRCS Properties................................................................................................... 6 Table 2: Nelson Road (NR) Major Drainage Basin Inlet Interception Capacity Summary............. 13 Table 3: Royal Wolf Way Plus Prince Lane (RWW+PL) Major Drainage Basin Inlet Interception Capacity Summary............................................................................................... 14 Table 4: Nelson Road (NR) Drainage Basin Storm Drain Piping Summary................................... 18 Table 5: Royal Wolf Way Plus Prince Lane (RWW+PL) Drainage Basin Storm Drain Piping Summary................................................................................................. 19 Table 6: Surface Storm Water Retention Basin Sizing Summary................................................... 20 ii I List of Figures&Tables Comprehensive Drainage Plan for Nelson Meadows Bozeman, Gallatin County, Montana Morrison Maierle engineers surveyors planners scientists Morrison Comprehensive Drainage Plan 1111� Maierle engineers-surveyors-planners sUentisls Nelson Meadows I Bozeman, Gallatin County, Montana Introduction This design report summarizes the preliminary plan for management of storm water runoff from the Nelson Meadows Subdivision proposed to be located in Bozeman, Gallatin County, Montana. The information contained in this report summarizes the basis of design for necessary storm drainage improvements. The methodology and analysis procedures utilized in the design of the subdivision storm water management improvements are based on the standards found in the City of Bozeman Design Standards and Specifications Policy with Addendum Numbers 1 thru 6, dated May 1, 2017 (City of Bozeman Public Works Department— Engineering Division). Proposed Project Location & Description The proposed Nelson Meadows Subdivision project is located in Bozeman, Gallatin County, Montana on Tracts 1 C and 1 D of Certificate of Survey No. 1372E located in the southeast quarter of Section 22 and a portion of the northeast quarter of the northeast quarter of Section 27 less railroad right of-way and highway right-of-way located in the northeast quarter of Section 27, Township 1 South, Range 5 East, Principal Meridian of Montana. Generally, the property is bordered by Nelson Road (within County Road No. 259 Easement) to the east, the Interstate 90 Frontage Road to the south / southwest, the Sunset Memorial Park cemetery to the west, and an existing storage facility use to the north. The site location is depicted in Figure 1 on the following page. Development Description The Nelson Meadows Subdivision is proposed to include 27 industrial lots ranging in size from 0.70 to 6.13 acres plus two storm water tracts and one lift station tract. The development may include a highly diversified range of land uses including manufacturing, service,warehouse facilities, laboratories, offices, or small businesses. The preliminarily proposed subdivision layout is shown in Figure 2 on page 3. 1 Comprehensive Drainage Plan r Morrison Nelson Meadows Bozeman, Gallatin County, Montana Maierle engineers curve ors planners scienos L• ,{ 411w •w1" tyxTi � yy ,t�A •Y - - 205 r' PROJECT LOCATION 235 45 — 1 Baxter Ln. = ,f ; i � t �. !� t*t 1 �., 1�• ''���i,� .��� � •7'��• . ' � sue. r. t 1 w 4 ; \ M .tr, ~F r•,� i �Iv{ � r•4 .'..L f1V *'�t^I �-'+ 4`.�i ..y �{ ^x 2 tB' 1a TTjj ••, r' C'".yw -t, ...ir'� '�1Ty' T - r,�F ~ F^^. t� tit � �I�� � ,�'_;—� ,,��N �•e �ry.lt�+I��F+�t�'� � ti,¢�ttat'; w` ,� � Figure 1: Site Location 2 Morrison Comprehensive Drainage Plan Maierle „r,,,s s,,.,,,•>.o,> „ ,,,,<<, , r,,,,=5 Nelson Meadows I Bozeman, Gallatin County, Montana 4 T w� C��'. - 205 ' •PIN\ 235 • n 205 Figure 2; Subdivision Layout 3 Comprehensive Drainage Plan Morrison Nelson Meadows I Bozeman, Gallatin County, Montana � M "k so -gm—, s urveyorss plenners s[ieil lids Zoning The existing site is currently zoned M-1 (Light Manufacturing District) under the City of Bozeman's zoning designation. As provided in the City of Bozeman Unified Development Code, "The intent of the M-1 light manufacturing district is to provide for the community's needs for wholesale trade, storage and warehousing, trucking and transportation terminals, light manufacturing and similar activities. The district should be oriented to major transportation facilities yet arranged to minimize adverse effects on residential development." Development Horizon It is anticipated that the proposed Nelson Meadows Subdivision will be full built-out within a ten to twelve year timeframe, approximately through the year 2030. Existing Area Conditions Existing Land Cover & Slopes The existing property to be developed is primarily vacant, agricultural land. The existing slopes on the site are predominantly one to one-and-a-half percent (1.0% - 1.5%), generally draining from south to north across the property. Through the central portion of the property is a stream-ditch that also flows from south to north. NRCS Soils Data on existing site soils is provided in the Gallatin County Area, Montana Soil Survey dated September 3, 2014 through Web Soil Survey(WSS)operated by the United States Department of Agriculture(USDA) Natural Resources Conservation Service (NRCS). According to information obtained from WSS, the subject property contains two soil types — Blackdog silt loam, 0 to 4 percent slopes (50B) and Blackdog silt loam, 4 to 8 percent slopes (50C). The area of each soil type within the boundaries of the subdivision and properties of each are provided in Table 1 on page 6. The location of each soil type is shown in Figure 3 on the following page. 4 No Morrison Comprehensive Drainage Plan IIII� Maierle engineers•surveyors planners Nelson Meadows Bozeman y, � anners snemrb , Gallatin Count Montana 205 Avi < [ -�N 235 I - - Ik #I^ r r _f r Ik � • 1 �� 205 Figure 3: Site NRCS Soils 5 Comprehensive Drainage Plan Morrison Nelson Meadows I Bozeman, Gallatin County, Montana � Malerle enr veers•tutu¢o s Tanners Scien hsls Table 1: Site Soils NRCS Properties ClassificationM Hydrologic Soil Group � J37 Blackdog Silt Loam 61.07 . 0 CL-ML0%to 4%SlopesCBlackdog Silt Loam g 19 11.83% C LCL ML A-4 4%to 8%Slopes Site Groundwater Levels Groundwater levels beneath the proposed Nelson Meadows Subdivision experience seasonal variations is indicated from levels observed by Morrison-Maierle in 2018 between April and August at eight wells installed on-site for examining groundwater levels. A summary of the groundwater depths below the existing ground surface is provided in Figure 4 below.The locations of the groundwater observation wells is provided in Figure 5 on the following page. Date of Groundwater Depth Observation 312112018 4/1012018 4/30/2018 5/20/2018 6/912018 6/29/2018 7119/2018 8/8/2018 8/28/2018 0.00 --�—Well 1 -1.00 Well 2 d u Well 4 2.00 ---e—Well 5 CU Cn -3.00 --�—Well 6 -a --*—Well 7 c 2 -4.00 Well —0 Well 9 0 m 5.00 +-Well10 a. o -6.00 -7.00 tD -8.00 ``�'"-- ---�s -9.00 Figure 4: Summary of Groundwater Depth Observations 6 r-� Morrison Comprehensive Drainage Plan Maierle engineers•surveyors pinnners surni�srs Nelson Meadows Bozeman, Gallatin County, Montana � 71 CI IPJ r: -- t S # r 205 . • � 1 .�: - r t - e 235 205 Figure 5: Groundwater Observation Well Locations 7 Comprehensive Drainage Plan Morrison Nelson Meadows I Bozeman, Gallatin County, Montana engineers•surMve ors lerle s tanners scicnusts Existing Drainage Features As noted previously, there is an existing stream-ditch that flows from south to north through the central portion of the property. This feature collects storm water runoff from the center area of the existing site. Drainage ditches are located on either side of Nelson Road to collect and convey storm water runoff. iMajor Drainage Basins Proposed Major Drainage Basins The proposed Nelson Meadows Subdivision development is to include a system of storm drainage inlets, piping, and surface storm water retention systems. The project area is divided into two distinct major, post-development drainage basins for drainage from the street rights-of-way for portions of Nelson Road (NR) as well as Royal Wolf Way plus Prince Lane (RWW & PL), which are shown in in Figure 6 on the following page. Nelson Road (NR) Major Basin The Nelson Road (NR)major basin has a total contributing area of approximately 9.72 acres(423,290 ftz) and is further subdivided into 13 sub-basins. The sub-basin designations and boundaries are shown in Figure 7 on page 10. Storm water runoff within the basin will be collected via a system of surface runoff, curb and gutter, inlets, and piping sized to accommodate the 25-year design storm recurrence interval in accordance with City of Bozeman design standards and be directed to a retention basin on Storm Water Tract 2, which will retain the 10-year, 2-hour design storm recurrence interval. Royal Wolf Way & Prince Lane The Royal Wolf Way and Prince Lane (RWW+PL) major basin has a total contributing area of approximately 20.73 acres (902,785 ftz) and is further subdivided into 14 sub-basins. The sub-basin designations and boundaries are shown in Figure 8 on page 11. Storm water runoff within the basin will be collected via a system of surface runoff, curb and gutter, inlets, and piping sized to accommodate the 25-year design storm recurrence interval in accordance with City of Bozeman design standards and be directed to a retention basin on Storm Water Tract 2, which will retain the 10-year, 2 hour design storm recurrence interval. 8 so Morrison Comprehensive Drainage Plan Maierle Nelson Meadows Bozeman, Gallatin County, Montana engineers-Surveyors planners scienii sls i A .s s. 01. RWW 205 r y 111�1� i i RWW � Ok -r 235 - e ' . .a RWW NR `r NR ; r • � 205 - R Figure 6: Post-Development Major Drainage Basins 9 Comprehensive Drainage Plan Morrison Nelson Meadows Bozeman Gallatin County, Montana � Maierle � engineers surveyors planners-s[ienlis is • fi ti 4\ �.�.per• j�'�'~ S _ems• 03 7 • , O' 6 235 — .o► _ \ 2 , C PROPOSED NR MAJOR BASIN SUMMARY TOTAL AREA= 9.72 acres 25-YR WEIGHTED RUNOFF COEFFICIENT,Cw= 0.50 25-YR DESIGN TIME OF CONCENTRATION,Tc= 24.80 min 25-YR PEAK RUNOFF RATE= 7.58 cfs 25-YR PEAK RUNOFF VOLUME= 11,287 CF • 205 Figure 7: Nelson Road Major Drainage Basin Sub-basin Designations 10 W Morrison Comprehensive Drainage Plan Maierle Nelson Meadows Bozeman, Gallatin County, Montana engineers•surveyors planners wernrsls i G 7_q 205 0 It �J 235 r. 4 PROPOSED RWW+PL MAJOR BASIN SUMMARY TOTAL AREA= 20.73 acres 25-YR WEIGHTED RUNOFF COEFFICIENT,Cw= 0.50 25-YR DESIGN TIME OF CONCENTRATION,Tc= 45.44 min 25-YR PEAK RUNOFF RATE= 8.33 cfs '' 25-YR PEAK RUNOFF VOLUME= 22,718 CF emn. � _ • 1 205 • • • Figure 8: Royal Wolf Way&Prince Lane Major Drainage Basin Sub-basin Designations 11 Comprehensive Drainage Plan Morrison Nelson Meadows I Bozeman, Gallatin County, Montana en veers•surveyors lerle -planners sc ien tisls Areas Outside Proposed Major Drainage Basins For those areas of the proposed Nelson Meadows Subdivision located outside of the designated Nelson Road (NR) and Royal Wolf Way plus Prince Lane (RWW & PL) major drainage basins shown in Figure 6 on the following page, storm water runoff for undeveloped properties is projected to follow existing drainage patterns at pre-development rates and volumes. One exception includes portions of Lot 26 that will temporarily be retained at the northeast corner of the lot near the intersection of Royal Wolf Way and Prince Lane until such time that the lot is developed and a storm water management plan is developed for that property. Methodologies This section documents the methodologies and assumptions used to conduct the storm water runoff analyses for the proposed development. Preliminary drainage plan methodology and analyses are based on the City of Bozeman's Design Standards and Specifications Policy. Design Methodology The storm water management system for the proposed development utilizes a system of curb, gutter, inlets, piping, detention facilities, and surface retention basins to collect, convey, and store storm water runoff. Summaries of runoff estimates, inlet and piping capacities, and retention volumes are provided in the sections that follow. Storm Water Runoff Analyses Storm water runoff analyses were performed using the Rational Method for post-development conditions. The analyses included evaluations of the 25-year design storm recurrence interval for inlet and piping system design. Results of the analyses for post-development conditions for both the Nelson Road (NR) and Royal Wolf Way plus Prince Lane (RWW+PL) major drainage basins are summarized in Figures 7 and 8, respectively. Detailed calculations are included in Appendix A. Individual subbasin analyses are not provided for NR-13 or RWW+PL-14 as these subbasins do not drain to an inlet structure; however, the subbasins are included in the contributing area for sizing of the retention basins. 12 Morrison Comprehensive Drainage Plan Maierle engineers•surveyors planners•scientists Nelson Meadows I Bozeman, Gallatin County, Montana � Storm Water Conveyance Facilities Inlets Both on-grade and sag or ponded inlets are to be installed for the collection of storm water runoff within both the Nelson Road (NR) and Royal Wolf Way plus Prince Lane (RWW+PL)drainage basins. Detailed calculations of the inlet capacities are provided in Appendix B. Inlet capacity summaries are provided in Table 2 below for the Nelson Road drainage basin and in Table 3 on the following page for the Royal Wolf Way plus Prince Lane drainage basin. Inlet locations are shown in Error! Reference source not found. on page 15. Table 2: Nelson Road(NR) Major Drainage Basin Inlet Interception Capacity Summary Design Peak Depth of Flow Storm Runoff Intercepted Water By-Pass Drainage Inlet Recurrence To Inlet Runoff Above Sub-basin NR-1 I NR 01 On-Grade 25-Year 1.34 0.94 0.24IF 0.40 NR-2 I NR 02 On-Grade 25-Year 1.25 0.89 0.24 0.36 NR 3 I NR 03 On-Grade 25 Year 0.61 0.50 0.19 0.11 NR-4& I-NR-04 On-Grade [T5--Year 1.24 0.89 0.24 0.35 NR-2 NR-5& I NR 05 On-Grade 25-Year 1.03 0.76 0.22 0.27 NR-3 R-1 I-NR-06 On-Grade F 25-Year 1 0.23 0.34 NR-7& I-NR-07 On-Grade 25 Year 0.87 0.67 0.21 0.20 NR-6 NR-9 I NR 08 On-Grade 25 Year 1.13 0.82 0.23 0.31 NR-10& I-NR-09 On-Grade 25 Year 0.35 0.31 0.16 0.04 NR-9 NR-11 & I-PL-04 Ponded I Sag 25-Year 1.18 1.18 0.25 NR-5 NR 12 I PL 05 Ponded I Sag 25 Year 0.64 0.64 0.17 13 Comprehensive Drainage Plan Morrison Nelson Meadows I Bozeman Gallatin Ct Montana � Malerle , oun y, enyineers surveyors planners-scicnlists Table 3: Royal Wolf Way Plus Prince Lane(RWW+PL)Major Drainage Basin Inlet Interception Capacity Summary Design Peak Depth of Flow DrainageInte Water Storm Runoff rcepte By-Pass RWW+RP1-1 & I RW-01 On-Grade 25 Year 2.63 1.65 0.32 0.98 RWW+PL 2 I RW-02 On-Grade 25 Year 1.28 0.93 0.26 0.35 RWW+PL-3& I RW 03 Ponded/Sag 25 Year 1.88 1.88 0.34 RWW+PL-1 RWW+PL-4& I RW 04 Ponded/Sag 25 Year 1.05 1.05 0.23 RWW+PL-2 -._ -I ------------- -- - - RWW+PL-5 rklwl_05 On-Grade 25 Year 0.50 0.43 0.19 0.07 RWW+PL-6& I RW 06 On-Grade 25 Year 0.89 0.69 0.23 0.20 RWW+PL-5 RWW+PL 7 I RW 07 On-Grade 25 Year 0.29 0.27 0.16 0,02 RWW+PL 8& I-RW-08 On-Grade 25 Year 1.34 0.96 0.25 0.38 RWW+PL 11 RWW+PL-9& I RW 09 On Grade 25 Year 0.59 0.48 0.19 0.11 RWW+PL-7 RWW+PL-10& I RW 10 On-Grade 25-Year 0.96 0.73 0.23 0.23 RWW+PL-8 RWW+PL-11 I PL 01 On-Grade 25-Year 1.03 0.95 0.12 0,08 RWW+PL-12& I PL-02 Ponded/Sag 25 Year 1.81 1.81 0.33 RWW+PL-6 RWW+PL-13 I-PL-03 Ponded/Sag I L25 Year LL] L2,38 ] 0.40 Site Storm Drain Piping The storm drain piping system for the proposed development is designed to have maximum reliability of operation, minimal maintenance requirements, and to insure that inlets function to their design capacities while meeting necessary area drainage requirements. The 25-year design storm has been selected as the basis for design as that is the City of Bozeman requirement from the Design Standards and Specifications Policy. The City of Bozeman Design Standards and Specifications Policy requires that storm drain piping be designed to have a minimum velocity of 3.0 feet per second (fps) at the design depth of flow, or when flowing full, to prevent sediment deposits. 14 ,j, Morrison Comprehensive Drainage Plan Maierle.engineers Surve ors planners so-lists Nelson Meadows Bozeman, Gallatin County, Montana � - � rree II A 7 1 -RW-10 I-�NR-09 I-RW-09 I-NR-08 I-RW-07 I-RW-08 f' 205 I-PL-01 I-PL-03 I-PL-05 + I-NR-07 . : I-RW-06 PF I-PL-02 I-PL-04 x ate.. I-RW-05 I-NR-05 I-NR- 66 • I-RW-04 0, 1 • %' yt```. I-RW-03 I-RW-02 I-NR-03 MR-04 1-RW-01 AL 235 IV Ak • 1 205 • a Figure 9: Inlet Locations &Designations 15 Comprehensive Drainage Plan Morrison Nelson Meadows I Bozeman, Gallatin County, Montana Maler�e en['i eers•surve ors-planners sucnbsls Design pipe calculations were performed using Manning's equation, which is as follows: 1.486 Q = AR2/3S1/2 (Manning's Equation) n where: Q = Pipe flow in cubic feet per second (cfs); A= Cross-sectional area of pipe, in square feet(ft2); n = Coefficient of roughness of pipe; R= Hydraulic radius=A/Wp, in feet(ft); Wp= Wetted perimeter of pipe, in feet (ft); and S = Slope of pipe, in feet per foot(ft/ft). Minimum pipe diameters of 12-inches for inlet structures and 15-inches within the storm drain system were chosen for design in accordance with the City of Bozeman's Design Standards and Specifications Policy. The storm drain pipe network is shown in Figure 10 on the following page. A summary of the piping system for the proposed development is provided in Table 4 on page 18 for the Nelson Road (NR) drainage basin and in Table 5 on page 19 for the Royal Wolf Way plus Prince Lane (RWW+PL) drainage basin. The analyses are included in Appendix C. Cattail Creek Road Crossing Culverts Flows from Cattail Creek are limited by the existing 48-inch, round reinforced concrete pipe(RCP)culvert that crosses the Frontage Road. Any flows that exceed the capacity of that culvert would spread east and west between the railroad and the Frontage Road in the existing borrow ditch. The existing culvert has a slope of approximately 0.48%with a maximum headwater depth of approximately five feet, yielding a discharge capacity of approximately 108 cubic feet per second (cfs). Using the discharge capacity as the baseline for design of the road crossing culverts within the Nelson Meadows Subdivision, a factor of safety of 1.50 was multiplied by the baseline flow of 108 cfs and rounded up to the nearest five cubic feet per second to arrive at a design flow of 165 cfs for the culvert crossings. For each of the crossings, it was determined that a 54" x 88" arch-reinforced concrete pipe (ARCP) culvert will convey the design flow of 165 cfs. Analysis summaries for each of the roadway crossings are provided in Appendix D. 16 Morrison Comprehensive Drainage Plan MEN Maierle engineers•surveyors•planners•scientists Nelson Meadows Bozeman, Gallatin County, Montana Air r rr 1 h n ♦ , + DP-NR-1 DP-NR-1 . _ DP-RW-18 . DP-NR-1 SDP-RW-1 SDP-RW-19 . DP-NR-1 DP-NR-1 ..��...0 L... DP-NR-1 � ' � SDW SDP• -RW-1 — DP-NR-1 s DP-RW-1 4 SDP-RW-1 SDP-PL-9 SDP-RW- SDP-NR-1 _ 1 � SDP-PL-B - � ,• f_: SDP-PL-3 SDP-PL-2 ! I ' 205 SDP-PL-7 SDP-RW 1 .I DP-NR-1 SDP-RW-9 SDP-RW-10 SDP-PL-1 SDP-PL-6 ' (h SDP-NR-9 SDP-RW-8 SDP-RW- r SDP-PL-5 SDP-NR-8 +�• �� �II SDP-NR-6 SDP RW 6 , SDP-NR-7 I( SDP-RW-5 SDP-RW-4 �. SDP-RW-3 SDP-NR-4 I SDP-NR 5 'C* �•ji �.\\ SDP-RW- SDP'- j/� SDP-NR-3 DP-RW-1 � k 235 SDP NR-1 SDP-NR-2 rll ►� • , - .,,��,� 205 Figure 10: Storm Drain Pipe Network 17 Comprehensive Drainage Plan Morrison Nelson Meadows I Bozeman, Gallatin County, Montana � Maler�e engineers�surveyors planners scienbsls Table 4: Nelson Road(NR)Drainage Basin Storm Drain Piping Summary Design Pipe Pipe Pipe Flow Downstream Flow SlopeDiameter Velocity ' . • .. Junction Junction (cfs) _(%) (in) (fps) Full SDP-NR-1 NR-1 #I-NR-01 #SDMH 01 0.94 1.00% 12.10 3.40 SDP-NR-2 NR 2 #I-NR-02 #SDMH 01 1.56 1.00% 12.10 3.94 39.5% SDP-NR-3 NNR12 #SDMH-01 #SDMH 02 1.83 1.00% 14.90 4.04 26.7% SDP-NR-4 NR 3 #I-NR-03 F 2.82 SDP-NR-5 NR 4 #I-NR-04 #SDMH 02 0.89 1.00% 12.10 3.34 22.4% SDP-NR-6 NNR-4ru #SDMH-02 #SDMH-03 3.25 1.00% 14.90 4.80 47.3% SDP-NR-7 NR 5 #I-NR-05 #SDMH-03 0.76 1.00% 12.10 3.20 19.4% SDP-NR-8 NR 6 #I-NR-06 #SDMH 03 0.87 1,00% 12.10 3.32 22.0% SDP-NR-9 NNR-6ru #SDMH-03 #SDMH-06 4,15 0.84°/a 14.90 4.91 65.8% SDP-NR-10 NR-7 #I-NR-07 #SDMH 06 0.67 1.00% 12.10 3.07 16.9% SDP-NR-11 N -I thru #SDMH-06 #SDMH-07 4.63 0.84% 14.90 5.09 73.4% SDP-NR-12 N -1 thru #SDMH-07 #SDMH-08 4.63 0.84% 14.90 5.09 73.4% SDP-NR-13 NR 8 Temp Cap #SDMH 08 0.85 1.00% 12.10 3.30 21.6% SDP-NR-14 NNR 8ru #SDMH-08 #I.NR-08 5.00 0.84% 14.90 5.18 80.0% SDP-NR-15 NR-10 #I-NR-09 #I NR 08 0.31 1.00% 12.10 2.46 7.9% SDP-NR-16 NNR-th u #I-NR-08 #SDMH-10 5.63 0.40% 18.00 4.06 78.2% SDP-NR-17 NNR-th u #SDMH-10 #SDMH-1112 7.14 0.20% 24.10 3.27 64.5% SDP-NR-18 NNR thru u #SDMH-11 Pond 7.14 0,20% 24.10 3.27 64.5% SDP-PL-5 NR 11 #I-PL-04 #I PL 05 1.18 1.00% 12.10 3.64 29.9% SDP-PL-6 NiNR-12 thru #I PL 05 #SDMH-04 1.82 1.00% 14.90 4.03 26.5% NR- SDP-PL-7 jNR-11 thru #SDMH-04 #SDMH 05 1.82 1.00% 14.90 4.03 26.5% NR-12 SDP-PL-8 NR-11 thru #SDMH-05 #SDMH-09 1.82 0.60% 14.90 3.36 34.3% NR-12 SDP-PL-9 NR-11 thru #SDMH-09 #SDMH-10 1.82 L4il LEI L�E NR-12 L��i 18 Morrison Comprehensive Drainage Plan Maierle engineers•surveyors planners sciemists Nelson Meadows I Bozeman, Gallatin County, Montana Table 5: Royal Wolf Way Plus Prince Lane(RWW+PL)Drainage Basin Storm Drain Piping Summary Design Pipe Pipe Pipe Flow Downstream Flow Slope Diameter Velocity ' . N M Junction Junction (cfs) (%) (in) (fps) %Full SDP-RW-IA RWW-1A Temp Cap j #I RW-1 0.91 1.00% 12.10 3.36 23.0% SDP-RW-1 thR WMA RWW-, #I-RW-1 #SDMH-12 3.0, 1.00% 12.10 4.88 76.3% SDP-RW-2 RWW 2 #I-RW-2 j #SDMH 12 0.93 1.OD% 12.10 3.39 23.6% SDP-RW-3 thu RW N 2 #SDMH-12 #SDMH-13 3.57 0.57% 14.90 4.10 68.8% SDP-RW-4 RWW-3 #I-RW-3 #SDMH 13 1.88 1.00% 12.10 4.19 47.6% SDP-RW-5 RWW 4 #I-RW-4 j #SDMH-13 1.05 1.00% 12,10 3.52 26.7% SDP-RW-6 thR R�� #SDMH-13 #SDMH-14 4.62 0.57% 14.90 4.44 88.9% SDP-RW-7 thR W-1ARWW- #SDMH-14 #SDMH-15 4.62 0.57% 14.90 4.44 88.9% SDP-RW-8 RWW-5 #I-RW-5 j #SDMH 15 0.43 1.00% 12.10 2.70 10.8% SDP-RW-9 thR W-1A5 #SDMH-15 #I-RW-6 4.87 0.57% 18.00 4.36 56.6% SDP-RW-10 thR W-1A6 #I-RW-6 #SDMH-16 5.24 0.57% 18.00 4.47 61.0% SDP-RW-11 RWW-11 #I-PL-1 #SDMH 16 0.95 1,00% 12.10 3.40 24.1% RWW-IA SDP-RW-12 thru RWW-6 #SDMH-16 #SDMH-17 7.72 0.20% 24.10 3.38 69.0% &RWW-11 thru RWW-13 SDP-RW-13 RWW 7 #I-RW-7 j #SDMH 17 0.27 ,,00% 12.10 2.36 6.7% SDP-RW-14 RWW 8 #I-RW-B j #SDMH-17 0.96 1.00% 12.,0 3.42 24.2% RWW-1 A SDP-RW-15 thru RWW-8 #SDMH-17 #SDMH-18 8.21 0.20% 24.10 3.45 73.4% &RWW-11 thru RWW-13 SDP-RW-16 RWW 9 #I-RW-9 #SDMH 18 0.48 1.00% 12.,0 2.80 12.3% SDP-RW-17 RWW-10 #I-RW-10 j #SDMH-18 0.73 1.00% 12.10 3.,6 18.5% SDP-RW-18 th R RWW 13 #SDMH-18 #SDMH-19 8.39 0.20% 24.10 3.47 75.0% SDP-RW-19 th R RWW 13 #SDMH-19 Pond 8.39 0.20% 24.10 3.47 75.0% SDP PL 01 RWW-12 #I-PL-02 #SDMH 20 1.81 1.00% 12.10 4.14 45.9% SDP PL-02 RWW-13 #I-PL-03 #SDMH 20 2.38 1.00% 12.10 4.53 60.4% SDP-PL-03 RWW 12+13 #SDMH-20 j #SDMH-16 4.19 0,40% 14.90 3.81 96.5% 19 Comprehensive Drainage Plan Morrison Nelson Meadows I Bozeman, Gallatin County, Montana Maler�e en leers�survc s-planners sc icnli sls Storm Water Retention Facilities As discussed previously, storm water runoff from the Nelson Road (NR) drainage basin is proposed to be retained by a surface storm water retention basin located on Storm Water Tract 2. The surface storm water retention basin is also sized to incorporate storm water runoff from Storm Water Tract 2 and existing portions of the proposed subdivision. Likewise, storm water runoff from the Royal Wolf Way plus Prince Lane (RWW+PL) drainage basin is proposed to be retained by a surface storm water retention basin located on Storm Water Tract 1. Again, the surface water retention basin is also sized to incorporate storm water runoff from Storm Water Tract 1 and existing portions of the proposed subdivision. In accordance with the Design Standards and Specifications Policy, the retention facilities have been designed based on the 10-year, 2-hour design storm event. A summary of the design parameters and sizing of the facilities is provided in Table 6 below and the analyses are included in Appendix E. Table 6: Surface Storm Water Retention Basin Sizing Summary ProvidedRequired Weighted i Contributing Runoff Retention Retention Drainage Area Coefficient, Volume Volume Basin (acres) CW (ft') Additional Design Notes Pond Bottom Elev.=4585.10' Maximum Water Depth=1.50' Nelson Road 9.71 0.52 14,735 14,822 Pond Bottom Area=±8,724 ft2 (NR) Water Surface Area=±11,038 ft2 Maximum Side Slopes=4:1 Horizontal:Vertical) Pond Bottom Elev.=4584.30' Royal Wolf Maximum Water Depth=1.50' Way Plus 21.43 0.39 24,585 24,989 Pond Bottom Area=±14,979 ft2 Prince Lane Water Surface Area=±18,340 ft2 (RWW+PL) Maximum Side Slopes=4:1 Horizontal:Vertical Maintenance Considerations Storm Water Conveyance Facilities Storm drain inlets, catch basins, and piping should be inspected at least once per year and following large storm events. Any necessary repair or maintenance should be prioritized and scheduled through the spring, summer, and fall. These items may include inspecting for any damage, removing blockages, cleaning and flushing the length of pipes, establishing vegetation on bare slopes at or near inlets, and sediment removal. 20 Morrison Comprehensive Drainage Plan Maierle engineers surveyors planners scirnlnls Nelson Meadows I Bozeman, Gallatin County, Montana � � Storm Water Retention Facilities Maintenance of the retention basin is also essential. General objectives of maintenance are to prevent clogging, standing water and the growth of weeds and wetland plants. This requires frequent unclogging of the outlets, inlets, and mowing. Cleaning out sediment with earth-moving equipment may also be necessary in 10 to 20 years. The included analyses and calculations show that the proposed storm water management system for the Nelson Meadows Subdivision development can be accommodated via the proposed retention basin areas for the design storm event. 21 Comprehensive Drainage Plan ®® Morrison Nelson Meadows I Bozeman, Gallatin County, Montana Maler�e engineers�surveyors-planners s[Icnlisls References 1. Lindeburg, Michael R., PE. (2003). Civil Engineering Reference Manual for the PE Exam, Ninth Edition. Belmont, CA: Professional Publications, Inc. 2. McCuen, Richard H. (1998). Hydrologic Analysis and Design, Second Edition. Upper Saddle River, NJ: Prentice Hall. 3. Public Works Department— Engineering Division I City of Bozeman. (May 1, 2017). Design Standards and Specifications Policy with Addenda 1 through 6. Bozeman, MT: Author. 4. United States Department of Agriculture. Natural Resources Conservation Service. Conservation Engineering Division. (1986). Urban Hydrology for Small Watersheds: TR-55. Washington, DC: Author. 5. United States Department of Transportation. Federal Highway Administration. National Highway Institute. (August 2001). Hydraulic Engineering Circular No. 22, Second Edition: Urban Drainage Design Manual. Washington, DC: U.S. Government Printing Office. 22 APPENDIX A POST-DEVELOPMENT RUNOFF ANALYSES Morrison Maierle engineers surveyors planners scientists Morrison Maierle engineers surveyors planners scientists APPENDIX A-1 NELSON ROAD MAJOR DRAINAGE BASIN Morrison Ma(erle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-01 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A D• rr Nelson Road Asphalt I Concrete 29,573 0.679 0.95 0.645 0.76 1.10 0.84 0.84 0.770 Landscaped Area 10,387 0.238 0., 0.055 Totals f 0.917 0.700 0.770 'Weighted runoff coefficient,Col=ICA/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L1/2 T1-0f=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) T S=Slope of Flow Course(%) Cf=Frequency Adjustment Factor t_o f = S 1/3 C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tf.of Description of Overland Overland Flow-Turf I 5 1.90 0.23 1,10 2.96 Overland Flow-Concrete 1 8 1.91 0.95 1.10 0.44 Overland Flow-Turf 36 1.56 0.23 1.10 8.24 Sheet Flow-Asphalt 67 1.81 0.95 1.10 1.26 Totals 117 f 12.89 (Average) Channelized Flow Travel Time: L T1,f=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-cf 60V L=Length of Basin(ft) V=1.n A A=Cross-Sectional Area of Channel FlowV=Average Velocity of Flow(fUsec) n (P) (TS- 00 P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tl�f Description Concrete Gutter 1 183 1 0.79 1 0.016 1 0.67 1 6.79 1 1.75 1.74 Totals 183 0.79 0.02 t (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T1-e,=Shallow Concentrated Flow Travel Time(min) 1. 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc - 60V L=Length of Basin(ft) V_ n Rl,2/3(TS-O0) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(f/sec) n Land Use/Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) (%) Coefficient (ft) (ft/sec) (min) Concrete Gutter 1 511 1 0.96 1 0.016 1 0.20 3.11 2.74 Totals 511 0.96 0.016 0.200 3.106 2.74 (Average) (Average) (Average) (Average) Pagel of 2 N:12 2 6 610 0 910 4 Desi nlCalcslStonn Water\Post-Development RunofftBasin_NR-01_25-YR_Deslgn-SlormAx Printed:311012019-9:48 PM Morrison illy Maierle DETERMINATION . Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) Tt_=Shallow Concentrated Flow Travel Time(min) t�=T�_of+Tt_5C+TC_e f T,af=Overland Flow(Sheet Flow)Travel Time(min) T,.ef=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,Tt-et= 12.89 min Basin Shallow Concentrated Flow Travel Time,Tt.x= 2.74 min Basin Channelized Flow Travel Time,T,a= 1.74 min Basin Time of Concentration,t,= 17.37 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 15 min= 1.89 inlhr Lower Rainfall Intensity Value= 20 min= 1.58 inmr Basin Design Qu=C'IA Cp=Basin Peak Flow Rate(ft'Isec or cfs) i=Rainfall Intensity(Inthr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.84 Basin Rainfall Intensity,i= 1.74 inlhr Basin Area,A= 0.917 acres .- Calculation of Peak Runoff Volume: Ry=60 t,`QN RP=Basin Peak Runoff Volume(ft'or cf) Op=Basin Peak Flow Rate(ft'Isec or cis) 4=Basin Time of Concentration(min) Basin Time of Concentration,to= 17.37 min Basin Peak Flow Rate,Qp= 1.34 W/sec Basin Peak Runoff Volume,Rp 1,398.49 cf Page 2 of 2 N:12266'DO9104 Desyn\CaleslStorm WateAPost-Development RunofflBasin_NR-01_25-YR_Design-Slorwlsx Printed:3110/2019-9:48 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-02 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. DescriptionWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C,=C�d x Ct wd rr Nelson Road Asphalt/Concrete 22,847 0,525 0.95 0.498 0.74 1.10 0.82 0.82 0.601 Landscaped Area 9,120 0.209 0.23 0.048 0.546 0.601 'Weighted runoff coefficient,C„ti=£C;AI/£aj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-o f = S 113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor TI-of Description of Overland Overland Flow-Concrete 19 1 1.42 1 0.95 1 1.10 1 0.73 Overland Flow-Turf 22 1.62 0.23 1.10 6,29 Sheet Flow-Asphalt 88 0.80 0.95 1.10 1.89 (Average) Channelized Flow Travel Time: L Tl�f=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-cf 60V L=Length of Basin(ft) _1.486 A S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(ft/sec) 12 P 100 P=Wetted-Periment of Flow Channel(ft) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt.f Concrete Gutter 1 171 1 0.71 1 0.016 0.63 6.-6 1.64 1.74 Totals 171 0.71 0.02 0.63 6.60 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc - 60 V L=Length of Basin(ft) V_1.486 R1r2/3( S 1 Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) 71 I\100) Land Use I Flow Regime(ft) SlopeLength of of Manning's Hydraulic Average Travel Time •• Flowpath Roughness Radius Velocity Tt_ CoefficientFlow Course (ft) M) Concrete Gutter 1 504 1 0.96 0.016 1 0.20 3.11 12.70 Totals r• 0.96 0.016 0.200 3.112 2.70 (Average) (Average) (Average) (Average) Page 1 of 2 N:@286'A09\D4 DesynlCalestStonn Water'Post-Development RunoffMasin_NR-02_25-YR_Deslgn-Stormxlsz Printed:3/1012019-9:50 PM Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: tc=Basin Time of Concentration(min) T,_,,=Shallow Concentrated Flow Travel Time(min) t�=T�_o f+Tt_S�+Tr_�f T =Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,-o,= 8.91 min Basin Shallow Concentrated Flow Travel Time,Tt-u= 2.70 min Basin Channelized Flow Travel Time,TI-a= 1.74 min Basin Time of Concentration,tc= 13.35 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 10 min= 2.46 inlhr Lower Rainfall Intensity Value= 15 min= 1.89 inlhr Basin Design Rainfall Intensity,i 2.08 QV_C,iA Op=Basin Peak Flow Rate(ft3/sec or cfs) I=Rainfall Intensity(inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.82 Basin Rainfall Intensity,i= 2.08 in/hr Basin Area,A= 0.734 acres Basin Design Peak Flow, • Calculation of Peak Runoff Volume: Rr,=60 t` u•Q RP=Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(It3lsec or cis) I�=Basin Time of Concentration(min) Basin Time of Concentration,t.= 13.35 min Basin Peak Flow Rate,Qp= 1,25 ft3/sec Basin Peak Runoff Volume,Rp 1,001.17 cif Page 2 of 2 N:@28600H4 Desgn\Cal&Stonn Waterftst-Development Runot6Basin NR.02_25-YR_Deslgm5lorm.xisx Printed:3110/2019-9:50 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins NR-01 & NR-02 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 D- 00 Subbasin NR-01 1 39,960 1 .917 1 0.76 1 0.700 Subbasin NR-02 1 31,967 1 0.734 1 0.74 1 0.546 0.75 1.10 0.83 0.83 1.371 'Weighted runoff coefficient,C,d=ICA I Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L112 Tt,t=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) T S=Slope of Flow Course(%) Cr=Frequency Adjustment Factor r-of = Si/3 C=Rational Method Runoff Coefficient DescriptionLength of Slope of Runoff Frequency Travel Time Subbasin NR-01 I Overland Flow-Turf 5 1.90 0.23 1.10 2,96 Subbasin NR-01 I Overland Flow-Concrete 8 1.91 0.95 1.10 0.44 Subbasin NR-01 j Overland Flow-Turf 36 1.56 0.23 1.10 8.24 Subbasin NR-01 I Sheet Flow-Asphalt 67 1.81 0.95 1.10 1.26 Totals 117 t 12.89 (Average) Channelized Flow Travel Time: L T,tt=Channelized Flow Travel Time(min) 2/a i/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-cf 60V L=Length of Basin(fl) �_1.n /A S A=Cross-Sectional Area of Channel Flow(ft) V=Average Velocity of Flow(ft/sec) n \P G-00P=Wretled-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flow.. Description Subbasin NR-01 j Concrete Gutter 1 183 1 0.79 1 0.016 1 0.67 6.79 1 1.75 1 1.74 Storm Drain Pipe SDP-NR-01 32 1.00 0.015 0.28 1.34 3.91 0.14 0.02 0.47 4.06 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T1,=Shallow Concentrated Flow Travel Time(min) �72 n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) Tt-sc - 60V L=Length of Basin(ft) V_ 1.486 Rh GOLO) S Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fUsec) n Land Use I Flow Regime(ft) Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity TI-sc Flow Course (ft) M)Length of Slope of Manning's Hydraulic Average Travel Time - Subbasin NR-01 I Concrete Gutter 1 511 1 0.96 1 0.016 1 0.20 1 3.11 12.74 Totals 511 0.96 0.016 0.200 3.106 2.74 (Average) (Average) (Average) (Average) Page 1 of 2 N:\2286tO9T4Dusyn\Calm Stonn WateAPost-Development RunoMCombined-Basin_NR-01.02_25-YR_Design-Storm.xlsx Printed:3/1012019-10:29 PM Morrison �i Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,tc: t,=Basin Time of Concentration(min) T,.x=Shallow Concentrated Flow Travel Time(min) t�=T�_pf+T�_5C+T�_�f T Overland Flow Sheet Flow Travel Time min T,=Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,-e,= 12.89 min Basin Shallow Concentrated Flow Travel Time,T,.sc= 2.74 min Basin Channelized Flow Travel Time,T,-= 1.87 min Basin Time of Concentration,t,= 17.51 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 15 min= 1.89 inthr Lower Rainfall Intensity Value= 20 min= 1.58 Inlhr Design Op=Basin Peak Flow Rate(ft'isec or cfs) i=Rainfall Intensity(inlhr) Q, — rA C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.83 Basin Rainfall Intensity,i= 1.73 inlhr Basin Area,A= 1.651 acres Basin Design Peak now, • p 2.38 cfs Calculation of Peak Runoff Volume: RP=60t�•Qr RP=Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(ft'Isec or cfs) 1c=Basin Time of Concentration(min) Basin Time of Concentration,t,= 17.51 min Basin Peak Flow Rate,Op= 2.38 W/sec Basin Peak Runoff Volume,R. 2,497.48 cf Page 2 of 2 N:V266'A0904 Desgn\Calcslftn WalefTost-Development RunoMCombined-Basin_NR-01t02_25-YR_Design-Slorm.xlsx Printed:311012019-10:29 PM Morrison i_Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-03 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X Ci D- wd rr Nelson Road Asphalt/Concrete 9,314 0.214 0.95 0.203 0.73 1.10 0.80 0.80 0.248 Landscaped Area 4,233 0.097 0.23 0.022 Totals 13,547 0.311 0,226 r .248 'Weighted runoff coefficient,Cw,_£CA/£aj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)LI12 T1-0f=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt of S1/3 S=Slope of Flow Course(%) Cf=Frequency Adjustment Factor — C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor TI..r Description of Overland Overland Flow-Concrete 18 1.77 0.95 1 1.10 0.44 Overland Flow-Turf 14 0.71 0.23 1.10 6.63 r: (Average) Channelized Flow Travel Time: L Tt.°,=Channeled Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 60V L=Length of Basin(h) V_1.n A WOW A=Cross-Sectional Area of Channel FlowV=Average Velocity of Flow(ft/sec) n P) P=Wetted-Pedment of Flow Channel(0) DescriptionLength of Slope of Manning's X-Sectional Wefted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T,f Concrete Gutter 278 1.00 1 0,016 1 0,36 14.91 1.63 2.84 Totals 278 rr 0.02 r (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T,.,°=Shallow Concentrated Flow Travel Time(min) 1.486 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—s` — 60V L=Length of Basin(ft) V_ Rr,2/3WOW Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) n Land Use!Flow Regime(it) Length of Slope of Manning's Hydraulic Average Travel Time Description Flow Course (ft) M) Coefficient 00 (ft/sec) (min) Concrete Gutter 1 21 1 1.00 1 0.016 1 0.20 1 3.18 0.11 Totals 21 rr 0.016 0.200 3.176 r .11 (Average) (Average) (Average) (Average) Page 1 of 2 N12 2 8 610 0 910 4 DesignTala&onn Water+Yost-Development RunofBBasin_NR.03_25-YR_Design-Stormxlsx Printed:3/10/2019-9:52 PM Morrison it Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: t,=Basin Time of Concentration(min) T,_,�=Shallow Concentrated Flow Travel Time(min) t�=Tt_oP+T�_5C+Tr_�f T =Overland Flow Sheet Flow Travel Time min Tt=Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,.o,= 7.08 min Basin Shallow Concentrated Flow Travel Time,Tt-x= 0.11 min Basin Channelized Flow Travel Time,Tt-0= 2.84 min Basin Time of Concentration,t,= 10.03 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 10 min= 2.46 Inlhr Lower Rainfall Intensity Value= 15 min= 1.89 inlhr DesignBasin Qa,=C'iA Qa=Basin Peak Flow Rate(ft3Isec or cis) I=Rainfall Intensity(inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.80 Basin Rainfall Intensity,i= 2.45 inlhr Basin Area,A= 0.311 acres Basin Design Peak Flow,• 0.61 cis Calculation of Peak Runoff Volume: RP=60t�•Q� Ro=Basin Peak Runoff Volume(W or cl) Op=Basin Peak Flow Rate(ft3/sec or cfs) 4=Basin Time of Concentration(min) Basin Time of Concentration,tc= 10.03 min Basin Peak Flow Rate,Op= 0.61 ft3lsec Basin Peak Runoff Volume,Rp 365.92 cf Page 2 of 2 NV28009104 Desi nlCalcs Storm WaterlPost-Development RunofflBasin_NR-0325-YR_Des1gn Slorm.xlsx Printed:3/10/2019-9:52 PM Morrison Malerle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-04-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A D- rr Nelson Road Asphalt I Concrete 12,717 0.292 0.95 0.277 0.70 1.10 0.77 0.77 0.344 Landscaped Area 6,773 0.155 1 0.23 0.036 Totals r 0.447 0.313 r .344 'Weighted runoff coefficient,C„,d=ECA I Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L112 T,,'=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tc_o f = S 113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tt�f Description of Overland Overland Flow-Concrete 1 7 1 1.80 1 0.95 1 1.10 1 0.41 Overland Flow-Turf 1 23 1 1.80 0.23 1.10 1 6.22 Totals r 1.80 6.63 (Average) Channelized Flow Travel Time: L T,,,=Channelized Flow Travel Time(min) 2/3 1/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-`f 60V L=Length of Basin(ft) V_1.486 A S A=Cross-Sectional Area of Channel Flow V=Average Velocity of Flow(ft/sec) 11 P 100 P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt..f Description Concrete Gutter 1 270 1 1.00 1 0.016 1 0.63 1 6.58 1 1.94 1 2.32 Totals r 1.00 0.02 0.63 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L TI-,°=Shallow Concentrated Flow Travel Time(min) 1.4861/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tr-sc 60V L=Length of Basin(ft) V_ Rr,2/s Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fVsec) 71 (TSO-0) Land Use I Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) M) Coefficient (ft) (ft/sec) (min) Concrete Gutter 1 127 1.00 1 0.016 0.20 1 3.18 1 0.67 Totals 127 rr 0.016 0.200 3.176 0.67 (Average) (Average) (Average) (Average) Page 1 of 2 N12280AON4 DesignlCalm torm WaWPost-Development RunoMBasin_NR-04_25-YR_Design-Storm.xlsx Printed:311012019-9:53 PM Morrison Maierle DETERMINATION . Basin Time of Concentration,t,: to=Basin Time of Concentration(min) T,.,o=Shallow Concentrated Flow Travel Time(min) t�=T�_of+Tr_5C+Tt_�f T Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min tit= ( ) (min) ttt= (min) Basin Overland Flow(Sheet Flow)Travel Time,Tl.et= 6.63 min Basin Shallow Concentrated Flow Travel Time,Tt,= 0.67 min Basin Channelized Flow Travel Time,Tta= 2.32 min Basin Time-of Concentration,to= 9.62 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 in/hr Lower Rainfall Intensity Value= 10 min= 2.46 in/hr DesignBasin Q,=C'IA Qp=Basin Peak Flow Rate(fP/sec or cis) I=Rainfall intensity(inthr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.77 Basin Rainfall Intensity,i= 2.56 in/hr Basin Area,A= 0.447 acres Basin Design Peak Flow, • r Calculation of Peak Runoff Volume: RP=60t� Qr Rp=Basin Peak Runoff Volume(ft3 or c0 Qp=Basin Peak Flow Rate(10/sec or cfs) lc=Basin Time of Concentration(min) Basin Time of Concentration,to= 9.62 min Basin Peak Flow Rate,QP= 0.88 it'/sec Basin Peak Runoff Volume,Rp l: Page 2 of 2 N12 RD09'a4 DesgnlCalcs Storm Water%Post-Development RunoHasin_NR-04_25-YR_DeslgnSlormxlsx Printed:3/10/2019-9:53 PM Morrison I.Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins NR-01 thru NR-04 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WOual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Description Subbasins NR-01&NR-02 1 71,927 1 1.651 1 0.75 1 1.246 Subbasin NR-03 13,547 0.311 0.73 0.225 0.74 1.10 FO.81 0.81 F---- 1.963 Subbasin NR-04 19,490 0.447 0.70 0.313 Totals- 104,964 2.410 'Weighted runoff coefficient,C„j=ECA I Eaj where q Is the adjusted runoff coefficient for surface type j and Aj Is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C-Cf)L112 T,,f=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) T S=Slope of Flow Course(%) Cf=Frequency Adjustment Factor t-of = S 1/3 C=Rational Method Runoff Coefficient SlopeLength of of Runoff Frequency Travel Time Flow.. Description of Overland Subbasin NR-01 1 Overland Flow-Turf 5 1.90 0.23 1.10 2.96 Subbasln NR-01 I Overland Flow-Concrete 8 1.91 0.95 1.10 0.44 Subbasin NR-01 I Overland Flow-Turf 36 1.56 0.23 1.10 8.24 Subbasin NR-01 I Sheet Flow-Asphalt 67 1.81 0.95 1.10 1.26 (Average) Channelized Flow Travel Time: L T,,,=Channelized Flow Travel Time(min) 1.486 A z/3 S n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-cf 60 V L=Length of Basin(ft) V- n (P) (_i00)1/2 A=Cross-Sectional Area of Channel Flow(fix) V=Average Velocity of Flaw(fUsec) P=Wetted-Periment of Flow Channel(ft) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt�f Subbasin NR-01 I Concrete Gutter 1 83 1 0.79 1 0.016 1 0.67 1 6.79 1 1.75 1.74 Storm Drain Pipe SDP-NR-01 32 1.00 1 0.015 0.28 1.34 3.91 0.14 Storm Drain Pipe SDP-NR-03 396 1.00 0.014 0.84 2.35 5.34 1.24 Totals 611 0.93 0.02 0.60 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T,.s,=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc - 60V L=Length of Basin(ft) V_1.486 Rh2/3( S 1 Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(f/sec) n I(100) Land Use I Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) (%) Coefficient (ft) (ft/sec) (min) Subbasin NR•01 j Concrete Gutter 511 0.96 0.016 0.20 3.11 2.74 Totals 511 0.96 0.016 0.200 3.106 2.74 (Average) (Average) (Average) (Average) Page 1 of 2 W2286'009104 DesgMCalcslStmm WaterTosl-Development RunofACombined-Basin_NR-01-thm-04 25-YR_DesignStonn.xlsx Printed:3/1012019-10:32 PM Morrison IIIIon Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: t�=Basin Time of Concentration(min) T,_sa=Shallow Concentrated Flow Travel Time(min) t�=Tn_o f+Tr_5C+Tr_�f T =Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,.ar= 12.89 min Basin Shallow Concentrated Flow Travel Time,T,.,= 2.74 min Basin Channelized Flow Travel Time,TI-d= 3.11 min Basin Time of Concentration,t.= 18.74 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 15 min= 1.89 Inlhr Lower Rainfall Intensity Value= 20 min= 1.58 inlhr DesigniBasin Qu=C'M Op=Basin Peak Flow Rate(ft3lsec or cfs) I=Rainfall Intensity(irdhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.81 Basin Rainfall Intensity,i= 1.66 inlhr Basin Area,A= 2.410 acres DesignBasin Calculation of Peak Runoff Volume: R =60 t •Q RP=Basin Peak Runoff Volume(ff3 or cl) Op=Basin Peak Flow Rate(ft'Isec or cfs) u ` U to=Basin Time of Concentration(min) Basin Time of Concentration,to= 18.74 min Basin Peak Flow Rate,Qp= 3.25 ff3lsec Page 2 of 2 NtQ206'fJ09104 DesynlCalms Strom WatedPost-Development RunomCombined-Basin_NR.01-thm-04_25-YR_DesgnSlonn.xlsx Printed:311012019-10:32 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-05 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Coefficient'Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient•- wd 00 Nelson Road Asphalt I Concrete 1 12,680 0.291 1 0.95 1 0.277 1 0.75 1.10 0.82 0.82 0.333 Landscaped Area 1 4,934 1 0.113 1 0.23 1 0.026 1 F Totals 17,614 •0• 0.303 r .333 'Weighted runoff coefficient,C„,d=£CA I£aj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ff) Tt—of — S 1/3 S=Slope of Flow Course(%) Cr=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor T1.0f Description of Overland Overland Flow-Concrete 7 1 1.80 0.95 1 1.10 0.41 Overland Flow-Turf 17 1 1.80 0.23 1 1.10 1 5.34 Totals 24 :r 5.75 (Average) Channelized Flow Travel Time: L Tttf=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 60V L=Length of Basin(ft) V_1.n A A=Cross-Sectional Area of Channel FlowV=Average Velocity of Flow(ftlsec) n P (TSO-0) P=Wetted-Periment of flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt�( Description Concrete Gutter 1 276 1 1,00 1 0.016 0.54 1 .11 1.85 2,48 Totals 276 rr 0.02 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt.sc=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc — 60V L=Length of Basin(ft) V_1.486 Ri,2/3( S � Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fVsec) 71 \100 Land Use I Flow Regime(h) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated FlowpathFlowpath Flow Course (ft) (%) Coefficient (ft) (ftfsec) (min) Concrete Gutter 124 1.00 OA16 1 0.20 1 3.18 1 0.65 Totals 124 rr 0.016 0.200 3.176 0.65 (Average) (Average) (Average) (Average) Page 1 of 2 N12 2 8 810 0 904 Desgntcalcs\storm watertPost-De"Iopment Runoff0asin_NR-05_25-YR_Design-5torm,&x Printed:3/101201 9-9:54 PM Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: I,=Basin Time of Concentration(min) T,.,�=Shallow Concentrated Flow Travel Time(min) t�=T�_of+Tt_S�+T�_�f T Overland Flow Sheet Flow Travel Time min Tl-,f=Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,.e,= 5.75 min Basin Shallow Concentrated Flow Travel Time,T,-x= 0.65 min Basin Channelized Flow Travel Time,T,.a= 2.48 min 'Basin Time of Concentration,t. 8.89 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 in/hr Lower Rainfall Intensity Value= 10 min= 2.46 in/hr DesignBasin QV_CiA Op=Basin Peak Flow Rate(ft3Isec or cis) i=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0,82 Basin Rainfall Intensity,i= 2.76 in/hr Basin Area,A= 0.404 acres Basin Design Peak Flow, • r Calculation of Peak Runoff Volume: Rt,=60 tc•Qy Rp=Basin Peak Runoff Volume(ft3 or o Op=Basin Peak Flow Rate(fl'Isec or cfs) t =Basin Time of Concentration(min) Basin Time of Concentration,t.= 8.89 min Basin Peak Flow Rate,Qp= 0,92 ffsisec Basin Peak Runoff Volume,Rp 489.92 cf Page 2 of 2 N:@2561009040esgn\Calc Storm WatedPost-Development RunofflBasin_NR-05_25-VR_Design-Storm.zlsx Printed•.311012019-9:54 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-06 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A• rr Nelson Road Asphalt/Concrete 12,118 1 0.278 0.95 0.264 0.68 EE1 0.75 0.75 0.332 Landscaped Area 7,066 0.162 0.23 0.037 Totals 19,184 , ..r 0.302 r .332 'Weighted runoff coefficient,C d=ECA/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C•Cf)L1l2 Tt,f=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt—o f = S 113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient CoefficientLength of Slope of Runoff Frequency Travel Time Flowpath Flowpath•- Overland Overland Flow-Concrete 1 1 1.80 1 0.95 1 1.10 0.,1 Overland Flow-Turf 22 1.80 1 0,23 1.10 6.11 Totals 29 r 6.52 (Average) Channelized Flow Travel Time: L Tt°t=Channelized Flow Travel Time(min) 1.486 A z/3 1/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 60V L=Length of Basin(ft) V= n (P) (A-00) A=Cross-Sectional Area of Channel Flow(flz) V=Average Velocity of Flow(ft/sec) P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt.cf Description Concrete Gutter 1 271 1 1.00 1 .016 1 0.62 6.52 1 1.93 1 2.34 Totals 271 tr 0.02 0.62 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt.,°=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(°�) Tt—s` 60 V L=Length of Basin(ft) V_1.486 Rt,z/3( S ) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fl/sec) 77 100 Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description Flow Course (ft) (1/6) Coefficient (ft) (ft/sec) (min) Concrete Gutter 1 126 1.00 1 0.016 1 0.20 1 3.18 1 0.66 Totals 126 rr 0.016 0.200 3.176 0.66 (Average) (Average) (Average) (Average) Page 1 of 2 N:122e61009\04 DesgnlCalalStorm WatedPost-Development Runof Basin_NR-06_25-YR_Desigm5torm.xlsa Printed:3/10/2019-9:56 PM Morrison lllllll�Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) T, =Shallow Concentrated Flow Travel Time(min) t�=Tr_o f+Tr_5C+Tr_�f -,�T Overland Flow Sheet Flow Travel Time min T�=Channelized Flow Travel Time min Ial= ( ) (min) I I— (min) Basin Overland Flow(Sheet Flow)Travel Time,T,.pr= 6.52 min Basin Shallow Concentrated Flow Travel Time,T,.,= 0.66 min Basin Channelized Flow Travel Time,T,.= 2.34 min Basin Time of Concentration,t.= 9.52 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 in/hr Lower Rainfall Intensity Value= 10 min= 2.46 in/hr .• Qu=C'M QP=Basin Peak Flow Rate(ft3tsec or cis) I=Rainfall Intensity(In/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.75 Basin Rainfall Intensity,i= 2.59 in/hr Basin Area,A= 0.440 acres Basin Design Peak Flow,Q. r : Calculation of Peak Runoff Volume: RP=60t�•Qr Rp=Basin Peak Runoff Volume(ft3 or cl) Op=Basin Peak Flow Rate(11'/sec or cfs) l�=Basin Time of Concentration(min) Basin Time of Concentration,tc= 9.52 min Basin Peak Flow Rate,Qp= 0.86 ft3/sec Basin Peak Runoff Volume,Rp r Page 2 of 2 W2286100904 DesignTahc Stonn WalerTost-Development RunaMasin_NR-06_25-YR_Design-Storm xlsx Printed:3/10/2019-9:56 PM Morrison i�Maierle ... ... .., RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins NR-01 thru NR-06 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) ,DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X Cf D- rr Subbasins NR-01 thru NR-04 104,964 1 2.410 0.74 1 1.785 Subbasin NR-05 17,614 0.404 0.75 0.303 0.73 1.10 0.81 0.81 2.628 Subbasin NR-06 19,184 0.440 0.68 0.302 'Weighted runoff coefficient,C,Yd=!CA/Taj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L112 T,-0,=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-o f - S 113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tt_�F Description of Overland Subbasin NR-01 I Overland Flow-Turf 5 1.90 023 1.10 2.96 Subbasin NR-01(Overland Flow-Concrete 8 1.91 0.95 1.10 0.44 Subbasin NR-01 j Overland Flow-Turf 36 1.56 0.23 1.10 8.24 Subbasin NR-01 j Sheet Flow-Asphalt 67 1.81 0.95 1.10 1.26 Totals 117 1 12.89 (Average) Channelized Flow Travel Time: L Tk,=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-`f 60 V L=Length of Basin(1) V_ 1.n A S A=Cross-Sectional Area of Channel Flow(it2) V=Average Velocity of Flow(f/sec) n P (i-0-0) P=Wetted-Periment of Flow Channel(fit) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity TI.f Subbasin NR-01 j Concrete Gutter 183 0.79 0.016 0.67 6.79 1.75 1.74 Storm Drain Pipe SDP-NR-01 32 1.00 0.015 0.28 1.34 3.91 0.14 Storm Drain Pipe SDP-NR-03 396 1.00 0.014 0.84 2.35 5.34 1,24 Storm Drain Pipe SDP-NR-06 396 1.00 0.014 0.91 2.47 5.54 1.19 Totals 11: 0.95 0.01 r 1 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt.s°=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc - 60 V L=Length of Basin(ft) V_ 1.486 Rh r S 1 Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) n 100 Land Use I Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) (%) Coefficient (ft) (ft/sec) (min) Subbasin NR-01(Concrete Gutter 1 511 0.96 1 0.016 1 0.20 3.11 2.74 Totals 511 0.96 0.016 0.200 3.106 2.74 (Average) (Average) (Average) (Average) Page 1 of 2 N122e51009V Desl nlCalmlStotm WaterWost-Development RunofACombined-Basln_NR-01-thm-06 25-YR_DesgnStorm.xlsz Printed:311012019-10:34 PM Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: 4=Basin Time of Concentration(min) T,_sc=Shallow Concentrated Flow Travel Time(min) t'=Tt-o f+Tt-5C+Tt—Cf Tfor=Overland Flow(Sheet Flow)Travel Time(min) Tt I=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,-o,= 12.89 min Basin Shallow Concentrated Flow Travel Time,T,-sc= 2.74 min Basin Channelized Flow Travel Time,T,a= 4.30 min Basin Time of Concentration,t.= 19.93 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 15 min= 1.89 Inthr Lower Rainfall Intensity Value= 20 min= 1.58 inmr DesignlBasin Qp=C'iA Qp=Basin Peak Flow Rate(ft3lsec or cis) I=Rainfall Intensity(in1hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0,81 Basin Rainfall Intensity,i= 1.58 inlhr Basin Area,A= 3.254 acres Basin Design Peak Flow,Op 4.15 cfs of Peak Runoff Volume: RN=60t,•Qp Rp=Basin Peak Runoff Volume(ft3 or cf) Qp=Basin Peak Flow Rate(ft3lsec or cfs) f =Basin Time of Concentration(min) Basin Time of Concentration,t.= 19.93 min Basin Peak Flow Rate,QP= 4.15 ftalsec Basin Peak Runoff Volume,RP 4,965.52 cf Page 2 of 2 N:122861009'%04 Design\Calme Storm waterNost-Development RunoftCombined-Basin_NR-01-thm-06 25-YR_DesgnSlon,X[Sx Printed:311012019-10:34 PM Morrison I.Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-07- 25 Year Design Storm Frequency Design Stone Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A r,- tr Nelson Road Asphalt I Concrete 6,688 1 0.154 0.95 1 0.146 0.69 EE7 0.76 0.76 0.183 Landscaped Area 3.825 0.088 0.23 0.020 Totals r 0.241 0.166 0.183 'Weighted runoff coefficient,C.wd=Y-CA/Eaj where CJ is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)L112 Tt,r=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) _ T S=Slope of Flow Course(%) Ct=Frequency Adjustment Factor t o f = S>/3 C=Rational Method Runoff Coefficient SlopeLength of of Runoff Frequency Travel Time Flowpath Description of Overland Overland Flow-Concrete 7 1.80 1 0.95 1 1.10 1 0.41 Overland Flow-Turf 21 1.80 0.23 1.10 5.95 Totals 28 r 6.36 (Average) Channelized Flow Travel Time: L Tt,t=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 60V L=Length of Basin(ft) V_ 1.486 A S A=Cross-Sectional Area of Channel Flow V=Average Velocity of Flow(fVsec) n (P) (T—O0) P=Welled-Periment of Flow Channel(ft) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tf Flow Path (ft) Coefficient (ft') (ft) (ft/sec) (min) Concrete Gutter Channelized 220 1 1.00 1 0.016 1 0.48 15.70 1.78 2.06 Totals r 1.00 0.02 0.48 5.70 1.78 2.06 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt.,°=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—sc — L=Length of Basin(ft) V_1.486 Rr,2/3( S ) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(f/sec) n 100 Land Use I Flow Regime(it) SlopeLength of of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath TotalsFlow Course (ft) Coefficient (ft) (ft1sec) (min) r rrr 0,000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) Page 1 of 2 N.Q2e61 ON4 Design\CalcslStorm WalerlPost-Development RunaWasin_NR-07_25.YR_Deslgn-5tormAx Printed:3/10/2019.9;57 PM I- Morrison Maierle DETERMINATION . Basin Time of Concentration,tc: 4=Basin Time of Concentration(min) T,_,�=Shallow Concentrated Flow Travel Time(min) t�=Tr_aP+T�_S�+Tr_�I T Overland Flow Sheet Flow Travel Time min Tltl=Channeled Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,-e,= 6.36 min Basin Shallow Concentrated Flow Travel Time,Tt..= 0.00 min Basin Channelized Flow Travel Time,Tt-= 2.06 min Basin Time-of Concentration,t.= 8.42 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 in/hr Lower Rainfall Intensity Value= 10 min= 2.46 in/hr DesignBasin QY_C'lA Qp=Basin Peak Flow Rate(ft3lsec or cis) i=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.76 Basin Rainfall Intensity,i= 2.89 in/hr Basin Area,A= 0.241 acres Basin Design Peak Flow, • r Calculation of Peak Runoff Volume: Ru=60 t,•qy RP=Basin Peak Runoff Volume(ft3 or cf) Qp=Basin Peak Flow Rate(ft3lsec or cis) tc=Basin Time of Concentration(min) Basin Time of Concentration,to= 8.42 min Basin Peak Flow Rate,Qp= 0.53 0/sec Page 2 of 2 NV266D09'04 Desgn Calu\Sta m Water'Pos4Development RunaftBasin_NR-07_25-YR_Deslgn-Storm.x1sx Printed:3/10/2019-9:57 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-08 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. DescriptionWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 wd 00 Nelson Road Asphalt I Concrete 1 13,714 1 0.315 0.95 1 0.299 0.71 EE7 0.78 0.78 0.368 Landscaped Area 6,783 0.156 0.23 0.036 Totals i . 'Weighted runoff coefficient,Cwd=ECA/Eaj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)L112 T1-01=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(fi) Tt—of — S 113 S=Slope of Flow Course(%) CI=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tt.of Description of Overland OverlandFlow-Concrete 1 7 1 1.80 0.95 1 1.10 1 0.41 Overland Flow-Turf 20 1 1.80 0,23 1.10 5.86 Totals 28 1.80 6.29 (Average) Channelized Flow Travel Time: L Tt-°,=Channelized Flow Travel Time(min) 2/3 /2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—cf 60V L=Length of Basin(ft) V_ 1.n A S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(fUsec) n P (TOLOY P=Welted-Periment of Flow Channel(ft) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt..f Concrete Gutter 272 1.00 1 0.016 1 0.61 1 6A6 1 1.92 2.37 Totals 272 00 0.02 t (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) WOW n=Manning's Roughness Coefficient S=Slope of FlowpathTt—sc = L=Length of Basin(R) V_ 1.486 R 2/3 Rh=Assumed Hydraulic Radius Based on 60V V=Average Velocity of Flow(ft/sec) 11 '` Land Use I Flow Regime(ft) SlopeLength of Description Flow Course (ft) Coefficient (ft) (ft/sec) (min) Concrete Gutter 1 166 1 1.00 0.011 1 0.20 1 4.62 1 0.60 (Average) (Average) (Average) (Average) Page 1 of 2 N:@286100904 Desgn\CaWSton WatWost-Development Runoff\Basin_NR-08_25-YR_Deslgn.St0"x1sx Printed:3/10/2019.9:58 PM Morrison lllli Maierle DETERMINATION . Basin Time of Concentration,t.: I,=Basin Time of Concentration(min) T,.sa=Shallow Concentrated Flow Travel Time(min) t�=T�_op+Tt_5C+T�_�f Ta=Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min I t- ( ) (min) Icf= (min) Basin Overland Flow(Sheet Flow)Travel Time,T,-o,= 6.29 min Basin Shallow Concentrated Flow Travel Time,T,.0= 0.60 min Basin Channelized Flow Travel Time,T,.a= 2.37 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 inlhr Lower Rainfall Intensity Value= 10 min= 2.46 inmr DesignBasin Q,,=CrtA Op=Basin Peak Flow Rate(fl3lsec or cfs) I=Rainfall Intensity(inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.78 Basin Rainfall Intensity,i= 2.66 inlhr Basin Area,A= 0.471 acres DesignBasin 0.98 Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(ft3 or cf) Qp=Basin Peak Flow Rate(ft3isec or cfs) Rr,=60t,•Qr, 4=Basin Time of Concentration(min) Basin Time of Concentration,la= 9.25 min Basin Peak Flow Rate,Qp= 0.98 ft3(sec Basin Peak Runoff Volume,Rp r Page 2 of 2 N:\228600904DasgnlCalcs Starm Wate(Post-Development Runofheasin_NR-08_25-YR_De51gn-Storm.xlax Printed:3/10/2019-9:58 PM !®Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins NR-01 thru NR-08 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2.5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. Coefficient'Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient D• ld ld 0r Subbasins NR•01 thru NR-07 1 162,259 1 3,725 1 0.73 1 2,724 Subbasin NR-08 20,497 1 0.471 1 0.71 10.335 0.73 1.10 0.80 0.80 3.365 r 'Weighted runoff coefficient,CM=!:CA/Faj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C-Cf)L11 Z Tt,f=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-of - S113 S=Slope of Flow Course(%) Cr=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of „ of Runoff Frequency Travel Time Description Subbasin NR-01)Overland Flow-Turf 5 1.90 0.23 1.10 2.96 Subbasin NR-01 I Overland Flow-Concrete 8 1.91 0.95 1.10 0.44 Subbasin NR-01 I Overland Flow-Turf 36 1.56 0.23 1.10 8.24 Subbasin NR-01 I Sheet Flow-Asphalt 67 1.81 0.95 1.10 1.26 Totals 117 :f 12.89 (Average) Channelized Flow Travel Time: L Tt,f=Channelized Flow Travel Time(min) 2/3 1/2 n-Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-`f 60V L=Length of Basin(ft) V_ 1.n A A=Cross-Sectional Area of Channel Flaw(ft)V=Average Velocity of Flow(ft/sec) (P (A-00) P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T1 f D- Coefficient (ft) (ft) (ft/sec) (min) Subbasin NR-01 j Concrete Gutter 183 0.79 0.016 0.67 M258 1.75 1.74 Storm Drain Pipe SDP-NR-01 32 1.00 0.015 0.28 3.91 0.14 Storm Drain Pipe SDP-NR-03 396 1.00 0.014 0.84 5.34 1.24 Storm Drain Pipe SDP-NR-06 396 1.00 0.014 0.91 5.34 1.24 Storm Drain Pipe SDP-NR-09 220 0.83 0.014 0.96 5.18 0.71 Storm Drain Pipe SDP-NR-11 223 0.84 0.014 0.91 5.09 0.73 Storm Drain Pipe SDP-NR-12 213 0.83 0.014 0.91 2.47 5.04 0,70 Totals 1,664 0.90 0.01 f (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N:@2861009W4 DesgnlCalmZtorm WaterPost-Development RunofACombined-Basin_NR-01-thm-08_25-YR_DesgnStorm xbz Printed:311012019-10:37 PM Morrison Maierle Shallow Concentrated Flow Travel Time: L T,_=Shallow Concentrated Flow Travel Time(min) 1486 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—s` 60 V L=Length of Basin(ft) V_ . Rh 2/3 S Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(f/sec) n 100 Land Use I Flow Reglme(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (Ift) N Coefficient (Ift) (ft/sec) (min) Subbasin NR-01 I Concrete Gutter 1 511 1 0.96 0.016 0.20 1 3.11 1 2.74 0.016 0.200 3.106 2.74 (Average) (Average) (Average) (Average) DETERMINATIONOF •W RATE&RUNOFF VOLUME Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) T,_,�=Shallow Concentrated Flow Travel Time(min) t�=Tr_o f+T�_S�+T�_�f T Overland Flow Sheet Flow Travel Time min T =Channeled Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,Tt.el= 12.89 min Basin Shallow Concentrated Flow Travel Time,TI,= 2.74 min Basin Channelized Flow Travel Time,Ttd= 6.49 min Basin Time of Concentration,t.= 22.12 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 20 min= 1.58 inlhr Lower Rainfall Intensity Value= 25 min= 1.37 inlhr DesignBasin 0 =Basin Peak Flow Rate(ft'Isec or cis) i=Rainfall Intensity(inmr) Qu_— rA C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.80 Basin Rainfall Intensity,i= 1.49 inlhr Basin Area,A= 4.196 acres DesignBasin r 5.00 cfs Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(ft3 or co Op=Basin Peak Flow Rate(ft'Isec or cis) Ry=60tc Q p t,=Basin Time of Concentration(min) Basin Time of Concentration,t°= 22.12 min Basin Peak Flow Rate,Qp= 5.00 ft3lsec Basin Peak Runoff Volume,Rp 6,639.33 cf Page 2 of 2 W2266009'A4 DesgnTa1WS1mm WateMost-Development RunoItCombined-Basin NR.01-thm-08 25-YR_Desgn-Stom.rJsx Printed:311012019-10:37 PM Morrison Itl.Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-09-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WOual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. DescriptionWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 rr Nelson Road Asphalt I Concrete 15,238 0.350 0.95 0.332 0.72 1.10 0.79 0.79:�E Landscaped Area 7.061 0,162 0.23 0.037 1 F Totals 22,299 0.512 0.370 0.407 'Weighted runoff coefficient,Cwd=ECA I Eaj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1,1-C•Cf)Ll1 z Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-of - S113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tt..1 Description of Overland Overland Flow-Concrete 1 6 1 1.50 0.95 1 1.10 10.40 Overland Flow-Turf 1 14 1 1.50 1 0.23 1 1.10 1 5.18 Totals 20 r 5.58 (Average) Channelized Flow Travel Time: L T,-°,=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-`f 60 V L=Length of Basin(ft) V_1.486 A S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(fUsec) 71 (P 100 P=Wetted-Periment of Flow Channel(0) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt.cl Flow Path (ft) M) Coefficient (ft) (ft) (ft/sec) (min) Concrete Gutter Channelized 280 1.00 1 0.016 1 0.58 6.341 1.90 2.46 Totals :r 1.00 0.02 0.58 6.34 1.90 2.46 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) 14861/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc - 60V L=Length of Basin(ft) V_ . Rh2/3(TS-O0) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fUsec) n Land Use I Flow Regime(fl) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Concrete,Gutter 1 216 1 1.00 0.011 0.20 1 4.62 10.78 Totals 216 rr 0.011 0.200 4.620 0.78 (Average) (Average) (Average) (Average) Page 1 of 2 WQ28 009V Desyn\Cal&,Storm WaWPost-Development RunofOBasin NR-09_25-YR_DesignStorm xlsx Printed:3/1012019-10:00 PM low Morrison �■Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: t,=Basin Time of Concentration(min) T„_=Shallow Concentrated Flow Travel Time(min) t�=T�_of+T�_5�+T�_�I T Overland Flow Sheet Flow Travel Time min T�=Channelized Flow Travel Time min Icl= ( ) (min) I t- (min) Basin Overland Flow(Sheet Flow)Travel Time,T,-p,= 5.58 min Basin Shallow Concentrated Flow Travel Time,T,.0= 0.78 min Basin Channelized Flow Travel Time,T,.d= 2.46 min Basin Time of concentration,tc= 8.82 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 inlhr Lower Rainfall Intensity Value= 10 min= 2.46 Inlhr DesignBasin Qr,=C iA Op=Basin Peak Flow Rate(ft'Isec or cfs) I=Rainfall Intensity(Infhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.79 Basin Rainfall Intensity,i= 2.78 inihr Basin Area,A= 0.512 acres Basin Design Peak Flow,Qp 1.13 cfs of Peak Runoff Volume: Rp-Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(ft'Isee or cfs) RP=60t� Q H t,=Basin Time of Concentration(min) Basin Time of Concentration,tc= 8.82 min Basin Peak Flow Rate,Op= 1.13 it3lsee Page 2 of N:@2 8 510 0 910 4 Oesgn\Calas Stonn WalelPost-Cewlopment RunoMBasin_NR.09_25-YR_Oesign-Storm.xlsx Printed:3/10/2019-10:00 PM Morrison ll�Maierle ...... ......... RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-10 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=Cwd X C1 •- wd rr Nelson Road Asphalt/Concrete 1 535 0,012 1 0.95 1 0.012 0.72 1.10 0.79 0.79 0.014 Landscaped Area 1 252 1 0.006 1 0.23 1 0.001 Totals 788 0.018 0.013 0.014 'Weighted runoff coefficient,Cwj=£CiAi I£aj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C•Cf)Li/2 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) q' S=Slope of Flow Course(%) Cr=Frequency Adjustment Factor t_of = S1/3 C=Rational Method Runoff Coef 1cient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tl-.f Description of Overland Overland Flow-Concrete 8 1.80 0.95 1.10 0.44 Overland Flow-Turf 1 19 1.80 0.23 1 1.10 5.63 Totals 27 :r 6.07 (Average) Channelized Flow Travel Time: L TI.,I=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 60V L=Length of Basin(ft) V_1.n A S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(ft/sec) n P) (TOLO) P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt-C, Description Concrete Gutter 1 5 1 1.00 1 0,016 1 .23 3.87 1 1.43 1 0.17 Totals 15 rr 0.02 r 0.17 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) 1.486 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-s` — 60 V L=Length of Basin(ft) V_ R1i2/3(100) S Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fVsec) 71 Land Use!Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity T,sc Flow Course (ft) (%) Coefficient (ft) ftsec) (min) Concrete Gutter 482 1.00 1 0.011 1 0.20 1 4.62 1 1.74 Totals 482 rr 0.011 0.200 4.620 1.74 (Average) (Average) (Average) (Average) Page 1 of 2 N:12286100904 Designlcawstonn WaterlPost-Dewlopmenl RunolhBasin NR-10_25-YR_Design-Stormxlsx Printed:3/1 012 0 1 9.10:01 PM i Morrison IIIINo Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: 4=Basin Time of Concentration(min) T,-,,=Shallow Concentrated Flow Travel Time(min) t`_—Tt_°f+T`_5C+Tr_`7 Tt,l=Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T1.o1= 6.07 min Basin Shallow Concentrated Flow Travel Time,Tt-u= 1.74 min Basin Channelized Flow Travel Time,Tt-a= 0.17 min Basin Time of Concentration,tc= 7.98 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 inlhr Lower Rainfall Intensity Value= 10 min= 2.46 in/hr Basin Design Rainfall Intensity,i 3.01 Qp=Basin Peak Flow Rate(ff3lsec or cfs) I=Rainfall Intensity(inthr) QP— `A C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.79 Basin Rainfall Intensity,i= 3.01 in/hr Basin Area,A= 0.018 acres Basin Design Peak Flow, • 0.04 cis Calculation of Peak Runoff Volume: RP=60 t`•Q RP=Basin Peak Runoff Volume(113 or cf) Qp=Basin Peak Flow Rate(ft3lsec or cfs) u lc=Basin Time of Concentration(min) Basin Time of Concentration,to= 7.98 min Basin Peak Flow Rate,Op= 0.04 ft3/sec Basin Peak Runoff Volume,Rp l Page 2 of 2 N?2286009'D4 Dasgntcalas storm walerkPost-Development Runotr�Basin_NR-10 25-YR_Des1gm51orm.z1s% Printed:3110/2019-10:01 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins NR-01 thru NR-10 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter Wqual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=Cwd X Cf D• wd Id 00 Subbasms NR-01 thru NR-08 1 182,756 1 4.196 1 0.73 1 3.059 Subbasin NR-09 22,299 0.512 0.72 0.370 0.73 1.10 0.80 0.80 3.786 Subbasin NR-10 788 0.018 0.72 1 3 'Weighted runoff coefficient,C,d=£C;At/£aj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: _ 1.87(1.1-C-Cf)Gl12 Tt-0f=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(it) Tt_o f _ S 113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Description Subbasin NR-01 I Overland Flow-Turf 5 1.90 0.23 1.10 2.96 Subbasin NR-01 I Overland Flow-Concrete 8 1.91 0.95 1.10 0.44 Subbasin NR-01 I Overland Flow-Turf 36 1.56 0.23 1.10 8.24 SubbasinNR-01 J SheetFlow-Asphalt 67 1.81 0.95 1.10 1.26 (Average) Channelized Flow Travel Time: L Tt�,=Channelized Flow Travel Time(min) 2/a >/2 n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) T t-cf 60V L=Length of Basin(ft) V_ 1.4n A S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(ft/sec) P (TO-0 P=Wetted-Periment of Flow Channel(ft) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt.f Subbasin NR-01 I Concrete Gutter 183 0.79 0.016 0.67 6.79 1.75 1.74 Storm Drain Pipe SDP-NR-01 32 1.00 0.015 0.28 1.34 3.91 0.14 Storm Drain Pipe SDP-NR-03 396 1.00 0.014 0.84 2.35 5.34 1.24 Storm Drain Pipe SDP•NR-06 396 1.00 0.014 0.91 2.47 5.34 1.24 Storm Drain Pipe SDP-NR-09 220 0.83 0.014 0.96 2.58 5.18 0.71 Storm Drain Pipe SDP-NR-11 223 0.84 0.014 0.91 2.47 5.09 0.73 Storm Drain Pipe SDP-NR-12 1 213 1 0.83 1 0.014 1 0.91 1 2.47 1 5.04 0.70 Storm Drain Pipe SDP-NR-14 31 0.83 0.014 0.96 2.58 5.18 0.10 Totals 1,695 0.89 0.01 0.81 2.88 4.60 6.49 (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N?2266'AON4 DesgnlCalme Stonn WatWost.Development RunofftCombined-Basin_NR-01-thm-10_25XR_DesigmStonn>dsz Punted;311 01201 9-10:45 PM Morrison Maierle Shallow Concentrated Flow Travel Time: L TI.,°=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc = 60V 486 L=Length of Basin(ft) V_1. Rr,2/3/ S 1 Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ftlsec) n 100/I Land Use I Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) N Coefficient (ft) (ft/sec) (min) Subbasin NR-01 I Concrete Gutter 511 0.96 0.016 1 0.20 1 3.11 1 2.74 Totals 511 0.96 0.016 0.200 3.106 2.74 (Average) (Average) (Average) (Average) DETERMINATION OF •W RATE&RUNOFF VOLUME Basin Time of Concentration,t,: to=Basin Time of Concentration(min) T,.,°=Shallow Concentrated Flow Travel Time(min) t�=T�_of+Tt_5C+T�_�f T Overland Flow Flow Travel Time min T Channelized Flow Travel Time min tat= ) (min) Itt= (min) Basin Overland Flow(Sheet Flow)Travel Time,T,.°,= 12.89 min Basin Shallow Concentrated Flow Travel Time,T,.x= 2.74 min Basin Channelized Flow Travel Time,T,-d= 6.49 min Basin Time of Concentration,to= 22.12 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 20 min= 1.58 inlhr Lower Rainfall Intensity Value= 25 min= 1.37 inihr Design Qr,=C'M Op=Basin Peak Flow Rate(ft'/sec or cfs) i=Rainfall Intensity(inlhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.80 Basin Rainfall Intensity,i= 1.49 inlhr Basin Area,A= 4.726 acres Basin Design Peak Flow, • Calculation of Peak Runoff Volume: Ry=60t,•Qr, RP=Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(ft3Isec or cis) to=Basin Time of Concentration(min) Basin Time of Concentration,t.= 22.12 min Basin Peak Flow Rate,Qp= 5.63 ftB/sec Basin Peak Runoff Volume,R, 7,469.81 cf Page 2 of 2 W2285TON4 DeslgntCalcslStorm WaterTost-Development Runot%Combined-Basin_NR-Oldhm-10 25-YR_DesignSlorm zlsa Printed:3/10/2019-10:45 PM .,,Morrison lllllliiii Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-11 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=Cwd X C1 D- wd wd rr Nelson Road 8 Prince Lane Asphalt/Concrete 8,138 0.187 0.95 0.177 Landscaped Area 1,471 0.034 0.23 0.008 0.27 1.10 0.30 0.30 0.980 Existing Pasture Land 133,661 3.068 0.23 0.706 Totals r 3.289 0.891 0.980 'Weighted runoff coefficient,C d=ECA/Eaj where q is the adjusted runoff coefficient for surface type j and Al Is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L112 T,,r=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) T t-of - S 113 S=Slope of Flow Course(%) Cr=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor T,1 Description of Overland Overland Flow-Pasture 300 1 0.80 0,23 T10 29.55 Totals 300 0.80 29.55 (Average) Channelized Flow Travel Time: L Tt,f=Channelized Flow Travel Time(min) 2/3 1/z n=Manning's Roughness Coeiicent S=Slope of Flowpath(%) T t-`f 60V L=Length of Basin(ft) �_ 1.486 A S A=Cross-Sectional Area of Channel Flow(ft)V=Average Velocity of Flow(fl/sec) n P (100) P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wefted Average Travel Time Flowpath Flowpath Coefficient Totals r 0.00 0.00 0.00 0.00 0.00 0.00 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt-x=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc =- L=Length of Basin(ft) V_ 1.486 Rr,2/3(Y-O0) S Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) Tr Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated FlowpathRoughness Coefficient (ft) (ft/sec) (min)Flow-Pasture 560 0.80 0.025 0.04 1 0.62 1 15.01 Overland Flow-Concrete 37 2.77 0,011 0.20 7.69 0.08 Overland Flow-Turf 13 2.37 0.150 0.10 1 0.33 0.66 Overland Flow-Curb 8 Gutter 1 61 0.85 L 0,011 1 0.20 1 4.27 1 0.24 Totals 671 r 0.049 r (Average) (Average) (Average) (Average) Page 1 of 2 NA2286W0904 Desgnlcalcslstonn WaterNosl-Development RunoMasin NR+PL-01 25-YR-DesigmStorm.zisz Printed:3/1 012 0 1 9.10:03 PM E Morrison Maierle DETERMINATION . Basin Time of Concentration,t.: to=Basin Time of Concentration(min) T,-,,=Shallow Concentrated Flow Travel Time(min) t�=Tt_of+T�_5C+T�_�! Tt,l=Overland Flow Sheet Flow Travel Time min T =Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,.et= 29.55 min Basin Shallow Concentrated Flow Travel Time,T,-u= 15.98 min Basin Channelized Flow Travel Time,T,-= 0.00 min Basin Time of Concentration,t.= 45.54 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 45 min= 0.94 Inlhr Lower Rainfall Intensity Value= 50 min= 0.88 inlhr Design Rainfall Intensity,i 0' Qy=C'iA Qo=Basin Peak Flow Rate(ft'Isec or cis) i=Rainfall Intensity(in1hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.30 Basin Rainfall Intensity,i= 0.93 inlhr Basin Area,A= 3.289 acres Basin Design Peak Flow, . 1 Calculation of Peak Runoff Volume: Rr,=60t,•Qr, Rp=Basin Peak Runoff Volume(ft3 or cl) Op=Basin Peak Flow Rate(ft'Isec or cfs) l,=Basin Time of Concentration(min) Basin Time of Concentration,t,= 45.54 min Basin Peak Flow Rate,Qp= 0.91 it Isec -Basin Peak Runoff Volume,Rp 2,493.30 cf Page 2 of 2 N122661009W Ns nlCalcs151onn Wate11Po5t-Development RunoMBasin_NR.PL-Dt_25-YR_DesignSlortn.xlsx Printed:3/1012019.10:03 PM Morrison l�Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin NR-12 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 ,- 00 Nelson Road Asphalt I Concrete 7,685 0.176 0.95 0.168 0.79 1.10 0.86 0.86 0.198 Landscaped Area 2,273 0.052 0.23 0.012 :r 0.198 'Weighted runoff coefficient,C„a=£CA I£aj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)Li/2 T1-0t=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt—of — S 1/3 S=Slope of Flow Course(%) G=Frequency Adjustment Factor C=Ratlonal Method Runoff Coefficient FlowpathLength of Slope of Runoff Frequency Travel Time Flowpath Description of Overland Overland Flow-Concrete 36 1 1,34 1 0,95 1 1.10 1 1.02 Overland Flow-Turf 16 1.63 0.23 1.10 5.37 (Average) Channelized Flow Travel Time: L Tt f=Channelized Flow Travel Time(min) 1 213 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 60V L=Length of Basin(ft) V_ .n A S A=Cross-Sectional Area of Channel Flaw(ft) V=Average Velocity of Flow(ft/sec) n (P (100 P=Welled-Periment of Flow Channel(fit) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tl.�F Description Concrete Gutter 1 61 0.84 1 0.016 1 0.38 5.03 1 1.51 1 0.67 Totals 61 0.84 rr (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) 112 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—s` 60V L=Length of Basin(ft) V_ 1.486 Rr,2/3 S Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) 11 100 Land Use I Flow Regime(fit) SlopeLength of Description Flow Course (ft) Coefficient (11) (ft/sec) (min) 71 Totals r 0.00 0.000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) Page 1 of 2 N122661 ON4 DesgnlCalc loan WatWost-Development RunofABasin_NR+PL-02_25•YR_Design-Storm.xlsx Printed:3/1012019-10:05 PM Morrison EN Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: t<=Basin Time of Concentration(min) T„_=Shallow Concentrated Flow Travel Time(min) t�=Tr_o f+Tt_5C+T�_�7 Tt-0f=Overland Flow(Sheet Flow)Travel Time(min) T,f=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,_el= 6.39 min Basin Shallow Concentrated Flow Travel Time,Tt.,,= 0.00 min Basin Channelized Flow Travel Time,T,a= 0.67 min Basin Time of Concentration,tc= 7.07 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 inlhr Lower Rainfall Intensity Value= 10 min= 2.46 inlhr DesignBasin Qr,=C'M Op=Basin Peak Flow Rate(ft'isec or cfs) I=Rainfall Intensity(inlhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.86 Basin Rainfall Intensity,i= 3.26 inlhr Basin Area,A= 0.229 acres Basin Design Peak Flow,Op f .64 cfs Calculation of Peak Runoff Volume: Rr,=60t,r Qr RP =Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(ft'Isec or cfs) 4=Basin Time of Concentration(min) Basin Time of Concentration,t,= 7.07 min Basin Peak Flow Rate,Qp= 0.64 ft'Isec Basin Peak Runoff Volume,Rp m05 cf Page 2 of 2 N:@266\009V Design\Calms Storm Water\Post-Development RunofflBasln_NR+PL.02_25-YR_Design.Storm.dsx Pdnled:3/10/2019-10:05 PM Morrison l�Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins NR-11 & NR-12 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. DescriptionWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C,=C�d x Cf 0o Subbasin NR-11 1 143,270 3.289 1 0.27 1 0.891 Subbasin NR-12 9,958 0,229 0.79 0.180 0.30 1.10 0.33 0.33 1.178 'Weighted runoff coefficient,C d_!;CA I Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tr_o f = S 113 S=Slope of Flow Course(%) Cf=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of of Runoff Frequency Travel Time .- path Coefficient Factor Tt.f Description of Overland Subbasin NR+PL-01 I Overland Flow-Pasture 1 300 1 0.80 0.23 1 1.10 1 29.55 Totals rt 0.80 29.55 (Average) Channelized Flow Travel Time: L T,,r=Channel¢ed Flow Travel Time(min) 2/3 i/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T r—cf 60V L=Length of Basin(ft) V_ 1.486 A A=Cross-Sectional Area of Channel Flow(ft)V=Average Velocity of Flow(fl/sec) n P) (IS 00 P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt�f Description Storm Drain Pipe SDP-PL-05 32 1.00 1 0.015 1 0.3 1 1 A3 1 3.64 1 0.15 Totals 32 rr 0.02 1 (Average) (Average) (Average) (Average) (Average) Page 1 of 2 KV28NO W4 DesgnlCaImZtorm WaterWost-Development RunofflCombined-Basin_NR+PL-01-02_25-YR_Design-Storm.alsx Printed:3/10/2019-10:53 PM Morrison Maierle Shallow Concentrated Flow Travel Time: L T1_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) T t—s` 60 V L=Length of Basin(ft) V_1.466 R1 2/3 S Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fVsec) n (YOO) Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath CoefficientFlow Course (ft) N Subbasin NR+pL-01 Overland Flow-Pasture 560 0.80 0.025 0.04 0.62 15.01 Subbasin NR+PL-01 Overland Flow-Concrete 37 2.77 0.011 0.20 7.69 0.08 Subbasin NR+PL-01 I Overland Flow-Turf 13 2.37 0.150 0.10 0.33 0.66 Subbasin NR+PI-011 Overland Flow-Curb&Gutter 61 0.85 0.011 0.20 4.27 0.24 Totals 671 r 0.049 r (Average) (Average) (Average) (Average) DETERMINA TION OF •W RA TE&RUNOFF VOLUME Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) Tt_=Shallow Concentrated Flow Travel Time(min) t`—_Tt—°f+Tt-5L+T`—`� T Overland Flow Sheet Flow Travel Time min T =Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T1-0r= 29.55 min Basin Shallow Concentrated Flow Travel Time,T,-x= 15.98 min Basin Channelized Flow Travel Time,Tt-= 0.15 min Basin Time of Concentration,tc= 45.68 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 45 min= 0.94 inlhr Lower Rainfall Intensity Value= 50 min= 0.88 in/hr Basin Design Rainfall Intensity,i 1 Qp=C'iA Qp=Basin Peak Flow Rate(ft3/sec or cis) i=Rainfall Intensity(inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.33 Basin Rainfall Intensity,i= 0.93 inlhr Basin Area,A= 3.518 acres Basin .• 1 Calculation of Peak Runoff Volume: RP=Basin Peak Runoff Volume(ft3 or cQ Op=Basin Peak Flow Rate(ft3isec or cfs) Rt,=60t, Q n 4=Basin Time of Concentration(min) Basin Time of Concentration,l°= 45.68 min Basin Peak Flow Rate,Op= 1.09 ft3lsec Basin Peak Runoff Volume,RP 2,999.81 of Page 2 of 2 N:12206TOg104 Desgn\CaloslSton WatedPost-Development RunolnCombined•Basin_NR+PL-01.02_25-YR_Design-Ston.xlsx Printed:311012019.10:53 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins NR-01 thru NR-12 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WL1ual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C,=C��x C, D- wd Id 00 Subbasins NR-01 thru NR-10 1 205,843 1 4.726 1 0.73 1 3.441 Subbasin NR-11 1 143,270 1 3.289 0.27 1 0.891 0.55 1.10 0.60 0.60 4.963 Subbasin NR-12 1 9,958 1 0.229 0.79 1 0.180 'Weighted runoff coefficient,Cwd=TCA/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj Is the area of surface type j ;BASIN TIME OF • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C-Cf)L112 T,�,=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt_o f - S 113 S=Slope of Flow Course(%) Cf=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of of Runoff Frequency Travel Time Flowpath .. Description Subbasin NR-01 j Overland Flow-Turf 5 1.90 1 0.23 1 1.10 1 2,96 Subbasin NR-01 1 Overland Flow-Concrete 8 1.91 0.95 1.10 0.44 Subbasin NR-01 I Overland Flow-Turf 36 1.56 0.23 1.10 8.24 SubbasinNR-01 SheetFlow-Asphalt 67 1.81 0.95 1.10 1.26 Totals 117 :r 12.89 (Average) Channelized Flow Travel Time: L T„f=Channelized Flow Travel Time(min) 1.486 A 2/a S /2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-cf 60V- L=Length of Basin(ft) =n(p) (TOLOY A=Cross-Sectional Area of Channel Flow(fe) V=Average Velocity of Flow(ft/sec) P=Wetted-Periment of Flow Channel(ft) SlopeLength of of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tl..f Description Subbasin NR-01 I Concrete Gutter 183 0.79 0.016 0.67 6.79 1.75 1.74 Storm Drain Pipe SDP-NR-01 32 1.00 0.015 0.28 1.34 3.91 0.14 Storm Drain Pipe SDP-NR-03 396 1.00 0.014 0.84 2.35 5.34 1.24 Storm Drain Pipe SDP-NR-06 396 1.00 0.014 0.91 2.47 5.34 1,24 Storm Drain Pipe SDP-NR-09 220 0.83 0.014 0.96 2.58 5.18 0.71 Storm Drain Pipe SDP-NR-11 223 0.84 0.014 0.91 2.47 5.09 0.73 Storm Drain Pipe SDP-NR-12 1 213 0.83 0.014 1 0.91 2.47 5.04 0.70 Storm Drain Pipe SDP-NR-14 1 31 0.83 0.014 1 0.91 2.47 1 5.04 0.10 Storm Drain Pipe SDP-NR-16 249 0.40 0.014 1.39 3.08 1 4.06 1.02 Totals 1,944 0.83 0.01 r : (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N:12286'A09\04 DesignlCa&Strom WalWost-Development RunofhCombined-Basin NR.01.thm.10_NR.PL.01.02_25-YR_Desl n.Ston.xlsz Printed:3110/2019-10:55 PM Morrison llll Maierle Shallow Concentrated Flow Travel Time: L T,.x=Shallow Concentrated Flow Travel Time(min) 1486n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) Tt—se =— L=Length of Basin(ft) V_ . R,z/3 GS-00) Rh=Assumed Hydraulic Radius Based on 60VV=Average Velocity of Flow(ftlsec) n Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity Tt.sc Flow Course (ft) N Coefficient R (ftfsec) (min) Subbasin NR-01 I Concrete Gutter 1 511 1 0.96 0.016 1 0.20 3.11 1 2.74 0.016 0.200 3.106 2.74 (Average) (Average) (Average) (Average) DETERMINATION OF •W RATE&RUNOFF VOLUME Basin Time of Concentration,t.: l�=Basin Time of Concentration(min) T,-,°=Shallow Concentrated Flow Travel Time(min) t�=T�_o f+Tb_5C+T�_�P T Overland Flow Sheet Flow Travel Time min 7 t=Channelized Flow Travel Time(min) cal= ( ) (min) l l— Basin Overland Flow(Sheet Flow)Travel Time,Tt-o1= 12.89 min Basin Shallow Concentrated Flow Travel Time,Tt..= 2,74 min Basin Channelized Flow Travel Time,T,-= 7.62 min Basin Time of Concentration,It,= 23.25 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 20 min= 1,58 in/hr Lower Rainfall Intensity Value= 25 min= 1.37 inlhr DesignlBasin Qr,=C'iA Op=Basin Peak Flow Rate(ft3isec or cis) i=Rainfall Intensity(inlhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.60 Basin Rainfall Intensity,i= 1.44 inlhr Basin Area,A= 8.243 acres Basin Design Peak Flow, • Calculation of Peak Runoff Volume: RN=60t�•Qr Rp=Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(ft3isec or cis) =Basin Time of Concentration(min) Basin Time of Concentration,t.= 23.25 min Basin Peak Flow Rate,Qp= 7.14 ft3lsec Basin Peak Runoff Volume,R. 9,965.36 cf Page 2 of 2 N:12296'A09104 Desgn\Calcs Storm WatedPos4Development RunoMCombined-Basin_NR-01-thm-10 NR+PL-01-02_25-YR_DesgnStorm.xlsx Printed:311012019-1 0:55 PM Morrison Maierle engineers surveyors planners scientists APPENDIX A-2 ROYAL WOLF WAY & PRINCE LANE MAJOR DRAINAGE BASIN ®�Morrison lllllt�Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-01 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Coefficient'Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient DescriptionWd ld Id 00 Royal Wolf Way Asphalt I Concrete 26,711 0.613 0.95 0.583 0.30 1.10 0.33 0.33 2.108 Landscaped Area 5,137 0.118 0,23 0.027 Existing Pasture Land 247,549 5.683 0,23 1.307 I: 'Weighted runoff coefficient,C„j=ICA I Laj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C-Cf)L112 T1,1=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-o f = S113 S=Slope of Flow Course(%) C1=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor T,01 Description of Overland Overland Flow-Pasture 3001 1.40 1 0,23 1 1.10 24.52 Totals Ir 1.40 24.52 (Average) Channelized Flow Travel Time: L Tt.°,=Channel¢ed Flow Travel Time(min) z/a i/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-cf = 60V L=Length of Basin(it) V_1.4n A S A=Cross-Sectional Area of Channel Flow(ff2) V=Average Velocity of Flow(fUsec) n P (TLOO) P=Wetted-Periment of Flow Channel(III) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt-.1 Totals a Ir 0.00 0.00 0.00 0.00 0.00 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt.,°=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc = L=Length of Basin(it) V=1.486 R1,2 60V /3( S ) R =Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) tr I(100) Land Use I Flow Regime(ft) SlopeLength of Description Flow Course (ft) (%) Coefficient (ft) (ft/sec) (min) Overland Flow-Pasture 463 1.40 0.025 0.04 0.82 9.39 Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 0.02 Overland Flow-Turf 8 1.84 0.150 0.10 0.29 0.46 Overland Flow-Curb 8 Gulter 709 0.68 0.011 0.20 3.82 3.09 I• (Average) (Average) (Average) (Average) Page 1 of 2 KV2860904 DesgnlCaImOonn WatWost-Developmenl RunoMasin_RWW-01 25-YR_Desi nStorm.dsx Printed:3/101201 9-10:19 PM Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: tc=Basin Time of Concentration(min) T,_,�=Shallow Concentrated Flow Travel Time(min) t�=T�_o f+Tr_5�+T�_�f Ttaf=Overland Flow Sheet Flow Travel Time min T1,1=Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,Tt_er= 24.52 min Basin Shallow Concentrated Flow Travel Time,T,.,= 12.95 min Basin Channelized Flow Travel Time,T,a= 0.00 min Basin Time of Concentration,t�= 37.48 min Calculation of Peak Flow Rate: Rainfall intensity Linear Interpolation Upper Rainfall Intensity Value= 35 min= 1.10 Inlhr Lower Rainfall Intensity Value= 40 min= 1.01 inmr DesignBasin t, Qt,=C'lA Qp=Basin Peak Flow Rate(ft'Isec or cis) I=Rainfall Intensity(inlhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.33 Basin Rainfall Intensity,i= 1.06 inlhr Basin Area,A= 6.414 acres DesignBasin Calculation of Peak Runoff Volume: RP=60 t,-Qr, Rp=Basin Peak Runoff Volume(ft3 or co Op=Basin Peak Flow Rate(ft'Isec or cfs) 4=Basin Time of Concentration(min) Basin Time of Concentration,to= 37.48 min Basin Peak Flow Rate,Qp= 2,23 ft3lsec Basin Peak Runoff Volume,Rp rt Page 2 of 2 N:@28810D9104 DesgnlCalc Zlorm WaterWost-Dewlopmenl Runolf�Basin_RWW-01_25-YR_DesgmStormAu Printed:3/1012019-10:19 PM ®�Morrison Malerle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-01A-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) iDRAINAGE BASIN CHARACTERISTICS Input values for runoff coeffidents from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X Cf D• 00 Lot 24&Portion 25 Asphalt/Concrete 5,142 0.118 0.95 0.112 0.26 1.10 0.29 0.29 0.741 Existing Pasture Land 106,315 2.441 0.23 0.561 0.673 r .741 'Weighted runoff coefficient,C"_£CA/£aj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L112 Tt-0f=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-o f = S 113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient FlowpathLength of Slope of Runoff Frequency Travel Time Description of Overland Overland Flow-Asphalt 10 1.50 0.95 1.10 10.52 Overland Flow-Embankment 3 25.00 0.40 1.10 0.70 Overland Flow-Pasture 287 1.70 0.23 1.10 22,49 Totals rr 9.40 23.71 (Average) Channelized Flow Travel Time: L T,f=Channelized Flow Travel Time(min) z/a 1/1 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-`f 60V L=Length of Basin(ft) V_1.n A S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(ftlsec) n (P 100 P=Wetted-Periment of Flow Channel(it) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T,f Description of Channelized Flow Path (ft) Coefficient (ft) (ft) (ft/sec) (min) Totals r 0.00 0.00 0.00 0.00 0.00 0.00 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) 1/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc - 60V L=Length of Basin(it) V_1.486 Rh2/3(uGLO) S Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(f/sec) n Land Use I Flow Regime(it) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) (0/6) Coefficient (ft) (ft/sec) (min) Overland Flow-Pasture 202 0.65 0.025 0.04 0.56 6,01 Totals 202 0.65 0.025 rr•r 0.559 6.01 (Average) (Average) (Average) (Average) Page 1 of 2 N:Q2881009104 Desgn\Calm tonn WateAPost-Dewlopmenl RunofAeasin_RWW-07A 25-YR_Desi n-Storm.xlu Printed:3/10/2019-10:21 PM Morrison l�Maierle epr�r . ratVa rr •rnV DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) T,.,c=Shallow Concentrated Flow Travel Time(min) t�=Tr_o j+Tr_5L+Tr_�f T,-0,=Overland Flow(Sheet Flow)Travel Time(min) Tt.,1=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,-e,= 23.71 min Basin Shallow Concentrated Flow Travel Time,Tt,= 6.01 min Basin Channelized Flow Travel Time,T,-d= 0.00 min Basin Time of Concentration,t.= 29.72 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 25 min= 1.37 Inlhr Lower Rainfall Intensity Value= 30 min= 1.22 In/hr DesignBasin Qr,=CIA Qp=Basin Peak Flow Rate(ft3lsec or cfs) I=Rainfall Intensity(Inihr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.29 Basin Rainfall Intensity,i= 1.22 inlhr Basin Area,A= 2.559 acres Basin Design Peak Flow, . t .01 cfs Calculation of Peak Runoff Volume: Rr,=60t,•Qr, Rp=Basin Peak Runoff Volume(W or co Qp=Basin Peak Flow Rate(113lsec or cfs) tc=Basin Time of Concentration(min) Basin Time of Concentration,to= 29.72 min Basin Peak Flow Rate,Qp= 0.91 ft3lsec Page 2 of 2 N:t2296T09''D4 Desi nlCalm\Storm WateAPos4DevelopmentRuncff8asin_RWW-01A_25-YR_Desyn-Slorm.x1sx Printed:31101201 9-1 0:21 PM Morrison on Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins RWW-01 & RWW-02 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WClual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency CoefficientSurface Area,A Area.A —Descriptionrr Subbasin RWW-01 1 279,396 1 6,414 1 0.30 1 1.917 Subbasin RWW-01A 1 111,457 2,559 1 0.26 1 0.673 0.29 EE 0.32 0.32 2.849 Totals r r 'Weighted runoff coefficient,Cm=TC,A;/Yaj where Cj is the adjusted runoff coefficient for surface type j and Aj Is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C•Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(it) Tt_o f — S1/3 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of of Runoff Frequency Travel Time Flowpath FlowpathCoefficientDescription of• Subbasin RWW-01 1 Overland Flow-Pasture 300 1.40 0 23 1.10 24.52 Totals 00 1.40 24.52 (Average) Channelized Flow Travel Time: L T,r=Channelized Flow Travel Time(min) 1.486A 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) T t-`f 60V L=Length of Basin(ft) V= S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(ft/sec) n P 100 P=Wetted-Periment of Flow Channel(fl) - -_ Length of Slope of Manni ng's X-Sectional Wetted Average Travel Time ®, Flowpath FlowpathRoughness Totals • 0.00 0.00 0.00 0.00 0.00 0.00 (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N:@286100904 Desyn\Calcs Storm WatedPost-Development RunomCombined-Basin RWW-01+0l 25-YR_DesgmStorm.xlsx Printed:3110/2019-10:59 PM Morrison Maierle Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc ——60V L=Length of Basin(ft) V_1.486 Rt,2/3 Rh=Assumed Hydraulic Radius Based on 00 V=Average Velocity of Flow(ff/sec) n L Land Use I Flow Regime(ft) SlopeLength of of Manning's Hydraulic Average Travel Time Description CoefficientFlow Course (ft) N Subbasin RWW-01 1 Overland Flow-Pasture 463 1 1.40 0.025 0.04 0.82 9.39 Subbasin RWW-01 I Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 0.02 Subbasin RWW-01 I Overland Flow-Turf 8 1.64 0.150 0.10 0.29 0.46 Subbasin RWW-01 Overland Flow-Curb&Gutter 709 0.68 0.011 0.90 3.82 3.09 0.049 i (Average) (Average) (Average) (Average) DETERMINATION OF •W RATE&RUNOFF VOLUME Basin Time of Concentration,t.: 4=Basin Time of Concentration(min) Tt.sc=Shallow Concentrated Flow Travel Time(min) t�=Tr—o7+Tt—IC+Tr_c f Tt,l=Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,Tt-ot= 24.52 min Basin Shallow Concentrated Flow Travel Time,T,.,= 12.95 min Basin Channelized Flow Travel Time,T,= 0.00 min Basin Time of Concentration,tc= 37.48 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 35 min= 1.10 in/hr Lower Rainfall Intensity Value= 40 min= 1.01 in/hr Basin Design Rainfall Intensity,i 1.06 Qp—CIA Cp=Basin Peak Flow Rate(ft3/sec or cfs) i=Rainfall Intensity(Inthr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.32 Basin Rainfall Intensity,i= 1.06 in/hr Basin Area,A= 8.973 acres Design Peak Flow, • 3.01 Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(ft3/sec or cfs) Rr,=GOt� Qp 4=Basin Time of Concentration(min) Basin Time of Concentration,t,= 37.48 min Basin Peak Flow Rate,Qp= 3.01 ft3/sec Basin Peak Runoff Volume,R. 6,769.56 cf Page 2 of 2 N:12 2 0 610 0 9'�04 Desyn\Calc\Stop WateAPost-Development RunoffiCombined-Basin_RWW-01.01A_25-YR_DesynStorm.x1Sx Printed:3/10/2019-10:59 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-02-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) ,DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=Cwd X C1 D- 00 Royal Wolf Way Asphalt/Concrete 21,149 0.486 0.95 0.461 0.81 1.10 0.89 0.89 F�538 Landscaped Area 5,246 0.120 0.23 0.028 Totals 26,395 0.606 'Weighted runoff coefficient,C„.4=ECA I Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C•Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt_a f = S113 S=Slope of Flow Course(%) Cr=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tt..f Description of Overland Flow Course (ft) (%) C C, (min) Overland Flow-Concrete I0.89 0.95 1.10 0,63 Overland Flow-Turf 10 1.66 0.23 1.10 4.25 (Average) Channelized Flow Travel Time: L Tttf=Channelized Flow Travel Time(min) 2/s /2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—�f 60V L=Length of Basin(ft) V_1.n A S A=Cross-Sectional Area of Channel Flow(tt2) V=Average Velocity of flow(ft/sec) n P (TOLOY P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T,cf Description of Channelized Flow Path (ft) (%) Coefficient (ft) (ft) (ft/sec) (min) Concrete Gutter 1 279 1 0.65 1 0.016 1 0.76 1 7.26 1 1.66 1 2.80 Totals 279 0.65 0.02 r :r (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L TI_=Shallow Concentrated Flow Travel Time(min) �/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc — L=Length of Basin(ft) V_1.486 Rh 60V 2/3/ S \ Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) n I\100/I Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description Flow Course (ft) (%) Coefficient (ft) (ft/sec) (min) Concrete Gutter 1 460 0.65 1 0.016 1 0.20 2.56 2.99 Totals r 0.65 0.016 0.200 (Average) (Average) (Average) (Average) Page 1 of 2 N:122801009104 Desi MCaImZlorm WaterWost.Development Runof Basin RWW-02_25-YR_Desi nStorm.xlsz Printed:3/1012019.10:22 PM Morrison Maierle ,., DETERMINATIONVOLUME Basin Time of Concentration,t.: 4=Basin Time of Concentration(min) T„,=Shallow Concentrated Flow Travel Time(min) t�=Tr_oI+Tr_S�+Tr_�f T1,f=Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,_pt= 4.88 min Basin Shallow Concentrated Flow Travel Time,Tt.,= 2,99 min Basin Channelized Flow Travel Time,Tta= 2.80 min Basin Time of Concentration,t.= 10.67 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 10 min= 2,46 inlhr Lower Rainfall Intensity Value= 15 min= 1,89 inthr DesignBasin QP=C'M Op=Basin Peak Flow Rate(fl3isec or cfs) I=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.89 Basin Rainfall Intensity,i= 2.38 inlhr Basin Area,A= 0.606 acres Basin Design Peak Flow, • Calculation of Peak Runoff Volume: R� =60t�•Qr RP=Basin Peak Runoff Volume(fl3 or 0 Op=Basin Peak Flow Rate(Wlsec or cfs) tc=Basin Time of Concentration(min) Basin Time of Concentration,t.= 10.67 min Basin Peak Flow Rate,Qp= 1,28 ft3lsec Basin Peak Runoff Volume,Rp 819.67 cf Page 2 of 2 KV266TOM4 Desi ntCalalSlorm WaterPost.Development Runof iBasin_RWW.02_25-YR_Desi nStorm.xlsx Printed:3/10/2019-10:22 PM Morrison Malerle �ny,neet„ I 4 a ry• „rn,r,,, RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins RWW-01 & RWW-02 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X Ct D• 00 Subbasins RWW-01&RWW-01A 1 390,853 1 .973 1 0.29 2.590 Subbasin RWW-02 26,395 0.606 0.81 0.489 0.32 1.10 0.35 0.35 3.387 'Weighted runoff coefficient,C,d=£CA I£aj where Cj Is the adjusted runoff coefficient for surface type I and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt_o f — S=Slope of Flow Course(%) Cf=Frequency Adjustment Factor S l�s C=Rational Method Runoff Coefficient DescriptionLength of Slope of Runoff Frequency Travel Time of Subbasin RWW-01 I Overland Flow-Pasture 300 1.40 023 1.10 24.52 Totals 300 (Average) Channelized Flow Travel Time: L T,,,=Channel¢ed Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Fiowpath(%) T t—`f 60V L=Length of Basin ft 1.486 A S A=Cross-Sectional Area of Channel Flow ft2 V=Average Velocity of Flow(fVsec) n P 100 P=Wetted-Periment of Flow Channel(tt) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt�f Description Storm Drain Pipe SDP-RW-01 24 1.00 0.014 1 0.62 1 2.05 1 4.88 OA8 Totals 24 ff 0.01 f 0.08 (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N:228e1009104 Desgn\CalesZlonn WateMost-De"lopment RunofbCombined-Basin_RWW.01.02_25-YR_Dssi nSto m.ahx Printed:3/10/2019-11:02 PM Morrison I Maierle Shallow Concentrated Flow Travel Time: L Tt-°°=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc — 60 V L=Length of Basin(ft) V_1.486 Rh (TO-0) S Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) n Land Use 1 Flow Reglme(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time CoefficientFlow Course (ft) N Subbasin RWW-01 1 Overland Flow-Pasture 463 1.40 0.025 0.04 0.82 9.39 Subbasin RWW-01 I Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 0.02 Subbasin RWW-01 I Overland Flow-Turf 8 1.84 0.150 0.10 0.29 0.46 Subbasin RWW-01 I Overland Flow-Curb&Gutter 709 0.68 1 0.011 0.20 3.82 3.09 0.049 t (Average) (Average) (Average) (Average) DETERMINATIONOF •W RATE&RUNOFF VOLUME Basin Time of Concentration,t,: t<=Basin Time of Concentration(min) T„_=Shallow Concentrated Flow Travel Time(min) tc=Tt_oI+T�_S�t T�_c� T Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T1-0t= 24.52 min Basin Shallow Concentrated Flow Travel Time,T1_sC= 12.95 min Basin Channelized Flow Travel Time,Tta= 0.08 min Basin Time of Concentration,t.= 37.56 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intenslty Value= 35 min= 1.10 inlhr Lower Rainfall Intensity Value= 40 min= 1.01 inlhr DesignBasin r. inthr QP—C,iA Op=Basin Peak Flow Rate(ft3Isec or cis) i=Rainfall Intensity(inlhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.35 Basin Rainfall Intensity,i= 1.06 inlhr Basin Area,A= 9.579 acres Basin Design Peak Flow, • Calculation of Peak Runoff Volume: RP=60t�•Qp RP =Basin Peak Runoff Volume(ft3 or co Op=Basin Peak Flow Rate(ft3Isec or cfs) t<=Basin Time of Concentration(min) Basin Time of Concentration,tc= 37.56 min Basin Peak Flow Rate,Qp= 3.57 Wifsec Basin Peak Runoff Volume,Rp t Page 2 of 2 W22960DR4 DesynlCalms Stonn WatedPos6Development RunoMombined-Basin_RWW-01+02_25-YR_DesgnSton Au Printed:311012019-11:02 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-03-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 D• Wd tt Royal Wolf Way Asphalt/Concrete 13,305 0.305 0.95 0.290 Landscaped Area 3.259 0.075 0.23 0.017 0.33 1.10 0.37 0.37 0.781 Existing Pasture Land 76,279 1.751 0.23 0.403 0.710 0.781 'Weighted runoff coefficient,C d=ECA/Eaj where q is the adjusted runoff coefficient for surface type j and Aj Is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L112 T,.°t=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(fl) Tt-o f _ S113 S=Slope of Flow Course(%) Ct=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor TI.., Description of Overland Overland Flow-Asphalt 1 11 1 1.50 0.95 1 1.10 1 .53 Overland Flow-Embankment 2 25.00 0.40 1.10 0.58 Overland Flow-Pasture 288 1.30 0,23 1.10 24.61 Totals rt (Average) Channelized Flow Travel Time: L T,,=Channelized Flow Travel Time(min) 1/3 1/1 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-cf 60 V L=Length of Basin(ft) V= 1.486(A S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(fVsec) n \P (i_00) P=Wetted-Periment of Flow Channel(fl) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt,f Totals r ttt rrt rtt trr rtt ttt (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%} Tt-sc =60V L=Length of Basin(11) V_1.486 Rh2/3( S ) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) r1 1001 Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath Flow Course (ft) (%) Coefficient (ft) (ft/sec) (min) Overland Flow-Pasture 200 0.50 0.025 1 0.04 1 0.49 1 6.77 OverlandFlow-Concrete 5 1.58 0.011 1 0.20 1 5.81 1 0.02 Overland Flow-Turf 7 1.58 0.150 1 0.10 0.27 0.43 Overland Flow-Curb 8 Gutter 1 0.50 0.011 0.20 3.27 0.01 Totals 213 1.04 0.049 r (Average) (Average) (Average) (Average) Page 1 of 2 N:t228609V Desi n\Calcs Stotm WaterTost.Dewlopment RunoWasin_RWW.03_25-YR_Desi nSton.dsz Printed:3/1012019-10:23 PM Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: I,=Basin Time of Concentration(min) T,-,c=Shallow Concentrated Flow Travel Time(min) t�=Tr_p f+Tr_S�+Tr_�f Tt-0,=Overland Flow(Sheet Flow)Travel Time(min) T,-,,=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,-pt= 25,72 min Basin Shallow Concentrated Flow Travel Time,Tt-x= 7,22 min Basin Channelized Flow Travel Time,T,u= 0.00 min Basin Time of Concentration,tc= 32.93 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 30 min= 1.22 inlhr Lower Rainfall Intensity Value= 35 min= 1.10 inlhr DesignBasin _ Qp=Basin Peak Flow Rate(fl'Isec or cfs) I=Rainfall Intensity(inlhr) QV— to C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.37 Basin Rainfall Intensity,i= 1.15 inlhr Basin Area,A= 2.131 acres Basin .. • 0.90 CIS Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(ft3 or co Qp=Basin Peak Flow Rate(ft3Isec or cfs) Rr,=60t� Qp �=Basin Time of Concentration(min) Basin Time of Concentration,t.= 32.93 min Basin Peak Flow Rate,Qp= 0.90 ft'Isec Basin Peak Runoff Volume,R. :r cf Page 2 of 2 N;U2e6'A09�D4 DesgnVCalm\Slorm WaterWost-Development RunofhBasin_RWW-0J 25-YR_DesgnStorm.xlsx Printed:3/10/2019-10:23 PM Morrison I.Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-04-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WOual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X Cf D- 00 Royal Wolf Way Asphalt I Concrete 1 11,343 1 0.260 1 0.95 1 0.247 0.79 1.10 0.87 0.87 0.291 Landscaped Area 1 3,259 1 0.075 1 0.23 1 0.017 1 F Totals 14,602 0.335 0.265 0.291 'Weighted runoff coefficient,C„u=ECA/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j :BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)L112 T„r=Overland Flow(Sheet Flaw)Travel Time(min) L=Length of Basin(ft) T S=Slope of Flow Course(%) C,=Frequency Adjustment Factor t_o f — S 1/3 C=Rational Method Runoff Coefficient SlopeLength of Flowpath Flowpath Coefficient Factor Tt,.f Description Overland Flow-Turf 9 2.50 0.23 1.10 3.53 Overland Flow-Concrete 5 1.64 0.95 1.10 0.37 Overland Flow-Turf 7 1.64 0.23 1.10 3.58 (Average) Channelized Flow Travel Time: L T,t,=Channelized Flow Travel Time(min) 2/a i/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—cf 60V L=Length of Basin(it) V_1.4n A S A=Cross-Sectional Area of Channel Flow(fl2) V=Average Velocity of Flow(ft/sec) n P GLOO) P=Wetted-Periment of Flow Channel(fl) SlopeLength of Flowpath Flowpath Roughness Flow Area Perimeter Velocity T,f Description of Channelized Flow Path (ft) (%) Coefficient (ft') (ft) (ft/sec) (min) Concrete Gutter 1 270 1 0.65 1 0.016 1 0.65 1 6.72 1 1.58 2.84 Totals 270 0.65 0.02 r (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T,.0=Shallow Concentrated Flow Travel Time(min) 1. �/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc — 60V L=Length of Basin(ft) V_ n R1 z/a(100) S Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ftlsec) n Land Use 1 Flow Regime(it) CoefficientLength of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity Tt.sc Flow Course (ft) M) Totals r 0.00 0.000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) Page 1 of 2 W2286M9104 DesgnlCaksk t n WatedPost-Development Runoffieasin_RWW-04_25-YR_DesgnSton.zlsz Printed:311012019-10:24 PM Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: I,=Basin Time of Concentration(min) T,_,�=Shallow Concentrated Flow Travel Time(min) t�=T�_o f+T�_5C+T�_�f T,a,=Overland Flaw(Sheet Flow)Travel Time(min) Tlt,=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,_ot= 7.48 min Basin Shallow Concentrated Flow Travel Time,T,.x= 0.00 min Basin Channelized Flow Travel Time,T,e= 2.84 min Basin Time of Concentration,t�= r Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 10 min= 2.46 In/hr Lower Rainfall Intensity Value= 15 min= 1.89 inlhr DesignBasin Qu=CiA Op=Basin Peak Flow Rate(ft3Isec or cfs) i=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.87 Basin Rainfall Intensity,i= 2.42 in/hr Basin Area,A= 0.335 acres DesignBasin . 0.70 cfs Calculation of Peak Runoff Volume: R� =60 t�•Qf Rp=Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(ft'Isec or cfs) 1�=Basin Time of Concentration(min) Basin Time of Concentration,tc= 10.32 min Basin Peak Flow Rate,Op= 0.70 ffs/sec Page 2 of 2 N:122961009V Desgn\CaWSlorm WaterWost-Development RunolOBasin RWW.O4_25.YR_DesgnSlorm.slsz Printed:311012019-10:24 PM Morrison Maierle e.ym.... ......a..y.r......<�niit., RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins RWW-01 thru RWW-04 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Coefficient'Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient D- rr Subbasins RWW-01 thru RWW-021 417,249 1 9.579 1 2 3.079 Subbasin RWW-03 1 92,844 2.131 0.33 0.710 0.34 Flo Fo. 37 0.37:T�F] Subbasin RWW-04 14,602 0,335 0.79 0.265 Totals 524,694 r r 'Weighted runoff coefficient,C d=YCAI Yaj where Cj Is the adjusted runoff coefficient for surface type j and Al is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)L1/2 Ttaf=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(it) Tt_o f — S 1/3 S=Slope of Flow Course(%) C1=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope Coefficient Description Overland Subbasin RWW-01 I Overland Flow-Pasture 1 300 1 1.40 0.23 1.10 1 24.52 Totals 300 1.40 24.52 (Average) Channelized Flow Travel Time: L T,-°f=Channelized Flow Travel Time(min) 2/3 I/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—`f 60 V L=Length of Basin(ft) V_1.n A S A=Cross-Sectional Area of Channel Flow(ff2) V=Average Velocity of Flow(f/sec) (P (TO-0 P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt.f Description Storm Drain Pipe SDP-RW-01 1 24 1.00 0.014 1 0.62 2.05 1 4.88 0.08 Storm Drain Pipe SDP-RW-03 271 0.57 0.014 1 0.87 2.40 4.10 1.10 Totals 295 0.79 0.01 1 (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N:12266=904 DesignlCalms Storm WatertPost-Development RunolflCombined-Basin_RWW-01-thm.04_25-YR_DesignStorm.dsz Printed:311012019-11:04 PM Morrison Maierle Shallow Concentrated Flow Travel Time: L T,_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc — 6OV L=Length of Basin(ff) V_1.486 Rn2/3(iso-00) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fl/sec) n Land Use I Flow Reglme(ft) SlopeLength of Description of Shallow Concentrated Flowpath Flowpath Flow Course (ft) N Coefficient (ft) (ft/sec) (min) Subbasin RWW-01 Overland Flow-Pasture 463 1.40 0.025 0.04 0.82 9.39 Subbasin RWW-01 Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 0.02 Subbasin RWW-01 I Overland Flow-Turf 8 1.84 0.150 0.10 0.29 0.46 Subbasin RWW01 I Overland Flow-Curb&Gutter 709 0.68 0,011 1 0.20 3.82 3.09 0.049 r (Average) (Average) (Average) (Average) DETERMINATION OF •W RATE&RUNOFF VOLUME Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) T,-,°=Shallow Concentrated Flow Travel Time(min) tc=Tt_o f+Tt_Sc+Tr_�f T,r=Overland Flow Sheet Flow Travel Time min Tt,f=Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,.°,= 24.52 min Basin Shallow Concentrated Flow Travel Time,T,-u= 12.95 min Basin Channelized Flow Travel Time,T,-d= 1.18 min Basin Time of Concentration,It,= 38.66 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 35 min= 1.10 inlhr Lower Rainfall Intensity Value= 40 min= 1.01 in/hr DesignBasin r. Q➢=C'iA Op=Basin Peak Flow Rate(ft3/sec or cfs) i=Rainfall Intensity(Inthr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.37 Basin Rainfall Intensity,i= 1.04 in/hr Basin Area,A= 12.045 acres DesignBasin Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(ft3 or cl) Qp=Basin Peak Flow Rate(Wisec or cfs) Rr,=60tc QP I°=Basin Time of Concentration(min) Basin Time of Concentration,t,= 38.66 min Basin Peak Flow Rate,Qp= 4.62 ff3/sec Basin Peak Runoff Volume,R,, 10,708.66 Page 2 of 2 N:122851009\04 Desi nlCakslSlorm WateAPost-Development RunaffiCombined-Basin_RWW-01-Ihm-04_25-YR_Des{nStorm.xlsx Printed:3/10/2019-11:04 PM �®Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows i Post-Development Subbasin RWW-05 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10.25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 r0 Royal Wolf Way Asphalt/Concrete 8,006 1 0.184 1 0.95 1 0.175 0.36 1.10 0.40 0.40 0.403 Landscaped Area 2,263 1 0.052 1 0.23 1 0.012 Existing Pasture Land 34,085 1 0,782 1 0.23 1 0.180 0.367 0.403 'Weighted runoff coefficient,Cwd=ECA I Eaj where q Is the adjusted runoff coefficient for surface type j and Aj Is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C-Cf)L112 Tta,=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-o f _ S 113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor T,..f Description of Overland Overland Flow-Asphalt 11 1.50 0.95 1.10 0.53 Overland Flow-Embankment 1 2 25.00 1 0.40 1 1.10 1 0.62 Overland Flow-Pasture 1 287 1.30 1 0.23 1 1.10 124.59 Totals rr (Average) Channelized Flow Travel Time: L T,.°f=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-cf 60V L=Length of Basin(ft) V=1.n A S A=Crass-Sectional Area of Channel Flaw(ft2) V=Average Velocity of Flow(ft/sec) n (P 100 P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowipath Description Totals r rrr rrr rrr rrr rrr 000 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(°h) Tt-sc - 60V L=Length of Basin(0) V_1.486 Rh2/3( S ) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) 21 100/1 Land Use 1 Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) (%) Coefficient (ft) (ft/sec) (min) Overland Flow-Pasture 81 1.02 0.025 0.04 0.70 1.91 Overland Flow-Embankment 2 25.00 0,011 0.20 23.10 0.00 Overland Flow-Concrete 5 1.58 0.011 0.20 5.81 0.02 Overland Flow-Turf 7 1.58 0.150 0.10 0.27 0.43 Overland Flow-Curb&Gutter 181 0.52 0.011 0.20 3.34 0.90 r• (Average) (Average) (Average) (Average) Page 1 of 2 Na2286W09104 Desl nlCaleslSlonn WateAPost•Dewlopment RunoBlBasin RWW-05_25-YR_Desgn-Storm.dsz Printed:3/1012019-11:06 PM Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: l�=Basin Time of Concentration(min) Tt,,=Shallow Concentrated Flow Travel Time(min) t�=Tr_o f+Tr_5C+Tr_�f T =Overland Flow Sheet Flow Travel Time min T Channel¢ed Flow Travel Time min t r- ( ) (min) ter= (min) Basin Overland Flow(Sheet Flow)Travel Time,Tl.or= 25.75 min Basin Shallow Concentrated Flow Travel Time,Tl.,o= 3.26 min Basin Channelized Flow Travel Time,Tt.d= 0.00 min Basin Time of Concentration,to rr min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 25 min= 1.37 inihr Lower Rainfall Intensity Value= 30 min= 1.22 inihr Design Q =Basin Peak Flow Rate(ft3isec or cis) I=Rainfall Intensity(inmr) QP=C'iA C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.40 Basin Rainfall Intensity,i= 1.25 inlhr Basin Area,A= 1.018 acres Basin Design Peak Flow, • 0.50 cis Calculation of Peak Runoff Volume: Rp=60to•Qr, RP=Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(fl3isec or cfs) 4=Basin Time of Concentration(min) Basin Time of Concentration,to= 29.00 min Basin Peak Flow Rate,Qp= 0.50 ft3lsec Basin Peak Runoff Volume,Rp 873.84 cf Page 2 of 2 N12296=904 Desgn\CalmlStorm WaterlPost-Development RunoHasin RWW-05_25 YR_DesgnSlorm,xlsx Printed:3110/2019-11:06 PM Morrison IN Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins RWW-01 thru RWW-05 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area.A Area,A Coefficient Coefficient' Factor C'=C�d X C' •• wd ,. Subbasins RWW.01 On RWW-041 524,694 1 12.045 0.34 1 4.054 Subbasin RWW-05 1 44354 1 1.018 0.36 10.367 0.34 1.10 0.37 0.37 4.862 Totals 56%048 13.064 , 4.862 'Weighted runoff coefficient,C,j=ZCA I£aj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF e • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C•Cf)L'12 T,-o,=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(fl) Tt—of S113 S=Slope of Flow Course(%) Cf=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Flowpath FlowpathCoefficientDescription of• Subbasin RWW-01 j Overland Flow-Pasture 300 1.40 0.23 1.10 24,52 (Average) Channelized Flow Travel Time: L T,.,,=Channelized Flow Travel Time(min) >/z n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) T t—cf 60V L=Length of Basin(ft) V_ 1.486S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(f/sec) n (1)2/3( P 100) P=Welted-Periment of Flow Channel(ft) SlopeLength of . .• Travel Time Flowpath FlowpathRoughness •• Coefficient Storm Drain Pipe SDP-RW-01 24 1.00 0.014 0.62 2.05 V4.44 8 Storm Drain Pipe SDP-RW-03 271 0.57 0.014 0.87 2.400 1.10 Storm Drain Pipe SDP-RW-06 354 0.57 0.013 1.04 2.75 1.33 Storm Drain Pipe SDP-RW-07 182 0.57 0.013 1.04 2.754 0.68 (Average) (Average) (Average) (Average) (Average) Pagel of 2 N:@2a6V009104 Desgn',Calcslslorm Water Post-Development RunofftCombined-Basin_RWW.Ol-thru-05_25-YR_DesignStormxJsx Printed:3110/2019-11:08 PM Morrison Maierle Shallow Concentrated Flow Travel Time: L Tt.,°=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc =— L=Length of Basin(ft) V_1.486 Rr,2/3(T—O0 S \ Rh=Assumed Hydraulic Radius Based on 60VV=Average Velocity of Flow(fVsec) n /I Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath - Flow Course .- Subbasin RWW-01 1 Overland Flow-Pasture 463 1.40 0.025 0.04 0.82 9.39 Subbasin RWW-01 I Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 0.02 Subbasin RWW-01 I Overland Flow-Turf 8 1.84 0.150 0.10 0.29 0.46 Subbasin RWW-01 I Overland Flow-Curb&Gutter 709 1 0.68 0,011 0.20 3.82 3.09 0.049 r (Average) (Average) (Average) (Average) DETERMINATION OF •W RATE&RUNOFF VOLUME Basin Time of Concentration,t.: t°=Basin Time of Concentration(min) TI.,°=Shallow Concentrated Flow Travel Time(min) t�=Tr_op+Tt_5C+Tr_�7 T1,f=Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,TI.e1= 24.52 min Basin Shallow Concentrated Flow Travel Time,T,.,°= 12.95 min Basin Channelized Flow Travel Time,Tt,= 3.19 min Basin Time of Concentration,tc= t .67 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 40 min= 1.01 inlhr Lower Rainfall Intensity Value= 45 min= 0.94 in/hr Basin Design Rainfall Intensity,1 1.00 Qp=C'iA Op=Basin Peak Flow Rate(1`13/sec or cis) i=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.37 Basin Rainfall Intensity,1= 1.00 in/hr Basin Area,A= 13.064 acres DesignBasin Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(fl3/sec or cis) Rr,=60tc•QP t°=Basin Time of Concentration(min) Basin Time of Concentration,1= 40.67 min Basin Peak Flow Rate,Op= 4.87 ft3/sec Basin Peak Runoff Volume,RP sl t cf Page 2 of 2 N:12 2 6 610 0 9N4 DasgnlCalalSlorm WaterTost-Development RuncffCombined-Basin RWW-01.thru-05_25-YR-DesgnStorm.xlsx Printed:311012019-11:08 PM Morrison ilk Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows i Post-Development Subbasin RWW-06-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 D• wd ld 0r Royal Wolf Way Asphalt/Concrete 1 11,119 0.255 0.95 0.242 0.81 1.10 0.89 0.89 0.282 Landscaped Area 1 2.603 0.060 1 0.23 0.014 F I Totals 13,722 0.315 0.256 r .282 'Weighted runoff coefficient,Cwd=£CA I£aj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.8711.1—C-Cf)L112 Tt,t=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt—of — S 113 S=Slope of Flow Course(%) Ci=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of Flowpath Flowpath Coefficient Factor T1.f Description of Overland Overland Flow-Concrete 1 5 1 1.50 1 0.95 1.10 1 0.37 Overland Flow-Turf 1 7 1.50 0.23 1.10 3.53 Totals 12 r 3.89 (Average) Channelized Flow Travel Time: L Ttrt=Channelized Flow Travel Time(min) 2/3 3/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 60V L=Length of Basin(ft) V_1.n A A=Cross-Sectional Area of Channel Flow V=Average Velocity of Flow(ft/sec) n (P GSO-00P=Welled-Periment of Flow Channel(ft) SlopeLength of of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T, D- .- Concrete Gutter 1 289 1 0.72 0.016 1 0.63 1 6.59 1 1.64 2.93 0.72 0.02 r (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L TI_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(°h) T t—s` 60V L=Length of Basin(ft) V_1.486 Rh 2/3( S 1 Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flaw(fUsec) n 100/1 Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time - .- Concrete Gutter 1 119 1 0.57 1 0.011 1 0,20 1 3.49 1 0.57 Totals 119 0.57 0.011 0.200 3.494 r .57 (Average) (Average) (Average) (Average) Page 1 of 2 N:t2286=904 Dns MCalcs Ston Water'Post-Development RunolBBasin_RWW-06_25-YR_Design-storm.xJV Printed:3/1012019-11:10 PM i Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) TI_=Shallow Concentrated Flow Travel Time(min) t�=T�_o f+Tr_S�+Tt_�f Tt-0t=Overland Flow(Sheet Flow)Travel Time(min) T1,1=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,.e,= 3.89 min Basin Shallow Concentrated Flow Travel Time,Tt-x= 0.57 min Basin Channelized Flow Travel Time,TI d= 2.93 min :Basin Time of Concentration,t.= 7.38 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 inlhr Lower Rainfall Intensity Value= 10 min= 2.46 inmr DesignBasin Qp=CiA Qp=Basin Peak Flow Rate(ft'Isec or cfs) I=Rainfall Intensity(In1hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.89 Basin Rainfall Intensity,i= 3.17 inlhr Basin Area,A= 0.315 acres Basin Design Peak Flow, • r : Calculation of Peak Runoff Volume: Rr,=60t,•Qp Rp=Basin Peak Runoff Volume(ft3 or cl) Qp=Basin Peak Flow Rate(ft3lsec or cis) lc=Basin Time of Concentration(min) Basin Time of Concentration,1,= 7.38 min Basin Peak Flow Rate,Qp= 0.89 ft3lsec Basin Peak Runoff Volume,Rp 396.19 cf Page 2 of 2 N:t2296'009104 Desi nlCalalStorm WalerlPos4Development RunotABasln_RWW-06_25-YR_Desi nSlorm.dsx Printed:311012019-11:10 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows i Post-Development Combined Subbasins RWW-01 thru RWW-06 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Coefficient' Description rr Subbasins RWW-01 thru RWW-051 569,048 1 13.064 1 34 0.420 Subbasin RWW-06 44,354 1.018 0.36 .367 0.34 1.10 0.37 0.37 5.266 Totals 613,403 0: 'Weighted runoff coefficient,Cv,,d=1CAi/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1 -C-Cf)L112 Tt,r=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(fl) T -_ S=Slope of Flow Course(%) C,=Frequency Adjustment Factor t-Of Si/3 C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Description of Overland Subbasin RWW-01 1 Overland Flow-Pasture 300 1.40 0.23 1 1.10 1 24.52 Totals it 1.40 (Average) Channelized Flow Travel Time: L Tl,f=Channelized Flow Travel Time(min) 2/a i/z n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) T t-,f 60V L=Length of Basin(ft) V_1.486(A� S A=Cross-Sectional Area of Channel Flow(fl2)V=Average Velocity of Flow(ft/sec) n 100) P=Wetted-Perimenl of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath FlowpathRoughness Description Storm Drain Pipe SDP-RW-01 24 1.00 0.014 0.62 2.05 4.66 0.08 Storm Drain Pipe SDP-RW-03 271 0.57 0.014 0.87 2.40 4.10 1.10 Storm Drain Pipe SDP-RW-06 354 0.57 0.013 1.04 2.75 4.44 1.33 Storm Drain Pipe SDP-RW-07 182 0.57 0.013 1.04 2.75 4.44 0.68 Storm Drain Pipe SDP-RW-09 95 0.57 0.014 1.12 2.67 4.36 0.36 0.66 0.01 r (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N:122861099I04 DesynlCalcs Slmm WaWPost-Development RunofnCombined-Basin RWW-01-thru-06_25-YR_Designstormxlsx Pnnted:3/10/2019-11:12 PM t Morrison Maierle Shallow Concentrated Flow Travel Time: L T,.,°=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc — 60V L=Length of Basin(ft) V_1.486 R1i2/3( S \ Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(f/sec) n I\100/I Land Use I Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) N Coefficient (ft) (ft/sec) (min) Subbasin RWW-01 1 Overland Flow-Pasture 463 1.40 1 0.025 0.04 1 0.82 1 9.39 Subbasin RWW-01 I Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 1 0.02 Subbasin RWW-01 I Overland Flow-Turf 8 1.84 0.150 0.10 0.29 0.46 Subbasin RWW-01 I Overland Flow-Curb&Gutter 1 709 0.68 0.011 0.20 3.82 3.09 0.049 r (Average) (Average) (Average) (Average) DETERMINATION OF •W RATE&RUNOFF VOLUME Basin Time of Concentration,t,: t�=Tt_of+Tt-5L+Tt_,f 4=Basin Time of Concentration(min) Tt.,°=Shallow Concentrated Flow Travel Time(min) T1-0r=Overland Flow(Sheet Flow)Travel Time(min) Tt{r=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,-°,= 24.52 min Basin Shallow Concentrated Flow Travel Time,T,.,°= 12.95 min Basin Channelized Flow Travel Time,Tt-= 3.55 min Basin Time of Concentration,tc= 41.03 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 40 min= 1.01 in/hr Lower Rainfall Intensity Value= 45 min= 0.94 in/hr Basin Design Rainfall Intensity,i 1.00 Qr,=C'iA QP=Basin Peak Flow Rate(ft3Isec or cfs) i=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.37 Basin Rainfall Intensity,i= 1.00 inlhr Basin Area,A= 14.082 acres Basin Design Peak Flow, • Calculation of Peak Runoff Volume: RP=Basin Peak Runoff Volume(ft3 or cl) QP=Basin Peak Flow Rate(ft'Isec or cfs) RP=60tc•Qp 4=Basin Time of Concentration(min) Basin Time of Concentration,t.= 41.03 min Basin Peak Flow Rate,Op= 5.24 ft'/sec Basin Peak Runoff Volume,Rp 12,910.73 ef Page 2 of 2 N.@28MG91A4 OesgnlCalalSlorm WalerPos4Dewlopmenl RunolfiCombined-easltLRWW-01ahru-06 25XR_DesignSlorm,alsx Printed:3110/2019-11:12 PM Morrison iliiiiiii Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows i Post-Development Subbasin RWW-07-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 D• 00 Royal Wolf Way Asphalt/Concrete 3,852 0,088 0.95 0.084 0.78 1.10 0.86 0.86 17F] Landscaped Area 1,179 0.027 0.23 0.006 0.090 0.099 'Weighted runoff coefficient,Cr d=ECA/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C-Cf)L112 Tt,r=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-of - S 113 S=Slope of Flow Course(%) Cr=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tt.01 Description of Overland Overland Flow-Concrete 6 1.75 0.95 1 1.10 0.39 Overland Flow-Turf 12 1.58 0.23 1.10 4.79 Sheet Flow-Asphalt 62 1.25 0.95 1.10 1.36 (Average) Channelized Flow Travel Time: L Tt�r=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-`f 60V L=Length of Basin(ft) V_ 1.486(A S A=Cross-Sectional Area of Channel Flow(ft) V=Average Velocity of Flow(fUsec) n \P 100 P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T,1 Description Concrete Gutter 1 122 0.75 1 0.016 1 0.23 3.80 1.23 1 1.66 Totals 122 0.75 0.02 0.23 3.80 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L Tt.e°=Shallow Concentrated Flow Travel Time(min) 1/2 1.486n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-ac 60 V L=Length of Basin(ft) V_ R/,2/3(TS-O0) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) 71 Land Use I Flow Regime(ft) SlopeLength of Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity Tt..� Flow Course (ft) Coefficient (ft) (ft/sec) (min) Totals r 0.00 0.000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) Page 1 of 2 N12286',00904 Desi MCakslStonn Watet'Post-Development RunalA3asin_RWW-07_25-YR_Desi nStorm.dsx Printed:3110/2019-11:14 PM Morrison Ma(erle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,tr: 4 -,�=Basin Time of Concentration(min) T, =Shallow Concentrated Flow Travel Time(min) t�=Tr_of+Tr_5C+Tr_�f T,-0r=Overland Flow(Sheet Flow)Travel Time(min) T,-,,=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,-o,= 6.55 min Basin Shallow Concentrated Flow Travel Time,Tt,= 0,00 min Basin Channelized Flow Travel Time,T,-= 1.66 min Basin Time of Concentration,tc= 8.21 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 inihr Lower Rainfall Intensity Value= 10 min= 2.46 inthr DesignBasin Qy=CIA Qp=Basin Peak Flow Rate(f13lsec or cis) I=Rainfall Intensity(Inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.86 Basin Rainfall Intensity,i= 2.95 inihr Basin Area,A= 0.115 acres DesignBasin • r Calculation of Peak Runoff Volume: Ru=60t,•Q� Rp=Basin Peak Runoff Volume(ft3 or cl) Qp=Basin Peak Flow Rate(ft3isec or cis) 4=Basin Time of Concentration(min) Basin Time of Concentration,4= 8.21 min Basin Peak Flow Rate,Qp= 0.29 ft3isec Basin Peak Runoff Volume,Rp t. cf Page 2 of 2 Nd2266WY,04 DesgnlCah Slon WateePost-Development RunolPBasin_RWW.07_25-YR_DesynSton.xlsx Printed:311 012 0 1 9.11:14 PM W Morrison IIIIIiiiiiiiiiit Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-08 - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 Descriptionrr Royal Wolf Way Asphalt/Concrete 21,097 0.484 0.95 0.460 0.81 1.10 0.89 0.89 0.535 Landscaped Area 4,940 0.113 0.23 0.026 Totals 26,637 0.598 OA86r 'Weighted runoff coefficient,C,1=ECA/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cf)L112 T,-0,=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-o f - S113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flow.. Coefficient Factor Tt�, Description of Overland Overland Flow-Concrete I 5 1.58 0.95 1.10 0.37 Overland Flow-Turf 6 1.58 0.23 1.10 3.43 r (Average) Channelized Flow Travel Time: L T,,=Channelized Flow Travel Time(min) z/a 1/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-`f 60V L=Length of Basin(ft) �_ 1-486 A S A=Cross-Sectional Area of Channel Flow(ft) ( _ V=Average Velocity of Flow(ft/sec) n P 100 P=Wetted-Periment of Flow Channel(ft) AverageLength of Slope of Manning's X-Sectional Wetted Flowpath Travel Time .. Roughness Description Concrete Gutter 288 0.48 1 0.016 1 0.74 1 7.19 1 1.42 3.38 Totals 288 0.48 0.02r (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T,.,c=Shallow Concentrated Flow Travel Time(min) 1486 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt-sc -- L=Length of Basin(ft) V_ . Ri,2�B/ S \ Rh=Assumed Hydraulic Radius Based on 60VV=Average Velocity of Flow(ft/sec) it I\100/I Land Use I Flow Regime(ft) SlopeLength of of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity Tt_ Flow Course Coefficient (f t) (ft/sec) (min) Concrete Gutter 313 0.50 0.011 0.20 1 3.28 1 1.59 Shallow Concentrated Flow-Asphalt 1 47 1 1.83 0.025 0.20 1 2.75 1 0.29 Concrete Gutter 1 183 1 0.75 1 0.011 1 0.20 1 4.00 1 0.76 Totals 543 1.03 0.016 0.200 (Average) (Average) (Average) (Average) Pagel of 2 KQ266'009104 DesyMCalas Storm WaterTost-Development RunoHlBasin_Rww.06_25.YR_Desgn.Storm.xlsx Printed:3/10/2019-11:16 PM Morrison Ma1.ierle 11 DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: =Basin Time of Concentration(min) T1_=Shallow Concentrated Flow Travel Time(min) t�=Tr_oJ+Tt_S�+Tr_�J T,-0f=Overland Flow Sheet Flow Travel Time min Tt=Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,.p,= 3.80 min Basin Shallow Concentrated Flow Travel Time,T,-x= 2.64 min Basin Channelized Flow Travel Time,Tl a= 3.38 min Basin Time of Concentration,t.= 9.82 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 inmr Lower Rainfall Intensity Value= 10 min= 2.46 inmr DesignBasin Qr,=C,lA Qp=Basin Peak Flow Rate(ft3/sec or cis) I=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.89 Basin Rainfall Intensity,i= 2.51 in/hr Basin Area,A= 0.598 acres DesignBasin Calculation of Peak Runoff Volume: RN=60t •Q Rp=Basin Peak Runoff Volume(fl3 or cf) Qp=Basin Peak Flow Rate(ft 3/sec or cis) ` , 1,=Basin Time of Concentration(min) Basin Time of Concentration,to= 9.82 min Basin Peak Flow Rate,Qp= 1.34 ff3/sec Basin Peak Runoff Volume,Rp 789.27 cf Page 2 of 2 N:@2881009a4 DesgnTal&Stortn WaLOPost-Development RunaMBasifl_RWW-08 25-YR_DesignSlorm Mlsz Printed:3/10/2019-11:16 PM Morrison l•Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-09 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=Cwd X C1 D- rr Royal Wolf Way Asphalt/Concrete 7,011 0.161 0.95 0.153 0.82 1.10 Fo. 90 0.90 0.177 Landscaped Area 1,558 0.036 0.23 0.008 Totals 8,569 r 'Weighted runoff coefficient,C„e=£CA/Faj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C•Cf)L112 T,,,=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ff) Tt—of — S 113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor TI-of Description of Overland Overland Flow-Concrete 6 1.58 0.95 1.10 0.38 Overland Flow-Turf 7 1.58 0.23 1.10 3.67 (Average) Channelized Flow Travel Time: L T,,,=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—�f 60V L=Length of Basin(it) V_1.486 A A=Cross-Sectional Area of Channel FlowV=Average Velocity of Flow(fVsec) nP (TSO-0) P=Wetted-Periment of Flow Channel(ft) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T1,1 Concrete Gutter 293 1 0.75 1 0,016 1 0.39 1 5.14 1,45 1 3.36 0.76 rr (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T,_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tr—s` —60 V L=Length of Basin(it) V_1.486 Rh 2/3 S / Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) 71 \100 J Land Use I Flow Regime(it) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time CoefficientFlow Course (ft) Totals r 0.00 0.000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) Page 1 of 2 KV286100M Desyn%CalcslStorm WatedPos0eve1opment Runof Basin RWW-09_25-YR_Desgn-stomAn Printed:311012019.11:17 PM Morrison llll�Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: tc=Basin Time of Concentration(min) T„,=Shallow Concentrated Flow Travel Time(min) t�=Tt_oI+Tr_5�+Tr_�f T-0=Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min t I- ( ) (min) Itr= (min) Basin Overland Flow(Sheet Flow)Travel Time,T,-el= 4.05 min Basin Shallow Concentrated Flow Travel Time,T,.x= 0.00 min Basin Channelized Flow Travel Time,T,,d= 3.36 min Basin Time of Concentration,t. 7.41 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 Inlhr Lower Rainfall Intensity Value= 10 min= 2.46 inlhr DesignBasin QP=C'M Op=Basin Peak Flow Rate(ft'Isec or cis) I=Rainfall Intensity(Inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.90 Basin Rainfall Intensity,i= 3.17 inlhr Basin Area,A= 0.197 acres Basin-Design . i Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(ft3 or ci) Op=Basin Peak Flow Rate(ft3lsec or cfs) RP=60t= QP Ic=Basin Time of Concentration(min) Basin Time of Concentration,t,= 7.41 min Basin Peak Flow Rate,Qp= 0,56 ft3lsec Page 2 of 2 N:12286\009W4 DesgnlCalce Stmm WatedPost-Development RunotABasin_RWW-09_25-YR_DesynSton.slsx Printed:311012019-11:17 PM �®Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-10-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 •- 00 Royal Wolf Way Asphalt I Concrete 7,022 0,161 0.95 0.153 0.82 177 0.90 0.90 0.178 Landscaped Area 1,561 0,036 0.23 0,008 'Weighted runoff coefficient,C d=ECAi/Eaj where q is the adjusted runoff coefficient for surface type j and Al is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C-Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt—of — S 1/3 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of Description of Overland Overland Flow-Concrete 1 6 1 1.58 1 0.95 1 1.10 1 0.38 Overland Flow-Turf 7 1.58 0.23 1.10 3.67 Totals 13 1.58 r (Average) Channelized Flow Travel Time: L T,,r=Channelized Flow Travel Time(min) z/3 1/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—cf 60V L=Length of Basin(ft) V_1.n A S A=Cross-Sectional Area of Channel Flaw(ft) V=Average Velocity of Flow(ft/sec) n P (i-00) P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T., •- .- Concrete Gutter 1 293 0.75 1 0.016 1 0.58 1 6.30 1 1.64 1 2.99 Totals 293 0.75 0.02 0.58 6.30 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T,-e°=Shallow Concentrated Flow Travel Time(min) 1.486 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) Tt—sc — 60V L=Length of Basin(ft) V_—Rh NOW Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) n Land Use I Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time ,. Totals a 0.00 0.000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) Page 1 of 2 N:12266100M DesignlUml Storm WaWPost-Development RunoffBasin_RWW-10 25-YR_Desi n-Slorm.slsz Printed:311012019.11:18 PM Morrison iEN Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) Tt_=Shallow Concentrated Flow Travel Time(min) t�=Tr_o f+Tr_5C+Tfi_�f T =Overland Flow Sheet Flow Travel Time min T1,f=Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,Tl-of= 4,05 min Basin Shallow Concentrated Flow Travel Time,T,-u= 0.00 min Basin Channelized Flow Travel Time,T,.d= 2.99 min Basin Time of Concentration,t,= 7.03 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 Inlhr Lower Rainfall Intensity Value= 10 min= 2.46 inthr Design Q„=C'M Op=Basin Peak Flow Rate(ft3lsec or cfs) I=Rainfall Intensity(inlhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.90 Basin Rainfall Intensity,i= 3.27 in/hr Basin Area,A= 0.197 acres DesignBasin Calculation of Peak Runoff Volume: RP=60t� Qp RP =Basin Peak Runoff Volume(ft3 or cf) Op=Basin Peak Flow Rate(ft3lsec or cis) 4=Basin Time of Concentration(min) Basin Time of Concentration,to= 7.03 min Basin Peak Flow Rate,Op= 0.58 ff'/sec ;Basin Peak Runoff Volume,Rp l cf Page 2 of 2 N:12266091N DesynlCalalStan WaterlPost-Development RunoffiBasin_RWW.10_25-YR_DesynSlorm.xlsx Printed:3/1012019-11:18 PM ®Morrison Malerle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW+PL-11 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10.25.50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. DescriptionWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 00 Prince Lane Asphalt/Concrete 1 13,393 0.307 0.95 0.292 0.81 1.10 FO.89 0.89 0.341 Landscaped Area 1 3,307 0.076 0.23 0.017 Totals 16,701 0.383 0.310 0.341 'Weighted runoff coefficient,CA=£CA/£aj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C•Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt—of — S113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient DescriptionLength of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tt..f Overland Flow-Asphalt 10 1.50 0.95 1.10 0.52 Overland Flow-Gravel 17 5.07 0.60 1.10 1.95 (Average) Channelized Flow Travel Time: L Tttr=Channelized Flaw Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 60V L=Length of Basin(ft) V=1 n86(— Woo) A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(fUsec) P=Wetted-Periment of Flow Channel(ft) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flow.. Description Flow Path (ft) M) Coefficient (ft) (ft) (ft/sec) (min) Concrete Gutter Channelized 273 0.47 0.016 1 0.74 1 7.17 1 1.40 1 3,27 Totals 273 0.47 0.02 1 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L T1.,,=Shallow Concentrated Flow Travel Time(min) 1.4861/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—s` 60V L=Length of Basin(ft) V_ Rr,2/3(TSO-0) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fVsec) it Land Use I Flow Regime(ft) SlopeLength of of Manning's Hydraulic Average Travel Time FlowpathDescription of Shallow Concentrated Flowpath CoefficientFlow Course (ft) M) Concrete Gutter 277 1 0.45 1 0.016 1 0.20 1 2.14 1 2.16 Totals 277 0.45 0.016 0.200 (Average) (Average) (Average) (Average) Page 1 of 2 N122e51009104 Desi nlcaims Storm WaterTost-Development RunoMBasin_PL-01_25-YR_Desi nStortn.Asz Printed:3/1012019-11:19 PM Morrison Maierle DETERMINATION . Basin Time of Concentration,t,: t,=Basin Time of Concentration(min) TI_=Shallow Concentrated Flow Travel Time(min) tc=Tt_o f+Tt_sc+Tt_C f T Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,-ot= 2.46 min Basin Shallow Concentrated Flow Travel Time,Tt.x= 2.16 min Basin Channelized Flow Travel Time,T,d= 3.27 min Basin Time of Concentration,t.= 7.89 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 INhr Lower Rainfall Intensity Value= 10 min= 2.46 inlhr lBasin Design Rainfall Intensity,1 3.03 Qr,=C iA Op=Basin Peak Flow Rate Wisec or cfs) I=Rainfall Intensity(inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.89 Basin Rainfall Intensity,i= 3.03 inlhr Basin Area,A= 0.383 acres Basin Design Peak Flow, . 1.03 Calculation of Peak Runoff Volume: Rr =60t� QV Rp=Basin Peak Runoff Volume(ft3 or cq Qp=Basin Peak Flow Rate(it 3isec or cis) 4=Basin Time of Concentration(min) Basin Time of Concentration,t,= 7.89 min Basin Peak Flow Rate,Qp= 1.03 ft3lsec ,Basin Peak Runoff Volume,Rp r Page 2 of 2 N:t2266100904 DesynlCal s\Storm WaterWost-Development Runo@Basin_PL-01_25-YR_DesgnStormxlsz Printed:311 012019-11:19 PM Morrison lily Malerle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW+PL-12-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,60,or 100) DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 •- oo Prince Lane Asphalt I Concrete 26,711 0.613 0.95 0.583 0.34 1.10 0.38 0.38 1.469 Landscaped Area 5,137 0.118 0.23 0.027 Existing Pasture Land 137,468 3.156 0.23 0.726 'Weighted runoff coefficient,C,d=ECA I Eaj where q Is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C-Cf)L112 Tw=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tr-of- S113 S=Slope of Flow Course(%) CI=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor T1_.1 Description of Overland Overland Flow-Pasture 278 1.4D 0.23 1.10 23.61 Overland Flow-Embankment 2 25.00 0.40 1.10 0.55 Overland Flow-Concrete 5 1.55 0.95 1.10 0.37 Overland Flow-Turf 7 1.55 0.23 1.10 3,55 : 0 (Average) Channelized Flow Travel Time: L Tw=Channelized Flow Travel Time(min) 2/3 i/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-cf 60V L=Length of Basin(ft) V_ 1.n A S A=Cross-Sectional Area of Channel Flow(fie) V=Average Velocity of Flow(ft/sec) n (P (TO-0 P=Welted-Perimenl of Flow Channel(ff) Length of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T,f •• Coefficient W (ft) (ft/sec) (min) Concrete Gutter 1 708 0.50 1 0.016 1 1.09 8.76 1.64 1 7.20 0.02 r i (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L TI_=Shallow Concentrated Flow Travel Time(min) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T r-sc 60 V L=Length of Basin(ft) V_1.486 Rh ( S ) Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) n 100/I Land Use!Flow Regime(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Flow Course (ft) M) Coefficient (ft) (ft/sec) (min) Totals r 0.00 0.000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) Page 1 of 2 KQ28009V Desi n\Calms gtonn WateAPost-Development RunofflBasin_PL-02_25.YR_Desi n-storm.zlu Printed:3/1012019-11:21 PM Morrison �■Maierle ,. , 1 -, „....... DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,to: 4=Basin Time of Concentration(min) T =Shallow Concentrated Flow Travel Time(min) t�=T�_of+T�_S�+T�_�f T Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,Tt.or= 28.07 min Basin Shallow Concentrated Flow Travel Time,Tt.x= 0.00 min Basin Channelized Flow Travel Time,Tl-= 7.20 min Basin Time of Concentration,to= 35.27 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 35 min= 1.10 Inlhr Lower Rainfall Intensity Value= 40 min= 1.01 inlhr DesignBasin r Qp=C'lA Qp=Basin Peak Flow Rate(fOlsec or cfs) I=Rainfall Intensity(inlhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.38 Basin Rainfall Intensity,i= 1.10 inlhr Basin Area,A= 3.887 acres Basin Design Peak Flow,• Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(W or cf) Qp=Basin Peak Flow Rate(ft'Isec or cfs) RP=60[c-Qp 4=Basin Time of Concentration(min) Basin Time of Concentration,to= 35.27 min Basin Peak Flow Rate,Qp= 1.61 ftalsec 'Basin Peak Runoff Volume,Rp 3,408.40 cf Page 2 of 2 NA22B610OM4 DesignlCalmlSlomn WalWosl Development RunolfiOasin_PL-02_25-YR_Desgn-ston.u Printed:3/10/2019-11:21 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW+PL-13 -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WOW,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 • tt Prince Lane Asphalt/Concrete 27,353 0.628 0.95 0.597 0.81 1.10 0.89 0.89 0.696 Landscaped Area 6,797 0.156 0.23 0.036 Totals r 'Weighted runoff coefficient,C d=EGA I£aj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1—C•Cf)LI12 Tt-0r=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) 7' S=Slope of Flow Course(%) C,=Frequency Adjustment Factor t_of = S1/3 C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Flowpath Flowpath Coefficient Factor Tt.01 Description of Overland Overland Flow-Concrete 5 1.50 0.95 1.10 0.37 Overland Flow-Turf 7 1.50 0.23 1.10 3.65 Sheet Flow-Asphalt 79 1.79 0.95 1.10 1.36 (Average) Channelized Flow Travel Time: L T,1=Channelized Flow Travel Time(min) z/3 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t—`f 6OV L=Length of Basin ft 1.486 A S A=Cross-Sectional Area of Channel Flow ft2 O V= O V=Average Velocity of Flow(ft/sec) n P (�00)1/2 P=Wetted-Periment of Flow Channel(ft) FlowpathLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Description Concrete Gutter 1 245 1 1.16 1 0.016 1 1.35 1 9.74 2.68 1 1.52 rr (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: L TI.,°=Shallow Concentrated Flow Travel Time(min) \1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc = 60V L=Length of Basin(ft) V_1.486 Rrt2/3/ S 1 Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(f/sec) 11 I\100) Land Use I Flow Regime(ft) SlopeLength of of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity Tt.sc Flow Course (ft) M) Coefficient (ft) (ft/sec) (min) Totals r 0.00 0.000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) Page 1 of 2 N:12286a09N4 Desl nlCaleslStmm WaterlPost-Development RunotABasin_PL-03_25-YR_Desi n-s[.".xlsx Printed:3110/2019-11:23 PM ®Morrison Maierle DETERMINATION OF BASIN PEAK FLOW RATE&RUNOFF VOLUME Basin Time of Concentration,t.: to=Basin Time of Concentration(min) T,.sc=Shallow Concentrated Flow Travel Time(min) t�=Tr_oP+Tr_sc+Tr �f T Overland Flow Sheet Flow Travel Time min T =Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,T,_er= 5.38 min Basin Shallow Concentrated Flow Travel Time,T,.,= 0.00 min Basin Channelized Flow Travel Time,T,,,= 1.52 min Basin Time of Concentration,t.= 6.91 min Calculation of Peak Flow Rate: Rainfall Intensity linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 in/hr Lower Rainfall Intensity Value= 10 min= 2.46 in/hr Basin Design Rainfall Intensity,i 3.30 Qy=C'lA Op=Basin Peak Flow Rate(113isec or cfs) I=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.89 Basin Rainfall Intensity,i= 3.30 in/hr Basin Area,A= 0.784 acres Design Peak Flow,Q. 2.30 cis Calculation of Peak Runoff Volume: RP=60t�•QN RP=Basin Peak Runoff Volume(ff'or o Op=Basin Peak Flow Rate(ft'isec or cfs) !�=Basin Time of Concentration(min) Basin Time of Concentration,t.= 6.91 min Basin Peak Flow Rate,Qp= 2.30 0/sec Page 2 of 2 N:Q286 009W4 Desyn\CalalStonn WateMost-Development RunoNBasin_PLA3 25-YR_Desgn-stormxlsx Printed:3110/2019-11:23 PM Morrison Maierle .,,,..�, s , ... RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Combined Subbasins RWW+PL-12 & RWW+PL-13 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=Cwd X Ct D- 00 Subbasin RWW+PL-12 1 169,316 1 3.887 1 0.34 1 1.335 Subbasin RWW+PL-13 34,150 0.784 0.81 0.632 0.42 1.10 0.46 0.46 2.165 Totals r 'Weighted runoff coefficient,C„d=ECA I Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: _ 1.87(1.1-C-Cf)L112 Tt-0,=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(it) Tt-o f - S113 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of Flowpath Flowpath Description of Overland Subbasin PL-02 I Overland Flow-Pasture 278 1 1.40 0.23 1.10 23.61 Subbasin PL-02(Overland Flow-Embankment 2 25.00 0.40 1.10 0.55 Subbasin PL-02 I Overland Flow-Concrete 5 1.55 0.95 1.10 0.37 SubbasinPL-02 I Overland Flow-Turf 7 1.55 0.23 1.10 3.55 r (Average) Channelized Flow Travel Time: L Tt,t=Channelized Flow Travel Time(min) 2/s 3/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-`f 60V L=Length of Basin(ft) V_ 1.n A S A=Cross-Sectional Area of Channel Flow(ft2) V=Average Velocity of Flow(tUsec) V (TOLO) P=Wetted-Periment of Flow Channel(ft) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt.f Subbasin PL-02 I Concrete Gutter 708 0.50 M(3 1 1.09 1 8.76 1 1.64 7.20 Totals 0: 0.50 0.02 r r (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N:12286bOM Desi MCalcslStorm WaterNost-Development Runo%Combined-Basin_PL-02+03_25-YR_Desi nStorm.)dsz Printed:3/1 012 0 1 9.11:26 PM Morrison ON idiiiiiiiii Maierle Shallow Concentrated Flow Travel Time: L T,_=Shallow Concentrated Flow Travel Time(min) .12 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc —— L=Length of Basin(It) V_ L86 Rr,2/3 W S \ Re=Assumed Hydraulic Radius Based on 60VV=Average Velocity of Flow(fVsec) n 00 Land Use I Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity Tt_ CoefficientFlow Course (ft) M Totalsx 0.00 0.000 0.000 0.000 0.00 (Average) (Average) (Average) (Average) DETERMINATION OF •WRATE&RUNOFF VOLUME Basin Time of Concentration,t.: 4=Basin Time of Concentration(min) Tt_=Shallow Concentrated Flow Travel Time(min) tc=Tt_pf+Tr_Sc+Tr_�f Tt,j=Overland Flow Sheet Flow Travel Time min T Channelized Flow Travel Time min Basin Overland Flow(Sheet Flow)Travel Time,TI-0f= 28,07 min Basin Shallow Concentrated Flow Travel Time,Tt-w= 0.00 min Basin Channelized Flow Travel Time,Tla= 7.20 min Basin Time of Concentration,it,= 35.27 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 35 min= 1.10 in/hr Lower Rainfall Intensity Value= 40 min= 1.01 in/hr Design QP=C iA Qp=Basin Peak Flow Rate(ft'/sec or cis) i=Rainfall Intensity(Inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.46 Basin Rainfall Intensity,i= 1.10 in/hr Basin Area,A= 4.671 acres DesignBasin Calculation of Peak Runoff Volume: RP=Basin Peak Runoff Volume(ft'or cf) Qp=Basin Peak Flow Rate(ft 3/sec or cis) Rr,=60tc•Qr, t°=Basin Time of Concentration(min) Basin Time of Concentration,tc= 35.27 min Basin Peak Flow Rate,Qp= 2.37 ft'/sec Basin Peak Runoff Volume,Rp r Page 2 of 2 W:1228009'%04 Desyn\Calms Storm Wato Post-Development Runof%Combined-Basin_PL-02+03_25-YR_Desi nSlon.xlsx Printed:3/1012019-11:26 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows i Post-Dev. Combined Subbasins RWW-01 thru -06 & RWW+PL-11 thru -13 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Coefficient'Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient D• i0 Subbasin RWW-01 thru RWW-06 613,403 1 14.082 1 0.34 1 4.787 Subbasin RWW+PL-01 16,701 1 0.383 1 0.81 0.310 0.37 1,10 0A1 0A1 7.771 Subbasins RWW+PL-12 813 203,466 4.671 0.42 1.968 F r. 'Weighted runoff coefficient,C„.d='FC,A,/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj Is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1 -C-Cf)L112 Tt-0r=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt-of - S113 S=Slope of Flow Course(%) Cr=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Runoff Frequency Travel Time Description of Overland Subbasin RWW-01 I Overland Flow-Pasture ___3W__1 1,40 1 0.23 1 1.10 1 24.52 Jotals (Average) Channelized Flow Travel Time: L T,.,r=Channelized Flow Travel Time(min) z/a ,72 n-Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-�f 60V L=Length of Basin(fit) V_ 1.486 A S A=Cross-Sectional Area of Channel Flow(ftZ) V=Average Velocity of Flow(ft/sec) n (P (ioo) P=Wetted-Perimenl of Flow Channel(ft) SlopeLength of ge Travel Time Flowpath FlowpathRoughness Description Storm Drain Pipe SDP-RW-01 24 1.00 0.014 0.62 2.05 4.88 0.08 Storm Drain Pipe SDP-RW-03 271 0.57 0.014 0.87 2.40 4.10 1.10 Storm Drain Pipe SDP-RW-06 354 0.57 0.013 1.04 2.75 4.44 1.33 Storm Drain Pipe SDP-RW-07 182 0.57 0.013 1.04 2.75 4.44 0.68 Storm Drain Pipe SDP-RW-09 95 0.57 0.014 1.12 2.67 4.36 0.36 Storm Drain Pipe SDP-RW-10 36 0.57 0.014 1.17 2.75 4.47 0.13 0r r (Average) (Average) (Average) (Average) (Average) Page 1 of 2 W2266'009104 Desyn\Cal&Slonn Waterftst-Dmlopment RunorOCombined-Basin_RWW.01.thrm06*PL-01-thm-03_25-YR-DesignStorm.zl. Printed:3/1012019-11:32 PM t. Morrison No Maierle Shallow Concentrated Flow Travel Time: L Tt_=Shallow Concentrated Flow Travel Time(min) lit n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—sc — 60V L=Length of Basin(ft) V_1.486 R11�73( S \ Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(fflsec) n I\100) Land Use 1 Flow Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity Ti.s, CoefficientFlow Course (Ift) N Subbasin RWW-01 1 Overland Flow-Pasture 463 1.40 0.025 0.04 0.82 9.39 Subbasin RWW-01 I Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 0.02 Subbasin RWW-01 I Overland Flow-Turf 8 1.84 0.150 0.10 0.29 0.46 Subbasin RWW-01 I Overland Flow-Curb&Gutter 709 1 0.68 0.011 0.20 3.82 3.09 0.049 r (Average) (Average) (Average) (Average) DETERMINA TIONOF •W RA TE&RUNOFF VOLUME Basin Time of Concentration,t,: tc=Basin Time of Concentration(min) TI_=Shallow Concentrated Flow Travel Time(min) tc=Tt_o f+Tt_sc+Tt_C f T,,,=Overland Flow(Sheet Flow)Travel Time(min) TI-cl=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,Tt,l= 24.52 min Basin Shallow Concentrated Flow Travel Time,T,.x= 12.95 min Basin Channelized Flow Travel Time,Tt.,= 3.69 min Basin Time of Concentration,t�= 41.16 min Calculation of Peak Flow Rate: Rainfall Intensity Linearinterpolaflon Upper Rainfall Intensity Value= 40 min= 1.01 inlhr Lower Rainfall Intensity Value= 45 min= 0.94 inlhr Basin Design Rainfall Intensity,i r Qy—C'iA Op=Basin Peak Flow Rate(ft3lsec or cfs) i=Rainfall Intensity(Inthr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.41 Basin Rainfall Intensity,i= 0.99 inlhr Basin Area,A= 19.136 acres DesignBasin Calculation of Peak Runoff Volume: RP=60tc•Qn RP=Basin Peak Runoff Volume(ft3 or 0 QP=Basin Peak Flow Rate(ft3/sec or cfs) 1<=Basin Time of Concentration(min) Basin Time of Concentration,tc= 41.16 min Basin Peak Flow Rate,QP= 7.72 ft3lsec Basin Peak Runoff Volume,Rp r Page 2 of 2 N:1228609V Desgn\Calus Storm Water'Post-Development RunafACombined-Basin_RWW-01-thru-06iPL-01-thm-03_25-YR_DesignStorm.xlsx Printed:311012019-11:32 PM Morrison aiiiiiii Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows i Post-Dev. Combined Subbasins RWW-01 thru -08 & RWW+PL-11 thru -13 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WOual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient .• ■- wd wd 00 Subbasins RWW-01 thru RWW-06 613,403 14.082 0.34 4.787 ubbasins RWW+PL-11 thru-1 220,166 5.054 0.45 2.277 0.38 1.10 0.42 0.42 8.405 Subbasin RWW-07 5,031 0.115 0.78 0,090 Subbasin RWW-08 26,037 0.598 0.81 0.486 t 'Weighted runoff coefficient,Cm=ECA/Yaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C-Cf)L112 T,-o,=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(it) T t-of S1/3 S=Slope of Flow Course(%) C,=Frequency Adjustment Factor C=Rational Method Runoff Coefficient Length of Slope of Description of Overland Subbasin RWW-01)Overland Fbw-Pasture 300 1.40 0.23 1.10 24.52 04 1.40 24.52 (Average) Channelized Flow Travel Time: L T,.,,=Channelized Flow Travel Time(min) A z/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-cf 60V L=Length of Basin(ft) V_1.486 S A=Cross-Sectional Area of Channel Flow(ft) V=Average Velocity of Flow(ft/sec) rt P (T-O0) P=Wetted-Periment of flow Channel(ft) SlopeLength of of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness •• .- Storm Drain Pipe SDP-RW-01 24 1.00 0.014 1 0.62 1 2.05 4.88 0.08 Storm Drain Pipe SDP-RW-03 271 0.57 0.014 0.87 2.40 4.10 1.10 Storm Drain Pipe SDP-RW-06 354 0.57 0.013 1.04 2.75 4.44 1.33 Storm Drain Pipe SDP-RW-07 182 0.57 0.013 1.04 2.75 4.44 0.68 Storm Drain Pipe SDP-RW-09 95 0.57 0.014 1.12 2.67 4.36 0.36 Storm Drain Pipe SDP-RW-10 36 0.57 0.014 1.17 2.75 4.47 0.13 Storm Drain Pipe SDP-RW-12 1 238 0.20 0.014 2.28 1 3.88 3.38 1.17 Totals 1,190 0.58 rr r (Average) (Average) (Average) (Average) (Average) Page 1 of 2 Na228009'04 DesgnlCalcslSlonn WaWPost-Development RunoffrCombined-Basin_RWW-0Idhm.08+PL-01-thm-03_25-YR_DesignStorm.xlsx Printed:3/1012019-11:35 PM I Morrison ME Will Maierle Shallow Concentrated Flow Travel Time: L Tt.,,=Shallow Concentrated Flow Travel Time(min) 1486112 n=Manning's Roughness Coefficient S=Slope of Flowpath(%) Tt—s` —— L=Length of Basin(ft) V_ . R1i 2/3 Rh=Assumed Hydraulic Radius Based on 60VV=Average Velocity of Flow(fl/sec) n (TSO-0) Land Use I Flow Reglme(ft) DescriptionLength of Slope of Manning's Hydraulic Average Travel Time Subbasin RWW-01)Ovedantl Flow-Pasture 463 1.40 Coefficient 0.025 0.04 0.82 9.39 Subbasin RWW-01I Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 0.02 Subbasin RWW-01)Overland Flow-Turf 8 1.84 0.150 0.10 0.29 0.46 Subbasin RWW-01 Overland Flow-Curb&Gutter 709 1 0.68 0.011 0.20 3.82 3.09 r• (Average) (Average) (Average) (Average) DETERMINA TION OF OW RA TE 8,RUNOFFVOLUME Basin Time of Concentration,t,: 4=Basin Time of Concentration(min) Tt,C=Shallow Concentrated Flow Travel Time(min) t�=Tt_of+Tt_5�+Tb_q Ttaf=Overland Flow(Sheet Flow)Travel Time(min) Tl.,t=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,-m= 24.52 min Basin Shallow Concentrated Flow Travel Time,T,-u= 12.95 min Basin Channelized Flow Travel Time,Tt-= 4.86 min Basin Time of Concentration,tc 42.34 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 40 min= 1.01 in/hr Lower Rainfall Intensity Value= 45 min= 0.94 in/hr Basin Design Rainfall Intensity,i I Qp=CriA Qp=Basin Peak Flow Rate(113lsec or cfs) i=Rainfall Intensity(inmr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.42 Basin Rainfall Intensity,i= 0.98 in/hr Basin Area,A= 19.849 acres DesignBasin Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(ft3 or cl) Qp=Basin Peak Flow Rate(fP/sec or cfs) Rr,=60t� Qn 4=Basin Time of Concentration(min) Basin Time of Concentration,1,= 42.34 min Basin Peak Flow Rate,Qp= 8.21 ft3/sec Volume,Basin Peak Runoff r Page 2 of 2 NA22860904 DesignTalas Slonn WateAPosl-Development RunofACombined-Basin_RWW-01 thm-09+PL-01-thm-03 25-YR DesignSlorm.xlsx Printed:311012019-11:35 PM Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Dev. Combined Subbasins RWW-01 thru -10 & RWW+PL-11 thru-13 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff Runoff Runoff Frequency Coefficient Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X Cf rr Mnsru RWW-0B 864,637 19.849 0.38 7.641 11 thru-13 -09 8,569 0.197 0.82 0.161 0.39 1.10 0.43 0.43 8.760 -10 8,584 0.197 0.82 0.161 Totals r 20.243 'Weighted runoff coefficient,Cw=ECA I Eaj where q is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C•Cp)Ll/Z T1,f=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) T - S=Slope of Flow Course(%) C1=Frequency Adjustment Factor t_of - Si/3 C=Rational Method Runoff Coefficient SlopeLength of Description of Overland Subbasin RWW-01 j Overland Flow-Pasture 300 1A0 1 0.23 1 1.10 1 24.52 Totals rr 1.40 24.52 (Average) Channelized Flow Travel Time: L T,,f=Channelized Flow Travel Time(min) z/3 3/z n=Manning's Roughness Coefficient S=Slope of Flowpath(%) T t-`f 60V L=Length of Basin(ft) V_1.n A S A=Cross-Sectional Area of Channel Flow(ft?) V=Average Velocity of Flow(ft/sec) (P (70-0) P=Wetted-Periment of Flow Channel(ft) SlopeLength of of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity T,f Description Storm Drain Pipe SDP-RW-01 24 1.00 0.014 0.62 2.05 4.88 J Storm Drain Pipe SDP-RW-03 271 0.57 0.014 0.87 2.40 4.10 Storm Drain Pipe SDP-RW-06 354 0.57 0.013 1.04 2.75 4.44 Storm Drain Pipe SDP-RW-07 182 0.57 0.013 1.04 2.75 4.44 Storm Drain Pipe SDP-RW-09 95 0.57 0.014 1.12 2.67 4.36 Storm Drain Pipe SDP-RW-10 36 0.57 0.014 1.17 2.75 4.47 Storm Drain Pipe SDP-RW-12 238 0.20 0.014 2.28 3.88 3.38 Stone Drain Pipe SDP-RW-15 275 0.20 0.014 2.38 4.00 3.45 Totals 1,474 0.53 0.01 1.31 2.90 (Average) (Average) (Average) (Average) (Average) Page 1 of 2 N:@266=9104 Desyn\CaloslStonn WaterkPost-Development RunoffiCombined-Basin RWW-01-thm-10-PL-01-thm-03_26-YR_DeslgnStorm.zlu Printed:3/10/2019-11:39 PM I Morrison I.Maierle Shallow Concentrated Flow Travel Time: L T,.9C=Shallow Concentrated Flow Travel Time(min) 1486 112 n=Manning's Roughness Coeff cient S=Slope of Flowpath(%) Tt-sc — L=Length of Basin(11) V_ . Rh2/3/ S 1 Rh=Assumed Hydraulic Radius Based on 60VV=Average Velocity of Flow(ftisec) n 000/I Land Use I Flow Regime(ft) SlopeLength of Description of Shallow Concentrated Flowpath Flowpath Roughness Radius Velocity Tj_ CoefficientFlow Course (ft) N Subbasin RWW-01 I Ovedand Flow-Pasture 463 1.40 0.025 0.04 0.82 9,39 Subbasin RWW-01 I Overland Flow-Concrete 6 1.84 0.011 0.20 6.26 0.02 Subbasin RWW-01 I Overland Flow-Turf 8 1.84 0.150 0.10 0.29 0.46 Subbasin RWW-01 I Overland Flow-Curb 8 Gutter 709 0.68 0.011 0.20 3.82 3.09 0.049 r (Average) (Average) (Average) (Average) DETERMINA TIONOF •W RA TE&RUNOFF VOLUME Basin Time of Concentration,tc: 1°=Basin Time of Concentration(min) TtiC=Shallow Concentrated Flow Travel Time(min) t�=T�_oI+T�_S�+T,_�f T a=Overland Flow Sheet Flow Travel Time min T =Channelized Flow Travel Time min tt- l ) (min) ir- (min) Basin Overland Flow(Sheet Flow)Travel Time,TI.at= 24.52 min Basin Shallow Concentrated Flow Travel Time,Tt.,a= 12.95 min Basin Channelized Flow Travel Time,T, 6.19 min -Basin Time of Concentration,tc= 43.67 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 40 min= 1.01 inthr Lower Rainfall Intensity Value= 45 min= 0.94 in/hr Basin Design Rainfall Intensity,i 0' Qn=C'iA Qp=Basin Peak Flow Rate(ft3lsec or cfs) i=Rainfall Intensity(inlhr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.43 Basin Rainfall Intensity,i= 0.96 inlhr Basin Area,A= 20.243 acres Basin Design Peak Flow, • p 8.39 cfs Calculation of Peak Runoff Volume: Rp=Basin Peak Runoff Volume(It3 or co Op=Basin Peak Flow Rate(ft3lsec or cfs) RP=60t� Qn t°=Basin Time of Concentration(min) Basin Time of Concentration,to= 43.67 min Basin Peak Flow Rate,Qp= 8.39 ft3lsec Basin Peak Runoff Volume,Rp 21,969.28 cf Page 2 of 2 N:12266M9W4 Desgn\Calrs Storm WaterlPost-Deeelapment RunoMCombined-Basin_RWW-01-thru-10+PL-014hru-03 25-YR_DesignSlorm.zlu Printed:311012019-11:39 PM APPENDIX B INLET INTERCEPTION ANALYSES Morrison w Maierle engineers surveyors planners scientists Morrison Maierle engineers - surveyors planners scientists APPENDIX B-1 NELSON ROAD INLET INTERCEPTION ANALYSES Morrison Maierle eyii iry rui vvyurr Vlannea uii.itists INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-01 Storm Drain Inlet #SDI-NR-01 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 111/4' CURB BOX ADJUSTABLE V TO 35 1/4' ,� i r� 1�4 in• -'i I'-'1/4• i z• r4 vz• tom_ �i e i 43' DESIGN CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= in = 1.25 ft Slope of Gutter at Inlet,SG= Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wt= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, B B : Wetted Perimeter Manning's Formula: Q= 1.486 Al/3 where: Q=Total Flow in Given Cross-Sectional Area(ft3/sec) 71 P2/3 SL n= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment e Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yp: 1.90 in = 0.16 ft Spread of Flow on Pavement,Tp: 63.28 in = 5.27 ft Longitudinal Slope of Pavement,SP=SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,Ap: 60.06 in = 0.42 ft2 Calculated Wetted Perimeter Over Pavement,Pp: 65.20 in = 5.43 ft N:122861009104 Deslgn\Calcs\Storm Waterllnlet Interception Analysesllnlet-NR-01_On-Grade_Basin-NR-01_25-YR.x1sx Page 1 of 4 Morrison Maierle engineer wrrcyun ylann.. ,u.nii,, Calculate Flow In Gutter withOverlap 1Pavement Encroachment • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 Wit Depth of Flow Over Gutter,YW: 2.90 in = 0.24 ft Spread of Flow in Gutter&Pavement Composite Section,TG.p: 43.47 in = 3.62 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fult Calculated Flow Area Over Gutter&Pavement Composite Section,AG.p: 63.00 in = 0.44 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 46.47 in = 3.87 ft Calculate Flow Within Gutter&Pavement Overlap Area • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fVft Depth of Flow Over Gutter,yG: 1.90 in = 0.16 It Spread of Flow within Gutter&Pavement Overlap Section,TO: 28.47 in = 2.37 ft Longitudinal Slope of Gutter,SG: 1,00% = 0.0100 fyft Calculated Flow Area Within Gutter&Pavement Overlap Section,AG: 27.03 in = 0.19 ft, Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,PG: 30.44 in = 2.54 ft Calculate Total Gutter Flow e Basin Design Peak Plow,Qp: 1,342 ft'/sec(cfs) Calculated Total Depth of Flow Over Gutter,yG.p: 2.90 in = 0.24 ft QG-Q1+Q2-Q3 where: QG= Basin Design Peak Flow,Qp= 1.342 ft'/sec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.25 ft2 Calculated Pavement Flow Cross-Sectional Area,Ap: 0.42 ft2 -- - •�- - �- ffa Tlagg- -• - �1 • - - - -� - -- - Calculated Gutter Flow Wetted Perimeter,PG: 1.51 ft Calculated Pavement Flow Wetted Perimeter,PP: 5.28 ft W-eftcli Pqd=terJor-QuYer.&.&wnjptp. 1 Calculated Gutter Flow Hydraulic Radius,RG: 0.16 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.08 ft :i, ,.,,: , , r Composite 1 0.10 ft Calculated Velocity of Flow for Gutter&Pavement Composite N:12286\00904 DesignlCalcs\Storm WateAlnlet Interception Analyses\Inlet-NR-01_On-Grade_Basin-NR-01_25-YR.x1sx Page 2 of 4 Morrison Maierle enyirr rrs surveyors-Vl:nnsrs sueriliats CALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate Ratio of Inlet FrontalFlow to Total • • yv 2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow ( where: E° = QW Or = 1—I 1—T QG=Total Gutter Flow(ft3/sec) ` Qw=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft I ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG.P: 6.52 ft = 78.28 in CalculatedCalculated Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: Total Flow . of Depressed or I . Calculate Ratio of Inlet Side Flow to Total Gutter Flow,ES: E Qs 1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG QG ° Qs=Flow Along Side(ft3/sec) Calculated 0.50 AlongCalculated Total Flow D•• e 0.68 Calculate Ratio of R f = 1—0.09(VG—V°) where: Rr=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Ve=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.98 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vc: 9.96 ft/sec P-1-7/8 Style Grate 13 EXAMPLE: 12 C GIVEN: RETICULINE GRATE d I I L= 3 FT V V 8 FT/S \1t0 •tl= rn to FIND: Rf= 0.81 W C 9 9 CL a e Q �l > / A �• h 7 0) ----e,\- `rye O = a s V c 4 6 / h 4J 0 U. 2 P� M � 0 0 I 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 L U' LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) NA228W08104 DesignlCalcs\Storm Walerllnlet Interception Analyses\Inlet-NR-01_0n-Grade_Basin-NR-01_25-YR.xlsx Page 3 of 4 ® Morrison Maierle eiyii eis auveyms ulnneis ,u..iris.. =. . . • e •. .Total Side R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15VO1•e VG=Velocity of Flow in the Gutter(ft/sec) 1+ SP L I2.3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.98 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 ft Calculated Ratio . . . 1 . Calculate Efficiency of Grate,E: E =RfEO+RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rl: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.50 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.41 Calculate Inlet Interception Capacity, e Q, =EQG where: Qi=Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.70 Total Gutter Flow,QG: 1.34 ft3/sec(cfs) Capacity,Calculated Inlet Interception 0.94 N:122861009104 DesignlCalcelStorm Waterkinlet Interception Analysesllnlet-NR-01_On-Grade_Basin-NR-01_25-YR.xlsx Page 4 of 4 Morrison Maierle enyir ers .urveyury Vleirneiv vceiilisry INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-02 Storm Drain Inlet #SDI-NR-02 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) �INLET CHARACTERISTICS 3°3/4 CURB BOX ADJUSTABLE f"TO f' 3 5 1/4• r� 5 9/4• +- 17 9/4• 1/4 2n• *, 2. 1 1 79' A;I• ��1'� CONSTANTSDESIGN Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,S(; Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nG= 0.016 Length of Inlet Grate,Li r 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, Cross-SectionalWetted Perimeter Manning's Formula: _ 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q 77 2/3 SL where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL= Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment(Qi) Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 1.83 in = 0.15 ft Spread of Flow on Pavement,TP: 61.07 in = 5.09 ft Longitudinal Slope of Pavement,SP=SG: 1.00% = 0.0100 Wit Calculated Flow Area Over Pavement,AP: 55.95 in' = 0.39 ft2 Calculated Wetted Perimeter Over Pavement,PP: 62.93 in = 5.24 ft N:122861009104 DesignlCalcslStornn Waterllnlet Interception Analyseslinlet-NR-02_On-Grade_Basin-NR-02_25-YR.x1sx Page 1 of 4 ® Morrison Maierle y,.., .�.. u......... ......... Calculate Flow In Gutter with Overlap o .. • Manning's Roughness Coefficient,nc,: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG+P: 2.83 in = 0.24 ft Spread of Flow in Gutter&Pavement Composite Section,TG+P: 42.48 in = 3.54 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG+P: 60.16 in = 0.42 fe Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG+P: 45.41 in = 3.78 ft rL � II�I�IFlfa�tiif°'iG:�NI�.j.:CjVtii.Js�iiLi�d=11IlaflGEi°Jlli'1°?fit{= �I1�171�71R6EGc't. t d'JJ,,C4 Calculate Flow Within Gutter&Pavement Overlap Area • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yc: 1.83 in = 0.15 It Spread of Flow within Gutter&Pavement Overlap Section,To: 27.48 in = 2.29 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 felt Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 25.18 in = 0.17 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 29.38 in = 2.45 ft a�:`Itiil�rkCiiii(lwliU:'Lqiti ]1 '�!'L-J�•I°.:ii`•-n rkr�_ rCL-°1>iul�ieIL Calculate Total Gutter Flow(QG) Basin Design Peak Plow,Qp: 1.250 ft3/sec(cfs) Calculated Total Depth of Flow Over Gutter,yG+P: 2.83 in = 0.24 ft QG=Qt+Q2-Qa where: QC= Basin Design Peak Flow,Qp= 1.250 ft3/sec(cfs) 1Pyrlf it'NfYC�filCH.fiza�dCl;rRPf= Calculated Gutter Flow Cross-Sectional Area,AG: 0.24 ft2 Calculated Pavement Flow Cross-Sectional Area,Ap: 0.39 ft2 ,. Calculated Gutter Flow Wetted Perimeter,PG: 1.51 ft Calculated Pavement Flow Wetted Perimeter,Pp: 5.09 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.16 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.08 ft �,�itytlFf(�8:['i�fi:Dlll�,:fl�Jhf�i°i��fiiit ier�,t:�tt=iril-7r r u�• ° :f:�;, NA22861009104 DesignTalc0torm Walerllnlet Interception Malysesllnlet-NR-02_On-Grade_Basin•NR-02_25-YR.Au Page 2 of 4 Morrison Maierle unyin ir* rui veyurr ulvnneis vuvirn.v CALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE Calculate Ratio of Inlet Frontal Flow to Total Gutter Flow,EO: Qw W)2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow E° Or. — 1—�1 T I where: QG=Total Gutter Flaw(ft3lsec) Ow=Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 It Total Spread of Water Over the Gutter&Pavement,TG+P: 6.34 ft = 76.07 in . . r Calculated Total Flow in Width of Depressed Gutter or Grate,Qw:0rsec(cfs) .64 Calculate of Inlet Side Flow to Total Gutter Flow,ES: E Qs 1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG QG ° Qs=Flow Along Side(ft3lsec) I Calculated Ratio of Inlet Side Flow to Total Gutter Flow,Es: 0.49 Calculated Total Flow Along Side of Depressed Gutter or Grate,Qs._ 0.61 ft31sec(cfs) Calculate of Frontal Flow Intercepted to Total Frontal Flow,Rf: R f = 1—0.09(VG—V°) where: Rt=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow In the Gutter,VG: 1.94 fUsec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate 13 EXAMPLE: 12 C GIVEN: RETICULINE GRATE y I I L= 3 FT v V- 8 FT/S \g11b W y 10 FIND: Rp= 0.81 9 CL y 8 9 F,O O,'t� i , Y A ` v h L 7 ?� 10 J. �P 41 a.+ // u7 C* 6 •( --------- ------- -----• - - --- - - -- -- 3 M O V o i 1 = 4 C d 3 i J i LL y I C d 0 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 L U' LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22,Second Edition (U.S.Federal Highway Administration,August 2001) N:122861009104 Design\CalcslStorm WateAlniet Interception Analyse0nlet-NR-02_On-Grade_Bas1n-NR-02_25-YR.xlsx Page 3 of 4 L Morrison Maierle en9�neatt-turreyurt Vl.nnert tua.r irt.t RatioCalculate ofInlet Side Flow Intercepted to Total Side Flow,RS: R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow S 1 0.15VG 1•a VG=Velocity of Flow in the Gutter(ft/sec) + SP L 12.3 SP=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.94 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 ft Calculated Ratio . •. to Total Side Flow_,R� Calculate Efficiency of Grate,E: E =RpEo +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.51 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.42 Calculate Inlet Interception Capacity, e Q, =EQG where: Qi=Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.71 Total Gutter Flow,QG: 1.25 ft'/sec(cfs) Calculated Inlet Interception Capacity,Qj: 0.89 ft 3/Sec(cfs) N:\22800904 Design\Calcs\Storm WateAlnlet Interception Analyses\Inlet-NR-02_On-Grade_Basin-NR-02_25-YR.xlsx Page 4 of 4 Morrison Maierle enyinean-wiviyur ylanner. ua.usir INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-03 Storm Drain Inlet #SDI-NR-03 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) :INLET CHARACTERISTICS 311/4• CURB eoxAuJuarAa�8"roo• 1 I/4— 2R' [—I vz' —1 1`I 114' r= —i 112• t3343'— DESIGN CONSTANTS Curb Height at Inlet,hc= 5,50 in = r 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,Wr= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,nP Calculate Gutter Flow Depth, - • Perimeter Manning's Formula: 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft31sec) Q_ tt Pz�3 S� where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) EncroachmentCalculate Flow Across Pavement e Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ftlft Depth of Flow at Edge of Pavement,yP: 1.25 in = 0.10 ft Spread of Flow on Pavement,TP: 41.50 in = 3.46 ft Longitudinal Slope of Pavement,SP=SG: 1.00% = 0.0100 ftlft Calculated Flow Area Over Pavement,Ap: 25.84 in2 = 0.18 ft2 Calculated Wetted Perimeter Over Pavement,PP: 42.77 in = 3.56 ft N:\2286\009V Design\Calcs\Storm Water\Inlet Interception Analyses\Inlet-NR-03_0n-Grade_Basin-NR-03_25-YR.xlsx Page 1 of 4 Morrison Maierle aiiyin e,> suv>•yur yleirn>i> u„•il'i>tc Calculate Flow In Gutter with Overlap 1Pavement Encroachment Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG+P: 2.25 in = 0.19 ft Spread of Flow in Gutter&Pavement Composite Section,TG+P: 33.68 in = 2.81 ft Longitudinal Slope of Gufter,SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG+P: 37.80 in' = 0.26 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG+P: 36.00 in = 3.00 ft t.48 ft/sec LcjVF Calculate Flow Within Gutter&Pavement OverlapAreaw Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG: 1.25 in = 0.10 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 18.68 in = 1.56 It Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 11.63 in = 0.08 ft, Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 19.96 in = 1.66 ft r...- 14;.r u ; , ;M: TotalCalculate 1 Basin Design Peak Plow,Qp: 0.608 ft3/sec(cfs) Calculated Total Depth of Flow Over Gutter,yG+P: 2.25 in = 0.19 It QG=Q1+QZ-Q, where: QG= Basin Design Peak Flow,QP= 0.608 ft3/sec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.18 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.18 ft2 -1 1 11 1 Calculated Gutter Flow Wetted Perimeter,PG: 1.45 ft Calculated Pavement Flow Wetted Perimeter,PP: 3.46 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.13 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.05 ft `ifitmdill�itita(��r.il'hlr•l�lll✓t:(I�Ilf-tei>iC�1Ut(il��'9aia''u't 1 !1 • :S�r;.•.. =a'IAtPrsi'�P F-001 77 NA2286\009104 Design\Calcs\Storm water\Inlel Interception Analyses\Inlet-NR-03_On-Grade_13asin-NR-03_25-YR.x1sx Page 2 of 4 L Morrison INN Maierle "'gill ', •uivYy I•n V 1— fci-n— I CAPACITY RatioCalculate of Inlet Frontal Flow to Total Gutter Flow,EO: yv 2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow / where: E° = QW Or = 1—I 1—T Qc=Total Gutter Flow(ft3/sec) \ Qw=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 it Total Spread of Water Over the Gutter&Pavement,TG,P: 4.71 ft = 56.50 in CalculatedFlow,WM r Total .63 Calculated r Calculate Ratio . E QS 1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG QG ° Qs=Flow Along Side(ft3/sec) Calculated Ratio o • . t Calculated .37 Total Flow Along Side of D•• t Calculate Ratio . Rf = 1—0,09 K—V°) where: R,=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.63 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate —, 13 EXAMPLE: 12 C GIVEN: RETICULINE GRATE d II L= 3 FT V V. 8 FT/S `1►0 Q. W y 10 FIND: Rf= 0.87 a 9 yp��ei CL 8 01 V 7 �tIO O 6 3 s = a O 0 U o IL i l C s N �0/ � l , II W I ti y 0 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 tr 0 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) NA22861009104 DeslgnlCalcslStorm Waterlinlet Interception Analysesllnlet•NR-03_On-Grade_Bas1n•NR-03j5-YR.x1sx Page 3 of 4 L Morrison NN Maierle engin ers wiveyurs-V�unnui+ uir,iVsts Calculate Ratio of Inlet Side Flow Intercepted to Total Side Flow,RS: R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 1+0,15Va1'8 VG=Velocity of Flow in the Gutter(fUsec) SPL,2.3 Sp=Transverse Slope of Pavement(ft/ft) LI=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.63 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 it Calculated Ratio of Inlet Side Flow Intercepted to Total Side Flow,IRS: Calculate Efficiency of Grate,E: E =RfEo+RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.63 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.49 Calculate Inlet Interception Capacity, Q, = EQG where: Qi= Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.81 Total Gutter Flow,QG: 0.61 W/sec(cfs) InterceptionCalculated Inlet •. e r %22800904 DesignlCalcs\Storm Water,lnlet Interception Analyses\Inlet-NR-03_On-Grade_Basin-NR-03_25-YR.x1sx Page 4 of 4 Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-04 Storm Drain Inlet #SDI-NR-04 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS L 30 1/4• CURB BOX ADJUSTABLE B'TO B' �- 17 3/4' -- 11/4 2R' �1 vz• -'I ICI 1/4• v2,2' �I z"I 31' 43- 11' DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = =ft Coefficient for Gutter,nG Length of Inlet Grate,Li r 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, • Wetted Perimeter Manning's Formula: _ 1,486 A5�1 Q=Total Flow in Given Cross-Sectional Area(ft'/sec) Q 71 P2/3 $� where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or q P=Wetted Perimeter of Flow(ft) SL= Longitudinal Slope(fUft) Calculate Flow Across Pavement Encroachment e Manning's Roughness Coefficient,np: 0,016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 f fft Depth of Flow at Edge of Pavement,yp: 1.83 in = 0.15 It Spread of Flow on Pavement,Tp: 60.85 in = 5.07 ft Longitudinal Slope of Pavement,Sp=So: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,Ap: 55.55 in' = 0.39 ft' Calculated Wetted Perimeter Over Pavement,Pp: 62.71 in = 5.23 ft N:122861009104 Deslgn\Calcs\Stornn Waterllnlet Interception Analysesllnlet-NR-04_On-Grade_Basin-NR-G4_25•YR.x1sx Page 1 of 4 Morrison Maierle Calculate Flow In Gutter with Overlap of Pavement Encroachment A) Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,YW: 2.83 in = 0.24 ft Spread of Flow in Gutter&Pavement Composite Section,Tc.P: 42.38 in = 3.53 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 59.88 in' = 0.42 ftZ Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 45.30 in = 3.78 ft • M- Fr-T_,TM[@ML Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yc: 1.83 in = 0.15 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 27.38 in = 2.28 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 ftlft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 25.00 in' = 0.17 ftZ Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 29.27 in = 2.44 ft Calculate Total Gutter P Basin Design Peak Plow,QP: 1.241 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,yG.P: 2.83 in = 0.24 ft QG=Q1+Q2-Q3 where: QG= Basin Design Peak Flow,QP= 1.241 ft3lsec(cfs) Calculated Gutter Flow Cross-Sectional Area,A(;: 0.24 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.39 ftZ Calculated Gutter Flow Wetted Perimeter,PG: 1.51 ft Calculated Pavement Flow Wetted Perimeter,PP: 5.07 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.16 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.08 ft Calculated Velocity of Flow for Gutter&Pavement Composite Section,VGIP: 1.94 fUsec NA2 2 8 610 0 910 4 DesignlCalcs\Storm WaleNnlel Interception AnalysesUnlel-NR-04_On-Grade_Basin-NR-04_25-YRA& Page 2 of 4 Morrison EN Maierle enginae.. .u.veyur. ylunncr. uienliss CALCULATE I INTERCEPTION CAPACITY / ON-GRADE / . RatioCalculate of Inlet Frontal Flow to Total Gutter Flow,EO: Qx, W 2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow E = 1— 1—— where: 3 ° — Or. T QG=Total Gutter Flow(ft/sec) Ow=Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG.P: 6.32 ft = 75.85 in calculated Ratio o . . I TotalCalculated D•. I Calculate of Inlet Side Flow to Total Gutter Flow,Es: E Qs 1—QW °= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG QG Qs=Flow Along Side(ft3lsec) . Ratio o I . Calculated Total Flow Along Side of Depressed Gutter or Grate,Qs."_ I Calculate o of Frontal Flow Intercepted to Total Rf = 1—0.09(VG—VO) where: R1=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) VG=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.94 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,VG: 9.96 ft/sec P-1-7/8 Style Grate 13 EXAMPLE: � 12 v GIVEN: RETICULINE GRATE d II L= 3FT V V- 8 FT/S \1t� y to FIND: Rf= 0.81 LU Q� C 9 C. 8 �I r d v t6 L0 O �\ 6 •( P -------- 3 i 4 0 f0 i h i i LL 2 P4 C d O 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 M LENGTH OF GRATE L (F11 Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) N:122861009104 DesignlCalcslStorm Waterllnlet Interception Analysesllnlet-NR-04_On-Grade_Bash-NR-04_25-YR.xlsx Page 3 of 4 Morrison Maierle enyin eti•xu.vuyux.ylennvix •xix ru+fix RatioCalculate ofInlet •' Flow Intercepted to Total .' Flow,IRS: R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 1+0.15 Vc 1.e VG=Velocity of Flow in the Gutter(ft/sec) SP L 12.3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.94 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Li: 35.00 in = 2.92 ft . . .I M M FIT11111.1r.Calculate Efficiency of Grate,E: E =RfEO +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rt: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.51 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.42 _ InterceptionCalculate Inlet Q Q, = EQG where: Qi=Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.71 Total Gutter Flow,QG: 1.24 ft3/sec(cfs) Calculated Inlet InterceptionCapacity, 1 NA22881009104 DesignlCalcs\Storm Waterllnlel Interception Analysesllnlet-NR-04_On-Grade_Basin-NR-04_25-YR.xlsx Page 4 of 4 �® Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-05 Storm Drain Inlet #SDI-NR-05 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS °°3/4• CURB BOX ADJUSTABLE S-TO S- 76 1/4' 5 9/4' 77 3/4' 1 I/A' 2R' 11/2' 1�-11/4' r2• �11� Y iDESIGN CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = r 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= r 1.00 in = r 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,nP Depth,Calculate Gutter Flow • • - • Perimeter Manning's Formula: _ 1.486 A513 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q 71 P211 SL where: in= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or so P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment(Qj) Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3,00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 1.66 in = 0.14 ft Spread of Flow on Pavement,TP: 55.39 in = 4.62 It Longitudinal Slope of Pavement,SP=SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,AP: 46.03 in' = 0.32 ft2 Calculated Wetted Perimeter Over Pavement,PP: 57.08 in = 4.76 It NA22861009104 Design\CalcslStorrn Waterllnlet Interception Analysesllnlet-NR-05_On-Grade_Basin-NR-05_25-YR.xlsx Page 1 of 4 Morrison sibb Maierle angiwen.......... Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG.P: 2.66 in = 0.22 ft Spread of Flow in Gutter&Pavement Composite Section,To.p: 39.93 in = 3.33 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fUft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 53.14 in = 0.37 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG+P: 42.68 in = 3.56 ft Calculate Flow Within Gutter&Pavement Overlap Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG: 1.66 in = 0.14 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 24.93 in = 2.08 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 20.71 in = 0.14 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 26,64 in = 2.22 ft Calculate Total Gutter Flow(Qc,) Basin Design Peak Plow,QP: 1.032 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,YW: 2.66 in = 0.22 ft QG=Q1+Q2-Q3 where: QG= Basin Design Peak Flow,QP= 1.032 ft/sec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.23 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.32 ft2 Calculated Gutter Flow Wetted Perimeter,PG: 1.49 ft Calculated Pavement Flow Wetted Perimeter,Pp: 4.62 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.15 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.07 ft .;:�IEi+I:��. �i�jilklilr•.�taIlF.ii�:,i.lri.:n�::i.`.!'[' • �. •�` ia,,.t_�r. N:J22861009104 DesignlCalcslStorm Waterllnlet Interception Analyses\Inlet-NR-05_On-Grade_Basin-NR-05_25-YR.xlsx Page 2 of 4 Morrison Maierle enyiii a.s s�ivcyVrs Vluniicis scia.iiisas RatioCALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate 1Inlet FrontalFlow-to QW w\2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow ° — E = 1— 1—— where: 3 Or T QG=Total Gutter Flow(ft/sec) Ow=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft I ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG-P: 5.87 ft = 70.39 in iCalculated Ratio . 1 Calculated Total1 Width1 DepressedGutteror --- -- 1 Calculate o of Inlet Side Flow to TotalFlow, E QS 1—QW °= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG QG Os=Flow Along Side(ft/sec) Calculated Ratio o . 1Total GutterFlow, 1 Calculated Total Flow Along Side of Depressed . 1 . Calculate o of FrontalFlow Intercepted 1Total FrontalFlow, Rf = 1—0.09(VG —V°) where: Rr=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ftlsec) Velocity of Flow in the Gutter,VG: 1.85 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate EXAMPLE: 12 C GIVEN: RETICULINE GRATE d) I I L= 3 FT V V. 8 FT/S `110 Ww 10 FIND: Rf= 0.81 C 9 tP 'CL C1 [` 7 G! ca ate' ,f+ rl•J C P �\ C 6 P ----P--- 3 M O 5 a5 // of s 4 / 0 dw / h to LIL 2 PF C ; O 0 O 1 2 3 4 0 O.1 02 0.3 0.4 05 0.6 0.7 0.6 0.9 LO r0 L V' LENGTH OF GRATE L IM Rf Source: Urban Drainage Design Manual-HEC-22,Second Edition (U.S.Federal Highway Administration,August 2001) N:\2286\009104 0esign\Ca1cs\Storm WaleAlnlet Interception Analyses\Inlet-NR-05_On-Grade_Basin-NR-05_25-YR.xlsx Page 3 of 4 L Morrison so l Maierle rnyiu ars wivcyur. Vluiuie uirtii is RatioCalculate ofInletSide Flow Intercepted to Total /' Flow,RS: R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15 V "8 VG=Velocity of Flow in the Gutter(ft/sec) 1+ S z.3 Sp=Transverse Slope of Pavement(ft/ft)P Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.85 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ftlft Length of Inlet Grate,LI: 35.00 in = 2.92 ft Calculate Efficiency of Grate,E: E =RfEo+Rs(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.54 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.44 Calculate Inlet Interception Capacity, Q, = EQG where: Qi=Inlet Interception Capacity(ftalsec) Efficiency of Grate,E: 0.74 Total Gutter Flow,QG: 1.03 fOlsec(cfs) Calculated Inlet InterceptionCapacity, I N1228 009N DesignlCalcOtorm WateAlnlet Interception Analyses\Inlet-NR-05_0n-Grade_Basin-NR-05_25-YR.xlsx Page 4 of 4 Elm Morrison IlIlllill Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-06 Storm Drain Inlet #SDI-NR-06 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS a� 30 1/4' CURB BOX ADJUSTABLE i"TOO' 761/4' 173/4' �• 2W 1 13• 47• �11-�I CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dr,= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,nP Calculate Gutter FloW Depth,- • • • • Perimeter Manning's Formula: _ 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q n P2/3 'SL where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or so P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment e Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 1.81 in = 0.15 ft Spread of Flow on Pavement,TP: 60.18 in = 5.02 ft Longitudinal Slope of Pavement,SP=SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,AP: 54.33 in = 0.38 ft2 Calculated Wetted Perimeter Over Pavement,PP: 62.02 in = 5.17 ft NA22861009104 Design\Calcs\Storm WateAhlet Interception Analyses\Inlet-NR-06_On-Grade_Basin-NR•06_25-YR.xlsx Page 1 of 4 Morrison Maierle an9inlers uirey�ii ylaiui.i. ri.int Flow In Gutter withOverlap ofPavement Encroachment ! Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ftlft Depth of Flow Over Gutter,YW: 2.81 in = 0.23 ft Spread of Flow in Gutter&Pavement Composite Section,Tc,P: 42.08 in = 3.51 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fuft Calculated Flow Area Over Gutter&Pavement Composite Section,AW: 59.03 in = 0.41 fe Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG*P: 44.98 in = 3.75 ft r i • /1 1 ! Calculate Flow Within Gutter&Pavement Overlap Area ! Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yc: 1.81 in = 0.15 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 27.08 in = 2.26 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 f ift Calculated Flow Area Within Gutter&Pavement Overlap Section,AO: 24.45 in' = 0.17 ft2 Calculated Wetted Perimeter Within Gutter Pavement Overlap Section,Po: 28.95 in = 2.41 It IL. I ------------- Calculate Total Gutter FIO%QG) "OW-_ Basin Design Peak Plow,Qp: 1.214 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,yG,p: 2.81 in = 0.23 ft QG=Qt+Q2-Q3 where: QG= Basin Design Peak Flow,Qp= 1.214 ft3lsec(cfs) ���:IfdrlEalI�`f�SttQe1(tli:lir(/y;�F j1�� Calculated Gutter Flow Cross-Sectional Area,AG: 0.24 ft2 Calculated Pavement Flow Cross-Sectional Area,Ap: 0.38 ftZ Calculated Gutter Flow Wetted Perimeter,PG: 1.51 ft Calculated Pavement Flow Wetted Perimeter,Pp: 5.02 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.16 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.08 ft ��-ll+:lil("' �:c�'�'Ic=liils;�� 1IR6=�[/l rfllil(=16•-s.�_-�i=11' 1 1/ 1 NA2286W09t04 DesignlCalcslStorm Waler,lnlet Interception AnalyseMInlet-NR-06_On-Grade_Basln-NR-06_25-YR.xlsx Page 2 of 4 Morrison Maierle euyiu ers surveyors u�iins+ sceilisrs INTERCEPTIONCALCULATE INLET A 'A ON-GRADE INLET Calculate o of Inlet Frontal . .Total Gutter Flow, W 2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow & where: E° =Or. = 1— 1—T QG=Total Gutter Flow(ft3/sec) Qw=Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft I ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG.P: 6.27 ft = 75.18 in Calanwilowof Inlet Frontal Flow to Total Gutter Flow,ED: 0.51 Calculated Total Flow In Width of D•. 1 Calculate Ratio of E Qs 1—Qw = 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG QG ° Qs=Flow Along Side(ft3lsec) Calculated f . . I .49 Calculated Total Flow Along Side of Depressed Gutter or Grate, e I Calculate o of Frontal Flow Intercepted to Total Frontal Flow,Rf; R f = 1—0.09M —V°) where: Rr=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.93 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate 13 EXAMPLE: > 12 C GIVEN: RETICULINE GRATE d 11 L= 3 FT V V- 8 FT/S \11$ Wy 10 FIND: Rf= 0.81 Q� r O 9 CLmo a c 3 A \ h L 7 Q, I0 Jo \P Ocj O = a 5 LL V Qi 1 x 4 6 ih a VJ , 0 LL 2 P C � d O 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 (7 LENGTH OF GRATE L IFTI Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) N:\2286\009\04 Design\Calcs\Storm Water\Inlet Interception Analyses\Inlet-NR-06_0n-Grade_Basin-NR-06_25-YR.xlsx Page 3 of 4 Morrison Maierle uiyiii rr. cui veyur yl.niaiv aaia riri.l� RatioCalculate 1Inlett' Flow Intercepted to Total .' Flow, R — 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15 VO1'g VG=Velocity of Flow in the Gutter(fUsec) 1+ SP 2.3 Sp=Transverse Slope of Pavement(ftlft) LI=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.93 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Li: 35.00 in — 2.92 ft -. • . • Calculate Efficiency of Grate,E: E =RfEo +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.51 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.42 GMERMciency of -Admilk& - — Calculate Inlet Interception Capacity, ! Qr =EQG where: Qi= Inlet Interception Capacity(ft3lsec) Efficiency of Grate,E: 0.72 Total Gutter Flow,QG: 1.21 113lsec(cfs) CalculatedInlet InterceptionCapacity, ! NA22861009104 Design\CalcslStorm WateAlnlet Interception Analyses\Inlet-NR-06_On-Grade_Basin-NR-06_25-YR.xlsx Page 4 of 4 W. Morrison iiiiiiiii Maierle enyin ens suiveyur vlunnris sc.l..s INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-07 Storm Drain Inlet #SDI-NR-07 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) ,INLET CHARACTERISTICS 30 3/4• CURB BOX ADJUSTABLE 6-TO i' 95 1/4' 5$/4' �— 17 3/q' �� --F-1 1/2' 1.-11/q' .-11/7' 1 I 33 A3' 31' 'DESIGN CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= in = 1.25 it Slope of Gutter at Inlet,SG= Depth of Gutter at Inlet,dr,= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,nG= 0.016 Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, • • - • Perimeter Manning's Formula: _ 1.4136 As�3 Q=Total Flow in Given Cross-Sectional Area(ft'/sec) Q 71 p2/3 SL where: n= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or so P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment • Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 1.52 in = 0.13 ft Spread of Flow on Pavement,TP: 50,70 in = 4.23 It Longitudinal Slope of Pavement,SP=SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,Ap: 38.56 in = 0.27 ft2 Calculated Wetted Perimeter Over Pavement,PP: 52.24 in = 4.35 ft NA22861009\04 Design\CaIWStorm Water\Inlet Interception Ana1yses\In1et-NR-07_0n-Grade_Bas1n-NR-07_25-YR.xlsx Page 1 of 4 Morrison mi Maierle eiy'iiieer. au,cyur ul.iiiei acia iiiat. Calculate Flow In Gutter with Overlap ofPavement Encroachment Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG•P: 2.52 in = 0.21 ft Spread of Flow in Gutter&Pavement Composite Section,TG,P: 37.82 in = 3.15 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 47.67 in' = 0.33 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG,P: 40.42 in = 3.37 ft Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG: 1.52 in = 0.13 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 22.82 in = 1.90 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 Tuft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ac: 17.35 in = 0.12 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 24.39 in = 2.03 ft Gi&ulate Total GqWr Flow • Basin Design Peak Plow,QP: 0.872 ft/sec(cfs) Calculated Total Depth of Flow Over Gutter,yG,P: 2.52 in = 0.21 ft Q,=Q,+Q,-Q, where: QG= Basin Design Peak Flow,QP= 0.872 ft3lsec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.21 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.27 ft2 Calculated Gutter Flow Wetted Perimeter,PG: 1.48 ft Calculated Pavement Flow Wetted Perimeter,PP: 4.23 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.14 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.06 ft i t-Ir.tt' 1:`Illiw.ll'..L'11.1-i,aa...�`1iSJ. �• • 1 17 Calculated Velocity of Flow for Gutter&Pavement Composite Section,VGp: 1.78 fUsec N922861009104 DesignlCalcs\Stornn WateNnlet Interception Analyses\Inlet-NR-07_On-Grade_Basin-NR-07_25-YR.xlsx Page 2 of 4 Morrison Maierle 'CALCULATE INLET INTERCEPTION CAPACITY ON-GRADE INLET Calculate of Inlet Frontal Flow to Total Gutter Flow,E0.. / w\ where:2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow E Q"�— 1—I`1—On T—/I QG=Total Gutter Flow(ft3Isec) Qw=Flow in Width 0/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG«P: 5.48 ft = 65.70 in . . - 1 — Calculated Total Flow in Width of Depressed Gutter or Grate,Qw: 0.50 felsec(cfs) Calculate o of Inlet Side Flow to Total y ES =QS = 1—Qw = 1—Ep where: Es=Ratio of Side Flow to Total Gutter Flow QG QG Qs=Flow Along Side(ft Isec) Calculated . . 1 .43 Calculated Total Flow Along Side of D•. 1 jCalculate Ratio . .ntal Flow Intercepted to Total Frontal Flow,Rf: R f = 1—0.09(VG—Vo) where: R1=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.78 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ftlsec P-1-718 Style Grate uH 13 EXAMPLE: � 12 GIVEN: RETICULINE GRATE G II L- 3FT V V- 8 FT/5 `1t0 ;k y 10 FIND: Rf= 0.81 Q/ W 0 9 yPa 0 . %P a C. .. lO o PP C W 6 ' 0 5 ag // \ 9 O LL U C m _ x 4 b lC a / ' 0 O U. 2 N� d I i ry \ C y 0 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1-0 L U' LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) N:1228009\04 DesignlCalcs\Storm Waterllnlet Interception Analyses\Inlet-NR-07_On-Grade_Basin-NR-07_25-YR.xlsx Page 3 Of 4 Morrison Maierle snyin ns ..."Y", yl+nne.s .ueiuts Calculate Ratio of Inlet Side Flow Intercepted to Total Side Flow,RS: R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15V 1'a VG=Velocity of Flow in the Gutter(ft/sec) G 1+ SP L I 2.3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.78 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 it . • . . . _. . .• Calculate Efficiency of Grate,E: E =RfEo+Rs(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rl: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.57 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.45 ti } 4. . .. 0.76 InterceptionCalculate Inlet •. ! Q7 =EQG where: Qi=Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.76 Total Gutter Flow,Qc,: 0.87 fta/sec(cfs) Calculated Inlet Interception Capacity, ! I N122861009104 DesignlCalcMtorm WaleNnlet Interception AnalysesUnlet-NR-07_On-Grade_Basin-NR-07_25-YR.x1sx Page 4 of 4 M; Morrison MIMI Maierle engineers surveyors Vlenneis ruc.iVts INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-08 FUTURE Storm Drain Inlet #SDI-NR-08A Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) IINLET CHARACTERISTICS 30 3/4' I CUBE BOX ADJUSTABLE•'TO/- 15 1/4' 7314- �1 � /2{�-- �.I 1 ' I Ir-1 1/4' L; r DESIGN CONSTANTS 1 13' Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp= 3.00% Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wt= 17.75 in = F 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.00 in = r 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, • • - • Perimeter Manning's Formula: 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q= 71 P2�3 SL where: n= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) EncroachmentCalculate Flow Across Pavement e Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0,0300 ft/ft Depth of Flow at Edge of Pavement,yp: 1.78 in = 0.15 ft Spread of Flow on Pavement,Tp: 59.45 in = 4.95 ft Longitudinal Slope of Pavement,Sp=SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,AP: 53.02 in2 = 0.37 ft' Calculated Wetted Perimeter Over Pavement,PP: 61.26 in = 5.11 ft - . ' . t NA22861009M De sign\Calcs\Storm Waterllnlet Interception Analyses\Inlet-NR-08A_On-Grade_Basln-NR-08_25-YR,xlsx Page 1 of 4 L Morrison ME Mom Maierle enyin.ers currcyurs ulannu,i sueniurs OverlapCalculate Flow In Gutter with of Pavement Encroachmentw Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,Sc: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG+P: 2.78 in = 0.23 ft Spread of Flow in Gutter&Pavement Composite Section,TG+p: 41.75 in = 3.48 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fUft Calculated Flow Area Over Gutter&Pavement Composite Section,Ar,+p: 58.11 in = 0.40 ft Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,Pc p: 44.63 in = 3.72 ft � u-i! OverlapCalculate Flow Within Gutter&Pavement Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG: 1.78 in = 0.15 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 26.75 in = 2.23 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fUft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 23.86 in = 0.17 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 28.60 in = 2.38 ft aEi- lldtlf;lt:ihI . k 4iiilfi�cLltt I datai laihsi'�-l�kl�&G9t=t;hswtt Calculate Total Gutter Flow e Basin Design Peak Plow,Qp: 1.185 ft'Isec(cfs) Calculated Total Depth of Flow Over Gutter,yG+P: 2.78 in = 0.23 ft QG=Qt+QZ-Q, where: QC= Basin Design Peak Flow,Qp= 1.185 ft/sec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.24 ftZ Calculated Pavement Flow Cross-Sectional Area,Ap: 0.37 ft' T-MITU .,.x7a. :r .t ..: "rr Calculated Gutter Flow Wetted Perimeter,PG: 1.50 ft Calculated Pavement Flow Wetted Perimeter,Pp: 4.96 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.16 ft Calculated Pavement Flow Hydraulic Radius,Rip: 0.07 ft O;,�a�:lranCfr�1,Y12�fr:t�ift�:�:t�fit��r,7��i�iita���:�rdaiila,i�`i�i�il>•1:�It=�Y�latt�ii�:'- _ _..--- ;,�,�;� CompositeCalculated Velocity of Flow for Gutter&Pavement N122861009104 DesignTalc0torm Waterllnlet Interception Analyses\Inlet-NR-08A_On-Grade_Basin-NR-08_25-YR.xlsx Page 2 of 4 Morrison Maierle INTERCEPTIONCALCULATE INLET ON-GRADE INLET Calculate of Inlet Frontal Flow to Total Gutter Flow,EO: E QW— 1— 1— where:W\2.6� Eo=Ratio of Frontal Flow to Total Gutter Flow — ° 0r T OG=Total Gutter Flow(fta/sec) Ow=Flow in Width(W/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,Tr,,P: 6.20 It = 74.45 in Calculated Ratio o . . 1 Calculated Total Flow in Width of Depressed Gutter or Grate,Qw: .52 Calculate of Inlet Side Flow to Total Gutter Flow,ES; E QS 1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow S QG QG ° Os=Flow Along Side(ft3/sec) } Calculated Ratio . 1 . AlongCalculated Total Flow Depressed 1 Calculate o of Frontal Flow Intercepted to Total Frontal Flow, R f = 1—0.09(VG—V°) where: Rr=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow In the Gutter,Vr: 1.92 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate 13 EXAMPLE: � 1z C GIVEN: RETICULINE GRATE 47 II L= 3 FT V Va 8 FT/5 \1►e 4: y 10 FIND: Rf= 0.81 2� LLI C 9 CL V 7 1l0 p Jr/ �a 6 M 3 ; O 5 IL U C x 4 6 -M ,h C y L. p U. 2 Q C ; d 0 0 I 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 V 0 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22,Second Edition (U.S.Federal Highway Administration,August 2001) W22861009104 DesignlCalcs\Storm Waterllnlel Interception Analysesllnlet-NR-08A_On-Grade3asln-NR-08_25-YR.xlsx Page 3 of 4 Morrison Maierle viryiir ei. +ui r.yur. ulsinr.r. ...errlr... RatioCalculate 1Inlet1' Flow Intercepted I Total I' Flow, R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15V6 l.8 VG=Velocity of Flow in the Gutter(fVsec) 1+ SP /2.3 Sp=Transverse Slope of Pavement(f/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.92 fUsec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Li: 35.00 in = 2.92 ft Calculat-1 - -. . , -� - -1 / / .- . - - t - - - - Calculate Efficiency of Grate,E: E =RfEo+RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.52 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.42 Calculate Inlet Interception Capacity,QI: Q, =EQc where: Qi=Inlet Interception Capacity(ft'/sec) Efficiency of Grate,E: 0.72 Total Gutter Flow,QG: 1.18 ft/sec(cfs) Capacity,Calculated Inlet Interception ! 1 N:122861009104 DesignlCalcslStorm Wateftlet Interception Analyses\Inlet-NR-OBA_On-Grade_Basin-NR-08_25-YR.xlsx Page 4 of 4 Morrison iiiiii i Maierle miyniee:, ,mvayms-Vlnners wr:rtua INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-09 Storm Drain Inlet #SDI-NR-08 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 30 3/4' CUNB 90X ADJUSTABLE B'TO i' rr 35 1/4' 5 S/4' 1 IlA� 2R I'_7 vz 1-1 1/4 d SS' AS' SI' DESIGN CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,Wc;= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,L, r 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,nP Calculate Gutter Flow / -pWetted-Perimeter Manning's Formula: _ 1.486 As,3 Q=Total Flow in Given Cross-Sectional Area(fta/sec) Q 71 P2/3 Sr where: n= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(N) EncroachmentCalculate Flow Across Pavement Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 1.74 in = 0.15 ft Spread of Flow on Pavement,TP: 58.04 in = 4.84 ft Longitudinal Slope of Pavement,SP=Sc: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,AP: 50.52 in = 0.35 ft2 Calculated Wetted Perimeter Over Pavement,PP: 59.80 in = 4,98 ft WCalculated Flow Across Pavement Encroachment,01:—" t N:122861009104 DesignlCalc0torm Waterllnlet Interception Analysesllniet-NR-08_On-Grade_Basin-NR-09_25-YR.xlsx Page 1 of 4 Morrison Maierle enyin ers tur viy�ra ulirrrii ii i..iri.ii Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ftlft Depth of Flow Over Gutter,yG.P: 2.74 in = 0.23 ft Spread of Flow in Gutter&Pavement Composite Section,TG,P: 41.12 in = 3.43 it Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fvft Calculated Flow Area Over Gutter&Pavement Composite Section,AG,P: 56.35 in = 0.39 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 43.95 in = 3.66 ft • • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fVft Depth of Flow Over Gutter,yG: 1.74 in = 0.15 It Spread of Flow within Gutter&Pavement Overlap Section,To: 26.12 in = 2.18 It Longitudinal Slope of Gutter,Sc,: 1.00% = 0,0100 fult Calculated Flow Area Within Gutter&Pavement Overlap Section,AO: 22.74 in' = 0.16 it Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 27.92 in = 2.33 ft t . Basin Design Peak Plow,QP: 1.130 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,yG+P: 2.74 in = 0.23 ft QG=Qt+Q2-Q3 where: QC= Basin Design Peak Flow,QP= 1.130 ft3lsec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 013 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.35 ft2 Calculated Gutter Flow Wetted Perimeter,PG: 1.50 ft Calculated Pavement Flow Wetted Perimeter,PP: 4.84 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.16 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.07 ft Calculated Hydraulic Radius for 0.09 ft N12280004 Design\Calcs\Storm WaleNnlet Interception Analyses\Inlet-NR-06_On-Grade_Basin-NR-09_25-YR.xlsx Page 2 of 4 Morrison Maierle engin ers suveyui -VI_nneia xa,iri.a I I TE INLET INTERCEPTION CAPACITY ON-GRADE 1I RatioCalculate of Inlet Frontal Flow to Total Gutter Flow,EO: Qw / yvl2•67 Eo=Ratio of Frontal Flow to Total Gutter Flow 0r T E — 1—I`1——/I where: 3 ° QG=Total Gutter Flow(ft/sec) Qw=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TGIP: 6.09 ft = 73.04 in . Ratio o . . o 1 —calculate -— Calculated Total Flow in Width of Depressed Gutter or Grate,Qw: .52 Calculate of Inlet Side Flow to Total Gutter Flow,Es: E Qs °1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG QG Qs=Flow Along Side(ft3/sec) Calculated 1 . . 1 Calculated Total Flow Along Side of D•. 1 Calculate of Frontal Flow Intercepted to Total Frontal Flow,Rf: Rf =1—0.09M—V°) where: RI=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ftlsec) Velocity of Flow in the Gutter,VG: 1.90 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-718 Style Grate Xalculated Ratio o •. to to Total Gutter Flow, 13 EXAMPLE: � 12 C GIVEN: RETICULINE GRATE 0! 11 L= 3 FT V V 8 FT/S \11� W w 10 FIND: Rq= 0.81 Q� C 9 JP��O�i C. c 8 V �,Q � Cf I10 6 F� ------'`- ------- ------ 3 0 M.- 5 V O _ x 4 6 / rh C d W , 0 � LL 2 I � C ; d o •F' 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 f0 0 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) N:122861009104 DesignlCalcslStorm WateAlnlet Interception Analyses)Inlet-NR-08_0n-Grade_Basin-NR-09_25-YR.xlsx Page 3 of 4 Morrison Maierle enyiiieett-iuivcyurt Vln..ne.• ........... RatioCalculate 1Inlet1' Flow Intercepted to Total 1' Flow, R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15Vc 1.B VG=Velocity of Flow in the Gutter(fUsec) 1+ SP L I 2.3 Sp=Transverse Slope of Pavement(ft/ft) LI=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.90 fUsec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 ft -1 - 1 1 1 1 . 1 — 1 — — .41 Calculate Efficiency of Grate,E: E =RfEO +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rt: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.52 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.43 I gum Calculate Inlet Interception Capacity,Qj: Qy = EQc where: QI=Inlet Interception Capacity(ft'/sec) Efficiency of Grate,E: 0.73 Total Gutter Flow,QG: 1.13 ft'/sec(cfs) Calcul 1Inlet InterceptionCapacity,Q 1 NV2881009M DesignlcalcslStorm Waterllnlet Interception Analysesllnlet-NR-08_On-Grade_Basin-NR-09_25-YR.xlsx Page 4 of 4 Morrison Maierle .aia iui , VI,iVi• ,c.•iilillf INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-10 Storm Drain Inlet #SDI-NR-09 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET CURB BOX ADJUSTABLE t'TO D' 95 1/<' �. 5 /4• •- 177/4• /► —'I 1r1 vz• 1 —I `1 v4• r2 .-11n• / n 1 4. Lj 1 33• 4a• „ CONSTANTSDESIGN Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 It Slope of Gutter at Inlet,SG= Depth of Gutter at Inlet,dG= 1.00 in = 0.06 ft Manning's Roughness Width of Inlet Grate,Wl= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np= 0.016 Calculate Gutter Flow Depth, Cross-SectionalWetted Perimeter Manning's Formula: _ 1.4B6 A5/3 Q=Total Flow in Given Cross-Sectional Area(Osec) Q_ 71 7/3 SL where: n= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) EncroachmentCalculate Flow Across Pavement e Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 f ift Depth of Flow at Edge of Pavement,yP: 0.88 in = 0.07 ft Spread of Flow on Pavement,TP: 29.40 in = 2.45 ft Longitudinal Slope of Pavement,SP=SG: 1.00% = 0.0100 fyft Calculated Flow Area Over Pavement,AP: 12.96 in = 0.09 ft, Calculated Wetted Perimeter Over Pavement,PP: 30.29 in = 2.52 ft c. i N:122861009104 Design\Calcs\Storm Waterllnlet Interception Analysesllnlet-NR-09_On-Grade_Basin-NR-10_25-YR.xlsx Page 1 of Morrison miw& Maierle e^yin en ,w veyui Nla nnen um.nisu e . 4111426TEMM Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG.P: 1.88 in = 0.16 ft Spread of Flow in Gutter&Pavement Composite Section,TG«P: 28.23 in = 2.35 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fuft Calculated Flow Area Over Gutter&Pavement Composite Section,AG,P: 26.56 in = 0.18 fe Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 30.17 in = 2.51 ft Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG: 0.88 in = 0.07 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 13.23 in = 1.10 it Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fyft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 5.83 in' = 0.04 ft' Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 14.14 in = 1.18 ft P- Calculate Total Gutter Flow(QG) Basin Design Peak Plow,QP: 0.351 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,yG,P: 1.88 in = 0.16 ft QG=QI+Qz-Q3 where: QG= Basin Design Peak Flow,QP= 0.351 ft3lsec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.14 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.09 ft2 iY,�.�:ue�Yir.lj:�eY.'Ste:ly�':isk;elu�lYlll:lp'Er:!'Laill:lljSifiellilolel-fl(:t�=iFi�lelil 1 Calculated Gutter Flow Wetted Perimeter,PG: 1.42 ft Calculated Pavement Flow Wetted Perimeter,PP: 2.45 ft Calculated Gutter Flow Hydraulic Radius,Ro: 0.10 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.04 ft MWIWFTR I IT. 1 Mini 1 1 1 1 i r e Calculated Velocity of Composite Section,VGIP: 1.43 ft/sec N:122861009104 DesignlCalcslStorm Waterllnlet Interception Analyses\Inlet-NR-09_On-Grade_Basin-NR-10_25-YR.xlsx Page 2 of 4 Morrison ME Mimi Maierle engineers turvvyun ylannvr uienrn,. RatioCALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate f Inlet 1 / Frontal\ Flow to TotalFlow, E Qw= 1—I 1—w J2 67 where: Eo=Ratio of Frontal Flow to Total Gutter Flow ° — Or ` T Oc=Total Gutter Flow(ft/sec) Ow=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 It r Total Spread of Water Over the Gutter&Pavement,T6+P: 3.70 ft = 44.40 in Calculated Ratio 1 Inlet Frontal1 TotalFlow, I Calculated .74 otal Flow in Width1 Depressed Gutter or Grate, t Calculate o of Inlet SideTotal E QS 1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow S QG QG ° Os=Flow Along Side(ft3/sec) d Ratio . 1 1 0.26 Calculated Total . Along Side of Depressed Gutter . 119 Calculate Ratio 1 Frontal . 1 r to Total Frontal Rf = 1—0.09(VG—V°) where: Rf=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(fVsec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.43 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9796 ft/sec I P-1-7/8 Style Grate rTalculate. Ratio . 1 Intercepted to to TotalII 13 EXAMPLE: 1+ 12 V GIVEN: RETICULINE GRATE d I I L- 3 FT V V 8 FT/S \1t0 Wy 10 FIND: Rf= 0.81 C 9 9 yp��0i F 7 a0+ In > 6 --------- ------- ------ - - --- - - '- -- 3 �0 •%\ \ 0 o /, r 0 r 1 _ x 4 6 � a i ` i ram+ r ti d 0 w 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 10 L 0 LENGTH OF GRATE L (FT) Rf Source: Urban Drainaoe Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) N:12286\009\04 Design\Calcs\Storm Walerilnlet Interception Analyses\Inlet-NR-09_On-Grade_Basin-NR-10_25-YR.xlsx Page 3 of 4 Morrison �i Maierle eiiyiieer -Dui viyury ylaiineiv vcieii llry RatioCalculate ofInlet1' Flow Intercepted to Total •' Flow, _ 1 Rs=Ratio of Side Flow Intercepted to Total Side Flow Rs 1+0.15V 1'a where: VG=Velocity of Flow in the Gutter(fYsec) SPLf 2.3 SP=Transverse Slope of Pavement(ft/ft) LI=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.43 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 ft Calculate Efficiency of Grate,E: E = RfEo+RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.74 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.55 AL Calculate Inlet Interception Capacity, Qy = EQG where: Qi=Inlet Interception Capacity(ft3lsec) Efficiency of Grate,E: 0.89 Total Gutter Flow,QG: 0.35 ft3lsec(cfs) Calculated Inlet Interception N:122881009N Design\Calcs\Storm Waterdnlet Interception Analyses\Inlet-NR-09_On-Grade_Basin-NR-10_25-YR.xlsx Page 4 of 4 Morrison iliiiiiii Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin NL-11 I Inlet #SDI-PL-04 Post-Development Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS _ c, _ 30 3/4' CURB BOX ADJUSTABLEW TO 81 +— 17 314' • 11/2' I I�-11/4' � r2• —I i/ - - - - f v. 43' Imo— 31'�I CONSTANTSDESIGN Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= in = 1.25 it Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nc Length of Inlet Grate,Li= 35.25 in = 2-9 41 ft Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET •• ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Q1-w =CWPGYd 1.5 where Qi.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd= Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.25 ft = 2.98 in Perimeter of Grate,PG= 3.6 ft Weir-Inlet Interception Capacity,Q1-w= 1.48 cfs = 662.25 gpm Calculate Capacity of Grate Inlet Operating as an Orifice Qr-o =COAG(29Yd)o-s where Qi.o= Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft`) g=Gravitational Constant(ft/sec) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.25 ft = 2.98 in Clear Opening Area of Grate,AG= 1.81 ft` Orifice-Inlet Interception Capacity,Ql.o= 5.06 cfs = 2269.51 1gpm Gravitational Constant,g= 32.17 ttlsec- Page 1 of 2 N:122861009104 DesigricaicslSlomt Waterllnlet Interception Analysesllnlet-PL-04_Sag_Basin-NR.PL-01_25-YR.xlsx Printed On:3/11/2019-1:46 AM Morrison lll�Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin NL-11 I Inlet #SDI-PL-04 INTERCEPTIONDESIGN INLET PONDED INLET Calculate Design Inlet Interception Capacity QP where Qi=Design Inlet Interception Capacity(cfs) Qr -E Qp= Design Peak Storm Runoff to Inlet(cfs) c Ec= Inlet Grate Efficiency(%) Design Storm Runoff to Inlet,Qd= 1.18 cfs Inlet Grate Efficiency,Eo= 80% Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 1.48 CIS Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff • by Inlet,Qd 1.18 cfs Calculate Inlet Interception Capacities for Various Runoff Depths AboveWater Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Q'I,wo Inlet Capacity,• • 0.05 80% 0.13 0.11 2.27 1.81 0.11 0.10 80% 0.38 0.30 3.21 2.56 0.30 0.15 80% 0.69 0.55 3.93 3.14 0.55 0.20 80% 1.06 0.85 4.53 3.63 0.85 0.25 80% 1.49 1.19 5.07 4.06 1.19 0.30 80% 1.95 1.56 5.55 4.44 1.56 0.40 80% 3.01 2.41 6.41 5.13 2.41 0.50 80% 4.21 3.36 7.17 5.74 3.36 0.75 80% 7.73 6.18 8.78 7.02 6.18 1.00 80% 11.89 9,52 10.14 8.11 8.11 Inlet Capacity Summary 14.00 I l 12.00 --- -- - I 10.00 i c8.00 - - -- --- -- - - Weir Operation or - Adjusted Weir Operation m v c- 6.00 - -- -- Orifice Operation u V -�E-Adjusted Orifice Operations I c - 4.00 Design Operation ( 2.00 - - -- 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 W22861009104 DesignlCalcslSlorm Waterllnlet Interception Analysesllnlet-PL-04_Sag-Basin-NR+PL-01_25-YR.xlsx Printed On:3/1112019-1:46 AM 00 Morrison Illll�Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin NL-12 I Inlet #SDI-PL-05 Post-Development Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WOual,2,5,10,25,50,or 100) INLET CHARACTERISTICS _ 30 3/4' CURB BOX ADJUSTABLE B'TO 8• 35 1/4' fi 3/4" 1 1/4``vvim�,,1III 2H 33" DESIGN CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 it Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,W(j= 15.00 in = 1.25 ft Slope of Gutter at Inlet,So Depth of Gutter at Inlet,dG= in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,LI= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—W =CWPGYd1.5 where O,.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Po=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.17 It = 1. 99 in Perimeter of Grate,PG= 3.60 ft Weir-Inlet Interception Capacity,Qi-w= 0.81 cfs = 361.33 gpm Calculate Capacity of Grate Inlet Operating as an Orifice Q/-0 = GAG(29yd)0'5 where Oi-o=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft`) g=Gravitational Constant(ftlsec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd Clear Opening Area of Grate,AG= 1.81 ft` Orifice-Inlet Interception Capacity,040= 4.13 cfs = 8854.51 gpm Gravitational Constant,g= 32.17 tt/sec` Page 1 of 2 N:122861009104 DesignlCalcslStoon Waterllnlet Interception Analysesllnlet-PL-05_Sag_Basin-NR+PL-02_25-YR.xlsx Printed On:3/11/2019-1:52 AM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin NL-12 I Inlet #SDI-PL-05 DESIGN INLET INTERCEPTIONPONDED INLET Calculate Design Inlet Interception Capacity QP where Q,= Design Inlet Interception Capacity(cfs) Qr - Ec Qp=Design Peak Storm Runoff to Inlet(cfs) Ec= Inlet Grate Efficiency(%) Design Storm Runoff to Inlet,Qd= 0.64 JcfS Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.81 CIS Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff • . by 0.64 Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity.Ql,w Inlet Capacity.Q'I.w Inlet Capacity,Q1.0 Inlet Capacity,Q'I.o Inlet Capacity,Q, 0.05 80% 0.13 0.11 2.27 1.81 0.11 0.10 80% 0.38 0.30 3.21 2.56 0.30 0.15 80% 0.69 0.55 3.93 3.14 0.55 0.20 80% 1.06 0.85 4.53 3.63 0.85 0.25 80% 1.49 1.19 5.07 4.06 1.19 0.30 80% 1.95 1.56 5.55 4.44 1.56 0.40 80% 3.01 2.41 6.41 5.13 2.41 0.50 80% 4.21 3.36 7.17 5.74 3.36 0.75 80% 7.73 6.18 8.78 7.02 6.18 1.00 80% 11.89 9.52 10.14 8.11 8,11 Inlet Capacity Summary 14.00 -----_ _ -- - - I I 12.00 10.00 - -- - N U 0 8,00 Weir Operation -#W-Adjusted Weir Operation c CL 6.00 -- -- --- Orifice Operation u `m -M-Adjusted Orifice Operations c 4.00 _._.___ -)� Design Operation 2.00 -- - - -- -- 0.00 -- --- - - 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:122661009104 DesignlCalc0 orm WateNnlet Interception Analysesllnlet-PL-05_Sag_Basin-NR+PL-02_25-YR.xlsx Printed On:3/11/2019-1:52 AM Morrison Iiiiiiiii Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-08 FUTURE Storm Drain Inlet #SDI-NR-08A Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET . �36 3/4' CUHH BOX ADJUSTABLE 6-TO 9- 36 1W 5 314• �` 1 vA• zrr _17_761 � 33' AV- CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,W(;= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = F 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Lt= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,nP Calculate Gutter Flow Depth, • • -• Perimeter Manning's Formula: 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft'/sec) Q=71 2�3 $� where: n= Manning's Roughness Coefficient A= Cross-Sectional Area of Flow(ft'or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) EncroachmentCalculate Flow Across Pavement Manning's Roughness Coefficient,ri 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 1.78 in = 0.15 ft Spread of Flow on Pavement,TP: 59.45 in = 4.95 ft Longitudinal Slope of Pavement,SP=So: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,AP: 53.02 in = 0.37 ft2 Calculated Wetted Perimeter Over Pavement,PP: 61.26 in = 5.11 ft Calculated Flow Across Pavement Encroachment,01: 1� I NA22861009104 Deslgn\CalcslStorm Waterllnlet Interception Analysesllnlet-NR-0BA—On-Grade_Basin-NR-08_25-YR.xlsx Page 1 of 4 Morrison iiiiiiiiiwii Maierle eiryin rn --y--Vlennara ursnisis Calculate Flow In Gutter with Overlap . Pavement Encroachment Manning's Roughness Coefficient,1 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fVft Depth of Flow Over Gutter,yG+P: 2.78 in = 0.23 it Spread of Flow in Gutter&Pavement Composite Section,T(;+P: 41.75 in = 3.48 it Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fvft Calculated Flow Area Over Gutter&Pavement Composite Section,AG+P: 58.11 in = 0.40 ft Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG+P: 44.63 in = 3.72 ft CompositeCalculated Flow Across Gutter&Pavement ----- t t' --- Calculate Flow Within Gutter&Pavement Overlap Area(Q3) Manning's Roughness Coefficient,ri 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fVft Depth of Flow Over Gutter,yc: 1.78 in = 0.15 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 26.75 in = 2.23 it Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 23.86 in' = 0.17 fe Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 28.60 in = 2.38 ft Calculate Total Gutter Flow e Basin Design Peak Plow,QP: r 1.1875 Osec(cfs) Calculated Total Depth of Flow Over Gutter,yG+P: 2.78 in = 0.23 ft QG=Q11+Qz-Q3 where: QG= Basin Design Peak Flow,Qp= 1.185 ft/sec(cfs) MEW Calculated Gutter Flow Cross-Sectional Area,AG: 0.24 ft2 Calculated Pavement Flow Cross-Sectional Area,Ap: 0.37 ft2 ItTi1CiY �l6:� yi(7i1lei_1f ii'.Y�r31Ti 1ju n-T..-, ggj...77i� 3i i1r t e Calculated Gutter Flow Wetted Perimeter,PG: 1.50 ft Calculated Pavement Flow Wetted Perimeter,Pi 4.96 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.16 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.07 ft e! �r . NA22861009104 Deslgn\Calcs\Storm Watertlnlet Interception Analyses\Inlet-NR-08A_On-Grade_Basin-NR-08_25-YR.xlsx Page 2 of 4 Morrison Maierle ciiyiri ei• ru,vryurs 41ei,n,.r. c,.i liar. CALCULATE INTERCEPTION CAPACITYON-GRADE RatioCalculate / Inlet FrontalFlow 1 TotalFlow, q2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow 6 = Qw— 1— 1— where: 3° Or: QG=Total Gutter Flow(ft lsec) Ow=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 It I l Total Spread of Water Over the Gutter&Pavement,TG.P: 6.20 ft = 74.45 in Calculated 1 . Inlet Frontal Flow to Total1 1 .52 Calculated Total Flow in Width of D•. r Calculate Ratio of 1 1 Total E (IS1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow S QG QG ° Qs=Flow Along Side(ft/sec) Calculated . . 1 . Calculated Total Flow Along Side of Depressedor Grate, t, 1 Calculate Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rf: Rf = 1—0.09K—V°) where: Rr=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,Vo: 1.92 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate . . . 1 13 EXAMPLE: 1z C GIVEN: RETICULINE GRATE D II L= 3 FT V V 8 FT/S 4 W H 10 FIND: Rf= 0.81 e� c 9 ys0;� C. a s�bd 7 A C W 6 PP ---e-\- - 3 ' 0 t a 5 j ji 9 — V c e i 4 1 C y 3 Q U. C � d 0 0 I 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 L LENGTH OF GRATE L (FT) pf Source: Urban Drainage Design Manual-HEC-22,Second Edition (U.S.Federal Highway Administration,August 2001) N122861009104 DesignlCalcslStorm Waterllnlet Interception AnalysesUnlet-NR-08A_On-Grade_Basin-NR-08_25-YR.xlsx Page 3 of 4 Morrison Maierle vngin era sur veyvrs ylannera-aare,rnsrs Ratio of Inlet Side FlowIntercepted to Total Side Flow,Rs: R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 1+0.15yc1'B VG=Velocity of Flow in the Gutter(fYsec) SP L 12.3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.92 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Lt: 35.00 in = 2.92 ft Calculate Efficiency of Grate,E: E =RfEO +Rs(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,RI: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.52 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.42 1 Calculate Inlet Interception Capacity, QI =EQc where: Qi=Inlet Interception Capacity(ft'/sec) Efficiency of Grate,E: 0.72 Total Gutter Flow,QG: 1.18 ftalsec(cfs) CalculatedInlet InterceptionCapacity,Q 1 N:122881009104 DesigMCalcs6torm Waterinlet Interception AnalysesUnlet-NR-08A_On-Grade_Basin-NR-08_25-YR.xlsx Page 4 of 4 Morrison i� Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-09 Storm Drain Inlet #SDI-NR-08 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET ;°;r4- CURB BOX ADJUSTABLE 6"TO B' 75 1/4'P__ �—� 5 31n' 17 31.1' (�1 1-1 —112. 1 1-1 lar 7' 11/2. �� � 1 1 33' 43.- DESIGN 31 CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI r___177.7751 in = 1.48 ft Coefficient for Gutter,nG= r 0.016 Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,nP Calculate Gutter Flow Depth, • • -• Perimeter Manning's Formula: _ 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q 72 P_2/ SL where: n= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL= Longitudinal Slope(ft/ft) Calculate Flow AcrossEncroachment Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 1.74 in = 0.15 ft Spread of Flow on Pavement,TP: 58.04 in = 4,84 ft Longitudinal Slope of Pavement,SP=SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,AP: 50.52 in = 0.35 ft' Calculated Wetted Perimeter Over Pavement,PP: 59.80 in = 4.98 ft Calculated Flow Across Pavement Encroachment, e; i W22861009104 Design\Calcs\Storm Waterllnlet Interception Analysesllnlel-NR-08-On-Grade-Basin-NR-09-25-YR.xlsx Page 1 of 4 Morrison Maierle e 9in erx xuveyur. ylenneix suentisx Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG+P: 2.74 in = 0.23 it Spread of Flow in Gutter&Pavement Composite Section,TG,P: 41.12 in = 3.43 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fUft Calculated Flow Area Over Gutter&Pavement Composite Section,Ac+P: 56.35 in' = 0.39 ftz Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PW: 43.95 in = 3.66 ft AcrossCalculated Flow . .• •j Q Calculate Flow Within Gutter&Pavement Overlap Area • Manning's Roughness Coefficient,no: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG: 1.74 in = 0.15 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 26.12 in = 2.18 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fUft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 22.74 in' = 0.16 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 27.92 in = 2.33 ft TotalCalculate • Basin Design Peak Plow,Qp: 1 1.130 ft'/sec(cfs) Calculated Total Depth of Flow Over Gutter,YG,P: 2.74 in = 0.23 ft QG=Q1+Qz-Q3 where: QG= Basin Design Peak Flow,QP= 1.130 ft/sec(cfs) t -jam, Calculated Gutter Flow Cross-Sectional Area,Ao: 0.23 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.35 ft2 Y`�I[di l(:il-t�iC.�ti�f:7dil•1�t:11F�liiY.ih irl�►fiu�ia a: �:��aufaui��ira•i�xsii:r�ia�:. Calculated Gutter Flow Wetted Perimeter,PG: 1.50 ft Calculated Pavement Flow Wetted Perimeter,PP: 4.84 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.16 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.07 ft CompositeCalculated Hydraulic Radius for Gutter&Pavement 0.09 ft NA22861009M DesignlCalcslStorm WateNnlet Interception Analyses\Inlet-NR-08_On-Grade_Basin-NR-09_25-YR.xlsx Page 2 of 4 Morrison Maierle anylicen spiv yurs planner> seu.iis.s CALCULATE INTERCEPTION CAPACITY ON-GRADE RatioCalculate of Inlet Frontal Flow to Total Gutter Flow,EO: E QW— 1—l i_W\z 6� where: O� Eo=Ratio of Frontal Flow to Total Gutter Flow ° — — ` T QG=Total Gutter Flow(ft/sec) Qw=Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 It F l Total Spread of Water Over the Gutter&Pavement,TG.P: 6.09 ft = 73.04 in Calculated o of Inlet Frontal Flow to Total Gutter Flow, 1 .52 Calculated Total Flow in Width of i•. 1 Calculate o of Inlet Side Flow to Total ES = Qs = 1—QW= 1—E° where: Es=Ratio of Side Flow 3o Total Gutter Flow QG QG Qs=Flow Along Side(ft?/sec) Calculated . . 1 .48 7Calculated Total Flow Along Side of Depressed 1 Calculate o of Frontal Flow Intercepted to Total Frontal Flow,Rf: R f = 1—0.09(VG—V°) where: R1=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ftlsec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.90 ft/sec _ Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-718 Style Grate AM 13 �+ 12 EXAMPLE. v GIVEN: RETICULINE GRATE C y 11 L= 3 FT V V 8 FT/5 \1ts � H l0 FIND: Rf= 0.81 W O 9 C. 6 e � �I r 1C� .1le A ,' 3 ' O a s j i� 9 LL0 o 1 x 4 m V3 , O a i 5 to 3 Jy`a6 a Q I� 2 P� y 0 M �z" 0 1 2 3 4 0 0.1 02 0.3 0.4 OS 0.6 0.7 0.8 0.9 1.0 C7 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) W22861009104 DesignlCalcslStorm Wateftlet Interception Analyses\Inlet-NR-08_0n-Grade_Basln-NR-09_25-YR.xlsx Page 3 of 4 Morrison Maierle engin er. Dui ve�on Vlannvi• .0 i.i ii., RatioCalculate 1Inlet1' Flow Intercepted 1 Total 1' Flow,Rs: R — 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow S 1+0.15V i.B VG=Velocity of Flow in the Gutter(fYsec) SPLr 2.3 Sp=Transverse Slope of Pavement(ftlft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.90 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 fdft Length of Inlet Grate,Li: 35.00 in = 2.92 ft Calculate Efficiency of Grate,E: E =RfEO +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.52 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.43 Calculate Inlet 1 • Capacity, Q, =EQG where: QI=Inlet Interception Capacity(ft3lsec) Efficiency of Grate,E: 0.73 Total Gutter Flow,QG: 1.13 ft3lsec(cfs) CalculatedInlet InterceptionCapacity, I N122861009104 DesigMCalcs\Storm WateAlnlet Interception AnalysesUnlet-NR-08_On-Grade_Basin-NR-09_25-YR.xlsx Page 4 of 4 Morrison l_ Maierle enylneen-.ui vuyw. ul ,n . uwra' s INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin NR-10 Storm Drain Inlet #SDI-NR-09 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS CURB BOX ADJUSTABLE B'TO B• 11 75 I/<' S 714' 17 7/4' I 1 112' I 1-1 114' �2' r1 yr I DESIGN CONSTANTS 77' Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wl= 17.75 in = Ift Coefficient for Gutter,nG Length of Inlet Grate,Lt r 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, Cross-Sectional Area, & Wetted Perimeter Manning's Formula: where: Q= 1.486 ASP where: =Total Flow in Given Cross-Sectional Area(ft3lsec) �� Pzi7 $L n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or q P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(fVft) Calculate Flow Across Pavement Encroachment e Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 fttft Depth of Flow at Edge of Pavement,yp: 0.88 in = 0.07 ft Spread of Flow on Pavement,Tp: 29.40 in = 2.45 ft Longitudinal Slope of Pavement,Sp=SG: 1.00% = 0.0100 ft/ft Calculated Flow Area Over Pavement,AP: 12.96 in = 0.09 ft, Calculated Wetted Perimeter Over Pavement,PP: 30.29 in = 2.52 ft • t. N:122861009M DesignlCalcs\Storm Walerllnlet Interception Analysesllnlet-NR-09_0n-Grade_Basin-NR-10_25-YR.xlsx Page 1 of 4 Morrison Maierle enyin en su.veyvn-Vlanneia .is.lis lv Calculate Flow In Gutter withOverlap ofPavement Encroachment • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 Rift Depth of Flow Over Gutter,yG.P: 1.88 in = 0.16 ft Spread of Flow in Gutter&Pavement Composite Section,TG,P: 28.23 in = 2.35 ft Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 Tuft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 26.56 in2 = 0.18 ft Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG,P: 30.17 in = 2.51 ft Calculate Flow Within Gutter&Pavement Overlap Area • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yr,: 0.88 in = 0.07 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 13.23 in = 1.10 It Longitudinal Slope of Gutter,SG: 1.00% = 0.0100 fyft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 5.83 in' = 0.04 fe Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 14.14 in = 1.18 ft , • • 1 i• Calculate Total Gutter Flow • Basin Design Peak Plow,QP: 0.351 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,yG.P: 1.88 in = 0.16 ft QG=Q{+Q2-Q3 where: QG= Basin Design Peak Flow,Qp= 0.351 W/sec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.14 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.09 g2 :... .. :.: �Y t{t r�.1-.P'_L'�rlt��{ • I• 1Di�tlr , ,.y ... i(-: , Calculated Gutter Flow Wetted Perimeter,PG: 1.42 it Calculated Pavement Flow Wetted Perimeter,PP: 2.45 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.10 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.04 ft • 1 11FMIR1.101 rIT&M •. 1 1. 1. Elm N:122B610ON Design\Cabs\Storm Water\Inlet Interception Analyses\Inlet-NR-09_On-Grade_Basin-NR-10_25-YR.xlsx Page 2 of 4 ® Morrison Maierle CALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate Ratio . E QW = 1—(1—W l2 67 where: Eo=Ratio of Frontal Flow to Total Gutter Flow ° Or 1 T/ OG=Total Gutter Flow(ft3/sec) Qw=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG.P: 3.70 It = 44.40 in Calculated Ratio . r Calculate Ratio . ES =QS = 1—& = 1—E° where: Es=Ratio of Side Flow to Total Gutter Flow QG Q° Qs=Flow Along Side(W/sec) Calculated Ratio . r .26 . MR IIMIRKIMemolCalculate Ratio of Frontal Flow Intercepted 1 1, . Total Rf = 1—0.09(VG —V°) where: Rf=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(f/sec) Vc=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.43 fUsec Gutter Velocity where Splash-Over First Occurs from Chart 5,VG: 9.96 ft/sec r P-1-7/8 Style Grate t3 EXAMPLE: U 12 C GIVEN: RETICULINE GRATE d I I L= 3 FT �j V. 8 FT/S 110 v W y to FIND: Rf= 0.81 Q� C 9 O r Al ` 7 Q A a♦h P d r3 ql0 J ` .r+ L0 C2 O > 6 P ----Q'-- ti 3 rJ W A�J / ♦ OJ 'o C3 0 1 �Q h 4 / ro C CA` 3 /`J♦?�� ' p // �♦ 1 LL 2 P4 I � � � 1 d 0 �"• 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.6 0.9 1.0 L C9 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22 Second Edition (U.S.Federal Highway Administration,August 2001) W22861009104 DesignlCaleslStorm WateAlnlet Interception AnalysesMnlet-NR-09_On-Grade—Basin-NR-10_25-YR.xlsx Page 3 of 4 Morrison iii Maierle PU • • 1' • In • • • 1 •' 1 Rs=Ratio of Side Flow Intercepted to Total Side Flow Rs = where: +0.15V�i•e VG=Velocity of Flow in the Gutter(ft/sec) 1 SpLr z.3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1,43 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 ft Calculate Efficiency of Grate,E: E = RfHO +Rs(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.74 �yRatio of Inlet Side Flow Intercepted to Total Side Flow,R5: , 0.55 Calculate Inlet Interception Capacity, Q, =EQG where: Q,=Inlet Interception Capacity(Osec) Efficiency of Grate,E: 0.89 Total Gutter Flow,QG: 0.35 ft'/sec(cfs) CalculatedInlet Interception • ! I NA22861009104 DesignlCalcslStorm WalerllNet Interception AnalyseslInlet-NR-09_On-Grade_Basin-NR-10_25-YR.xlsx Page 4 of 4 Morrison Maierle enyineeit turreYc,t V'enrer, uei.t.t INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin NL-11 I Inlet #SDI-PL-04 Post-Development Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS l+ /4• I CURB BOX ADJUSTABLE B"TO 8' 35 1 �+� I 35 1/4•— .—. � 17 314' —H—F-11/2' --�i I�-11/4' 2- r11"'I I I -' T - f 4 / 33"� 43" Imo— 31'�I DESIGN Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,Wa= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG= Depth of Gutter at Inlet,ds= in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,LI= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET APA '• 1 / ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w =CwpcYd 1.5 where Ql.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Po=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.25 ft = 2.98 in Perimeter of Grate,PG= 3.60 ft Weir•Inlet Interception Capacity,QI-w= 1.48 cfs = 662.25 gpm Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =COAG(Z9Yd)°'S where Qi-o=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft`) g=Gravitational Constant(ftlseC2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.25 ft = 2.98 in Clear Opening Area of Grate,AG= 1.81 ft` Orifice-Inlet Interception Capacity,Ql.o= 5.06 cfs = 2269.51 gpm Gravitational Constant,g= 32.17 tusec` Page 1 of 2 NA22861009104 DesignlCalcslSlorm WaterVnlet Interception Analysesllnlet-PL-04_Sag_Basin-NR+PL-01_25-YR.xlsx Printed On:3/1112019.1:46 AM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin NL-11 I Inlet #SDI-PL-04 DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity QP where Q,=Design Inlet Interception Capacity(cfs) Q� -Ec Qp=Design Peak Storm Runoff to Inlet(cfs) Eo= Inlet Grate Efficiency(%) Design Storm Runoff to Inlet,Qd= 1.18 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 1.48 cfs Trash Accummulation or Clogging= 2p% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted by Inlet,Qd 1.18 cfs Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,yd Efficiency, Inlet Capacity.Qq, Inlet Capacity.Q'I-w Inlet Capacity,Q1.0 Inlet Capacity,Q'I.c) Inlet Capacity.Q, 0.05 1 80% 1 0.13 0.11 2.27 1.81 0.11 0.10 80% 0.38 0.30 3.21 2.56 0.30 0.15 80% 0.69 0.55 3.93 3.14 0.55 0.20 80% 1.06 0.85 4.53 3.63 0.85 0.25 80% 1.49 1.19 5.07 4.06 1.19 0.30 80% 1.95 1.56 5.55 4.44 1.56 0.40 80% 1 3.01 2.41 6.41 5.13 2.41 0.50 80% 4.21 3.36 7.17 5.74 3.36 0.75 80% 7.73 6.18 8.78 7.02 6.18 1.00 80% 11.89 9.52 10.14 8.11 8.11 I Inlet Capacity Summary 14.00 - - - -- -- i 12.00 - - _- 10.00 - - - N o 8.00 _-_ _ - - -- -! Weir Operation -*=Adjusted Weir Operation w a a 6.00 -- -- --- - - - - - Orifice Operation v -fit Adjusted Orifice Operations c 4.00 - -- -- ---- --------- Design Operation i i 2.00 - - - --- --- -- 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 11:122861009104 Design\Calcs\Storm Waterllnlel Interception Analyses\Inlet-PL-04_Sag Basin-NR+PL-01_25-YR.xlsx Printed On:3111/2019-1:46 AM Morrison llliiiiiii Maierle mgineer i�i r V'•ne„ iie ir. INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin NL-12 I Inlet #SDI-PL-05 Post-Development Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 1 � 30 3/4' -I CURB BOX ADJUSTABLE B•TO 6• �- 17 3/4' -f r I I/4 2W ` 43.. CONSTANTSDESIGN Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X•Slope at Inlet,Sp Width of Gutter at Inlet,Wo= 15.00 in = 1.25 ft Slope of Gutter at Inlet,So Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,nP INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w =CwpcYd 1.5 where Qi.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Po=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.17 ft = 1. 99 in Perimeter of Grate,Po= 3.60 ft Weir•Inlet Interception Capacity,Ql.w= 0.81 cfs = 361.33 gpm Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =COAc(z9Yd)o'5 where Q,o=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft`) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.17 ft = 1.99 in Clear Opening Area of Grate,AG= 1.81 ft` Orifice•Inlet Interception Capacity,QFo= 4.13 cfs = 1854.51 gpm Gravitational Constant,g= 32.17 tusec` Page 1 of 2 N:122B61009104 DesignlCalcslStorm Watetdnlel Interception Analysesllnlet-PL-05_Sag_Basin-NR+PL-02_25-YR.xlsx Printed On:3/1112019-1:52 AM Morrison lNo Maierle myinnn u re,ci V'+nie iiieiii INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin NL-12 I Inlet #SDI-PL-05 DESIGN INLET INTERCEPTION CAPACITY I -. , . INLET Calculate Design Inlet Interception Capacity QP where O,=Design Inlet Interception Capacity(cfs) Qr -Ec Qp=Design Peak Storm Runoff to Inlet(cfs) EG=Inlet Grate Efficiency(%) Design Storm Runoff to Inlet,Qd= 0.64 cfs Inlet Grate Efficiency,Eo Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.81 cfs Trash Accummulation or Clogging= 207 (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted by Inlet, e 0.64 Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 2.27 1.81 0.11 0.10 80% 0.38 0.30 3.21 2.56 0.30 0.15 80% 0.69 0.55 3.93 3.14 0.55 0.20 80% 1.06 0.85 4.53 3.63 0.85 0.25 80% 1.49 1.19 5.07 4.06 1.19 0.30 80% 1.95 1.56 5.55 4.44 1.56 0.40 80% 3.01 2.41 6.41 5.13 2.41 0.50 80% 4.21 3.36 7.17 5.74 3.36 0.75 80% 7.73 6.18 8.78 7.02 6.18 1.00 80% 11.89 9.52 10.14 8.11 8.11 Inlet Capacity Summary 14.00 - ------- - --------- -- ---... -- - 12.0010.00 --- --- ----- -- -------- - - ---- - 1 001 8.00 - -4-Weir Operation r s ,o --E-Adjusted Weir Operation m a 6.00 ---- -- M01011 -- -iL Orifice Operation a u m -H--Adjusted Orifice Operations c 4.00 - -- - - -tK--Design Operation 2.00 --- - --- --- --- --- 0.00 - -r--- ---- -- -:---- - -r--- --- --- 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:122861009104 DesigrACalcslStorm Waterllnlet Interception Analysesllnlel-PL-05_Sag_Basin-NR+PL-02_25-YR.xlsx Printed On:3/11/2019-1:52 AM ■ Morrison Maierle engineers surveyors planners scientists APPENDIX B-2 ROYAL WOLF WAY & PRINCE LANE INLET INTERCEPTION ANALYSES Morrison iiiil� Maierle euyirieert turvcyurt Vairrt•r> t<rtrilit it INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-01 Storm Drain Inlet #SDI-RW-01 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 16 /4' CURB BOX ADJUSTABLE f•TOO• 961/4' '��� � �_ i yr l�l v4• � r=.� � va• �a CONSTANTSDESIGN Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,S(; Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,nG= 0.016 Length of Inlet Grate,LI= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, • • -• Perimeter Manning's Formula: 1.486 A513 Cl=Total Flow in Given Cross-Sectional Area(ft3/sec) Q— 11 72/3 $r, where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) EncroachmentCalculate Flow Across Pavement Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ftt t Depth of Flow at Edge of Pavement,yP: 2.88 in = 0.24 ft Spread of Flow on Pavement,TP: 96.00 in = 8.00 ft Longitudinal Slope of Pavement,SP=So: 0.65% = 0.0065 ft/ft Calculated Flow Area Over Pavement,AP: 138.24 in' 0.96 It' Calculated Wetted Perimeter Over Pavement,PP: 98.92 in = 8.24 ft Calculated Flow Across Pavement Encroachment, • N:122861009104 Design\ReportslStorm WalerlAppendicesWpendix B-Inlet Interception AnalyseslB-02-Royal Wolf Way Plus Prince Lane Basin InlelslB-02-01_Inlet-RWW-01_0n-Grade_Basin-rt giot �c4 Morrison Maierle enyineen-.ui vvyu. ylanneia .civiili.. Calculate Flow In Gutter with Overlap . Pavement Encroachment Manning's Roughness Coefficient,no: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 Nit Depth of Flow Over Gutter,yG+P: 3.88 in = 0.32 ft Spread of Flow in Gutter&Pavement Composite Section,TG,P: 58.20 in = 4.85 ft Longitudinal Slope of Gutter,SG: 0.65% = 0.0065 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 112.91 in = 0.78 fe Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 62.21 in = 5.18 ft Calculate Flow Within Gutter&Pavement• • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67°% = 0.0667 ftlft Depth of Flow Over Gutter,yG: 2.88 in = 0.24 ft Spread of Flow within Gutter&Pavement Overlap Section,Ta: 43.20 in = 3.60 ft Longitudinal Slope of Gutter,SG: 0,65% = 0.0065 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 62.21 in = 0.43 fe Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 46.18 in = 3.85 It Calculate Total Gutter Flow • Basin Design Peak Plow,QP: 2.628 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,yG.P: 3.88 in = 0.32 It QG=Q1+Q2-Q3 where: QC= Basin Design Peak Flow,QP= 2.628 ft3lsec(cfs) NOW JIFIZT agntCM Calculated Gutter Flow Cross-Sectional Area,AG: 0.35 fe Calculated Pavement Flow Cross-Sectional Area,AP: 0.96 f? Calculated Gutter Flow Wetted Perimeter,Po: 1.61 ft Calculated Pavement Flow Wetted Perimeter,PP: 8.00 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.22 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.12 ft CompositeCalculated Hydraulic Radius for Gutter&Pavement t .14 ft .. N:122861009104 DesignlReportslStorm WaleWpendicesWpendix B-Inlet Interception MalyseslB-02-Royal Wolf Way Plus Prince Lane Basin In1elslB-02.01_In1et-RWW-01_On-Grade3asin-F q;aRxd4 r� Morrison Maierle eiiyii r.is survcyur yluiners .cielists CALCULATE INTERCEPTION CAPACITY ON-GRADE Calculate Ratio of Inlet Frontal Flow-to Total Gutter Flow,EO: Q�, / yv\z 67 Eo=Ratio of Frontal Flow to Total Gutter Flow E° =Or = 1—I`1_T/I where: Oc=Total Gutter Flow(ft3lsec) Qw=Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft t Total Spread of Water Over the Gutter&Pavement,TG+P: 9.25 it = 111.00 in Calculated�1 Ratio o r .37 • e 1 Calculate Ratio of . Total 6 Qs 1—Qw °= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG Q° Qs=Flow Along Side(ft3lsec) Calculated Ratio . 1 .63 1—Catculated Total Flow Along Side of Depressed Gutter or Grate, • , Calculate o of Frontal Flow Intercepted to Total Frontal Flow,Rf: R f = 1—0.09(VG—V°) where: RI=Ratio of Frontal Flow Intercepted to Total Frontal Flow Vo=Velocity of Flow in the Gutter(ftlsec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow In the Gutter,VG: 1.98 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec r77P 1-718 Style Grate haler . Mm.,. . 13 EXAMPLE. � 12 C GIVEN: RETICULINE GRATE d 1 1 L- 3 FT L) V- 8 FT/S \1►0 lJJ ^y 10 FIND: Rf= 0.81 C 9 yPaSO,i CL e a 3 .t V r 7Ln a 6 P� ----P-`- \rye O S a 5 LL V _ s 4 6 rn / b C s 3 ILL 2 Q C y O O 1 2 3 4 0 0.1 02 0.3 0.4 05 Us 0.7 0.8 0.9 1.0 L C7 LENGTH OF GRATE L (PT) Rf Source: Urban Drainage Design Manual-HEC-22,Second Edition (U.S.Federal Highway Administration,August 2001) N:12286\009\04 Design\Reports\Storm WalerlAppendices\Appendix B-Inlet Interception Analyses\B-02.Royal Wolf Way Plus Prince Lane Basin Inlets\B-02-01_Inlet-RWW-01_On-Grade-Basin-F 1RMeM c4 i Morrison IiiIiIiiiIIiimi Maierle Calculate o of Inlet Side Flow Intercepted Rs = 1 18 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow 0.15ya VG=Velocity of Flow in the Gutter(ft/sec) 1+ SP L 2.3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.98 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Li: 35.00 in = 2.92 ft ire Calculate Efficiency of Grate,E: E =RfEo +RS(1—Eo) where: E= Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.37 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.41 Calculate Inlet Interception Capacity,QI: Qr = EQG where: Q,=Inlet Interception Capacity(ft3lsec) Efficiency of Grate,E: 0.63 Total Gutter Flow,QG: 2.63 ft3lsec(cfs) Calculated Inlet Interception Capacity, lr , N:122861009104 DesignlReportslStorm WaterlAppendices\Appendlx B-Inlet Interception Analyses\B-02-Royal Wolf Way Plus Prince Lane Basin lnlets\B-02-01_inlet-RWW-01_on-Grade_Basin-Fftg@O)o&4 Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-02 Storm Drain Inlet #SDI-RW-02 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS • I+� 30 3/4' I CURB BOX ADJUSTABLE B^TO B' 35 1/4' S l-1 1/2' Iw11/4- 'I� �-t 1/7' :DESIGN CONSTANTS 1 73" 47" 31' Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15,00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= in = 0.08 It Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nG= 0.016 Length of Inlet Grate,Li F 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, Cross-Sectional Area, & Wetted Perimeter Manning's Formula: _ 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft 3/sec) Q n Pz�3 SL where: n= Manning's Roughness Coefficient A= Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) ' SL= Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment(Qj) I Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yp: 2.06 in = 0.17 ft Spread of Flow on Pavement,Tp: 68.71 in = 5.73 ft Longitudinal Slope of Pavement,SP=SG: 0.65% = 0.0065 ft/ft Calculated Flow Area Over Pavement,Ap: 70.82 in = 0.49 ft2 Calculated Wetted Perimeter Over Pavement,Pp: 70.80 in = 5.90 ft /.I;N Ic:_:.: riz � -I1'L-3 1INIIQ�iIIiL<l�l:ilall=ialr�)�5 1 N122861009104 DesignlCalcslStorm Walerllnlet Interception AnalysesVnlet-RWW-02_On-Grade_Basin-RWW-02_25-YR.xlsx Page'I of 4 Morrison �; Maierle eiyiu �uivcyur ulai.ni i. [iurli Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,Sc: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG,P: 3.06 in = 0.26 ft Spread of Flow in Gutter&Pavement Composite Section,TG,P: 45.92 in = 3.83 ft Longitudinal Slope of Gutter,SG: 0.65% = 0.0065 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG,P: 70.29 in = 0.49 ftz Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG,P: 49.08 in = 4.09 ft OverlapC alculate Flow Within Gutter t Pavement Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG: 2.06 in = 0.17 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 30.92 in = 2.58 ft Longitudinal Slope of Gutter,SG: 0,65% = 0.0065 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 31.87 in = 0.22 ft2 �, Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 33.05 in = 2.75 ft irs_ Calculate Total Gutter Flow(QG) Basin Design Peak Plow,Qp: 1.280 ft'/sec(cfs) Calculated Total Depth of Flow Over Gutter,yW: 3.06 in = 0.26 ft QG=Qt+Q2-Q, where: QG= Basin Design Peak Flow,QP= 1.280 ft'/sec(cfs) • £1.1•:.. VFW Calculated Gutter Flow Cross-Sectional Area,AG: 0.27 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.49 ft2 Calculated Gutter Flow Wetted Perimeter,PG: 1.53 ft Calculated Pavement Flow Wetted Perimeter,PP: 5.73 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.17 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.09 ft • •.. . . ld%22861009104 DesignlCalcsl5torm WateAlnlel Interception AnalysesUnlet-RWW-02_On-Grade_Basin-RWW-02_25-YR.xlsx Page 2 of 4 Morrison Maierle eiryir ,ra our v,•yura Vl:rrirr.ra acrarrliara CALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate Ratio of Inlet Frontal Flow to Total Gutter Flow,EO: Qw fV\z•6� Eo=Ratio of Frontal Flow to Total Gutter Flow E 1— 1—— where: a ° =Or = T QG=Total Gutter Flow(ft/sec) Ow=Flow in Width W/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 It Total Spread of Water Over the Gutter&Pavement,TG+p: 6,98 ft = 83.71 in Calculated Ratio . r .47 Calculated Total Flow in Width of Depressed Gutter or Grate,Qw: 0.60 ft3 Isec(cfs) P ' RatioCalculate of Inlet SideFlow . Total Gutter Flow, Qw= 1—E° where: Es=Ratio of Side Flow to Total Gutter Flow ES = Qs = 1— yy QG QG Os=Flow Along Side(ft/sec) J Calculated . . I Along .53 Calculated Total Flow -. 0.68 Calculate of Frontal Flow Intercepted to Total Frontal Flow,RE R f = 1—0.09(VG—V°) where: R,=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.66 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-718 Style Grate . . 13 EXAMPLE: 12 C GIVEN: RETICULINE GRATE O I I L= 3 FT V V. 8 FT/S \1Ib LLI y 10 FIND: Rf= 0.87 C 9 9 CL C W 6 P7 C > --------- ------- ----- - - --- - -- -- 3 ; O t ' S p9 /i 9 V c3 1 4 to C H 3 O LL 2 P C d 0 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 10 L C7 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) NA2280004 Oesign\calcs\Storm Water\lnlet Interception Analysesllnlet-RWW-02_On-Grade_Basln-RWW-02_25-YR.xlsx Page 3 Of 4 Lim Morrison Maierle yyyiii srs our rayurs ylayyera scisri rests RatioCalculate ofInlet1' Flow Intercepted 1 Total .' Flow, Rs = 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow 1+0.15VG 1'e VG=Velocity of Flow in the Gutter(fUsec) SP L!2.3 Sp=Transverse Slope of Pavement(ft/ft) Lt=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.66 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Li: 35.00 in = 2.92 ft -. • 1 1 , • -1 . • • 1 . .. Calculate Efficiency of Grate,E: E =RfEo+Rs(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.47 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.48 Calculated Interception Capacity, e Q! =EQG where: Qi=Inlet Interception Capacity(ft3lsec) Efficiency of Grate,E: 0.73 Total Gutter Flow,QG: 1.28 ft3lsec(cfs) CalculatedInlet Interception • 0.93 WQ2861009*4 Design\CalcslStorm WaterkInlet Interception Analyses\Inlet-RWW-02_On-Grade_Bas1n-RWW-02_25-YR.x1sx Page 4 of 4 Morrison m�Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin RWW-03 1 Inlet #SDI-RW-03 Post-Development Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS I 30 3/4' -I CURB BOX ADJUSTABLE B-TO e• 35 1/4- 5 3/4" t 1/A'�7I 2H' ` '� __ _ 11/2' —►I +11/4' rZ 112•I /6' 33'— �.. CONSTANTS43, DESIGN Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,LI= 35.25 in = 2.94 It Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERA TION Calculate Capacity of Grate Inlet Operating as a Weir Q/—w =cwpcydl'5 where QI-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Po=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.34 ft = 4.07 in Perimeter of Grate,PG r 3.60 ft Weir-Inlet Interception Capacity,QI.w F 2.35 cfs = 1053.30 gpm Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =COAc(29yrj)0.5 where Qi-o=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft`) g=Gravitational Constant(ft/seC) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.34 ft = 4.07 in Clear Opening Area of Grate,AG= 1.81 ft` Orifice-Inlet Interception Capacity,QI.o= 5.90 cfs = 2649.17 gpm Gravitational Constant,g= 32.17 tusec` Page 1 of 2 W22861009104 DesignlCalcslSlonn Waterllnlel Interception Analyses\Inlet-RWW-03_Sag3asin-RWW-03_25-YR.xlsx Printed On:311112019-2:13 AM Morrison Maierle myinr•en w , .r +r•ni.. INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin RWW-03 1 Inlet #SDI-RW-03 D 0 ® D D Calculate Design Inlet Interception Capacity Q, where QI= Design Inlet Interception Capacity(cfs) QI -Ec Op= Design Peak Storm Runoff to Inlet(cfs) Ec= Inlet Grate Efficiency(%) Design Storm Runoff to Inlet,Qd= 1.88 cfs Inlet Grate Efficiency,EG= F 80% Inlet Discharge Reduction Due to Design Inlet Interception Capacity,01= 2.35 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION InterceptedRunoff by e Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,• • Inlet Capacity.• • 0.05 80% 0.13 0.11 2.27 1.81 0.11 0.10 80% 0.38 0.30 3.21 2.56 0.30 0.15 80% 0.69 0.55 3.93 3.14 0.55 0.20 80% 1.06 0.85 4.53 3.63 0.85 0.25 80% 1.49 1.19 5.07 4.06 1.19 0.30 80% 1.95 1.56 5.55 4.44 1.56 0.40 80% 3.01 2.41 6.41 5.13 2.41 0.50 80% 4.21 3.36 7.17 5.74 3.36 0.75 80% 7.73 6.18 8.78 7.02 6.18 1.00 80% 11.89 9.52 10.14 8.11 8.11 Inlet Capacity Summary 14.00 ---- --- -- --- - - 12.00 ----- - - - 10.00 - - i N U c 8.00 Weir Operation v -- -'Adjusted Weir Operation w EL 6.00 - - Orifice Operation w v -K--Adjusted Orifice Operations c 4.00 - -- - Design Operation j 2.00 - ---- - - -- - i 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 W22861009104 Design\CalcslSlonn Waterllnlet Interception Analysesllnlet-RWW-03_Sag_Basin-RWW-03_25-YR.xlsx Printed On: 3/11/2019-2:13 AM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin RWW-04 1 Inlet #SDI-RW-04 Post-Development Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 3e g/q' -I CURB BOX ADJUSTABLE B'70 8" 36 1/4' 6 31q` 117 3/M1' / 2 H' 1/M1 11/2- — �I If11/A' I r11 33' M13` DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= in = 0.08 It Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nG= 0.016 Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET APA '• I 1 ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI—W =CWpcYdi.5 where Oi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.23 ft = 2.77 in Perimeter of Grate,PG= 3.60 ft Weir-Inlet Interception Capacity,QI-w= 1.32 cfs = 590.85 gpm Calculate Capacity of Grate Inlet Operating as an Orifice QI-0 =CoAc(29Ya)°'5 where Qi.o=Orifice-Inlet Interception Capacity(cfs) Cc=Orifice Coefficient AG=Clear Opening Area of Grate(ft`) g=Gravitational Constant(ftlseC2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.23 ft = 2.77 in Clear Opening Area of Grate,AG= 1.81 ft` Orifice-Inlet Interception Capacity,Ql.o= 4.87 cfs = 2184.83 gpm Gravitational Constant,g= 32.17 tusec` Page 1 of 2 N:122861009104 DesignlCalcslSlorm Watefllnlet Interception Analysesllnlet-RWW-04_Sag_Basin-RWW-04_25-YR.xlsx Printed On:3/11/2019-2:16 AM Morrison Maierle myin t •u r Vi.ni•• ..i..i•. INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin RWW-04 1 Inlet #SDI-RW-04 INTERCEPTIONDESIGN INLET PONDED INLET Calculate Design Inlet Interception Capacity QP where Q,=Design Inlet Interception Capacity(cfs) Q/ = Ec Qp= Design Peak Storm Runoff to Inlet(cfs) EG= Inlet Grate Efficiency(%) Design Storm Runoff to Inlet,Qd= 1.05 cfs Inlet Grate Efficiency,Er, Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 1.32 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Ru noff Intercepted by 1 Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,Ql,w Inlet Capacity.Q'I v, Inlet Capacity,01.0 Inlet Capacity,Q',-o Inlet Capacity,Q, 0.05 80% 0.13 0.11 2.27 1.81 0.11 0.10 80% 0.38 0.30 3.21 2.56 0.30 0.15 80% 0.69 0.55 3.93 3.14 0.55 0.20 80% 1.06 0.85 4.53 3.63 0.85 0.25 80% 1.49 1.19 5.07 4.06 1.19 0.30 80% 1.95 1.56 5.55 4.44 1.56 0.40 80% 3.01 2.41 6.41 5.13 2.41 0.50 80% 4.21 3.36 7.17 5.74 3.36 0.75 80% 7.73 6.18 8.78 7.02 6.18 1.00 80% 11.89 9.52 10.14 8.11 8.11 Inlet Capacity Summary 14.00 - I 11.00 --- - - 10.00 0 8.00 � �; -- i --s- Weir Operation c -*-Adjusted Weir Operation w 6.00 - - �-0. Orifice Operation a` -*-Adjusted Orifice Operations c 4.00 .11.4 -- - -IIE° Design Operation 2.00 - -- -- - 0.00 - -- 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 I1:122861009104 DesignlCalcslStoan Water,lnlet Interception Analysesllnlet-RWW-04_Sag3asin-RWW-04 25-YR.xlsx Printed On:3/1112019-2:16 AM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-05 Storm Drain Inlet #SDI-RW-05 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET 70 3/4' I CURB BOX ADJUSTABLE 8"TO 8" 2 95,/a' '14 211, DESIGN CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 1_77751 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,LI F 35.00 in = r 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, • • - • Perimeter Manning's Formula: _ 1.486 A513 Q=Total Flow in Given Cross-Sectional Area(ft3lsec) Q 71 P2�3 SL where: In= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or so P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow AcrossEncroachment d Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yp: 1.26 in = 0.11 ft Spread of Flow on Pavement,Tp: 42.08 in = 3.51 ft Longitudinal Slope of Pavement,SP=SG: 0.65% = 0.0065 ft/ft Calculated Flow Area Over Pavement,AP: 26.56 in = 0.18 ft2 Calculated Wetted Perimeter Over Pavement,PP: 43.36 in = 3.61 ft N:122861009104 Design\Calcs\Storm Waterllnlet Interception Analysesllnlet-RWW-05_On-Grade_Basln-RWW-05_25-YR.xlsx Page 1 of 4 Morrison Maierle Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,Sc: 6.67% = 0.0667 fYft Depth of Flow Over Gutter,yG,P: 2.26 in = 0.19 ft Spread of Flow in Gutter&Pavement Composite Section,TW: 33.93 in = 2.83 ft Longitudinal Slope of Gutter,SG: 0.65% = 0.0065 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 38.38 in = 0.27 ftZ Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 36.27 in = 3.02 ft yy�� I I • • I��! A Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,Sc: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yc: 1.26 in = 0.11 It Spread of Flow within Gutter&Pavement Overlap Section,To: 18.93 in = 1.58 ft Longitudinal Slope of Gutter,SG: 0.65% = 0.0065 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 11.95 in = 0.08 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 20.24 in = 1.69 ft TotalCalculate • Basin Design Peak Plow,Qp: 0.502 fta/sec(cfs) Calculated Total Depth of Flow Over Gutter,yG+P: 2.26 in = 0.19 ft QG=Q1+Qz-QS where: Q(= Basin Design Peak Flow,Qp= 0.502 fta/sec(cfs) ,777 Calculated Gutter Flow Cross-Sectional Area,AG: 0.18 ft2 Calculated Pavement Flow Cross-Sectional Area,Ap: 0.18 ftZ i�if`i[�tE:it:ii flt:�`l:IdiliS+blY_ii:�:iiili�iiiiZ:li�"Y:f:ll:li it:lrl��i•l ii l•i•ki f i-1t=l�i•�itolipi_Y:l;; I Calculated Gutter Flow Wetted Perimeter,PG: 1.45 ft Calculated Pavement Flow Wetted Perimeter,Pp: 3.51 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.13 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.05 ft CompositeCalculated Hydraulic Radius for Gutter&Pavement 0.07 NA22861009104 Design\CalcslSlorm Wateftlnlet Interception Analysesl1nlel-RWW-05_On-Grade_Basln-RWW-05-25-YR.xlsx Page 2 of 4 =,® Morrison ® Maierle ei4ii r. .....Y r. Vlai"n cienlisle I I INTERCEPTION CAPACITY I ON-GRADE INLET Calculate Ratio of Inlet Frontal Flow to Total Gutter Flow,EO: E QW = 1—I 1—w\2.67 where: Eo=Ratio of Frontal Flow to Total Gutter Flow ° Or T/1 QG=Total Gutter Flow(ft/sec) Qw=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) ( � SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 It Total Spread of Water Over the Gutter$Pavement,TG,P: 4.76 ft = 57.08 in Calculated Ratio . . . 0.6 Calculated r, TotalDepressed Calculate Ratio of • Total Es=Qs = 1—Qw= 1—Eo where: Es=Ratio of Side Flow to Total Gutter Flow QG QG Qs=Flow Along Side(ft3lsec) Calculated Ratio . Total Gutter Flow,Es: 0.37 AlongCalculated Total Flow Side of Depressed RatioCalculate of •• to Total Frontal Flow,Rf: Rf = 1—0.09(VG—V°) where: Rf=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(fUsec) Velocity of Flow In the Gutter,VG: 1.32 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate C1:lf i�lf•I� �tiiS•lirwtk i+tfir-,ilig. , i . . 1�f- 1 c H• , 13 >+ 12 EXAMPLE: v GIVEN: RETICULINE GRATE d 11 L- 3 FT 'V V. 8 FT/S 1ta LIrz J y Io FIND: Rf= 0.81 Q� r- CG 9 JPav 0 Q 8 \tvE•���� Q�\g 0 y ��• `y ` H 7 Q / p P ca 'tier J° i C u. 6 ` - --- - •� 3 M <�ys- Z W 5 / 0 LL U s / 6 d 3 0 LL 2 P4 01 C _ I d 0 O 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 I.O R LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22 Second Edition (U.S.Federal Highway Administration,August 2001) N:T2661009104 Design\CalcslStorm Waterllnlet Interception Analyses\Inlet-RWW-05_0n•Grade_Basin-RWW-05_25-YR.xlsx Page 3 of 4 Morrison Maierle enyinezrs-twveyat-plannert uienrits i Calculate Ratio of Inlet •' Flow Intercepted Totald' Flow,Rs: 1 Rs=Ratio of Side Flow Intercepted to Total Side Flow Rs = where:+0.15V�i•e VG=Velocity of Flow in the Gutter(ft/sec) 1 SP L1 2.3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.32 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 Will: Length of Inlet Grate,LI: 35.00 in = 2.92 ft �iYlllt/^f:1C•#11F���Y.t:1�'�iCt7itfiifl��l�C:il�Gl�'7fVRTtd-�'�7�:;�ih�:�f•�F`I , -. o,i'fiiilL- y � ' i Calculate Efficiency of Grate,E: E =RfEo +Rs(1—Eo) where: E= Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Ea: 0.63 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.59 Calculate Inlet Interception e Q, =EQC where: Qi=Inlet Interception Capacity(ft3lsec) Efficiency of Grate,E: 0.85 Total Gutter Flow,Qc: 0.50 ft'/sec(cfs) InterceptionCalculated Inlet 11 1 NA22661009104 Design\Calcs\Storm Walerllnlet Interception Analyses\Inlet-RWW-05_0n-Grade_Basin-RWW-05_25-YR.xlsx Page 4 of 4 �® Morrison Maierle erryiri srs surveyors yl.rnners scrs nrisrs INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-06 Storm Drain Inlet #SDI-RW-06 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) ,INLET CHARACTERISTICS tom-- 30 3/4' CURB 80X ADJUHTAHLF 6'TO/' ? I 96 7/4' 5 3/4' 17 7/4' -� 1 1/4 2H' 3a•� n3• 3r� CONSTANTS Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= in = 1,25 It Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dr,= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wt= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Lt r 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, • • - • Perimeter Manning's Formula: 1.486 A113 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q=n 2/3 S� where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or so P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow Across Pavement e Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yp: 1.72 in = 0.14 ft Spread of Flow on Pavement,Tp: 57.48 in = 4.79 ft Longitudinal Slope of Pavement,Sp=Sc,: 0.65% = 0.0065 ft/ft Calculated Flow Area Over Pavement,Ap: 49.56 in = 0.34 ft2 a Calculated Wetted Perimeter Over Pavement,Pp: 59.23 in = 4.94 ft alifflIR-Flow Across Pavement Encroachment, e t N:086\009M Design\Calcs\Storm Water\Inlet Interception Analyses\In1et-RWW-06_0n-Grade_Basln-RWW-06_25-YR.x1sx Page 1 of 4 Morrison Maierle engliiaers wiveyu yl+nnei siia rii,t Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,YW: 2.72 in = 0.23 ft Spread of Flow in Gutter&Pavement Composite Section,TG.P: 40.87 in = 3.41 ft Longitudinal Slope of Gufter,SG: 0.65% = 0.0065 fUft Calculated Flow Area Over Gutter&Pavement Composite Section,AG,P: 55.67 in = 0.39 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PW: 43.68 in = 3.64 ft Calculated • o,, Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG: 1.72 in = 0.14 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 25.87 in = 2.16 it Longitudinal Slope of Gutter,SG: 0.65% = 0.0065 fUft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 22.30 in = 0,15 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 27.65 in = 2.30 ft st w� d TotalCalculate • w Basin Design Peak Plow,QP: 0.894 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,yG,P: 2.72 in = 0.23 ft QG=Q1+Q2-Q3 where: Qo= Basin Design Peak Flow,QP= 0.894 ft3lsec(cfs) 0.89 fOlsec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.23 ftZ Calculated Pavement Flow Cross-Sectional Area,AP: 0.34 ftZ 1 Calculated Gutter Flow Wetted Perimeter,PG: 1.50 ft Calculated Pavement Flow Wetted Perimeter,PP: 4.79 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.15 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.07 ft Calculated Velocity of • for • p• NA2 2 8 610 0 910 4 Design\CalcslStorm Waterllnlet Interception Analysesllnlet-RWW-06_On-Grade_Basin-RWW-06_25-YR.xlsx Page 2 of 4 Morrison Maierle eiViri ers .ui veyur. ulirnr.r. u.iii.tt RatioCALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate ofInlet FrontalFlow to TotalFlow, yv z 67 Eo=Ratio of Frontal Flow to Total Gutter Flow Qu EO _ Or — 1—(1_T 1 where: Qo=Total Gutter Flow W/sec) Qw=Flow in Width(fta/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft 'I Total Spread of Water Over the Gutter&Pavement,TG+P: 6.04 ft = 72.48 in yCalculated • I ofInlet FrontalFlow to Total1 • 1 .53 YCalculated TotalFlow inWidth . Depressed Gutteror - 1 Calculate Ratio 1Inlet-SideFlow to TotalFlow, E QS 1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG Q� ° Qs=Flow Along Side(ftalsec) i Calculat 1 •1Ratio 1InletSide Flow toTotalFlow, 14 Calculated TotalFlow Along Sideof Depressed Gutter or Cls., 1 RatioCalculate 1FrontalFlow Intercepted . Total • Flow, Rf = 1—0.09(VG—V°) where: Rf=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ftlsec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,V.: 1.52 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: =ftlsec P-1-7/8 Style Grate Calculated Ratio oFrontalFlow Intercepted . 1Total . 1.00 13 EXAMPLE: 12 C GIVEN: RETICULINE GRATE d II L- 3 FT •V Vs 8 FT/S \110 Ww 10 FIND: Rf= 0.81 Q� C 9 -4 191 G. 8 9 PP'bC'r F�5 �I ` 7 �10A d ------- ------ - - - - -- 3 ; V o m x 4 0 � b N ; O LL C ; 41 0 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 V U' LENGTH OF GRATE L IFT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) NA22861009104 DesignlCalcslStorm Waterllnlet Interception Analysesllnlet-RWW-06_On-Grade_Basln-RWW-06_25-YR.xlsx Page 3 of 4 ®■ Morrison Maierle euyii are .urveyur yl�iiuviv vci•uuvic Calculate Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow S 0.15yG 1•e VG=Velocity of Flow in the Gutter(fYsec) 1+ SP 12.3 Sp=Transverse Slope of Pavement(ft/ft) LI=Length of Inlet Grate(ft) Velocity of flow in the Gutter,VG: 1,52 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 ft Calculate Efficiency of Grate,E: E = RfEo +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.53 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.52 Calculate Inlet Interception Capacity,QI: Qy = EQG where: QI=Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.78 Total Gutter Flow,QG: 0.89 ft3/sec(cfs) InterceptionCalculated Inlet !r 0.6 sec c N:122861009104 DeslgMCalcslStorm WateAlnlet Interception Analysesllnlet-RWW-06_0n-Grade_Basln-RWW-06_25-YR.xlsx Page 4 of 4 Morrison Maierle enyiueen wivu,vr+ Vlannce> rcia.i iir ri INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-07 Storm Drain Inlet #SDI-RW-07 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS ^� I0I/4• CURB BOX ADJUSTABLE•"TOO" 76 1/4' 5 I/4' 17 7/4' 1 114 2n' ~� 1r1 vz• Iw1 Z' •—VV 1"Yfill I DESIGN ` 77' 1 CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp= 3.00% Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dr= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,W,= 17.75 in = 1.48 ft Coefficient for Gutter,i Length of Inlet Grate,Li= 35.00 in = F 2.92 ft Manning's Roughness Coefficient for Pavement,nP Calculate Gutter Flow Depth, • • - • Perimeter Manning's Formula: 1.486 Asl3 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q—11 P2/1 $� where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL= Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment • Manning's Roughness Coefficient,ri 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 0.90 in = 0.08 ft Spread of Flow on Pavement,TP: 30.10 in = 2.51 ft Longitudinal Slope of Pavement,SP=SG: 0.65% = 0.0065 ft/ft Calculated Flow Area Over Pavement,AP: 13.59 in = 0.09 ft2 Calculated Wetted Perimeter Over Pavement,PP: 31.02 in = 2,58 ft NA22861009104 Design\CalcslStorm Waterllnlel Interception AnalysesUnlet-RWW-07_On-Grade3asin-RWW-07_25-YR.xlsx Page 1 of 4 Morrison ii Maierle eriyiri er• .ur vcyurs ylarrrrers ,irerilisit Calculate Flow In Gutter with Overlap ofPavement Encroachment Manning's Roughness Coefficient,ri 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG.p: 1.90 in = 0.16 it Spread of Flow in Gutter&Pavement Composite Section,TG-P: 28.55 in = 2.38 ft Longitudinal Slope of Gutter,SG: 0.65% = 0.0065 fUft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 27.16 in = 0.19 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 30.51 in = 2.54 ft Calculate Flow Within Gutter&Pavement Overlap Area A) Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 Rift Depth of Flow Over Gutter,yG: 0.90 in = 0.08 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 13.55 in = 1.13 it Longitudinal Slope of Gutter,SG: 0.65% = 0.0065 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 6.12 in' = 0.04 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 14.48 in = 1.21 ft Calculate Total Gutter Flow e Basin Design Peak Plow,Qp: 0.293 ftalsec(cfs) Calculated Total Depth of Flow Over Gutter,yG,P: 1.90 in = 0.16 ft Qc=Qt+Q2-Q, where: QG= Basin Design Peak Flow,Qp= 0.293 ft'/sec(cis) FREW Calculated Gutter Flow Cross-Sectional Area,AG: 0.15 ft2 Calculated Pavement Flow Cross-Sectional Area,Ap: 0.09 ft2 Calculated Gutter Flow Wetted Perimeter,PG: 1.42 ft Calculated Pavement Flow Wetted Perimeter,Pp: 2.51 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.10 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.04 ft o. N12286\009M Deslgn\Calcs\Storm Waler,lnlet Interception Analyses\Inlet-RWW-07_On-Grade_Basin-RWW-07_25-YR.xlsx Page 2 of 4 �® Morrison Maierle ON-GRADECALCULATE INLET INTERCEPTION CAPACITY I Calculate of Inlet Frontal Flow to Total Gutter Flow, E0: Q11, ( )2,67 Eo=Ratio of Frontal Flow to Total Gutter Flow E — 1— 1—— where: a o =19� — T OG=Total Gutter Flow(ft/sec) Ow=Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG,P: 3.76 ft = 45.10 in . Ratio o 1 Total .74 calculated . . Calculate o of Inlet Side Flow to Total E QS 1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow S QG Qc Os=Flow Along Side(ft3lsec) Calculated o of Inlet Side Flow to Total1 .26 Calculated Total Flow Along Side of • 1: Calculate o of Frontal Flow Intercepted to Total Rf = 1—0.09(VG—Vo) where: Rf=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(fVsec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow In the Gutter,VG: 1.16 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,VG: 9.96 ftlsec P-1-7/8 Style Grate Calculated . . II 13 EXAMPLE: C GIVEN: RETICULINE GRATE 11 L- 3FT V V- 8 FT/S `110 Wy to FIND: Rf= 0.81 Q' C LL 9 0 o F,O o'l0'i poi Q- g 0 ,y0 4C L F 7 d 3 M t� l IO V 5 j/� 0 O i , 1 _ Ca 4 co l0 C C n 3 rr � U. z P43 w / N ' `t' d g 0 1 2 3 4 O 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 L C7 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) WQ2861009104 DesignlCalcslStorm Waterllnlet Interception Ana1yseslinlet-RWW-07_0n-Grade_Basln-RWW-07_25-YR.xlsx Page 3 of 4 Morrison Maierle eiiyin env +uivayura Vlannciv vain iiiviv RatioCalculate ofInlet •' Flow Intercepted to Total 1' Flow,Rs: R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow S 0.15Vc 1.e VG=Velocity of Flow in the Gutter(fYsec) 1+ SP 12.3 Sp=Transverse Slope of Pavement(ftlft) L,=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.16 ftlsec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 Wit Length of Inlet Grate,Li: 35.00 in = 2.92 It .I• We 177111 1 1 .' Calculate Efficiency 1 E =RfEo +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.74 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.64 Calculate Inlet Interception Capacity, QI =EQc where: Qi=Inlet Interception Capacity(ft'Isec) Efficiency of Grate,E: 0.91 Total Gutter Flow,Qr: 0.29 ft'/sec(cfs) CalculatedInlet InterceptionCapacity, e i %228810004 DesignlCalcslStorm WateAlnlet Interception AnalysesOlet-RWW-07_On-Grade_Basin-RWW07_25-YRAm Page 4 of 4 Morrison Maierle enyin ets ,urveyur Vliineis .cic ili.tc INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-08 Storm Drain Inlet #SDI-RW-08 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS I 30 3/4• CURB BOX ADJUSTABLE B'TO]• 36 1/4- 6 3/4• 17 3/4• 11/4• V" 1 . F6, 1 33` 1� DESIGN CONSTANTS Curb Height at Inlet,hc= 5,50 in = 0.46 ft Pavement X-Slope at Inlet,Sp= 3.00% Width of Gutter at Inlet,WG= in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,LI= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,nP Calculate Gutter Flow Depth, Cross-Sectional • Perimeter Manning's Formula: _ 1.486 As/3 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) it 713 S� where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or so P=Wetted Perimeter of Flow(ft) SL= Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment e Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yp: 2.04 in = 0.17 it Spread of Flow on Pavement,TP: 67.86 in = 5.65 ft Longitudinal Slope of Pavement,SP=SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Over Pavement,AP: 69.07 in = 0.48 ft' Calculated Wetted Perimeter Over Pavement,PP: 69.92 in = 5.83 ft N12286\009\04 Design\Calcs\Storm Wateftlet Interception Analyses\Inlet-RWW-0B_On-Grade_Basin-RWW-08_25-YR.xlsx Page 1 of 4 Morrison ME mil Maierle tngineen aurv.•yury Vlnnui. vc.,in.ly t ! 1 t It ! Manning's Roughness Coefficient,ri 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG,P: 3.04 in = 0.25 it Spread of Flow in Gutter&Pavement Composite Section,TG+P: 45.54 in = 3.79 it Longitudinal Slope of Gutter,SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AGIP: 69.12 in = 0.48 ftZ Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PGtP: 48.67 in = 4.06 ft • . M R•,. Calculate Flow Within Gutter&Pavement Overlap Area ! Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 Wit Depth of Flow Over Gutter,yG: 2.04 in = 0.17 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 30.54 in = 2.54 ft Longitudinal Slope of Gutter,SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 31.08 in = 0.22 fe Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 32.64 in = 2.72 ft Calculate Total Gutter Flow(QGr� Basin Design Peak Plow,QP: 1.340 ft'/sec(cfs) _ Calculated Total Depth of Flow Over Gutter,YW: 3.04 in = 0.25 ft Qr,=01+QZ-Q3 where: QG= Basin Design Peak Flow,QP= 1.340 ft3/sec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.26 ftZ Calculated Pavement Flow Cross-Sectional Area,AP: 0.48 ftZ Calculated Gutter Flow Wetted Perimeter,PG: 1.53 ft Calculated Pavement Flow Wetted Perimeter,PP: 5.66 ft 7 ln V-711ILM 1I' .- A 1 tI !t- a t , Calculated Gutter Flow Hydraulic Radius,RG: 0.17 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.08 ft ...J...ew,4 :It1B -IId k: ' f1419!li( - n: Composite 0.10 ft Calculated Velocity of Flow for Gutter&Pavement Composite Section,VGIP: 1.77 fUsec NA2 2 8 610 0 910 4 DesignlCalcslStorm WaterVnlet Interception Analyses\Inlet-RWW-08_On-Grade_13asin-RWW-08_25-YR.xlsx Page 2 of 4 Morrison Maierle INTERCEPTIONCALCULATE INLET ON-GRADE INLET Calculate of Inlet Frontal Flow to Total Gutter Flow,EO: QW / w\z.e7 Eo=Ratio of Frontal Flow to Total Gutter Flow E° Or, = 1_I 1 T I where: Oc=Total Gutter Flow(ft3lsec) ` / Ow=Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG.P: 6.90 It = 82.86 in Calculated Ratio of I . Calculated TotalI Calculate o of Inlet Side Flow to Total E QS 1—QW= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow S QG Q� ° Os=Flow Along Side(ft3lsec) Calculated Ratio—.Ratio-of Inlet Side Flow to Total Gutter Flow, I Total .53 Calculated •w Along Side of Depressed or Ir 0.70 RatioCalculate of •ntal Flow Intercepted to Total Frontal R f = 1—0.09M—V°) where: RI=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Ve=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.77 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate 13 EXAMPLE: I2 C GIVEN: RETICULINE GRATE d II L= 3FT v V� 8 FT/S \o1b 10 FIND: Rp= 0.81LU Q� C LL 9 �P�aSOF� 0 0F,O 4��'/ �0 Al r C1 F 7 .,., 1C7 or PO QI� ry C 6 �� 3 M ' 0 = 7 5 Ag // ' 9 0 U of �/ ti C o rA 3 LL 2 PO C y 0 O 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 L U• LENGTH of GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22, Second Edition (U.S.Federal Highway Administration,August 2001) NA2286 OW04 DesignlCalc0torm WateAlnlet Interception Ana1yses\In1et-RWW-08_On-Grade_Basln-RWW08_25•YR.xlsx Page 3 of 4 Morrison ME iiiiiiii Maierle tnyin en +uiveyui ylainieia uenllaia RatioCalculate ofInlet1' Flow Intercepted 1 Total 1' Flow, R = 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15Vc 1•e VG=Velocity of Flow in the Gutter(ft/sec) 1+ SP 2.3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1,77 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ftlft Length of Inlet Grate,Li: 35.00 in = 2.92 ft Calculate Efficiency of Grate,E: E =RfEo +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.47 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.46 Interceptione —Calculate Inlet Qf =EQc where: Qi= Inlet Interception Capacity(ft'/sec) Efficiency of Grate,E: 0.71 Total Gutter Flow,QG: 1.34 ft3lsec(cfs) Calculated Inlet InterceptionCapacity, I N:\228NOM04 Design\Calcs\Storm WateAlnlet Interception Analyses\Inlet-RWW-08_On-Grade_Basin-RWW-08_25-YR.xlsx Page 4 of 4 Morrison No Maierle euyin ert tu,veyurs Vl+nnci. tea irittt INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-09 Storm Drain Inlet #SDI-RW-09 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET 707/4• CURB BOX ADJUBTABLE B'TO Y' 1 75 1/4' S 7/4" 17 7/4' 1-1 1/4' F2, —1 � t r' _ CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,LI= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, Cross-Sectional Area, & Wetted Perimeter Manning's Formula: _ 1.486 Asia Q=Total Flow in Given Cross-Sectional Area(fP/sec) n p2/3 S� where: n=Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(fe or sf) P=Wetted Perimeter of Flow(ft) SL= Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment(Qj) Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yp: 1.33 in = 0.11 ft Spread of Flow on Pavement,Tp: 44.20 in = 3.68 ft Longitudinal Slope of Pavement,Sp=SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Over Pavement,AP: 29.31 in = 0.20 ft2 Calculated Wetted Perimeter Over Pavement,PP: 45.55 in = 3.80 ft NA22861009104 DesignlCalcslStorm Waterllnlet Interception AnalyseOnlet-RWW-09_On-Grade_Basin-RWW-09_25-YR.xlsx Page 1 of 4 Morrison Maierle enylrieery .ur veyur,-Ulairner. .rr.ii ri.ra OverlapCalculate Flow In Gutter with 1Pavement Encroachmentw Manning's Roughness Coefficient,nr,: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG.P: 2.33 in = 0.19 ft Spread of Flow in Gutter&Pavement Composite Section,TG+P: 34.89 in = 2.91 It Longitudinal Slope of Gutter,SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,Ac+P: 40.58 in = 0.28 fe Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 37.29 in = 3.11 ft Calculate Flow Within Gutter&Pavement Overlap Area e Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ftlft Depth of Flow Over Gutter,yG: 1.33 in = 0.11 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 19.89 in = 1.66 It Longitudinal Slope of Gutter,SG: 0.75% = 0.0075 fUft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 13.19 in2 = 0.09 fe Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 21.26 in = 1.77 ft TotalCalculate . Basin Design Peak Plow,QP: 0.588 ft/sec(cfs) Calculated Total Depth of Flow Over Gutter,yG+P: 2,33 in = 0.19 It QG=Q1+Q2-Q3 where: QG= Basin Design Peak Flow,QP= 0.588 ft3lsec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.19 ft, Calculated Pavement Flow Cross-Sectional Area,AP: 0.20 ft' Calculated Gutter Flow Wetted Perimeter,PG: 1.46 ft Calculated Pavement Flow Wetted Perimeter,PP: 3.69 ft 1 ... Calculated Gutter Flow Hydraulic Radius,RG: 0.13 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.06 ft Calculated Hydraulic Radius for Gutter&Pavement Composite Section,RG+P"7—. mr-MFIT-Im- 1 . . 1 . .. NA22861009104 DesignlCaleMStorm Walerllnlel Interception Analyses\Inlet-RWW-09_On-Grade_Basin-RWW-09_25-YR.xlsx Page 2 of 4 Morrison Maierle criyiriaers-surveyors ylarrycrs saia•:ilists CALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate o of Inlet Frontal . .Total Gutter Flow, E Q� — 1— 1—W 2'67 where: Ec=Ratio of Frontal Flow to Total Gutter Flow — ° — Or — T Oc=Total Gutter Flow(ft3/sec) Ow=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,Tc;.P: 4.93 ft = 59.20 in oCalculated Ratio . I Total .61 Calculated I r • Calculate o of Inlet SideTotal B Qs 1—Qw °= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s Qc Qc Os=Flow Along Side(ft3/sec) I Calculated 4 of Inlet Side Flow to Total Gutter Flow,Es: 0.39 DepressedCalculated Total Flow Along Side of Calculate o of Frontal Flow Intercepted to Total R f = 1—0.09(VG—V°) where: Rr=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(fUsec) Vo=Gutter flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.45 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate 13 EXAMPLE: � 12 C GIVEN: RETICULINE GRATE 2 11 L- 3 FT U V 8 FT/5 \1te � y to FIND: Rf= 0.81 LLI C 9 yP�a S 0; o. 6 t\ a' � A \ v h 07 W 6 ' \ ry C L i 5 i 4 6 !3 4 / g U. 2 i ry _ r d 0 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.6 0.9 1.0 19 L 0 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) NA2286\009\04 Design\Calcs\Storm Water\Inlet Interception Analyses\Inlet-RWW-09_On-Grade_Basin-RWW-09_25-YR.xlsx Page 3 of 4 ® Morrison Maierle euyiu ei. aurveyur VluVncr.-a. .iiai> Calculate Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: R — 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15Vc 1.6 VG=Velocity of Flow in the Gutter(ft/sec) 1+ SP L 2.3 Sp=Transverse Slope of Pavement(fUft) LI=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.45 fUsec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 ft •. • . . 1 . W47 •1 -. 1 1 . 1• Calculate Efficiency 1 E =R fEo +RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,R}: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.61 �L Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.55 Calculate Inlet Interception Capacity, Q1 = EQG where: Qi=inlet Interception Capacity(ft'/sec) Efficiency of Grate,E: 0.82 Total Gutter Flow,CIO: 0.59 ft'/sec(cfs) '1Inlet InterceptionLA t NA2286\009\04 Design\calcslStorm Waler,lnlel Interception Analyses\Inlet-RWW-09_On-Grade_Basin-RWW-09_25•YR.xlsx Page 4 of 4 i Morrison ME mom Maierle engiiieen-Dui veyurr Vlanneii uien,i,,, INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-10 Storm Drain Inlet #SDI-RW-10 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WCual,2,5,10,25,50,or 100) INLET CHARACTERISTICS III 303/4' CURBBO%ADJUSTABLEVTOI' 36 1/4' 6 3/4' 17314 ♦-' 1/4' i 1112 r11/4' 2' {r OTTT 73" DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 5.0-01 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wt= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li F 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, • • - • Perimeter Manning's Formula: 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q— 71 2/3 S1, where: n= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment • Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 1.73 in = 0.14 ft Spread of Flow on Pavement,TP: 57.56 in = 4.80 ft Longitudinal Slope of Pavement,SP=SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Over Pavement,AP: 49.70 in = 0.35 ft2 Calculated Wetted Perimeter Over Pavement,PP: 59.31 in = 4.94 ft Calculated ol1„ Encroachment, i NA2286\009\04 Design\Calcs\Storm Waterllnlet Interception Analyses\Inlet-RWW-10_0n-Grade_Basin-RWW-10-25-YR.xlsx Page 1 of 4 , Morrison w. Maierle YiManning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG,P: 2.73 in = 0.23 ft Spread of Flow in Gutter&Pavement Composite Section,TG.P: 40.90 in = 3.41 ft Longitudinal Slope of Gutter,SG: 0.75% = 0.0075 fUft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 55.77 in = 0.39 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG.P: 43.72 in = 3.64 ft Calculate Flow Within Gutter&Pavement Overlap Area A Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG: 1.73 in = 0.14 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 25.90 in = 2.16 ft Longitudinal Slope of Gutter,SG: 0.75% = 0.0075 fUft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 22.37 in = 0.16 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 27.69 in = 2.31 ft Calculate Total Gutter Flow(QG) Basin Design Peak Plow,Qp: 0.963 ft'Isec(cfs) Calculated Total Depth of Flow Over Gutter,yG.P: 2.73 in = 0.23 ft QG=Q1+Q,-Q, where: QG= Basin Design Peak Flow,Qp= 0.963 ft'/sec(cfs) Calculated Gutter Flow Cross-Sectional Area,Ao: 0.23 ft2 Calculate,dd Pavement Flow Cross-Sectional Area,AP: .7 0.35 ftZ Calculated Gutter Flow Wetted Perimeter,PG: 1.50 ft Calculated Pavement Flow Wetted Perimeter,Pp: 4.80 ft !!•Min.IT • .• . 1 Calculated Gutter Flow Hydraulic Radius,RG: 0.15 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.07 ft On.. N:\228609M Design\Calcs\Storm Water\Inlet Interception Ana1yses\Inlet-RWW-10_On-Grade_Basin-RWW-10_25-YR.xlsx Page 2 of 4 Morrison No Maierle engiu ers surveyors-yliiiieis saieiilif tt Flow,CALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate Ratio of Inlet Frontal Flow to Total Gutter —E Qw — 1— 1— where:W\2.67 Eo=Ratio of Frontal Flow to Total Gutter Flow — ° 0,: T Qc=Total Gutter Flow(ft3/sec) Qw=Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG,P: 6.05 ft = 72.56 in Calculated Ratio Total1 .53 Calculated Total Flow In Width of i t of Inlet Side Flow to Total Gutter Flow,E E Qs 1—Qw °= 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG QG Qs=Flow Along Side(ft/sec) i Calculated o of Inlet Side Flow to Total Gutter Flow, t .47 Calculated Total Flow Along Side of Depressed Gutter or Grate,Qs: ft3 Isec(cfs) Calculate of Frontal Flow Intercepted to Total Frontal Flow,Rf: Rf = 1 —0.09(VG—V°) where: Rf=Ratio of Frontal Flow Intercepted to Total Frontal Flow Vo=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 1.64 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.g6 ft/sec P-1-7/8 Style Grate i Calculated Ratio . •. 1l 13 EXAMPLE: U 12 C GIVEN: RETICULINE GRATE 4) II L= 3 FT U V- 8 FT/5 \1l� LU rn to FIND: Rf= 0.81 Q� C 9 9 yP��Oi Q � 6 e y�o ��� 1� ` 7 ca � 110 P J C a 6 < P ----e'-- --- `rye O i s j i� \ 9 0 1 x 4 / 61 l9 � �b C y 3 0 L. U 2 PF 41 � ti C I � �z d 0 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 02 0.9 1.0 L (9 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22.Second Edition (U.S.Federal Highway Administration,August 2001) N:122861009M DesignlCalcslStorm Walerllnlet Interception Analysesllnlet-RWW-10_On-Grade_Basin-RWW-10_25-YR.xlsx Page 3 of 4 Morrison Maierle eu9in era ruveyurr Vlaiinei• rill ii t'— Calculate Ratio ofInletSide Flow Intercepted 1 • Side Flow,Rs: R = 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow S 0.15Ec 1.6 VG=Velocity of Flow in the Gutter(ftlsec) 1+ SP I 2.3 Sp=Transverse Slope of Pavement(ft/ft) LI=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.64 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,LI: 35.00 in = 2.92 ft • . • .• • . ••11562 • .&I V14 Calculate Efficiency of Grate,E: E =RfEO+RS(1—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.53 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.49 Capacity,Calculate Inlet Interception e Qy =EQG where: QI=Inlet Interception Capacity(fta/sec) Efficiency of Grate,E: 0.76 Total Gutter Flow,QG: 0.96 ft'/sec(cfs) Calculated Inlet InterceptionCapacity, 1 N:122861009104 DesignlCalcs\Storm WateAlnlet Interception Ana1yses\In1et-RWW-10_On-Grade_Basln-RWW-10_25-YR.xlsx Page 4 of 4 Morrison iiiiiiiii Maierle euyiuee,a ,u,vcyer+ ulei.ner> >cv ilisrs INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW+PL-11 Storm Drain Inlet #SDI-PL-01 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS {�a° /q• -�- RB BOX ADJUSTABLE • TO D 35 1/q• �• 5 1/q' - iT a/4 a '1r2 tr �rt r e• v, as --- rta• l I � ai•� CONSTANTSDESIGN Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X•Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 It Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow Depth, . • Area, • Perimeter Manning's Formula: _ 1.486 A5/3 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q rt 2/3 S� where: n= Manning's Roughness Coefficient A=Cross-Sectional Area of Flow(ft2 or sf) P=Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment e Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yp: 0.44 in = 0.04 ft Spread of Flow on Pavement,Tp: 14.51 in = 1.21 ft Longitudinal Slope of Pavement,Sp=S(;: 45.26% = 0.4526 ft/ft Calculated Flow Area Over Pavement,Ap: 3.16 in = 0.02 ft' Calculated Wetted Perimeter Over Pavement,PP: 14.96 in = 1.25 ft rt N:122861009104 Design\Calc0torm WateAlnlet Interception Analysesllnlet-PL-01—On-Grade—Basln-PL-01-25-YR.xlsx Page 1 of 4 Morrison Maierle a•rryirieels our va•��r• yl:irncr .ara iili.l. • 1 1 1. w !. Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG.P: 1.44 in = 0.12 ft Spread of Flow in Gutter&Pavement Composite Section,TG.P: 21.53 in = 1.79 ft Longitudinal Slope of Gutter,SG: 45.26% = 0.4526 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG.P: 15.45 in = 0.11 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PC.P: 23.01 in = 1.92 ft fill 1 ! Calculate Flow Within Gutter&Pavement Overlap Area A) Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,Sc: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG: 0.44 in = 0.04 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 6.53 in = 0.54 it Longitudinal Slope of Gutter,SG: 45.26% = 0.4526 ftlft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 1.42 in' = 0.01 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 6.98 in = 0.58 ft Basin Design Peak Plow,QP: 1.033 ft/sec(cfs) Calculated Total Depth of Flow Over Gutter,yG.P: 1.44 in = 0.12 ft QG=Qt+Q2-Q3 where: QG= Basin Design Peak Flow,QP= 1.033 ft3/sec(cfs) Calculated Gutter Flow Cross-Sectional Area,AG: 0.10 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.02 ft2 ��1[�1E1,••fr:�:>'�ain�Fl�_�t:�iit ��:--Ca�� �1,��Y:1=1f•, <„ ! Calculated Gutter Flow Wetted Perimeter,PG: 1.38 ft Calculated Pavement Flow Wetted Perimeter,PP: 1.21 ft Calculated Gutter Flow Hydraulic Radius,RG: 0.07 ft Calculated Pavement Flow Hydraulic Radius,RP: 0.02 ft L--•.---:,-li�, _1,.. .yr.,�J.il 1''I- • t 1 �'tiy„ 1 •• y51c; __ Calculated Velocity1 Flow forComposite • 8.04 c',r N:122861009V DesigMCalcslStorm WateAlnlet Interception Analyses\Inlet-PL-01_On-Grade_Basin-PL-01_25-YR.xlsx Page 2 of 4 L Morrison so Maierle engines.!-fu.veyur. yl.nncr. uienti.i. CALCULATE Calculate Ratio of Inlet Frontal Flow to Total Gutter Flow,EO: E° = Qw = 1— 1—W 2•67 Ec=Ratio of Frontal Flow to Total Gutter Flow Or T /I where: QG=Total Gutter Flow(ft3/sec) Qw=Flow in Width(ft3/sec) W=Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL=Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG.P: 2.46 ft = 29.51 in Calculated Ratio . 1 ' Calculated Total • 1 ' Calculate Ratio . E Qs 1—Qw = 1—E where: Es=Ratio of Side Flow to Total Gutter Flow s QG Q° ° Qs=Flow Along Side(ft3/sec) Calculated Ratio . 0.09 Calculated Total Flow Along Side of D•. 11' Ratio-ofcalculate . R f = 1—0.09(V°—V°) where: Rr=Ratio of Frontal Flow Intercepted to Total Frontal Flow VG=Velocity of Flow in the Gutter(ft/sec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 8.04 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate 13 EXAMPLE: �+ 12 V GIVEN: RETICULINE GRATE d I I L= 3 FT V V. 8 FT/S \11� Wy 10 FIND: Rf= 0.81 rL a "COO h F \t CD G 7 Q�\ A �y A L ate 6 J' 't'' ---- ------- ------ - - --- - - -- -' O L ;N. 5 � C.) o i ' 1 x 4 6 Ov O y L ; I � ZZ U. O O w 0 1 2 3 4 0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 O L U• LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22. Second Edition (U.S.Federal Highway Administration,August 2001) N:086\009104 Design\Calcs\Storm Water\Inlet Interceptlon Analyses\Inlet-PL-01_On-Grade_Basin-PL-01_25-YR.xlsx Page 3 of 4 Morrison NN Maierle enylifers-s......rs pI ,,,,s s6s....s is RatioCalculate 1Inlet1' Flow Intercepted 1 Total 1' Flow, R 1 where: Rs=Ratio of Side Flow Intercepted to Total Side Flow s 0.15VP "" VG=Velocity of Flow in the Gutter(ft/sec) 1+ S L I2,3 Sp=Transverse Slope of Pavement(ft/ft) Li=Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 8.04 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Li: 35.00 in = 2.92 ft Calculate Efficiency 1 E = RjEO+Rs(I—Eo) where: E=Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.91 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.05 � i :,..• Calculate Inlet Interception Capacity, Qf =EQG where: Qi= Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.92 Total Gutter Flow,QG: 1.03 ft3lsec(cfs) CalculatedInlet Interception1 ! 1 N:122881009104 Design\Calcs\Storm WaterVnlet Interception Analyses\Inlet-PL-01_On-Grade_Basin-PL-01_25-YR.xlsx Page 4 of 4 i. Morrison ilil�Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin RWW+PL-12 1 Inlet #SDI-PL-02 Post-Development Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 30 3/4' - CURB BOX ADJUSTABLE 8"TO 8- 35 1 33` -- 43" DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,So Depth of Gutter at Inlet,do= 1.00 in = 0.06 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,Li= 35.25 in = 2.94 it Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w = CWPcYd1.5 where Qi.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Po=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.33 ft = 3. 77 in Perimeter of Grate,Po= 3.60 ft Weir-Inlet Interception Capacity,Q1.w= 2.26 cfs = 1016.49 gpm Calculate Capacity of Grate Inlet Operating as an Orifice Qr—o =COAc(29Ya)1•5 where Q1.0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft`) g=Gravitational Constant(ft/seC) yd= Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.33 ft = 3.97 in Clear Opening Area of Grate,AG= 1.81 ft` Orifice-Inlet Interception Capacity,Q1.o= 5.83 cfs =F276177.941 gpm Gravitational Constant,g= 3-2-tusec` Page 1 of 2 N:122861009104 Design\CalcslStornn Waterllnlel Interception Analyses\Inlet-PL-02_Sag_Basin-PL-02_25-YR.xlsx Printed On:3111/2019.2:45 AM Morrison ( Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin RWW+PL-12 1 Inlet #SDI-PL-02 DESIGN INLET INTERCEPTIONPONDED INLET Calculate Design Inlet Interception Capacity _ QP where Qi=Design Inlet Interception Capacity(cfs) Qr -Ec Op= Design Peak Storm Runoff to Inlet(cfs) Ec= Inlet Grate Efficiency(%) Design Storm Runoff to Inlet,Qd= 1.81 cfs Inlet Grate Efficiency,EG= 807- Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 2.26 cfs Trash Accummulation or Clogging= 20% (Minimum of Weirand Orifice Capacities)=>WEIR OPERATION RunoffIntercepted by Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,Ql.�%, Inlet Capacity.Q'I, Inlet Capacity,Q1.0 Inlet Capacity,Q',.o Inlet Capacity.Q, 0.05 80% 0.13 0.11 2.27 1.81 0.11 0.10 80% 0.38 0.30 3.21 2.56 0.30 0.15 80% 0.69 0.55 3.93 3.14 0.55 0.20 80% 1.06 0.85 4.53 3.63 0.85 0.25 80% 1.49 1.19 5.07 4.06 1.19 0.30 80% 1.95 1.56 5.55 4.44 1.56 0.40 80% 3.01 2.41 6.41 5.13 2.41 0.50 80% 4.21 3.36 7.17 5.74 3.36 0.75 80% 7.73 6.18 8.78 7.02 6.18 1.00 80% 11.89 9.52 10.14 8.11 8.11 Inlet Capacity Summary 14.00 12.00 - - - -- - --- 10.00 w 0 c 8.00 -4- Weir Operation c -#mAdjusted Weir Operation m CL 6.00 Orifice Operation u `w -06--Adjusted Orifice Operations c 4.00 - - W- Design Operation rol 2.00 -- ---- -- 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00' Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:122881009104 DesignlCalcslStomi Waterllnlel Interception Analysesllnlet-PL-02 Sag Basin-PL-02_25-YR.xlsx Printed On:3/1112019-2:45 AM Morrison No iiiiiiiii Maierle myineer, ,u relcrr V'+rer, 4,ir rlr. INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin RWW+PL-13 1 Inlet #SDI-PL-03 Post-Development Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET _ 30 3/4" CURB BOX ADJUSTABLE B"TO 9" b 3/� 17 3J4' I I/4 2R' j t 1/2' 0 / y 43- DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement XSlope at Inlet,Sp Width of Gutter at Inlet,WG= in = 1.25 It Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,d,,= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 it Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET APA '1 I 1 ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qf—w =CwpcYd 1.5 where Qi.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Pc=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.40 ft = 4.77 in Perimeter of Grate,PG= 3.60 ft Weir-Inlet Interception Capacity,QI-w= 2.98 cfs = 1336.54 gpm Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =COAc(29Yd)o'5 where 01-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft`) g=Gravitational Constant(fUseC2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.40 ft = 4.77 in Clear Opening Area of Grate,AG= 1.81 ft` Orifice-Inlet Interception Capacity,Qi-o= 6.39 cfs = 2868.05 gpm Gravitational Constant,g= 32.17 tUsec` Page 1 of 2 W22861009104 DesignlCalcslSlonn Waterllnlet Interception Analysesllnlet-PL-03_Sag_Basin-PL-03_25-YR.xlsx Printed On:3/11/2019-2:48 AM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows - Subbasin RWW+PL-13 1 Inlet #SDI-PL-03 DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity QP where Qi=Design Inlet Interception Capacity(cfs) Qr = Ec Op= Design Peak Storm Runoff to Inlet(cfs) EG= Inlet Grate Efficiency(%) Design Storm Runoff to Inlet,Qd= 2.38 cfs Inlet Grate Efficiency,EG= 807- Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 2.98 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff • by Inlet,Qd 2.38 cfs Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter.Yd Efficiency, Inlet Capacity,Ql.w Inlet Capacity.Q'i,w Inlet Capacity,Q1 0 Inlet Capacity,Q'I.0 Inlet Capacity.Q, 0.05 80% 0.13 0.11 2.27 1.81 0.11 0.10 80% 0.38 0.30 3.21 2.56 0.30 0.15 80% 0.69 0.55 3.93 3.14 0.55 0.20 80% 1.06 0.85 4.53 3.63 0.85 0.25 80% 1.49 1.19 5.07 4.06 1.19 0.30 80% j 1.95 1.56 5.55 4.44 1.56 0.40 80% 3.01 2.41 6.41 5.13 2.41 0.50 80% 4.21 3.36 7.17 5.74 3.36 0.75 80% 7.73 6.18 8.78 7.02 6.18 1.00 80% 11.89 9.52 10.14 8.11 8.11 ------------- Inlet Capacity Summary 14.00 - -- --- - ----- I 12.00 -- - 10.00 o C 8.00 - Weir Operation 7 � --*-Adjusted Weir Operation v w 6.00 Orifice Operation u (U 00 Adjusted Orifice Operations c 4.00 -�I( Design Operation 2.00 )c 0.00 -- 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:122861009104 DesignlCalcslStorm Walerllnlel Interception Analysesllnlet-PL-03_Sag_Basin-PL-03_25-YR.xlsx Printed On: 3111/2019-2:48 AM APPENDIX C PIPE SIZING SUMMARIES Morrison Maierle engineers surveyors planners scientists Morrison Maierle engineers surveyors planners scientists APPENDIX C-1 NELSON ROAD PIPE SIZING SUMMARIES Morrison Maierle sn i,eses sui ,o- Vl..nns,s s<icisisls PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-01 I Subbasin NR-01 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT / .TA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-01 I Storm Drain Inlet#SDI-NR-01 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.9418 cfs = 422.72 gpm Design Minimum Flow Velocity,Vmin= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,Dmi°= 8.56 in = 0.71 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nmii Design Pipe Slope,S= 1.00% 0.0100 Tuft DESIGN MINIMUM PIPE SLOPE ANAL YSIS Normal Depth at Design Minimum Velocity,d',= 5.03 in = 0.42 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 45.21 in = 0.31 ft Wetted Perimeter at Design Minimum Velocity,P'= 16.96 in = 1.41 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.67 in = 0.22 ft Manning Roughness Ratio at Design Min.Velocity,n'lnr�ii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.70% 0.0070 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 4.56 in = 0.38 ft Cross-Sectional Flow Area at Design Slope,A= 39.86 in ft2 Wetted Perimeter at Design Slope,P= 16.03 in = 1.34 ft Hydraulic Radius at Design Slope,Rh= 2.49 in = 0.21 ft Top Width of Flow at Design Slope,T= 11.74 in = 0.98 ft Manning Roughness Ratio at Design Slope,nlnlull= 1.27 Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 4.87 in = 0.41 ft Critical Slope at Design Flow Rate,Sc= 0.79% 0.0079 tuft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.40 ft/sec Pipe Full Flow Rate at Design Slope,Qr°n= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:\2286009V Design\Cales6torm WaterlPipe Sizing Analyses\SDP-NR-01_Basin-NR-01_25-YR.xlsx Printed On:3/11/2019-10:07 AM Morrison r Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-02 I Subbasin NR-02 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-02 I Storm Drain Inlet#SDI-NR-02 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.5571 cfs = 698.88 gpm Design Minimum Flow Velocity,Vmjn= 3.00 ftlsec Design Minimum Full Flow Pipe Diameter,DmIn= 11.01 in = 0.92 ft Design Pipe Diameter,D= 12.100 in = 1.01 it Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nwu Design Pipe Slope,S= 1.00% 0.0100 tuft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'n= 7.49 in = 0.62 it Cross-Sectional Flow Area at Design Minimum Velocity,A'= 74.74 in = 0.52 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 21.91 in = 1.83 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.41 in = 0.28 ft Manning Roughness Ratio at Design Min.Velocity,n'Inf.ii Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.45 % 0.0045 Rift DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 6.00 in = 0.50 ft Cross-Sectional Flow Area at Design Slope,A= 56.94 in' = 0.40 ft2 Wetted Perimeter at Design Slope,P= 18.91 in = 1.58 it Hydraulic Radius at Design Slope,Rh= in = 0.25 ft Top Width of Flow at Design Slope,T= 12.10 in = 1.01 it Manning Roughness Ratio at Design Slope,nlnf°h Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 6.34 in = 0.53 It Critical Slope at Design Flow Rate,S,= 0.82% 0.0082 Rift Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.94 fllsec Pipe Full Flow Rate at Design Slope,Qfu„= 3.95 cis = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:08009V Design\Calcs\Stomt Water\Pipe Sizing Analyses\SDP-NR-02_Basin-NR-02_25-YR.xlsx Printed On:3/1112019-10:13 AM Morrison I® Maierle enqngers sur yo ,>I�n.ir> s<c i>,> PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-03 I Subbasins NR-01 & NR-02 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-01&NR-02 I Storm Drain Manhole#SDMH-01 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.8322 cfs = 822.33 gpm Design Minimum Flow Velocity,Vmin= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,Dmi,= 11.94 in = 1.00 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 It Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 1.00% 0.0100 ft/ft DESIGN MINIMUM PIPE SLOPEANALYSIS Normal Depth at Design Minimum Velocity,d'n= 7.50 in = 0.63 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 87.94 in = 0.61 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 23.51 in = 1.96 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.74 in = 0.31 ft Manning Roughness Ratio at Design Min.Velocity,n7n{°„ Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.43 % 0.0043 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,do= 5.97 in = 0.50 ft Cross-Sectional Flow Area at Design Slope,A= 65.33 in = 0.45 ft2 Wetted Perimeter at Design Slope,P= 20.43 in = 1.70 ft Hydraulic Radius at Design Slope,Rh= 3.20 in = 0.27 ft Top Width of Flow at Design Slope,T= 14.60 in = 1.22 ft Manning Roughness Ratio at Design Slope,nlnf,ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 6.47 in = 0.54 ft Critical Slope at Design Flow Rate,S°= 0.74 % 0.0074 fUft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 4.04 ft/sec Pipe Full Flow Rate at Design Slope,Qmu= 6.87 cfs = 3085.44 gpm Pipe Percent Full Page 1 of 1 N:122881009104 DesignlCalc0torm WaterlPipe Sizing AnalyseslSDP-NR-03_Basin-NR-01+02_25-YR.xlsx Printed On:3/11/2019-10:14 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-04 I Subbasin NR-03 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-03 I Storm Drain Inlet#SDI-NR-03 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.4954 cfs = 222.36 gpm Design Minimum Flow Velocity,Vmi°= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 6.21 in = 0.52 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nf,u Design Pipe Slope,S= 1.00% 0,0100 fuft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'.= 3.15 in = 0.26 it Cross-Sectional Flow Area at Design Minimum Velocity,A'= 23.78 in2 = 0.17 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 12.95 in = 1.08 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.84 in = 0.15 ft Manning Roughness Ratio at Design Min.Velocity,n'lnf,11 Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.19 % 0.0119 fl/ft DESIG N VALUE RESULTS Normal Depth at Design Slope,d.= 3.29 in = 0.27 ft Cross-Sectional Flow Area at Design Slope,A= 25.33 in = 0.18 ft2 Wetted Perimeter at Design Slope,P= 13.28 in = 1.11 ft Hydraulic Radius at Design Slope,Rh= 1.91 in = 0.16 ft Top Width of Flow at Design Slope,T= 10.77 in = 0.90 ft Manning Roughness Ratio at Design Slope,nlnf°n Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d,= 3.49 in = 0.29 ft Critical Slope at Design Flow Rate,S,= 0.79 % 0.0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.82 fl/sec Pipe Full Flow Rate at Design Slope,Qfuii= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 W22861009104 Design\CalcslStorm WaterkPipe Sizing AnalyseslSDP-NR-04_Basin-NR-03_25-YR.xlsx Printed On:3/11/2019-10:16 AM ■ Morrison EN Maierle enqnceis survcYors Glynn Cis .[en.ia PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-05 I Subbasin NR-04 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-04 I Storm Drain Inlet#SDI-NR-04 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.8852 cis = 397.32 gpm Design Minimum Flow Velocity,Vm,n= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmjn= 8.30 in = 0.69 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,ntuii Design Pipe Slope,S= 1.00 % 0.0100 ft/ft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'n= 4.80 in = 0.40 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 42.49 in = 0.30 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 16.49 in = 1.37 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.58 in = 0.21 ft Manning Roughness Ratio at Design Min.Velocity,Ontu,i Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.74 % 0.0074 ft/ft DESIGN VALUE RESUL TS Normal Depth at Design Slope,d.= 4.43 in = 0.37 ft Cross-Sectional Flow Area at Design Slope,A= 38.16 in = 0.26 ft2 Wetted Perimeter at Design Slope,P= 15.73 in = 1.31 ft Hydraulic Radius at Design Slope,Rh= 2.43 in = 0.20 ft Top Width of Flow at Design Slope,T= 11.66 in = 0.97 ft Manning Roughness Ratio at Design Slope,n/ntuii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 4.72 in = 0.39 ft Critical Slope at Design Flow Rate,S°= 0.79 % 0.0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.34 ft/sec Pipe Full Flow Rate at Design Slope,Qr ii= 3.95 cis = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcslSlorm Water\Pipe Sizing Analyses\SDP-NR-05_Basin-NR-04_25-YR.xlsx Printed On:3/11/2019-10:18 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-06 I Subbasins NR-01 thru NR-04 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-01 thru NR-04 I Storm Drain Manhole#SDMH-02 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= F-32507J cfs = 1459.04 gpm Design Minimum Flow Velocity,Vmin= 3.OD ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 15.90 in = 1.33 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 1.00% 0.0100 tuft Normal Depth at Design Minimum Velocity,d'°= 12.49 in = 1.04 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 156.06 in = 1.08 fe Wetted Perimeter at Design Minimum Velocity,P'= 34.47 in = 2.87 ft Hydraulic Radius at Design Minimum Velocity,R'h= 4.53 in = 0.38 ft Manning Roughness Ratio at Design Min.Velocity,Onfuii F7 1.08 Manning Roughness at Design Minimum Velocity,n'= 0.013 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.25 % 0.0025 full: DESIGN VALUE RESULTS Normal Depth at Design Slope,d = 8.15 in = 0.68 ft Cross-Sectional Flow Area at Design Slope,A= 97.55 in2 = 0.68 ft2 Wetted Perimeter at Design Slope,P= 24.80 in = 2.07 ft Hydraulic Radius at Design Slope,Rh= 3.93 in = 0.33 ft Top Width of Flow at Design Slope,T= 14.83 in = 1.24 ft Manning Roughness Ratio at Design Slope,n/nmu Manning Roughness at Design Slope,n= 0.015 Critical Depth at Design Flow Rate,d,= F 8.74 in = 0.73 It Critical Slope at Design Flow Rate,Sc= 0.77 % 0.0077 felt Flow Type= Subcritical Velocity of Flow at Design Slope,V= 4.80 ft/sec Pipe Full Flow Rate at Design Slope,Qmn= 6.87 cfs = 3 885.44 gpm Pipe Percent Full Page 1 of 1 N:122661009104 DesignlCalc0torm WaterTipe Sizing AnalyseslSDP-NR-06_Basin-NR-01-thru-04_25-YR.xlsx Printed On:3/1112019-10:20 AM Morrison _ Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-07 I Subbasin NR-05 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-05 I Storm Drain Inlet#SDI-NR-05 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.7639 cfs = 342.88 gpm Design Minimum Flow Velocity,VHS= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 7.71 in = 0.64 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nfj Design Pipe Slope,S= 1.00% 0.0100 ft/ft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'n= 4.30 in = 0.36 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 36.67 in = 0.25 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 15.46 in = 1.29 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.37 in = 0.20 ft Manning Roughness Ratio at Design Min.Velocity,n7nf�ii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.83 % 0.0083 Wit DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 4.11 in = 0.34 ft Cross-Sectional Flow Area at Design Slope,A= 34.40 in = p,24 ft2 Wetted Perimeter at Design Slope,P= 15.05 in = 1.25 ft Hydraulic Radius at Design Slope,Rh= 2.29 in = 0.19 it Top Width of Flow at Design Slope,T= 11.46 in = 0.95 ft Manning Roughness Ratio at Design Slope,n/nr�ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d�= 4.37 in = 0.36 ft Critical Slope at Design Flow Rate,S.= 0.79% 0.0079 tuft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.20 ft/sec Pipe Full Flow Rate at Design Slope,Qmn= 3.95 cfs = 1771.12 gpm Pipe Percent Full F 1-9.36% Page 1 of 1 N:122861009104 DesignlCalcslStorm WaterlPipe Sizing AnalyseslSDP-NR-07_Basin-NR-05_25-YR.xlsx Printed On:3111/2019-10:22 AM ( Morrison No Maierle enryineers surveyors-planners scicnti sls PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-08 I Subbasin NR-06 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-06 I Storm Drain Inlet#SDI-NR-06 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.8699 cfs = 390.43 gpm Design Minimum Flow Velocity,V.I.= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmiry= 8.23 in = 0.69 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nt°u Design Pipe Slope,S= 1.00% 0.0100 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 4.74 in = 0.39 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 41.75 in = 0.29 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 16.36 in = 1.36 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.55 in = 0.21 ft Manning Roughness Ratio at Design Min.Velocity,Onwii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.75% 0.0075 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 4.39 in = 0.37 ft Cross-Sectional Flow Area at Design Slope,A= 37.69 in' = 0.26 ft2 Wetted Perimeter at Design Slope,P= 15.65 in = 1.30 ft Hydraulic Radius at Design Slope,Rh= F 2.41 in = 0.20 ft Top Width of Flow at Design Slope,T= 11.64 in = 0.97 ft Manning Roughness Ratio at Design Slope,nlnt°ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,dry= 4.68 in = 0.39 ft Critical Slope at Design Flow Rate,S.= 0.79% 0.0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.32 fusee Pipe Full Flow Rate at Design Slope,Qwii= 3.95 cfs r 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcslStonn WaterTipe Sizing Analyses\SDP-NR-08_Basin-NR-06_25-YR.xlsx Printed On:3/1112019-10:23 AM Morrison Maierle ..�mccs .� uo. naron :awnws PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-09 I Subbasins NR-01 thru NR-06 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-01 thru NR-06 I Storm Drain Manhole#SDMH-03 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 4.1515 cfs = 1863.34 gpm Design Minimum Flow Velocity,Vm,°= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,DHn= 17.97 in = 1.50 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,of°n Design Pipe Slope,S= 0.84% 0.0084 ft/ft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 11.95 in = 1.00 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 198.84 in = 1.38 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 60.55 in = 5.05 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.28 in = 0.27 ft Manning Roughness Ratio at Design Min.Velocity,n'!nf°,i Manning Roughness at Design Minimum Velocity,n'= 0.013 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.40% 0.0040 ft/ft DESIGN VALUE RESUL TS Normal Depth at Design Slope,d°= 9.80 in = 0.82 ft Cross-Sectional Flow Area at Design Slope,A= 121.54 in2 = 0.84 ft2 Wetted Perimeter at Design Slope,P= 28.18 in = 2.35 ft Hydraulic Radius at Design Slope,Rh= 4.31 in = 0.36 ft Top Width of Flow at Design Slope,T= 14.14 in = 1.18 ft Manning Roughness Ratio at Design Slope,nlnfuii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 9.91 in = 0.83 ft Critical Slope at Design Flow Rate,S.= 0.81 % 0.0081 Wit Flow Type= Subcritical Velocity of Flow at Design Slope,V= 4.91 ft/sec Pipe Full Flow Rate at Design Slope,Qf°ii= 6.31 cfs = 2833.23 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignQIcs0orm WateAPipe Sizing AnalyseslSDP-NR-09_Basin-NR-01-thru-06_25-YR.xlsx Printed On:3/11/2019-10:25 AM i Morrison EN Maierle vl,,,,, PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-10 I Subbasin NR-07 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-07 I Storm Drain Inlet#SDI-NR-07 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.6666 cis = 299.21 gpm Design Minimum Flow Velocity,Vmin= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 7.20 in = 0.60 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nnm Design Pipe Slope,S= 1.00 % 0.0100 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'n= 3.90 in = 0.32 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 32.00 in = 0.22 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 14.60 in = 1.22 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.19 in = 0.18 ft Manning Roughness Ratio at Design Min.Velocity,n'Int it Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.94 % 0,0094 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,do= 3.83 in = 0.32 it Cross-Sectional Flow Area at Design Slope,A= 31.27 in = 0,22 ft2 Wetted Perimeter at Design Slope,P= 14.46 in = 1.21 it Hydraulic Radius at Design Slope,Rh= 2.16 in = 0.18 it Top Width of Flow at Design Slope,T= 11.26 in = 0.94 ft Manning Roughness Ratio at Design Slope,n/null= 1.29 Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,do= 4.07 in = 0,34 ft Critical Slope at Design Flow Rate,S,= F 0.79 % 0.0079 ftlft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.07 ft/sec Pipe Full Flow Rate at Design Slope,Qt.n= 3.95 cfs = 1771.12 gpm Pipe Percent Full F 16.89% Page 1 of 1 11:086009V Design\CalcMStorm Water\Pipe Sizing Analyses\SDP-NR-10_Basin-NR-07_25-YR.xlsx Printed On:3/11/2019.10:27 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-11 I Subbasins NR-01 thru NR-07 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-01 lhru NR-07 I Storm Drain Manhole#SDMH-06 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 4.6311 cfs = 2078.57 gpm Design Minimum Flow Velocity,Vmjn= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmi°= 18.98 in = 1.58 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,ntnu Design Pipe Slope,S= 0.84 % 0.0084 ft/ft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 10.14 in = 0.85 It Cross-Sectional Flow Area at Design Minimum Velocity,A'= 222.29 in = 1.54 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 64.70 in = 5.39 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.44 in = 0.29 ft Manning Roughness Ratio at Design Min.Velocity,n'/nr°u Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.42 % 0.0042 Wit DESIGN VALUE RESULTS Normal Depth at Design Slope,d,= 10.48 in = 0.87 ft Cross-Sectional Flow Area at Design Slope,A= 131.05 in = 0.91 ft2 Wetted Perimeter at Design Slope,P= 29.65 in = 2.47 ft Hydraulic Radius at Design Slope,Rh= 4.42 in = 0.37 ft Top Width of Flow at Design Slope,T= 13.61 in = 1.13 It Manning Roughness Ratio at Design Slope,n/nr°u Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 10.49 in = 0.87 ft Critical Slope at Design Flow Rate,S.= 0.84 % 0.0084 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 5.09 fVsec Pipe Full Flow Rate at Design Slope,Qr.„= 6.31 cfs = 2833.23 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcslSlonn WalerlPipe Sizing AnalyseslSOP-NR-11 Basin-NR-01-lhru-07 25-YR.xlsx Printed On:311112019-10:30 AM �® Morrison �■ Maierle ennmee„ :�c�eyore� PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-13 I Subbasin NR-08 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-08 I Future Storm Drain Inlet#SDI-NR-08A Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.8533 cis = 382.99 gpm Design Minimum Flow Velocity,Vmjn= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,Dmln= 8.15 in = 0.68 It Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 It Manning's Roughness Coefficient-Full,nr°n Design Pipe Slope,S= 1.00% 0.0100 Rift DESIGN MINIMUM PIPE SLOPE ANALYSIS Depth at Design Minimum Velocity,d',= 4.67 in = 0.39 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 40.96 in = 0.28 fe Wetted Perimeter at Design Minimum Velocity,P'= 16.22 in = 1.35 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.52 in = 0.21 ft Manning Roughness Ratio at Design Min.Velocity,n'Inl.ii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.76% 0.0076 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 4.35 in = 0.36 it Cross-Sectional Flow Area at Design Slope,A= 37.19 in = 0.26 I? Wetted Perimeter at Design Slope,P= 15.56 in = 1.30 it Hydraulic Radius at Design Slope,Rh= in = 0.20 it Top Width of Flow at Design Slope,T= 11.61 in = 0.97 ft Manning Roughness Ratio at Design Slope,nfnf°li Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 4.63 in = F 0 3-91 ft Critical Slope at Design Flow Rate,Sc= 0.79% 0.0079 Rift Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.30 ftlsec Pipe Full Flow Rate at Design Slope,Qh ii= 3.95 Cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcslSlornn WaterlPipe Sizing AnalyseslSDP-NR-13_Basin-NR-08_25-YR.xlsx Printed On:3/1112019-10:33 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-14 I Subbasins NR-01 thru NR-08 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-01 thru NR-08 I Storm Drain Manhole#SDMH-08 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 5.0020 cfs = 2245.06 gpm Design Minimum Flow Velocity,Vmin= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmi°= 19.73 in = 1.64 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,nr°u Design Pipe Slope,S= 0.83 % 0.0083 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 8.95 in = 0.75 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 239.38 in = 1.66 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 67.20 in = 5.60 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.56 in = 0.30 ft Manning Roughness Ratio at Design Min.Velocity,n'In,°ii Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.43 % 0.0043 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 11.06 in = 0.92 ft Cross-Sectional Flow Area at Design Slope,A= 138.73 in = 0.96 ft2 Wetted Perimeter at Design Slope,P= 30.93 in = 2.58 ft Hydraulic Radius at Design Slope,Rh= 4.48 in = 0.37 ft Top Width of Flow at Design Slope,T= 13.04 in = 1.09 ft Manning Roughness Ratio at Design Slope,nlnfuii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,do= 10.89 in = 0.91 ft Critical Slope at Design Flow Rate,S.= 0.87 % 0.0087 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 5.18 ft/sec Pipe Full Flow Rate at Design Slope,Qmn= 6.25 cis = 2806.56 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcs6torm WaterlPipe Sizing AnalyseslSDP-NR-14_Basin-NR-01-thru-08_25-YR.xlsx Printed On:3/1112019-10:35 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-15 I Subbasin NR-10 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-10 I Storm Drain Inlet#SDI-NR-09 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.3107 cfs = 139.46 gpm Design Minimum Flow Velocity,Vmjn= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,Dmin= 4.92 in = 0.41 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nruu= 0.012 Design Pipe Slope,S= 1.00 % 0.0100 ft1ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'n= 2.27 in = 0.19 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 14.91 in = 0.10 ftz Wetted Perimeter at Design Minimum Velocity,P'= 10.83 in = 0.90 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.38 in = 0.11 ft Manning Roughness Ratio at Design Min.Velocity,Onr.ii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.70 % 0.0170 fuft DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 2.60 in = 0.22 ft Cross-Sectional Flow Area at Design Slope,A= 18.18 in2 = 0.13 ft2 Wetted Perimeter at Design Slope,P= 11.68 in = 0.97 ft Hydraulic Radius at Design Slope,Rh= 1.56 in = 0.13 ft Top Width of Flow at Design Slope,T= 9.95 in = 0.83 ft Manning Roughness Ratio at Design Slope,nlnruii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 2.75 in = 0.23 ft Critical Slope at Design Flow Rate,S°= 0.80 % 0.0080 fUft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.46 fUsec Pipe Full Flow Rate at Design Slope,Qr.0= 3.95 Cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122BB1009V DesignlCalcMStorm WaterlPipe Sizing AnalyseslSDP-NR-15_Basin-NR-10_25-YR.xlsx Printed On:3/11/2019-10:38 AM Morrison Maierle n(Inc(s srcY(`r: Pl�nnc+ s(cnlsl. PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-16 I Subbasins NR-01 thru NR-10 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-01 lhru NR-101 Combinatin Storm Drain Manhole&Inlet#SDI-NR-08 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 5.6277 cfs = 2525.88 gpm Design Minimum Flow Velocity,Vmin= 3.00 fllsec Design Minimum Full Flow Pipe Diameter,D,„i„= 20.93 in = 1.74 ft Design Pipe Diameter,D= 18.000 in = 1.50 ft Design Pipe Radius,r= 9.00 in = 0.75 ft Manning's Roughness Coefficient-Full,nr°u Design Pipe Slope,S= 0.40% 0.0040 ft/ft DESIGN MINIMUM PIPE SLOPE ANAL YSIS Normal Depth at Design Minimum Velocity,d'„= 16.02 in = 1.34 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 269.66 in = 1.87 ftz Wetted Perimeter at Design Minimum Velocity,P'= 68.71 in = 5.73 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.92 in = 0.33 It Manning Roughness Ratio at Design Min.Velocity,Ont°,i Manning Roughness at Design Minimum Velocity,n'= 0.013 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.29 % 0.0029 fvft DESIGN VALUE RESUL TS Normal Depth at Design Slope,d„= 13.17 in = 1.10 ft Cross-Sectional Flow Area at Design Slope,A= 199.50 in2 = 1.39 ft2 Wetted Perimeter at Design Slope,P= 36.94 in = 3.08 ft Hydraulic Radius at Design Slope,Rh= in = 0.45 it Top Width of Flow at Design Slope,T= 15.95 in = 1.33 it Manning Roughness Ratio at Design Slope,nlnr°u Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 10.97 in = 0.91 ft Critical Slope at Design Flow Rate,S.= 0.74% 0.0074 tuft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 4.06 fusec Pipe Full Flow Rate at Design Slope,Qf°,i= 7.20 cfs = 3230.31 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesigMCalcslSform WaterlPipe Sizing AnalyseslSDP-NR-16 Basin-NR-01-thru-10_25-YR.xlsx Printed On:3/11/2019-10:40 AM ( Morrison 111 No Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-NR-17 Subbasins NR-01 thru NR-10 & NR-11 thru NR-12 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-01 thru NR-10&NR+PL-01 thru NR+PL-02 Storm Drain Manhole#SDMH-10 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 7.1438 cfs = 3206.35 gpm Design Minimum Flow Velocity,Vmi°= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmi°= 23.58 in = 1.96 ft Design Pipe Diameter,D= 24.100 in = 2.01 ft Design Pipe Radius,r= 12.05 in = 1.00 ft Manning's Roughness Coefficient-Full,nr°u Design Pipe Slope,S= 0.20% 0.0020 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d',= 16.94 in = 1.41 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 342.62 in2 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 47.93 in = 3.99 ft Hydraulic Radius at Design Minimum Velocity,R'h= 7.15 in = 0.60 ft Manning Roughness Ratio at Design Min.Velocity,n'lnmil Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.15 % 0.0015 fyft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 15.67 in = 1.31 ft Cross-Sectional Flow Area at Design Slope,A= 313.99 in2 = 2.18 ft2 Wetted Perimeter at Design Slope,P= 45.21 in = 3.77 ft Hydraulic Radius at Design Slope,Rh= 6.95 in = 0.58 ft Top Width of Flow at Design Slope,T= 22.99 in = 1.92 ft Manning Roughness Ratio at Design Slope,nlnf°ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 11.37 in = 0.95 ft Critical Slope at Design Flow Rate,S°= 0.64% 0.0064 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 3.27 ft/sec Pipe Full Flow Rate at Design Slope,Qwn= 11.08 CfS = 4974.10 gpm Pipe Percent Full Page 1 of 1 11:122861009104 Design\Calc Gonn WaterlPipe Sizing AnalyseslSDP-NR-17_Basin-NR-01-thru-10 NR+PL-01-02_25-YR.xlsx Printed On:3/1112019-10:45 AM i Morrison EN Maierle enginee,s suvyors plonncr; ,r.i ii,,i, PIPE SIZING ANALYSES Storm Drain Pipe SDP-PL-05 I Subbasin NR+PL-01 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN Contributing Drainage Basin, Basins,or Pipe: Subbasin NR+PL-01 Storm Drain Inlet#SDI-PL-04 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.1804 cfs = 529.8D gpm Design Minimum Flow Velocity,Vmin= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,DHn= 9.58 in = 0.80 ft Design Pipe Diameter,D= 12.100 in = 1.01 fl Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 1.00% 0.0100 tuft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'n= 5.98 in = 0.50 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 56.66 in = 0.39 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 18.87 in = 1.57 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.00 in = 0.25 ft Manning Roughness Ratio at Design Min.Velocity,n7nt°1I Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.58 % 0.0058 fUft DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 5.16 in = 0.43 ft Cross-Sectional Flow Area at Design Slope,A= 46.75 in = 0.32 ft2 Wetted Perimeter at Design Slope,P= 17.22 in = 1.43 ft Hydraulic Radius at Design Slope,Rh= 2.72 in = 0.23 ft Top Width of Flow at Design Slope,T= 11.97 in = 1.00 ft Manning Roughness Ratio at Design Slope,n1%ji Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d° F 5.46 in = 0.46 ft Critical Slope at Design Flow Rate,Sc= 0.80 % 0.0080 ftlft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.64 ft/sec Pipe Full Flow Rate at Design Slope,Qmu= 3.95 cis = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009V DesignlCalcslSlomi WateiTipe Sizing AnalyseslSDP-PL-05_Basin-NR+PL-01_25-YR.xlsx Printed On:311112019-10:51 AM Morrison Maierle ,, ....�,os PIPE SIZING ANALYSES Storm Drain Pipe SDP-PL-06 I Subbasins NR-11 & NR-12 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-11&NR-12 I Storm Drain Inlet#SDI-PL-05 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 1.8244 cfs = 818.86 gpm Design Minimum Flow Velocity,Vmin= 3.00 ftlsec Design Minimum Full Flow Pipe Diameter,DmIn= 11.92 in = 0.99 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient•Full,nl°li= 0.012 Design Pipe Slope,S= 1.00% 0.0100 ftlft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'n= 7.48 in = 0.62 It Cross-Sectional Flow Area at Design Minimum Velocity,A'= 87.57 in = 0.61 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 23.46 in = 1.95 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.73 in = 0.31 It Manning Roughness Ratio at Design Min.Velocity,n'/nr°n Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.43% 0.0043 ful't DESIGN VALUE RESULTS Normal Depth at Design Slope,do= 5.96 in = 0.50 it Cross-Sectional Flow Area at Design Slope,A= 65.14 in' = 0.45 it2 Wetted Perimeter at Design Slope,P= 20.41 in = 1.70 it Hydraulic Radius at Design Slope,Rh= 3.19 in = 0.27 it Top Width of Flow at Design Slope,T= 14.60 in = 1.22 it Manning Roughness Ratio at Design Slope,nlnfull Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 6.46 in = 0.54 ft Critical Slope at Design Flow Rate,S,= 0.74 % 0.0074 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 4.03 ft/sec Pipe Full Flow Rate at Design Slope,Qr°n= 6.87 cfs = 3085.44 gpm Pipe Percent Full Page 1 of 1 W2861009104 Design\CaIcs%Stonn WateiTipe Sizing Analyses\SDP-PL-06_Basin-NR,PL-01+02_25-YR.xlsx Printed On:3111/2019-10:54 AM Morrison Maierle en°n s svveyari-plunnc. ...in,.... PIPE SIZING ANALYSES Storm Drain Pipe SDP-PL-08 I Subbasins NRAI & NRA2 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Basins,or Pipe: Subbasins NR-11&NR-12 I Storm Drain Manhole#SDMH-05 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.8244 cis = 818.86 gpm Design Minimum Flow Velocity,Vmin= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 11.92 in = 0.99 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,nwu Design Pipe Slope,S= 0.60% 0.0060 tuft SLOPEDESIGN MINIMUM PIPE ANAL Normal Depth at Design Minimum Velocity,d'°= 7.48 in = 0.62 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 87.57 in = 0.61 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 23.46 in = 1.95 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.73 in = 0.31 ft Manning Roughness Ratio at Design Min.Velocity,Onru,l Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.43 % 0.0043 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 6.84 in = 0.57 ft Cross-Sectional Flow Area at Design Slope,A= 78.10 in = 0.54 ft2 Wetted Perimeter at Design Slope,P= 22.18 in = 1.85 ft Hydraulic Radius at Design Slope,Rh= 3.52 in = 0.29 ft Top Width of Flow at Design Slope,T= 14.85 in = 1.24 ft Manning Roughness Ratio at Design Slope,nlnf.ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 6.46 in = 0.54 ft Critical Slope at Design Flow Rate,S.= 0.74 % 0.0074 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 3.36 ft/sec Pipe Full Flow Rate at Design Slope,Qr°u= 5.32 cfs = 2388.38 gpm Pipe Percent Full Page 1 of 1 N:122861009V DesignlCalcslStorm WaterlPipe Sizing AnalyseslSDP-PL-08_Basin-NR+PL-01+02_25-YR.xlsx Printed On:3/11/2019-11:00 AM Morrison Maierle engineers surveyors planners scientists APPENDIX C-2 ROYAL WOLF WAY & PRINCE LANE PIPE SIZING SUMMARIES Morrison lll� Maierle enq'necrs surveyors pl�rrisers scienssss PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-01A I Subbasin RWW-01A Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-01A Storm Drain Stub to Lot 24 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.9068 cfs = 406.98 gpm Design Minimum Flow Velocity,V„,j„= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,D,„i„= 8.40 in = 0.70 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nfuii Design Pipe Slope,S= 1.00 % 0.0100 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Depth at Design Minimum Velocity,d'„= 4.89 in = 0.41 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 43.52 in = 0,30 f12 Wetted Perimeter at Design Minimum Velocity,P'= 16.67 in = 1.39 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.61 in = 0.22 It Manning Roughness Ratio at Design Min.Velocity,Onf°,i Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.72 % 0.0072 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d„= 4.49 in = 0.37 ft Cross-Sectional Flow Area at Design Slope,A= 38.81 in = p,27 ft2 Wetted Perimeter at Design Slope,P= 15.85 in = 1,32 ft Hydraulic Radius at Design Slope,Rh= 2.45 in = 0.20 ft Top Width of Flow at Design Slope,T= 11.69 in = 0.97 ft Manning Roughness Ratio at Design Slope,n/nf°ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 4.76 in = 0.40 ft Critical Slope at Design Flow Rate,S.= 0.79 % 0.0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.36 fl/sec Pipe Full Flow Rate at Design Slope,Qf°u= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 W22861009104 DesignlCalcs\Stonn WateAPipe Sizing AnalyseslSDP-RWW-01A_Basin-RWW-01A_25-YR.xlsx Printed On:3/11/2019-11:07 AM I Morrison ON ONE Maierle ul,,,, PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-01 I Subbasin RWW-01 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-01 I Storm Drain Inlet#SDI-RW-01 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 3.0106 cis = 1351.25 gpm Design Minimum Flow Velocity,V.I.= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dml,= 15.31 in = 1.28 ft Design Pipe Diameter,D= 12.100 in = 1.01 It Design Pipe Radius,r= 6.05 in = 0.50 it Manning's Roughness Coefficient•Full,nt.0= 0.012 Design Pipe Slope,S= 1.00% 0.0100 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'.= 8,42 in = 0.70 it Cross-Sectional Flow Area at Design Minimum Velocity,A'= 144.51 in = 1.00 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 52.14 in = 4.34 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.77 in = 0.23 it Manning Roughness Ratio at Design Min.Velocity,Ontuil Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0,55% 0.0055 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d = 8.72 in = 0.73 it Cross-Sectional Flow Area at Design Slope,A= 88.76 in = 0.62 ft2 Wetted Perimeter at Design Slope,P= 24.54 in = 2.05 ft Hydraulic Radius at Design Slope,Rh= 3.62 in = 0.30 it Top Width of Flow at Design Slope,T= 10.85 in = 0.90 ft Manning Roughness Ratio at Design Slope,nlnt.il Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d,= 8.91 in = 0,74 it Critical Slope at Design Flow Rate,Sc= 0,94% 0.0094 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 4.88 ft/sec Pipe Full Flow Rate at Design Slope,QNII= 3.95 cis = 1771.12 gpm Pipe Percent Full= 76.29% Page 1 of 1 W22881009104 Design\CalcslStonn Wate(Pipe Sizing Analyses\SDP-RWW-01_Basin-RWW-01_25-YR.xlsx Printed On:3111/2019-11:09 AM Morrison i___ - Maierle en4m CC,s-sury,Y plan„Cri i<i Clsls PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-02 I Subbasin RW-02 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN Contributing Drainage Basin, Basins,or Pipe: Subbasin RW-02 Storm Drain Inlet#SDI-RW-02 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.9309 cfs = 417.64 gpm Design Minimum Flow Velocity,Vmin= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 8.51 in = 0.71 ft Design Pipe Diameter,D= 12.100 in = 1.01 It Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nfull Design Pipe Slope,S= 1.00 % 0.0100 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 4.99 in = 0.42 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 44.66 in = 0.31 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 16.87 in = 1.41 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.65 in = 0.22 It Manning Roughness Ratio at Design Min.Velocity,Ontuii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.71 % 0.0071 fl/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 4.55 in = 0.38 ft Cross-Sectional Flow Area at Design Slope,A= 39.54 in = 0.27 It Wetted Perimeter at Design Slope,P= 15.98 in = 1.33 ft Hydraulic Radius at Design Slope,Rh= 2.47 in = 0.21 ft Top Width of Flow at Design Slope,T= 11.72 in = 0.96 It Manning Roughness Ratio at Design Slope,nlnt°n Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 4.84 in = 0.40 It Critical Slope at Design Flow Rate,S.= 0.79 % 0.0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.39 fUsec Pipe Full Flow Rate at Design Slope,Qfull= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122801009104 DesignQ1cslStomi WateriPipe Sizing AnalyseslSDP-RWW-02_Basin-RWW-02_25-YR.xlsx Printed On:311112019-11:12 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-03 I Subbasins RWW-01, 01A, & 02 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN Contributing Drainage Basin, Basins,or Pipe: Subbasins RWW-01,01A,&021 Storm Drain Manhole#SDMH-12 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 3.5739 cfs = 1604.09 gpm Design Minimum Flow Velocity,Vmjn= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 16.68 in = 1.39 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,ntou= 0.012 Design Pipe Slope,S= 0.57% 0.0057 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Depth at Design Minimum Velocity,d'n= 14.22 in = 1.19 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 171.55 in2 = 1.19 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 40.42 in = 3.37 ft Hydraulic Radius at Design Minimum Velocity,R'h= 4.24 in = 0.35 ft Manning Roughness Ratio at Design Min.Velocity,n'/nt°u Manning Roughness at Design Minimum Velocity,n'= 0.012 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.25% 0.0025 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d,= 10.08 in = 0.84 ft Cross-Sectional Flow Area at Design Slope,A= 125,50 W = 0.87 ft2 Wetted Perimeter at Design Slope,P= 28.77 in = 2.40 ft Hydraulic Radius at Design Slope,Rh= 4.36 in = 0.36 it Top Width of Flow at Design Slope,T= 13.94 in = 1.16 ft Manning Roughness Ratio at Design Slope,nlnluil Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 9.18 in = 0.76 ft Critical Slope at Design Flow Rate,S.= 0.79% 0.0079 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 4.10 ft/sec Pipe Full Flow Rate at Design Slope,Qmn= 5.19 cfs = 2330.89 gpm Pipe Percent Full Page 1 of 1 W22861009104 DesignlCalcslStorm WaterPipe Sizing AnalyseslSDP-RWW-03_Basin-RW-01-thru-02_25-YR.xlsx Printed On:311112019-11:14 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-04 I Subbasin RWW-03 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-03 I Storm Drain Inlet#SDI-RW-03 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.8774 cfs = 842.64 gpm Design Minimum Flow Velocity,V.I.= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmi°= 12.09 in = 1.01 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 1.00% 0.0100 ft/ft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 8.85 in = 0.74 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 90.12 in = 0.63 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 24.83 in = 2.07 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.63 in = 0.30 it Manning Roughness Ratio at Design Min.Velocity,n'/nmil Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.37 % 0.0037 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 6.64 in = 0.55 ft Cross-Sectional Flow Area at Design Slope,A= 64.59 in = 0.45 ft2 Wetted Perimeter at Design Slope,P= 20.18 in = 1.68 ft Hydraulic Radius at Design Slope,Rh= 3.20 in = 0.27 ft Top Width of Flow at Design Slope,T= 12.04 in = 1.00 ft Manning Roughness Ratio at Design Slope,nlntuii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 6.99 in = 0.58 ft Critical Slope at Design Flow Rate,S.= 0.83% 0.0083 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 4.19 ft/sec Pipe Full Flow Rate at Design Slope,Qruii= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 W22861009104 DesignlCalcslSlonni WaterlPipe Sizing AnalyseslSDP-RWW-04_Basin-RWW-03_25-YR.xlsx Printed On: 3/11/2019-11:15 AM Morrison Maierle e�7 �s s� �you piannen soc,ov. PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-05 I Subbasin RWW-04 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50.or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-04 I Storm Drain Inlet#SDI-RW-04 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 1.0531 cfs = 472.68 gpm Design Minimum Flow Velocity,V.I.= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmjn= 9.05 in = 0.75 ft Design Pipe Diameter,D= 12.100 in = 1.01 it Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nr°u= 0.012 Design Pipe Slope,S= 1.00 % 0.0100 ff/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 5.48 in = 0.46 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 50.55 in = 0.35 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 17.86 in = 1.49 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.83 in = 0.24 ft Manning Roughness Ratio at Design Min.Velocity,Onr°u= 1.26 Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.64 % F 0.0064 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= in = 0.40 ft Cross-Sectional Flow Area at Design Slope,A= 43.13 in = 0.30 It Wetted Perimeter at Design Slope,P= 16.60 in = 1.38 ft Hydraulic Radius at Design Slope,Rh= 2.60 in = 0.22 it Top Width of Flow at Design Slope,T= 11.86 in = 0.99 It Manning Roughness Ratio at Design Slope,nlnr°u Manning Roughness at Design Slope,In Critical Depth at Design Flow Rate,d°= 5.17 in = 0.43 It Critical Slope at Design Flow Rate,S,= 0.79 % 0.0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.52 ft/sec Pipe Full Flow Rate at Design Slope,Qr°u= 3.95 Cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalWStomi WatenPipe Sizing AnalyseslSDP-RWW-05_Basin-RWW-04_25-YR.xlsx Printed On:3/11/2019-11:17 AM Morrison L__- Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-06 I Subbasins RWW-01 thru RWW-04 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT ! .TA Contributing Drainage Basin, Basins,or Pipe: Subbasins RWW-01 thru RWW-04 Storm Drain Manhole#SDMH-13 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 4.6165 cfs = 2072.02 gpm Design Minimum Flow Velocity,Vmln= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 18.95 in = 1.58 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 0.57 % 0.0057 Tuft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'.= 10.20 in = 0.65 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 221.59 in = 1.54 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 64.59 in = 5.38 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.43 in = 0.29 ft Manning Roughness Ratio at Design Min.Velocity,n7nf�ii Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.42 % 0.0042 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 11.92 in = 0.99 ft Cross-Sectional Flow Area at Design Slope,A= 149.58 in = 1.04 ft2 Wetted Perimeter at Design Slope,P= 33.00 in = 2.75 ft Hydraulic Radius at Design Slope,Rh= 4.53 in = 0.38 ft Top Width of Flow at Design Slope,T= 11.91 in = 0.99 ft Manning Roughness Ratio at Design Slope,n/nf.ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 10.47 in = 0.87 It Critical Slope at Design Flow Rate,Sc= 0.84 % 0.0084 tuft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 4.44 ft/sec Pipe Full Flow Rate at Design Slope,Qf,u= 5.19 cfS = 2330.89 gpm Pipe Percent Full Page 1 of 1 W22861009104 DesignQ1cslStonn WateAPipe Sizing AnalyseslSOP-RWW-06_Basin-RW-01-thru-04_25-YR.xlsx Printed On:311112019-11:19 AM Morrison _-_ Maierle e�n,o o s���yo Nieo. :ocwsi+ PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-08 I Subbasin RWW-05 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-05 I Storm Drain Inlet#SDI-RW-05 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.4253 cis = 190.87 gpm Design Minimum Flow Velocity,Vm,°= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,DmIn= 5.75 in = 0.48 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nmu= 0.012 Design Pipe Slope,S= 1.00% 0.0100 ft/ft DESIGN MINIMUM PIPE SLOPE ANAL YSIS Normal Depth at Design Minimum Velocity,d'n= 2.83 in = 024 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 20.41 in2 = 0.14 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 12.20 in = 1.02 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.67 in = 0.14 ft Manning Roughness Ratio at Design Min.Velocity,Onl°n Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.35 % 0.0135 Wit DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 3.05 in = 0.25 it Cross-Sectional Flow Area at Design Slope,A F 22.72 in = 0.16 fe Wetted Perimeter at Design Slope,P= 12.72 in = 1Tit Hydraulic Radius at Design Slope,Rh= in = 0.15 ft Top Width of Flow at Design Slope,T= 10.50 in = 0.88 it Manning Roughness Ratio at Design Slope,nlnl°u Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 3.23 in = 0.27 ft Critical Slope at Design Flow Rate,Sc= 0.80% 0.0080 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.70 ft/sec Pipe Full Flow Rate at Design Slope,Qmu= 3.95 cfs = F 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009104 Design\CalcslStorm Water\Pipe Sizing Analyses\SDP-RWW-08_Basin-RWW-05 25-YR.xlsx Printed On: 3/11/2019-11:21 AM Morrison L____: Maierle ,.q....... ...�..y", Nie,...o„ PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-09 I Subbasins RWW-01 thru RWW-05 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Basins,or Pipe: Subbasins RWW-01 thru RWW-05 Storm Drain Manhole#SDMH-15 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 4.8687 cfs = 2185.22 gpm Design Minimum Flow Velocity,Vmin= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,Dn In= 19.46 in = 1.62 ft Design Pipe Diameter,D= 18.000 in = 1.50 ft Design Pipe Radius,r= 9.00 in = 0.75 ft Manning's Roughness Coefficient-Full,nwu Design Pipe Slope,S= 0.57 % 0.0057 fult DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 15.55 in = 1.30 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 233.70 in = 1.62 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 42.95 in = 3.58 ft Hydraulic Radius at Design Minimum Velocity,R'h= 5.44 in = 0.45 ft Manning Roughness Ratio at Design Min,Velocity,Onf°,i Manning Roughness at Design Minimum Velocity,n'= 0.013 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.19 % 0.0019 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d.= 10.87 in = 0.91 ft Cross-Sectional Flow Area at Design Slope,A= 160.65 in = 1.12 fl? Wetted Perimeter at Design Slope,P= 32.04 in = 2.67 ft Hydraulic Radius at Design Slope,Rh= 5.01 in = 0.42 ft Top Width of Flow at Design Slope,T= 17.61 in = 1.47 ft Manning Roughness Ratio at Design Slope,nlnf°„ Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 10.18 in = 0.85 ft Critical Slope at Design Flow Rate,S.= 0.72 % 0.0072 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 4.36 ft/sec Pipe Full Flow Rate at Design Slope,Qf°u= 8.60 cfs = 3858.49 gpm Pipe Percent Full Page 1 of 1 W22861009104 DesignlCalcslStonn WateriPipe Sizing Ana1yseslSDP-RWW-09_Basin-RW-01-lhru-05_25-YR.x1sx Printed On:3111/2019-11:23 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-10 I Subbasin RWW-06 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-06 I Storm Drain Inlet#SDI-RW-06 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 5.2444 cfs = 2353.85 gpm Design Minimum Flow Velocity,Vm,n= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,D,i,= 20.20 in = 1.68 It Design Pipe Diameter,D= 18.000 in = 1.50 ft Design Pipe Radius,r= 9.00 in = 0.75 it Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 0.57 % 0.0057 Rift DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d',= 17.25 in = 1.44 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 250.84 in = 1.74 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 49.15 in = 4.10 ft Hydraulic Radius at Design Minimum Velocity,R'h= 5.10 in = 0.43 ft Manning Roughness Ratio at Design Min.Velocity,n'Inl�,i Manning Roughness at Design Minimum Velocity,n'= 0.012 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.19% 0.0019 fufl DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 11.32 in = 0.94 ft Cross-Sectional Flow Area at Design Slope,A= 168.44 in = 1.17 112 Wetted Perimeter at Design Slope,P= 32.96 in = 2.75 It Hydraulic Radius at Design Slope,Rh= 5.11 in = 0.43 It Top Width of Flow at Design Slope,T= 17.39 in = 1.45 ft Manning Roughness Ratio at Design Slope,nlnluli Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d,= 10.57 in = 0.88 It Critical Slope at Design Flow Rate,S,= 0.73 % 0.0073 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 4.47 ftlsec Pipe Full Flow Rate at Design Slope,Qmu= 8.60 cfs = 3859.52 gpm Pipe Percent Full= 60.99% Page 1 of 1 W22861009N DesignQ1cs\S1onn WalerlPipe Sizing AnalyseslSDP-RWW-10_Basin-RW-01-thru-06_25-YR.xlsx Printed On:3/11/2019-11:25 AM Morrison v_____ Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-11 I Subbasin RWW-11 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-11 1 Storm Drain Inlet#SDI-PL-01 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.9490 cfs = 425.94 gpm Design Minimum Flow Velocity,Vmin= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmln= 8.59 in = 0.72 ft Design Pipe Diameter,D= 1 2_71 0-01 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nmu= 0.012 Design Pipe Slope,S= 1.00% 0.0100 Wit DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'n= 5.03 in = 0.42 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 45.21 in = 0.31 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 16.96 in = 1.41 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.67 in = 0.22 ft Manning Roughness Ratio at Design Min.Velocity,n'lnr,ii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.70 % 0.0070 Wit DESIGN Normal Depth at Design Slope,do= 4.58 in = 0.38 ft Cross-Sectional Flow Area at Design Slope,A= 39.86 in2 = O.Zg ft2 Wetted Perimeter at Design Slope,P= 16.03 in = 1.34 ft Hydraulic Radius at Design Slope,Rh= 2.49 in = 0.21 ft Top Width of Flow at Design Slope,T= 11.74 in = 0.98 it Manning Roughness Ratio at Design Slope,nlnr°u Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 4.87 in = 0.41 ft Critical Slope at Design Flow Rate,Sc= 0.80 % 0.0080 ft/ft Flow Type= Subcrilical Velocity of Flow at Design Slope,V= 3.40 fysec Pipe Full Flow Rate at Design Slope,Qmn= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009V DesignlCalcslStann WaterlPipe Sizing Ana1yses\SDP-RWW-11_Basin-PL-01_25-YR.x1sx Printed On:3/11/2019-11:26 AM Morrison ___ Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-RWW-12 Subbasins RWW-01 thru RWW-06 & RWW-11 thru RWW-13 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasins RWW-01 thru RWW-06&RWW-11 thru RWW-13 Storm Drain Manhole#SDMH-16 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 7.7242 cfs = 3466.86 gpm Design Minimum Flow Velocity,Vn,jn= 3.00 fl1sec Design Minimum Full Flow Pipe Diameter,Dmin= 24.52 in = 2.04 It Design Pipe Diameter,D= 24.100 in = 2.01 ft Design Pipe Radius,r= 12.05 in = 1.00 ft Manning's Roughness Coefficient-Full,nluu Design Pipe Slope,S= D.20 % 0.0020 fuft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'n= 18.21 in = 1.52 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 369.78 in = 2.57 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 50.79 in = 4.23 ft Hydraulic Radius at Design Minimum Velocity,R'h= 7.28 in = 0.61 ft Manning Roughness Ratio at Design Min.Velocity,Onl°,i Manning Roughness at Design Minimum Velocity,n'= 0.013 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.14 % 0.0014 fdit DESIGN Normal Depth at Design Slope,dn= 16.30 in = 1.36 ft Cross-Sectional Flow Area at Design Slope,A= 328.44 in' = 2.28 ft2 Wetted Perimeter at Design Slope,P= 46.55 in = 3.88 ft Hydraulic Radius at Design Slope,Rh= 7.06 in = 0.59 ft Top Width of Flow at Design Slope,T= 22.55 in = 1.88 it Manning Roughness Ratio at Design Slope,nlnr°n Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 11.83 in = 0.99 ft Critical Slope at Design Flow Rate,S.= 0.65 % 0,0065 fvft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 3.38 ftfsec Pipe Full Flow Rate at Design Slope,Qr°u= 11.19 cis = 5021.63 gpm Pipe Percent Full Page 1 of 1 N:\2286009V DesignlCalc0lorm WaterlPipe Sizing Analyses\SDP-RWW-12_Basin-RW-0l-thru-06+PL-01-thru-03_25-YR.xlsx Printed On: 3/11/2019-11:33 AM Morrison it: -_, I Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-13 I Subbasin RWW-07 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-07 Storm Drain Inlet#SDI-RW-07 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.2653 cis = 119.09 gpm Design Minimum Flow Velocity,Vmi°= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dm,n= 4.54 in = 0.38 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,of°ii Design Pipe Slope,S= 1.00 % 0.0100 ft/ft DESIGN MINIMUM PIPE SLOPE ANAL YSIS Normal Depth at Design Minimum Velocity,d'.= 2.03 in = 0.17 it Cross-Sectional Flow Area at Design Minimum Velocity,A'= 12.74 in2 = 0.09 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 10.22 in = 0.65 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.25 in = 0.10 it Manning Roughness Ratio at Design Min,Velocity,Onf°u Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.91 % 0.0191 ft/ft DESIGN VALUE RESUL Normal Depth at Design Slope,dn= 2.40 in = 0.20 ft Cross-Sectional Flow Area at Design Slope,A= 16.16 in2 = 0.11 ft2 Wetted Perimeter at Design Slope,P= 11.17 in = 0.93 it Hydraulic Radius at Design Slope,Rh= 1.45 in = 0.12 it Top Width of Flow at Design Slope,T= 9.65 in = 0.80 ft Manning Roughness Ratio at Design Slope,n/nt.ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 2.54 in = 0.21 it Critical Slope at Design Flow Rate,S.= 0.81 % 0.0081 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.36 ft/sec Pipe Full Flow Rate at Design Slope,Qr°u= 3.95 cis = 1771.12 gpm Pipe Percent Full Page 1 of 1 W22861009104 DesignlCalcslSlomr Water Pipe Sizing AnalyseslSDP-RWW-13_Basin.RWW-07_25-YR.xlsx Printed On:311112019-1 1:34 AM Morrison Maierle comncen sw.cros-pmin ni sm ro.is PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-14 I Subbasin RWW-08 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-08 I Storm Drain Inlet#SDI-RW-08 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.9567 cis = 429.40 gpm Design Minimum Flow Velocity,Vmin= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmi°= 8.63 in = 0.72 ft Design Pipe Diameter,D= 12.100 in = 1.01 it Design Pipe Radius,r= 6.05 in = 0.50 it Manning's Roughness Coefficient-Full,nr°u Design Pipe Slope,S= 1.00 % 0.0100 fuft DESIGN MINIMUM PIPE SLOPE Normal Depth at Design Minimum Velocity,d',= 5.09 in = 0.42 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 45.92 in = 0.32 ft? Wetted Perimeter at Design Minimum Velocity,P'= 17.08 in = 1.42 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.69 in = 0.22 ft Manning Roughness Ratio at Design Min.Velocity,Onru,i Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.69 % 0.0069 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d,= 4.62 in = 0.38 ft Cross-Sectional Flow Area at Design Slope,A= 40.30 inZ = 0.28 ft2 Wetted Perimeter at Design Slope,P= 16.11 in = 1.34 it Hydraulic Radius at Design Slope,Rh= 2.50 in = 0.21 it Top Width of Flow at Design Slope,T= 11.75 in = 0.98 ft Manning Roughness Ratio at Design Slope,n/nl.ii r 1.27 Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 4.91 in = 0.41 it Critical Slope at Design Flow Rate,Sc= 0.79 % 0.0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.42 ft/sec Pipe Full Flow Rate at Design Slope,Qr,u= 3.95 Cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcslStorm WaterlPipe Sizing AnalyseslSDP-RWW-14_Basin-RWW-08 25-YR.xlsx Printed On:3/11/2019-11:36 AM Morrison L--:- : Maierle eomnees wr.cyors planners s.emn,s PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-15 Subbasins RWW-01 thru RWW-08 & RWW-11 thru RWW-13 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasins RWW-01 thru RWW-08&RWW-11 thru RWW-13 Storm Drain Manhole#SDMH-17 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 8.2098 cfs = 3684.82 gpm Design Minimum Flow Velocity,Vm,°= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,Dmin= 25.28 in = 2.11 ft Design Pipe Diameter,D= 24.100 in = 2.01 ft Design Pipe Radius,r= 12.D5 in = 1.00 ft Manning's Roughness Coefficient-Full,nf.il Design Pipe Slope,S= 0.20 % 0.0020 tuft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'.= 19.43 in = 1.62 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 394.07 in2 = 2.74 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 53.74 in = 4.48 ft Hydraulic Radius at Design Minimum Velocity,R'h= 7.33 in = 0.61 ft Manning Roughness Ratio at Design Min.Velocity,Onf°ii Manning Roughness at Design Minimum Velocity,n'= 0.013 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.14 % 0.0014 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 16.95 in = 1.41 ft Cross-Sectional Flow Area at Design Slope,A= 342.90 in = 2.38 ft2 Wetted Perimeter at Design Slope,P= 47.95 in = 4.00 ft Hydraulic Radius at Design Slope,Rh= 7.15 in = 0.60 ft Top Width of Flow at Design Slope,T= 22.01 in = 1.83 ft Manning Roughness Ratio at Design Slope,nlnf.ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,do= 12.23 in = 1.02 ft Critical Slope at Design Flow Rate,S.= 0.65% 0.0065 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 3.45 ft/sec Pipe Full Flow Rate at Design Slope,Qf.ii= 11.19 cfs = 5021.63 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcslSlomi WaterlPipe Sizing AnalyseslSDP-RWW-15_Basin-RW-0l-thru-06,PL-01-thru-03_25-YR.xlsx Printed On:3111/2019-11:40 AM Iz® Morrison Maierle o�g,00.,:� .1-yon „i...„o.. PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-16 I Subbasin RWW-09 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGNINPUTDATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-09 I Storm Drain Inlet#SDI-RW-09 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.4849 cis = 217.63 gpm Design Minimum Flow Velocity,V.I.= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 6.14 in = 0.51 it Design Pipe Diameter,D= 12.100 in = 1.01 it Design Pipe Radius,r= 6,05 in = 0.50 it Manning's Roughness Coefficient-Full,nt°u= 0.012 Design Pipe Slope,S= 1.00% 0,0100 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'°= 3.10 in = 0.26 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 23.27 in = 0.16 ftz Wetted Perimeter at Design Minimum Velocity,P'= 12.84 in = 1.07 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.81 in = 0.15 it Manning Roughness Ratio at Design Min.Velocity,n'lnl�,l Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 121 % 0.0121 Rift DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 3.26 in = 0,27 ft Cross-Sectional Flow Area at Design Slope,A= 24.94 in2 = 0.17 ft2 Wetted Perimeter at Design Slope,P= 13.20 in = 1.10 it Hydraulic Radius at Design Slope,Rh= 1,89 in = 0.16 it Top Width of Flow at Design Slope,T= E777-31 in = 0.89 it Manning Roughness Ratio at Design Slope,nlnl.,l Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 3.46 in = 0.29 it Critical Slope at Design Flow Rate,S,= 0.79% 0.0079 fUft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.80 fUsec Pipe Full Flow Rate at Design Slope,Of.,,= 3.95 cis = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcs\Storm WaterlPipe Sizing Analyses\SDP-RWW-16_Basin-RWW-09_25-YR.xlsx Pdnled On:3/11/2019-11:42 AM Morrison L---_; Maierle enyinccis surrcYors nlani,crs scicisli sls PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-17 I Subbasin RWW-10 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-10 I Storm Drain Inlet#SDI-RW-10 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.7316 cfs = 328.38 gpm Design Minimum Flow Velocity,Vmin= 3.00 fUsec Design Minimum Full Flow Pipe Diameter,Dmi°= 7.55 in = 0.63 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 1.00 % 0.0100 ft/ft SLOPEDESIGN MINIMUM PIPE ANALYSIS Normal Depth at Design Minimum Velocity,d'n= in = 0.35 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 35.12 in = 0.24 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 15.18 in = 1.27 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.31 in = 0.19 ft Manning Roughness Ratio at Design Min.Velocity,n'lnr°ii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.87 % 0.0087 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,do= 4.02 in = 0.33 ft Cross-Sectional Flow Area at Design Slope,A= 33.38 in = 0.23 ft2 Wetted Perimeter at Design Slope,P= 14.66 in = 1.24 ft Hydraulic Radius at Design Slope,Rh= 2.25 in = 0.19 ft Top Width of Flow at Design Slope,T= 11.40 in = 0.95 ft Manning Roughness Ratio at Design Slope,nlnt.ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d'= 4.27 in = 0.36 ft Critical Slope at Design Flow Rate,S°= 0.79 % 0,0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.16 fUsec Pipe Full Flow Rate at Design Slope,Qf°„= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 11:12 2 8 610 0 910 4 DesignlGaiwSlomi WaterlPipe Sizing Analyses\SDP-RWW-17_Basin-RWW-10_25-YR.xlsx Printed On:3/11/2019-11:45 AM LJ Morrison Maierle enO Meer,-sarvcYea-pldllnCn.sumw„s PIPE SIZING ANALYSES Storm Drain Pipe SDP-RW-18 Subbasins RWW-01 thru RWW-13 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5.10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasins RWW-01 thru RWW-13 I Storm Drain Manhole#SDMH-18 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 8.3855 cfs = 3763.68 gpm Design Minimum Flow Velocity,Vmi°= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 25.54 in = 2.13 ft Design Pipe Diameter,D= 24.100 in = 2.01 ft Design Pipe Radius,r= 12.05 in = 1.00 ft Manning's Roughness Coefficient-Full,n1°11 Design Pipe Slope,S= 0.20% 0.0020 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'°= 19.88 in = 1.66 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 402.51 in = 2.80 itz Wetted Perimeter at Design Minimum Velocity,P'= 54.90 in = 4.58 ft Hydraulic Radius at Design Minimum Velocity,R'h= 7.33 in = 0.61 ft Manning Roughness Ratio at Design Min.Velocity,n'/nt°n Manning Roughness at Design Minimum Velocity,n'= 0.013 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.13% 0.0013 ft/it DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 17.18 in = 1.43 it Cross-Sectional Flow Area at Design Slope,A= 347.86 in = 2.42 fl? Wetted Perimeter at Design Slope,P= 46.45 in = 4.04 ft Hydraulic Radius at Design Slope,Rh= 7.18 in = 0.60 ft Top Width of Flow at Design Slope,T= r 21.81 in = 1.82 ft Manning Roughness Ratio at Design Slope,nlnr.11 Manning Roughness at Design Slope,n r 0.014 Critical Depth at Design Flow Rate,d°= 12.37 in = F 1.03 ft Critical Slope at Design Flow Rate,S°= 0.65% 0.0065 Rift Flow Type= Supercritical Velocity of Flow at Design Slope,V= 3.47 ft/sec Pipe Full Flow Rate at Design Slope,Qmu= 11.19 cfs = F 5021.63 gpm Pipe Percent Full Page 1 of 1 W22861009V DesigmCalcslStoa n Water Pipe Sizing AnalyseslSDP-RWW-18_Basin-RW-01-thru-10+PL-01-thru-03_25-YR.xlsx Punted On:3/11/2019-11:48 AM Morrison Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-PL-01 I Subbasin RWW-12 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT D. TA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-12 Storm Drain Inlet#SDI-PL-02 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 1.8118 cfs = 813.20 gpm Design Minimum Flow Velocity,Vm1n= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,DHn= 11.87 in = 0.99 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nr°u Design Pipe Slope,S= 1.00 % 0.0100 ft/ft SLOPE1 DESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d',= 8.56 in = 0.71 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 86.97 in = 0.60 fie Wetted Perimeter at Design Minimum Velocity,P'= 24.18 in = 2.02 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.60 in = 0,30 ft Manning Roughness Ratio at Design Min.Velocity,n'/nf°u Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.38 % 0.0038 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 6.51 in = 0.54 ft Cross-Sectional Flow Area at Design Slope,A= 63.07 in ft2 Wetted Perimeter at Design Slope,P= 19.93 in = 1.66 ft Hydraulic Radius at Design Slope,Rh= 3.16 in = 0.26 ft Top Width of Flow at Design Slope,T= 12.06 in = 1.01 ft Manning Roughness Ratio at Design Slope,nlnr°n Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 6.86 in = 0.57 ft Critical Slope at Design Flow Rate,Sc= 0.82% 0.0082 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 4.14 ft/sec Pipe Full Flow Rate at Design Slope,Qa,u= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:0861009104 DesignlCaINStomr WaledPipe Sizing AnalyseslSDP-PL-01 Basin-PL-02_25-YR.xlsx Printed On:3/11/2019-11:52 AM Morrison i� Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-PL-02 I Subbasin RWW-13 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-13 Storm Drain Inlet#SDI-PL-03 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 2.3823 cfs = 1069.23 gpm Design Minimum Flow Velocity,V.I.= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 13.62 in = 1.13 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = F 0.50 ft Manning's Roughness Coefficient-Full,nfull Design Pipe Slope,S= 1.00 % 0.010D ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'° F 11.83 in = 0.99 it Cross-Sectional Flow Area at Design Minimum Velocity,A'= 114.35 in' = 0.79 it, Wetted Perimeter at Design Minimum Velocity,P'= 34.39 in = 2.87 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.32 in = 0.28 ft Manning Roughness Ratio at Design Min.Velocity,n7nfj= 1.01 Manning Roughness at Design Minimum Velocity,n'= 0.012 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.33 % 0.0033 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 7.58 in = 0.63 it Cross-Sectional Flow Area at Design Slope,A= 75.78 in = 0.53 ftZ Wetted Perimeter at Design Slope,P= 22.09 in = 1.84 it Hydraulic Radius at Design Slope,Rh= 3.43 in = 0.29 ft Top Width of Flow at Design Slope,T= 11.71 in = 0.98 ft Manning Roughness Ratio at Design Slope,n/nf°il Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d,= 7.91 in = 0.66 ft Critical Slope at Design Flow Rate,Sc= 0.86% 0.0086 Rift Flow Type= Subcritical Velocity of Flow at Design Slope,V= 4.53 ft/sec Pipe Full Flow Rate at Design Slope,Qf II= 3.95 cis r 1771.12 gpm Pipe Percent Full Page 1 of 1 N:122861009104 DesignlCalcslStonn WateAPipe Sizing AnalyseslSDP-PL-02_Basin-PL-03_25-YRxlsx Pdnted On: 3/11/2019-11:55 AM Morrison L___ Maierle PIPE SIZING ANALYSES Storm Drain Pipe SDP-PL-03 I Subbasin RWW-12 & RWW-13 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin RWW-12&RWW-13 I Storm Drain Manhole#SDMH-20 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 4.1941 cfs = 1882.43 gpm Design Minimum Flow Velocity,Vmjn= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 18.07 in = 1.51 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 0.40 % 0.0040 ft/ft DESIGN MINIMUM PIPE SLOPE ANAL Normal Depth at Design Minimum Velocity,d'°= 11.74 in = 0.98 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 201.32 in = 1.40 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 61.06 in = 5.09 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.30 in = 0.27 ft Manning Roughness Ratio at Design Min.Velocity,n'/nf°,i Manning Roughness at Design Minimum Velocity,n'= 0.013 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.40 % 0.0040 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 12.74 in = 1.06 ft Cross-Sectional Flow Area at Design Slope,A= 158.72 in = 1.10 ft2 Wetted Perimeter at Design Slope,P= 35.16 in = 2.93 ft Hydraulic Radius at Design Slope,Rh= 4.51 in = 0.38 ft Top Width of Flow at Design Slope,T= 10.50 in = 0.87 ft Manning Roughness Ratio at Design Slope,n/nf°ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 9.97 in = 0.63 ft Critical Slope at Design Flow Rate,S.= 0.81 % 0.0081 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 3.81 ft/sec Pipe Full Flow Rate at Design Slope,Qf°n= 4.35 cfs = 1951.40 gpm Pipe Percent Full Page 1 of 1 N:1228@009V DesignlCalcslSlonn WaterlPipe Sizing AnalyseslSDP-PL-03_Basin-PL-02+03_25-YR.xlsx Printed On:3/11/2019.11:57 AM APPENDIX D CULVERT ANALYSES Morrison Maierle engineers surveyors planners scientists Culvert Calculator Report Royal Wolf Way - Cattail Creek Culvert Solve For:Headwater Elevation Culvert Summary Allowable HW Elevation 4,600.07 ft Headwater Depth/Height 0.97 Computed Headwater Elev, 4,598.00 ft Discharge 165.00 cfs Inlet Control HW Elev. 4,597.78 ft Tailwater Elevation 2.00 ft Outlet Control HW Elev. 4,598.00 ft Control Type Entrance Control Grades Upstream Invert 4,593.65 ft Downstream Invert 4,592.09 ft Length 156.00 ft Constructed Slope 0.010033 ft/ft Hydraulic Profile Profile S2 Depth,Downstream 2.02 ft Slope Type Steep Normal Depth 1.93 ft Flow Regime Supercritical Critical Depth 2.70 ft Velocity Downstream 12.73 fi/s Critical Slope 0,003779 ft/ft Section Section Shape Arch Mannings Coefficient 0.013 Section Material Concrete Span 7,33 ft Section Size 88.0 x 54.0 inch Rise 4.50 ft Number Sections I Outlet Control Properties Outlet Control HW Elev. 4,598.00 ft Upstream Velocity Head 1.37 ft Ke 0.20 Entrance Loss 0.27 ft Inlet Control Properties Inlet Control HW Elev. 4,597.78 ft Flow Control Unsubmerged Inlet TypeGroove end w/headwall(arch) Area Full 25.7 ft2 K 0,00180 HDS 5 Chart 0 M 2.00000 HDS 5 Scale 0 C 0.02920 Equation Form 1 Y 0.74000 Title:Nelson Meadows Subdivision Project Engineer:Tom Eastwood n:\...\storm water\2286008—nelson-meadows.cvm Morrison Maierle Inc CulvertMaster v3.3[03.03.00.04] 03/11/19 12:19:34 PMD Bentley Systems,Inc. Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Culvert Calculator Report Prince Lane - Cattail Creek Culvert Solve For:Headwater Elevation Culvert Summary Allowable HW Elevation 4,593.67 ft Headwater Depth/Height 0.97 Computed Headwater Elew 4,591.46 ft Discharge 165.00 cfs Inlet Control HW Elev. 4,591,25 ft Tailwater Elevation 2.00 ft Outlet Control HW Elev. 4,591.46 ft Control Type Entrance Control Grades Upstream Invert 4,587.11 ft Downstream Invert 4,585.93 ft Length 120.00 ft Constructed Slope 0.007556 ft/ft Hydraulic Profile Profile S2 Depth,Downstream 2.21 ft Slope Type Steep Normal Depth 2.11 ft Flow Regime Supercritical Critical Depth 2.70 ft Velocity Downstream 11.59 ft/s Critical Slope 0.003779 ft/ft Section Section Shape Arch Mannings Coefficient 0.013 Section Material Concrete Span 7.33 ft Section Size 88.0 x 54.0 inch Rise 4.50 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 4,591.46 ft Upstream Velocity Head 1.37 ft Ke 0.20 Entrance Loss 0.27 ft Inlet Control Properties Inlet Control HW Elev. 4,591.25 ft Flow Control Unsubmerged Inlet TypeGroove end w/headwall(arch) Area Full 25.7 ft' K 0.00180 HDS 5 Chart 0 M 2.00000 HDS 5 Scale 0 C 0.02920 Equation Form 1 Y 0.74000 Title:Nelson Meadows Subdivision Project Engineer:Tom Eastwood n:\...\storm water\2286008_nelson-meadows.cvm Morrison Maierle Inc CulvertMaster v3.3[03.03.00.041 03/11/19 12:26:28 PMJ Bentley Systems,Inc. Haestad Methods Solution Center Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 APPENDIX E STORM WATER RETENTION ANALYSES Morrison Maierle engineers surveyors planners scientists Morrison Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Nelson Road Drainage Basin & Storm Water Tract 2 - 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10.25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Coefficient'Surface Area,A Area,A Coefficient D' wl 00 Basin NR(Nelson Road) Subbasins NR-01 thru NR-M29 4.726 0.73 3.441 Subbasins NR+PL-01 thru 3.289 0.33 1.071 0.52 1.00 0.52 0.52 5.018 Subbasin NR-SD-Pond1.021 0.23 0.235 Storm Water Tract 20.677 0.40 0.271 Totals 423,064 9.712 5.018r 'Weighted runoff coefficient,Cxd=EC,Ai I Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j RETENTIONBASIN • Calculation of Storm Water Runoff Flow Rate: Q=C,,,d iA Q=Storm Water Runoff Flow Rate(cfs) i=Rainfall Intensity(inlhr) C,.d=Weighted Runoff Coefficient A=Storm Drainage Basin Area(acres) Storm Drainage Basin Weighted Runoff Coefficient,CHd= 0.52 Rainfall Intensity,i= 0.41 inthr(10-year,2-hour Design Storm) Storm Drainage Basin Area,A= 9.712 acres Design Peak Flow, • = 2.05 Calculation of Required Retention Volume: V=7200Q Q=Storm Water Runoff Flow Rate(cfs) V=Required Retention Volume(cf) Storm Drainage Basin Runoff Flow Rate,Q= 2.05 cfs Basin Required Retention Volume,V 14,734.48 cf Page 1 of 1 MAMMON Desi n%ReporlskStorm WateMppendkeMppendix E-Retenbon MalysesWelson-Meadows Basin-NR Retenlion-Requimd_10.YR_2-NR.xlsx Printed:3/11/2019-12:47 PM Morrison llll�Maierle RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Royal Wolf Way & Prince Lane Drainage Basin & Storm Water Tract 1 - 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient Coefficient' Factor C'=C�d X C1 rr Basin RWW+PL Subbasins RWW-01 thru RWW-10 881790 20.243 0.39 7,963 &Subbasins PL-01 thru PL-03 0.39 1.00 0.39 0.39 8,372 Subbasin RWW+PL-SD-Pond 16,828 0.386 0.23 0.089 Storm Water Tract 1 34,802 0,799 0.42 o,320 Totals i 'Weighted runoff coefficient,Cwd_£CA 1 Yaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN RETENTION VOLUME ANALYSIS Calculation of Storm Water Runoff Flow Rate: Q=Cwd1A Q=Storm Water Runoff Flow Rate(cfs) t=Rainfall Intensity(Inlhr) Cwd=Weighted Runoff Coefficient A=Storm Drainage Basin Area(acres) Storm Drainage Basin Weighted Runoff Coefficient,Cwd= 0.39 Rainfall Intensity,i= 0A1 inthr(10-year,2-hour Design Storm) Storm Drainage Basin Area,A= 21.428 acres Basin Design Peak Flow,Cip= 3.41 cis of Required Retention Volume: V=7200Q Q=Storm Water Runoff Flow Rate(cis) V=Required Retention Volume(cf) Storm Drainage Basin Runoff Flow Rate,Q= 3.41 cfs Basin Required Retention Volume,V 24,584.55 cf Page 1 of 1 N:@2861009104 Desyn\CalcsiStonn WateNdetention An alysesWelson-Meadows_Basin.RWW.PL_RetenuonRequired_10-YR 2-HR.xlsz Punted:311112019-1 2:54 PM ADDENDUM #1: TO The Nelson Meadows Comprehensive Drainage Plan — March 2019 Document2 2880 Technology Boulevard West Morrison Bozeman,MT 59718 No � M a i e r l e Phone: (406)587-0721 engineers•surveyors.planners•scientists Fax: (406)922-6702 ;191: — tr.-. gym•.. .� � •�. "+"i' •�^r• ., may", ._ ...., '` r t- "'rT*x"'�Y•+ IMNNMrN +S?foAi "r "L * 1 1 9 7 -� O r c o• �. ®•�. 'a 205 ►'. 13 V" 9 O,(, `✓ . i :• 3 C• �•• 235 - r _ V I ,1 •I � �° PROPOSED RWW+PL MAJOR BASIN SUMMARY TOTAL AREA= 20.73 acres =' 25-YR WEIGHTED RUNOFF COEFFICIENT,Cw= 0.50 25-YR DESIGN TIME OF CONCENTRATION,Tic= 45.44 min 25-YR PEAK RUNOFF RATE= 8.33 cfs 25-YR PEAK RUNOFF VOLUME= 22,718 CF • � 205 x STORM DRAIN FIG. 8: RWW+PL BASIN SUBBASINS SCALE: 1"=500' • • M - I.. :. . Y K C t o pf G INLET ,,, F �z DESIGNATION (TYP) r w .r S MORIA , ME f pARK I Prince Ln -- i /P C1\ A [Royal Wolf 1 �. 8F ?iON TA 1RpNg yC 0 �• fQrR ,, ,.+ V El Morrison ME mom Maier le en.i ,-.—-pNnncr....i•nu.t. RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-08 - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. Weighted Adjusted Runoff CoefficientRunoff Runoff Frequency Coefficient'Surface Area,A Area,A Coefficient D• r0 Prince Lane 16 Subbasin RWW+PL-11 ,701 0.383 0.61 0.310 Royal Wolf Way 0.81 1.10 0.69 0.89 0.875 26,037 0.598 0.81 0.486 Subbasin RWW+PL-08 0.875 'Weighted runoff coefficient,C„,d=EGAi/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j BASIN TIME OF • • Overland Flow(Sheet Flow)Travel Time: 1.87(1.1-C •Cf)012 Tt-0r=Overland Flow(Sheet Flow)Travel Time(min) L=Length of Basin(ft) Tt_of - S113 S=Slope of Flow Course(%) CI=Frequency Adjustment Factor C=Rational Method Runoff Coefficient SlopeLength of of Runoff Frequency Travel Time Description of Overland Flow Course (ft) M) C C, (min) Subbasin RWW+PL-08-Overland Flow-Concrete 5 1.58 1 0.95 1 1.10 1 0.37 SubbasinRWW+PL-08-Overland Flow-Turf 6 1.58 0.23 1.10 3.43 Totals 12 1.58 :0 (Average) Channelized Flow Travel Time: L Tt�t=Channelized Flow Travel Time(min) 2/3 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpalh(%) T t-cf 6 VV L=Length of Basin(ft) V= 1.486 A A=Cross-Sectional Area of Channel FlowV=Average Velocity of Flow(ft/sec) n (P) (jS--) 00 P=Wetted-Periment of Flow Channel(fl) DescriptionLength of Slope of Manning's X-Sectional Wetted Average Travel Time Flowpath Flowpath Roughness Flow Area Perimeter Velocity Tt_�f Subbasin RWW+PL-08-Concrete Gutter 1 288 1 0.48 71771 0.74 7.19 1 1.42 13.38 Totals 288 0.48 0.02 (Average) (Average) (Average) (Average) (Average) Shallow Concentrated Flow Travel Time: T- - L Tt_=Shallow Concentrated Flow Travel Time(min) 1.486 2/3(TSO-0) 1/2 n=Manning's Roughness Coefficient S=Slope of Flowpalht sc - 60VL=Length of Basin(ft) V= Rh Rh=Assumed Hydraulic Radius Based on V=Average Velocity of Flow(ft/sec) n Land Use/Flaw Regime(ft) Length of Slope of Manning's Hydraulic Average Travel Time Description Flow Course (ft) (%) Coefficient (ft) (ft/sec) (min) Subbasin RWW+PL-08-Concrete Gutter 313 0.50 1 0.011 0.20 3.28 1.59 Subbasin RWW+PL-08-Shallow Concentrated Flow-Asphalt 47 1.83 0.025 0.20 2.75 0.29 Subbasin RWW+PL-08-Concrete Gutter 183 0.75 0.011 0.20 4.00 0.76 00 (Average) (Average) (Average) (Average) Page 1 of 2 N:122861009104 DesignlCalm\Storm WaterlPost-Development RunofACombined-Basin_PL-01+RWW-08-25-YR_Design-Slorm.xlsx Printed:6/7/2019-12:08 PM o Morrison ME mill Maierle DETERMINA TION OF BASIN PEAK FLOW RA TE&RUNOFF VOLUME Basin Time of Concentration,t.: tc=Tt_of+Tt—sc+Tt—cf tc=Basin Time of Concentration(min) Tt-x=Shallow Concentrated Flow Travel Time(min) T1-01=Overland Flow(Sheet Flaw)Travel Time(min) Ttt1=Channelized Flow Travel Time(min) Basin Overland Flow(Sheet Flow)Travel Time,T,dr= 3.80 min Basin Shallow Concentrated Flow Travel Time,T,-,= 2.64 min Basin Channelized Flow Travel Time,Tt-1= 3.38 min Basin Time of Concentration,Itc= 9.82 min Calculation of Peak Flow Rate: Rainfall Intensity Linear Interpolation Upper Rainfall Intensity Value= 5 min= 3.83 in/hr Lower Rainfall Intensity Value= 10 min= 2.46 in/hr Basin Design Qp=C'iA Op=Basin Peak Flow Rate(ft3/sec or cfs) i=Rainfall Intensity(in/hr) C'=Basin Adjusted Runoff Coefficient A=Basin Area(acres) Basin Adjusted Runoff Coefficient,C'= 0.89 Basin Rainfall Intensity,i= 2.51 in/hr Basin Area,A= 0.981 acres Design Peak Flow, • p 2.19 cfs Calculation of Peak Runoff Volume: RP =60 tc•Qp Rp=Basin Peak Runoff Volume(ft3 or Co Qp=Basin Peak Flow Rate(ft3/sec or cfs) t,=Basin Time of Concentration(min) Basin Time of Concentration,tc= 9.82 min Basin Peak Flow Rate,QP= 2.19 ft3/sec Basin Peak Runoff Volume,Rp 1,291.79 cf Page 2 of 2 N:@2861009104 DesignlCalcslSton WatedPost-Development RunofflCombined-Basin_PL-01+RWW-08_25-YR_DesignSlomtx1sx Printed:6/7/2019-12:08 PM 0 Morrison ME milmilil Maierle engin ers surveyors.planners saenu— INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-08 Storm Drain Inlet #SDI-RW-08 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET 15 3:t• 1 CURB BOX ADJUSTABLE 6-TO 8' - i 5 lie• I In' �' ft t _-,-, DESIGN Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG= F 0.75% Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,W,= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,L,= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Cross-SectionalCalculate Gutter Flow Depth, Perimeter Manning's Formula: _ 1.486 A5/3 Q= Total Flow in Given Cross-Sectional Area(ft3/sec) Q n Pz�7 S� where: n= Manning's Roughness Coefficient A= Cross-Sectional Area of Flow(ft2 or sf) P= Wetted Perimeter of Flow(ft) SL=Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment(Qj) Manning's Roughness Coefficient,np: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yP: 2.57 in = 0.21 ft Spread of Flow on Pavement,Tp: 85.61 in = 7.13 ft Longitudinal Slope of Pavement,SP=SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Over Pavement,AP: 109.94 in = 0.76 ft2 Calculated Wetted Perimeter Over Pavement,PP: 88.22 in = 7.35 ft Calculated Flow Across Pavement Encroachment, e f NA2286\009\04 DesignTalcs0orm Water\Inlet Interception Analyses\Inlet-RWW-08_On-Grade_Basin-RWW-08_25-YR.xlsx Page 1 of 4 0 Morrison No Maierle engirt ers surveyors•planners scientists Calculate Flow In Gutter withOverlap ofPavement Encroachment • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG-P: 3.57 in = 0.30 ft Spread of Flow in Gutter&Pavement Composite Section,TG.P: 53.53 in = 4.46 ft Longitudinal Slope of Gutter,SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AW: 95.50 in2 = 0.66 ft Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG+P: 57.21 in = 4.77 ft Calculated Flow Across Gutter&;Pavement Composite • P Isec II Calculate Flow Within Gutter&Pavement Overlap Area • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG: 2.57 in = 0.21 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 38.53 in = 3.21 ft Longitudinal Slope of Gufter,SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 49.47 in = 0.34 ft2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 41.18 in = 3.43 ft • • i .i Calculate Total Gutter Flow • Basin Design Peak Plow,Qp: 2.193 fta/sec(cfs) Calculated Total Depth of Flow Over Gutter,yG,p: 3.57 in = 0.30 ft QG=Q1+Q2-Q3 where: QG= Basin Design Peak Flow,Op= 2.193 fta/sec(cfs) TotalCalculated . • Calculated Gutter Flow Cross-Sectional Area,AG: 0.32 ft2 Calculated Pavement Flow Cross-Sectional Area,Ap: 0.76 ft2 CompositeCalculated X-Sectional Area for Gutter&Pavement 0: Calculated Gutter Flow Wetted Perimeter,PG: 1.58 ft Calculated Pavement Flow Wetted Perimeter,Pp: 7.14 ft WettedCalculated Perimeter for Gutter&Pavement Composite Calculated Gutter Flow Hydraulic Radius,RG: 0.20 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.11 ft CompositeCalculated Hydraulic Radius for Gutter&Pavement CompositeCalculated Velocity of Flow for Gutter&Pavement ii N:122861009104 DesignlCalcslSlorm Waterllnlet Interception Analyses\Inlet-RWW-08_On-Grade_Basin-RWW-08_25-YR.xlsx Page 2 of 4 �11 Morrison No Maierle engineers surveyors planners zciemis,s CALCULI TE INLET INTERCEPTION CAPACITY I ON—GRADE Calculate Ratio of Inlet Frontal Flow to Total Gutter Flow,EO: W 2.67 Eo= Ratio of Frontal Flow to Total Gutter Flow E Q"' = 1— (1 ——1 where: ° QG \ T/ QG= Total Gutter Flow(ft3lsec) Qw= Flow in Width(ft3lsec) W=Width of Depressed Gutter or Grate(ft) T= Total Spread of Water in the Gutter(ft) SL= Longitudinal Slope of Gutter(ft I ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG♦P: 8.38 ft = 100.61 in Calculated o of Inlet Frontal Flow to Total • 0.40 Calculated Total Flow in Width of 1 1 : Calculate of Inlet Side Flow to Total Gutter Flow,ES: ES =QS = I—QW= 1 —E° where: Es= Ratio of Side Flow to Total Gutter Flow QG QG Qs= Flow Along Side(ft3lsec) Calculated Ratio of •e Flow to Total Gutter Flow, 0.60 Calculated Total Flow • • Side of Depressed Calculate Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rf: Rf = 1 —0.09(VG —V°) where: RI= Ratio of Frontal Flow Intercepted to Total Frontal Flow VG= Velocity of Flow in the Gutter(ft/sec) Vo= Ginter Flow Velocity where Splash-Over First Occurs(ft/sec) Velocity of Flow in the Gutter,VG: 2.00 ft/sec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate Calculated Ratio . 11 13 EXAMPLE: �+ 12 V GIVEN: RETICULINE GRATE d II L= 3 FT V V. 8 FT/S `Ili Wrn la FIND: Rf= 0.81 Q� c LL 9 7 m �Ie Lf) o p5L C 6 t ------- ------ - - --- - - -- -- o � 5 ahi' LL U / 1 x 4 ro' ++ , C ate. 3 LO LL 2 Q� � ti = I � a) 0 ru O 1 2 3 4 O 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1-0 L C9 LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22, Second Edition (U.S.Federal Highway Administration,August 2001) N:\2286\009\04 Design\Calcs\Storm Water\Inlet Interception Analyses\Inlet-RWW-08-On-Grade-Basin-RWW-OB-25-YR.xlsx Page 3 of 4 0 Morrison ME MINE Maierle engin ers surveyors-planners-scientists Calculate Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 1 Rs= Ratio of Side Flow Intercepted to Total Side Flow Rs __ 1 +0.15 VG 1.6 where: VG= Velocity of Flow in the Gutter(ft/sec) SPL,2.3 Sp=Transverse Slope of Pavement(ft/ft) Li= Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 2.00 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Li: 35.00 in = 2.92 ft Calculated 0.40 Calculate Efficiency of Grate,E: E = RfEO +Rs(1—Eo) where: E= Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rr: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.40 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.40 Calculate Inlet Interception Capacity,Calculated Efficiency of Grate,E: 0.64 Qf = EQG where: Qi= Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.64 Total Gutter Flow,QG: 2.19 ft3/sec(cfs) Calculated Inlet InterceptionCapacity, NA22861009104 DesignlCalcs\Storm WateNnlet Interception Analyses\Inlet-RWW-08_On-Grade_Basin-RWW-08_25-YR.xlsx Page 4 of 4 ] Morrison No Maierle INLET INTERCEPTION CAPACITY ANALYSES Nelson Meadows Subdivision - Subbasin RWW-10 Storm Drain Inlet #SDI-RW-10 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS CCURB BOX ADJUSTABLE 6'TO g' �: CONSTANTS43. DESIGN Curb Height at Inlet,hc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.00 in = 2.92 ft Manning's Roughness Coefficient for Pavement,np Calculate Gutter Flow D- • • • - • Perimeter Manning's Formula: _ 1.486 As13 Q=Total Flow in Given Cross-Sectional Area(ft3/sec) Q n PZ�3 ,SL where: In= Manning's Roughness Coefficient A= Cross-Sectional Area of Flow(ft2 or so P=Wetted Perimeter of Flow(ft) SL= Longitudinal Slope(ft/ft) Calculate Flow Across Pavement Encroachment • Manning's Roughness Coefficient,nP: 0.016 Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Depth of Flow at Edge of Pavement,yp: 2.05 in = 0.17 ft Spread of Flow on Pavement,TP: 68.37 in = 5.70 ft Longitudinal Slope of Pavement,SP=SG: 0.75% = 0.0075 ft/ft Calculated Flow Area Over Pavement,AP: 70.12 in = 0.49 ft Calculated Wetted Perimeter Over Pavement,PP: 70.45 in = 5.87 ft Encroachment,Calculated Flow Across Pavement 1 N:\2286\009\04 Design\Calcs\Storm Water\Inlet Interception Analyses\Inlet-RWW-10_On-Grade_Basin-RWW-10_25-YR.xlsx Page 1 of 4 0- Morrison EE Maierle engineers-surveyors•planners-scientists Calculate Flow In Gutter with Overlap . Pavement Encroachment • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 ft/ft Depth of Flow Over Gutter,yG+r: 3.05 in = 0.25 ft Spread of Flow in Gutter&Pavement Composite Section,TG+a: 45.77 in = 3.81 ft Longitudinal Slope of Gufter,SG: 0.75% = 0.0075 fi/ft Calculated Flow Area Over Gutter&Pavement Composite Section,AG+r: 69.82 in2 = 0.48 ft2 Calculated Wetted Perimeter Over Gutter&Pavement Composite Section,PG+r: 48.92 in = 4.08 ft CompositeCalculated FI ow Across Gutter&Pavement • . Calculate Flow Within Gutter&Pavement Overlap Area • Manning's Roughness Coefficient,nG: 0.016 Transverse Slope of Gutter,SG: 6.67% = 0.0667 fUft Depth of Flow Over Gutter,yG: 2.05 in = 0.17 ft Spread of Flow within Gutter&Pavement Overlap Section,To: 30.77 in = 2.56 ft Longitudinal Slope of Gufter,SG: 0.75% = 0.0075 fUft Calculated Flow Area Within Gutter&Pavement Overlap Section,Ao: 31.55 in = 0.22 f{2 Calculated Wetted Perimeter Within Gutter&Pavement Overlap Section,Po: 32.89 in = 2.74 ft Calculated Flow Within Gutter&Pavement Overlap Area, • Calculate Total Gutter Flow • Basin Design Peak Plow,Qp: 1.361 ft3lsec(cfs) Calculated Total Depth of Flow Over Gutter,YW: 3.05 in = 0.25 ft QG=Q1+Q2-Q3 where: QG= Basin Design Peak Flow,Qp= 1.361 ft3lsec(cfs) Calculated Total Gutter Flow, • Calculated Gutter Flow Cross-Sectional Area,AG: 0.27 ft2 Calculated Pavement Flow Cross-Sectional Area,AP: 0.49 ft2 CompositeCalculated X-Sectional Area for Gutter&Pavement Calculated Gutter Flow Wetted Perimeter,PG: 1.53 ft Calculated Pavement Flow Wetted Perimeter,PP: 5.70 ft WettedCalculated Perimeter for Gutter&Pavement Com.. Calculated Gutter Flow Hydraulic Radius,RG: 0.17 ft Calculated Pavement Flow Hydraulic Radius,Rp: 0.09 ft HydraulicCalculated .. CompositeCalculated Velocity of Flow for Gutter&Pavement i NA2286\009\04 DesignTalcs0orm Water\Inlet Interception Analyses\In1et-RWW-10_On-Grade_Basin-RWW-10_25-YR.xlsx Page 2 of 4 Morrison No Maierle engin ers surveyors•planners scientists 'CALCULATE INLET INTERCEPTION CAPACITY I ON-GRADE INLET Calculate Ratio of Inlet Frontal Flow to Total Gutter Flow,EO: QW W 2,67 Eo= Ratio of Frontal Flow to Total Gutter Flow E — 1— 1 —— where: QG T QG=Total Gutter Flow(ft3/sec) Qw= Flow in Width(ft3/sec) W= Width of Depressed Gutter or Grate(ft) T=Total Spread of Water in the Gutter(ft) SL= Longitudinal Slope of Gutter(ft/ft) Width of Depressed Gutter or Grate,W: 1.48 ft Total Spread of Water Over the Gutter&Pavement,TG+P: 6.95 It = 83.37 in Calculated o of Inlet Frontal Flow to Total Gutter Flow,Eo: 1 , WidthCalculated Total Flow in 0 . Calculate of Inlet Side Flow to Total Gutter Flow,ES: QS Qw Es= Ratio of Side Flow to Total Gutter Flow ES =—= 1--= 1—Eo where: QG QG Qs= Flow Along Side(ft3/sec) RatioCalculated of Inlet Side Flow to Total TotalCalculated e Calculate of Frontal Flow Intercepted to Total Frontal Flow,Rf: Rf = 1 —0.09(VG —Vo) where: R,= Ratio of Frontal Flow Intercepted to Total Frontal Flow VG= Velocity of Flow in the Gutter(fUsec) Vo=Gutter Flow Velocity where Splash-Over First Occurs(fUsec) Velocity of Flow in the Gutter,VG: 1.78 fUsec Gutter Velocity where Splash-Over First Occurs from Chart 5,Vo: 9.96 ft/sec P-1-7/8 Style Grate Calculated Ratio . II 13 EXAMPLE: �+ 12 V GIVEN: RETICULINE GRATE = L= 3 FT 11 V= 8 FT/S 1I0 W y l0 FIND: Rf= 0.87 Q' XO C '� 9 0 7 yV, 0;i �i O l" � 7 ca 1r0 J' o w � _� 5 f�5 // r ` 0 0 r V O 0 1 t s 4 6 i = y 3 0 U. 2 0� d 1 i `ti d O r cc 1 2 3 4 O 0.1 02 0.3 0.4 05 0.6 0-7 0.8 0.9 1-0 U' LENGTH OF GRATE L (FT) Rf Source: Urban Drainage Design Manual-HEC-22, Second Edition (U.S.Federal Highway Administration,August 2001) NA22861009104 DesignlCalcslStorm Waterllnlet Interception Analyses\Inlet-RWW-10_On-Grade_Basin-RWW-10_25-YR.xlsx Page 3 of 4 E Morrison ME miliIIIIIII Maierle engineers-surveyors•planners-scientists Calculate Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs:Rs where: Rs= Ratio of Side Flow Intercepted to Total Side Flow = s 1 +0.15 VGi VG= Velocity of Flow in the Gutter(ft/sec) SpG,2.3 Sp=Transverse Slope of Pavement(ft/ft) Li= Length of Inlet Grate(ft) Velocity of Flow in the Gutter,VG: 1.78 ft/sec Transverse Slope of Pavement,Sp: 3.00% = 0.0300 ft/ft Length of Inlet Grate,Li: 35.00 in = 2.92 ft Calculated Ratio . i .45 Calculate Efficiency of Grate,E: E = RfEO +RS(1—Eo) where: E= Inlet Grate Efficiency Ratio of Frontal Flow Intercepted to Total Frontal Flow,Rf: 1.00 Ratio of Inlet Frontal Flow to Total Gutter Flow,Eo: 0.47 Ratio of Inlet Side Flow Intercepted to Total Side Flow,Rs: 0.45 Calculated Efficiency of Grate,E: i .71 Calculate Inlet Interception Capacity, e Qr = EQG where: Qi= Inlet Interception Capacity(ft3/sec) Efficiency of Grate,E: 0.71 Total Gutter Flow,QG: 1.36 ft3/sec(cfs) Calculated Inlet Interception Capacity, e i . N:122861009104 DesignlCalcslStorm Walerllnlet Interception Analyses1nlet-RWW-10_On-Grade_Basin-RWW-10_25-YR.xlsx Page 4 of 4 0EJ Morrison 2880 Technology Boulevard West Bozeman,MT 59718 �M a i e r l e Phone: (406)587-0721 engineers.surveyors•planners•scientists Fax: (406)922-6702 7-1 �� � _'?tE°R`7'•�� �"' '4 ��+e+L•5'eusa SDP-RW-18 DP-NR-1 DP-NR-1 DP-NR-1 SDP-RW-17 �� y SDP-RW-19 DP-NR-1 DP-NR-1 DP-NR-1 - SDP-RW-16 SDP-RW-15 L DP-NR-1 . `•. W- ( SDP-PL-9 SDP-RW-13 SDP-RW-14 SDP-RW-1 SDP-PL-8 I DP-NR-1 205 SDP-PL-3 SDP-PL-2 SDP-PL-6 I DP-NR-1 SDP-RW-9 SDP-RW-10 SDP-PL-1 SDP-PL-7 - �� SDP-NR-9 r' ® y. SDP-RW-8 SDP RW-7 �;t• SDP-PL-5 SDP-NR-8 SDP-RW-6 SDP-NR-7 SDP-NR-6 t, SDP-RW-5 SDP-RW-4 '. l SDP-RW-3 SDP-NR-4 SDP-N R-5 SDP-RW-1 SDP-RW-2 SDP-NR-3 ^ DP-RW-1 235 SDP-NR-1 SDP-NR-2 a ,t • � t r • 1 205 STORM DRAIN FIG. 10: STORM DRAIN PIPE NETWORK SCALE: 1"=500' 13 Morrison ME mill Maierle engin ers surveyors•planners-saenlisls PIPE SIZING ANALYSES Storm Drain Pipe SDP-PL-06 I Subbasin NR-12 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Basins,or Pipe: Subbasin NR-12 I Storm Drain Inlet#SDI-PL-05 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.6440 cfs = 289.07 gpm Design Minimum Flow Velocity,Vmin= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 7.08 in = 0.59 ft Design Pipe Diameter,D= 12.1D0 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,n,°„ Design Pipe Slope,S= 1.00 % 0.0100 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'n= 3.80 in = 0.32 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 30.91 in2 = 0.21 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 14.40 in = 1.20 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.15 in = 0.18 ft Manning Roughness Ratio at Design Min.Velocity,Onr°ii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.96% 0.0096 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,do= 3.77 in = 0.31 ft Cross-Sectional Flow Area at Design Slope,A= 30.52 in = 0.21 ft2 Wetted Perimeter at Design Slope,P= 14.32 in = 1.19 ft Hydraulic Radius at Design Slope,Rh= 2.13 in = 0.18 ft Top Width of Flow at Design Slope,T= 11.20 in = 0.93 ft Manning Roughness Ratio at Design Slope,n/nr°ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 4.00 in = 0.33 ft Critical Slope at Design Flow Rate,S.= 0.79 % 0.0079 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.04 ft/sec Pipe Full Flow Rate at Design Slope,Qt°u= 3.95 cfs = 1771.12 gpm Pipe Percent Full Page 1 of 1 N:12286\009\04 Design\CaicslSlorm Water\Pipe Sizing Analyses\SDP-PL-06_Basin-NR+PL-02_25-YR.xlsx Printed On:6/7/2019-1 2:24 PM Morrison ME Wim Maierle engineers•surveyors•planners-scientists PIPE SIZING ANALYSES Storm Drain Pipe SDP-PL-07 I Subbasins NR-11 & NR-12 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Basins,or Pipe: Subbasins NRA 1&NR-121 Storm Drain Manhole#SDMH-04 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.1804 cfs = 529.80 gpm Design Minimum Flow Velocity,Vmin= 3.00 ft/sec Design Minimum Full Flow Pipe Diameter,Dmii,= 9.58 in = 0.80 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,mm11 Design Pipe Slope,S= 0.62% 0.0062 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'n= 5.37 in = 0.45 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 56.66 in = 0.39 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 19.20 in = 1.60 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.95 in = 0.25 ft Manning Roughness Ratio at Design Min.Velocity,n7nr°ii Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.62% 0.0062 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 5.37 in = 0.45 ft Cross-Sectional Flow Area at Design Slope,A= 56.64 in2 = 0.39 ft2 Wetted Perimeter at Design Slope,P= 19.20 in = 1.60 ft Hydraulic Radius at Design Slope,Rh= 2.95 in = 0.25 ft Top Width of Flow at Design Slope,T= 14.31 in = 1.19 ft Manning Roughness Ratio at Design Slope,nlnr.ii Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 5,15 in = 0.43 ft Critical Slope at Design Flow Rate,S.= 0.73 % 0.0073 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 3.00 ft/sec Pipe Full Flow Rate at Design Slope,Qr°n= 5.42 cfs = 2434.18 gpm Pipe Percent Full Page 1 of 1 N:\22800904 Design\Calcs\Storm Water\Pipe Sizing Analyses\SDP-PL-07_Basin-NR+PL-01+02_25-YR.xlsx Printed On:V712019-12:29 PM l+I .may e QL + SHEETS �6V wa&ss-s SHEETS zJ: i�, •� - R-1 H R-5 r.•_ = 6� T-1 T-6 4. ; 6 w-5— w-s NELSON ROAD SS-5—SS-6 4�. / FRONTAGE ROAD M9L M9L M M9L SHEETS L' r° ES-1 f ES-5 SHEETS I IIAM SS-7 °� I II ROYAL WOLF WAY 'I II R-15 I PRINCE LANE--------------------- I m --- ---------- ----_ CA I N �n Om ~N OvA.. I m oo Im ICI �r3 SHEETS I SHEETS SHEETS i ss a m 6 i mll SS-41 ' ST-1 I oo I — ---- --- - - L) - w� I SHEETS 3 j N R-11 R-14 !3 0$ 0 W-3 W-4 f QO O / N ioi °- ��� SHEETS Or GR <m go 0 INN °o am /./ SHEETS �� ' \\ ' R-6 R-10 SHEETS I � \ \ \ / W-1 W-2 r M-1 &E-1 j A O; / `\ \\ / SS-1 H SS-2 LIFT i• ��• STATION I \\ Y 1 TRACT 0 J .08 ors. as �ggggG5'z- � I / SHEETS 9 / TR-1 I � / I NOT TO SCALE / gN VERIFY SCALE! REVISIONS �� DRAWN BY: MEE PROJECT NUMBER NO. DESCRIPTION BY DATE -^ 1j NELSON MEADOWS 2286.008 Morrison INEBEL W MAIAYBEREDUCED. = I DSGN.BY: MEE LINE BELOW MEASURES ONE INCH # Q 2880 Technology Blvd West c 4 ON ORIGINAL DRAWING. 2 Bozeman,MT 59718 SHEET NUMBER .■ • € APPR.Bv: BOZEMAN MONTANA M a i e r l e W 406 587.0721 DATE: 05/10/19 DRAWING NUMBER 1 MODIFY SCALE ACCORDINGLY! • O/Z5/ZO/9 w,vw.m-m.nel `�41 7 SE B.C.REVIEW SHEET INDEX engineers•surveyors,planners,scientists r�1 N:1223a0091ACADISHEETS\G-1-INDEX.DWG PLOTTED BY:MATT E.EKSTROM ONJurW52019 COPYRIGHT©MORRISON—ERLE,INC.,2019 IILIlCUllliN DATE: `J 1 WIDE CRUSHED CIVIL SITE' 'URE NOTES BY SYMBOL: '„ 17YELLOWSTONt PIPELINE - 0 6' r COMPANY RIGHT-O '1''Y-24.00' / FINES PATH(TYP) F-WAY O STA 23+13.72-8.8/'RT f m }� I I ' I I INSTALL NEW STORM DRAIN MH NSDMH-18 / BUILDING SETBACK 25.D0' STA 85.32 / � BOUNDARY(TYP) (3)PROPOSED I2'A-2000 '� I TA 23+25.91 d 31.23' I / FUTURE 5'WIDE �UTILITY CONDUITS IPT 1 _LT I 29.00 LT O INSTALL NEW STORM DRAIN PIPE SDP-RW-16 SIDEWALK(TYP) / SEE DETAIL I ' - END SW= z29 LF BID QTY 12 HP STORM x1.00%SLOPE 131.00' i 14592.7 459223 - - - PETRO----- -- PETRO PETRO- PETRO--- -�- -.-- pETRO-- -PETRO- ---PETR% - PETRO---PETRO--- - PETR -�- -P ,R ---- PETRO- O STA 23+27.42.16.50'LT EINSTALL NEW 48.0 COMBINATION STORM DRAIN MH 81NLET pSDI-RW-09 / 3 WITH EJIW 703OZ1 FRAM 87030M6 GRATE OR DILL 1351SRS FRAME IL 3517-02 GRATE 4 3 ------_ - o-1 - TBC ELEV=4592.04 l / / 9 ___ _ GRATE FL-4591.59 ---'-r--------- -- -/------- - --- - --'--- - 0/517.50 LT 12-HP STORM INV OUT(SE)=4588.23 __------ -��- ------- 1'�'-- --- ---------PC TBC'-- - R25.00' T.,^ Z8.3' TBC APRON= ------ SUMP=4587.48 4592.84 / / 459205 INS/ TALL NEW STORM O STA 23+27.42.16.50'FIT I INSTALL NEW48-D COMBINATION STORM DRAIN MH B INLET NSDERW-10 RAIN PIPE SDP-RW-16 WITH EJIW 703OZ1 FRAME IL7030M6 GRATE OR DILL 1.3516-RB FRAME 83517-02 GRATE ew e w e ew a ew mr�. ew B ,g-e e 3 �t29 LF 12'HP STORM TBC ELEV=4592.04 @=1.00%SLOPE - / �L11 2 12-HP STORM INV OUT(SE)=4585.11 20+50 / 0+'& 21+0p NS•24'17 21+25 21+SD- 21+75 22+25 e'! /23+50 _794.6 �� � = 2�+0 3 5 SUMP=45B7.36 17.50' I INSTALL NEW DRIVE APPROACH PER uD 24S0 .uD uo 2uD zuo zuo� 4SD��2io _ _..2uD zuD 2 / 5 CRY OF BOZEMAN STANDARD DRAWING 02529-12 R1500 l 5 4 INSTALL NEW DRIVE APPROACH PER ROYAL WOLF W 542' `" 5 - -• - _ I O CRY OF BOZEMAN STANDARD DRAWING 02529-13 u 1-1 -- -- '`- ----------_ -------- -�"�_ 2S.3T STA 23+25.91 17.50 FIT ______ a _____ _______ ___� 22 a .I,'. STA 23+Z5 EO APRON= -----�----- ' - -- END / ________ STA Z2+2132 R25.00 Pam/ fBC A-PRbI 0/S 24.OD RT U = ' INSTALL NEW STORM DRAIN PIPE SDPSLOFE i 37 - '' ' - 459205 Q B W "3ZB3 LF 24'HP STORM@3020%SLOPE PC 17.50 FIT 36 I d592.26 ICI .? 4592.15 / f W PC TBC= _0�r I / W - 459284 I STORM TENANCE MUL 20 10 0 20 40 / - 24.00' CCESS ROAD ) SEE DETAIL) a I", �,` i HORIZ.SCALE IN FEET at - REFER TO SHEET R-15 / -- - FORADDITIONAL 2 1 0 2 4 STORM DRAIN DETAIL i VERT.SCALE IN FEET -- _ -_ ROYAL WOLF WAY I � - I 4595 4595 - - o<Zi PROPOSED FINISHED - g `o'."'_ w'm9'"`.�"�^..--r^�o.o.^:^•��.s,-e-,.-.-- ...e...,ss.a.e.,w.- .,_, GROUND AT CENTERLINE - ®- d. ��•�r^�� ® � Ed I E%ISTINGGROUND - �•�5& t� / !u q. SURFACE AT CENTERLINE .- UTILI ® [® `COND ITS 4590 4590 ' I I - I I _ . I 1 I. INSTALL NEW STORM DRAIN PIPE SDP-R--15 PROPOSED -t283 LF 24'HPSTORM(r73-.P.-SLOP a ,n e SANITARYSEWER ,,t ® �� , �n ^F 4N �5 6Z `' �® Y ® % A p 1 - � I 4585 - - 4585 PROPOSED WATER. - --.. MAIN(TYP) ! STA 23+13.72-8.8T PIT INSTALL NEW 60'0 STANDARD - j - --- -STRAIGHT STORM DRAIN MH NSDMH-18 WIT I EJIW3771/3772 SERIES FRAME B COVER - OR 08L A-1172 FRAME IL A117B COVER _ - ! COVER RIM=4592.02 12'HP STORM INV IN(NWj=4587.98 12*HP STORM INV IN(NE)=4597.99 ! __ .24'HP STORM STORM-I IN(S)=4585.47 4580 2 . ... INV OUT(E).'._4585.27 .. _ ---SUMP=4584.52 - 4580 by N u�p tV CO �,tp < !N R O �.� In 1!. N:� __- -�e...�- ___- __ -"___ _ _�..e.e....`..•.-...a.... rz Oli W � !LL W LL !LL LL WILL W LL WALL W LL WLL LL ILL w 20+50 21+00 21+50 22+00 22+50 23+00 23+50 VERIFY SCALE! REVISIONS NO. DESCRIPTION BY DATE pTl'I q" , DRAWN BY: CPK NELSON MEADOWS SUBDIVISION THESE PRIMS MAY BE REDUCED. r 'r ) PROJECT NUMBER LINE BELOW MEASURES ONE INCH 1 CITY REVIEW TEE 05/17/2019 Morrison v 28SO Technology Blvd West j;} h DSGN.BY: CPK 2286.009 ON ORIGINAL DRAWING. Bozeman,MIT 59718 an �' INFRAS":RUCTURE IMPROVEMENTS ■ tY+ APPR.BY: MEE BOZEMAN SHEET NUMBER MODIFY SCALE EACCO INGLYI M a i e rl a 406.587.0721 = ROYAL WOLF WAY MONTANA - 4ii DATE: 01I2019 ® www.m-m.nel _ Q_C.REVIEW DRAWING NUMBER N:122!>6�9WCA IEET..10 ROYAL-WOLF-WAY STA201+ TO-END.DWG PLOTTED BY:MATT E.EKSTROM ON J-D5,2019 engineers surveyors planners scientists �P GM OMORRISONMNERt£,INC.,30fY !1 ,0AL : DATE: STREET&STORM O+D50 TOIENDOVEMENTS R_ 0 f � r l � 1 o. i ; JJJ 22tZQ .23 ,00 23+50 � 23+ , 25 NR-12 _ '_ — - — c\_ -� CD ICU .................. W 11 N •J•J VT W •J•J O J J J J _ - n •J•J CT p•J•J -J.-J ___ II-- -- - -... - _ Y `\ -- - --- __ - -------- - -- ii - ------------------ LOT 1I I l 2.59 am. I I I KEY NOTES I I STA 2D+19.8.12.0I.T 1 FIRE AND DOMESTIC WATER SERVICES: NORTHWESTERN ENERGY GAS MAIN STA 11+25.7-12.0 LT I I I NEW 16'GATE VALVE I 1 I INSTALL NEW W FIRE SERVICE 1.1-INSTALL 8"FIRE SERVICE AND 4"DOMESTIC ANO4'DOMESTIC WATER SERVICE I I STA 20-14.8-12.0'LT WATER SERVICE IN SAME TRENCH SPACED 5' I O1 I I NEW 16 X8TEE I APART,CENTER TO CENTER. I I I TA 19+40.1.12.0'LT FH ASSN 21.0'LT I I ' I ALL NEW 8'FIRE SERVICE I I C 1.2-INSTALL GATE VALVES ON PROPERTY LINE STA 10+14.0.120'LT 'I�i I 4-DOMESTICWATER SERVICE AS REQUIRED BY COB.STD.DVVG NO.02660-12. Gqs STA 10409.0-12.01T NEW 117 GATE VALVE NEW 16X61EE 'III STA 17+249-120'LTI O I FH ASSY21.V LT STA 14�532.12.0'LT I,`., INSTALL NEW 6'FIRE� I I 1.3-INSTALL END CAPS BFT BEYOND THE INSTALL NEW 6'FIRE SERVICE I STA 16+13.0-12.0'LT AND 4'MIFSTIC WA I PE PROPERTY LINE(38 FT OFFSET FROM CL) AND 4'DOMESTIC WATER SERVICE NEW16X8TEE O I UNLESS OTHERWISE NOTED ON PLANS. 10 FH ASS Y 21.0'LT I I I I \ STA 16+18.0.1ZULT I NEW 16"GATE VALVE , - -- --- -.��---- --------- -------_5?1 I --------- I I _ I 1-1 M9L MBt t M9L 1 AM19 A'ml t Me{ M9{ h191 Mgt AA9{ { t N9lo Nbl M9L N6t N8t AM19Tz7i N fm n 99 �9@ BB I 98 - '9-�9- _� - ud 15sD 5sD 1ssD 1ssD 15SD 1iSSO PRINCE LANE ssD 1s - - ------------- ---------mow -- ------------- ------ - --- ------ ------- - - ------ TT \ -------- I m l Gqs, I STA20+81.8.120'LT 1 I ' STA 14+37.0.12.0'LT VSTA17-04.9-12ffLT NEW 16 X IB TEE I INSTALL NEW W FIRE SERVICE INSTALL NEW W FlRE SER ICE I I ROYAL WOLF WATER MAIN 1 M STA10+80.8.120'LT Gqs, i AND 4'DOMEST�C_WATER SERVICE I I AND 4'DOMESTIC WATER ERVICE STA 19+27,I.17Ir LI E /.\ I I O INSTALL NEW 6'FlRE SERVICE I I SEE SHEET W-2 I AND 4"DOMESTIC WATER SERVICE I , I 1 I I _Z 3 INSTALL NEW 6"FIRE SERVICE STq 14N4,8-12A'LT U AND 4'DOMESTIC WATER SERVICE I� O NEW 18'GATE VALVE I I 2rw II II FV- In LOT 16 `- 11 50'WETLAND Q w 2.14 aCS. Oqs I I SETBACK I I II \ LOT 1.11 acs. 116 ass. C 1 I A w II 41 LOT a15 m. I I I I so 25 a so 100 5 2.5 HORIZ SCALE IN FEET O S 10 VERT.SCALE IN FEET 4605 4605 PRINCE LANE INSTALL 1232 LF 18"CLASS 51 D.I.WATER PIPE TYPE A TRENCH BACKFILL 4600 TYPE 1 BEDDING 4600 7.5 DEPTH 7.5'DEPTH BURY ELEV= .30 _ 4595 8.0'DEPTH BURY ELEV=4595.50 _ _-- - - - _ - BURYELEV= 92.80 4595 - PROPOSED FG \ CLPROFILET '/ MIN.6.5',,COVER PJ I ROSSIN4590 I s DRAIN - - _CRO SING � ' � '. ---- _- -_ --- MIN EXISTING GRAD - ENERGY GA �' ... _.-_ .. _ .._- - ._ - -.:I - CL PROFILE ^I/� STA 14+14.56 _ _..' -MIN.18' .--_- D CROSSING 4580 -MAIN 'GATE VALVE- INV= 4585 4564.22 - - 16 X s TEE 4585 STA7+91.55 .. ...STA 10"09,04 _.. - .. o� !NV- . W GATE VALV 6'GATE VALVE- INV= - -__. ..- - 4586.83 INV=4584.98 :._ - - w� &w t ��TE STA 16+12.98 p1 - y `�"' 6TA 794580 � STA1 1.11 16X6TEE 9� uu y i6'GALVE INV=4587.64. ..w R" ¢ "a INV= 7 4580 STA 1+8678 STA 10N4.03- - +- - w EC PIPE J01 iv 3 -- 3 r,c2 . 22.5 DEG.ME BEND 16X6TEE.. wz NTS w� - STA 1fit1T.98- - -- - INV=4586.65 INV=4584.93 - F m U 99 y S 16"GATE VALVE 4587.58 4575 W DEFLECT PIP JOINT: z 3 �a INV a 3 s�-I, 3 g =S woSTA 2+45 m� _.. - - _ 36 FT ALONG IPE in m m m m F 4575 STA12+54.75-1+90.75 g �.Gi .�iii.'P s8•, �m INV 4579.95 Q �'c' v � v 4570 D2 4570 �� m-^ ^n m�� �� mR3 ^ � fir m�� g� �Sm SX� m� m _. v� ��bp+ „'o'R7�7�$ ,n v"i u� voi�7Svn� m '� A n bl mfe qq �J4 9Y'!q � Y� �. � m �� V � vm�m �4 4 7uO q0 S �0 4 n 4 Y 4 a Y 4. m q '� 4`I n 9 Y T�j �y7$� uy� •n ��ypp{{ ,^ o $r�I mm v�> > >>> > > > > > I��j �Qj `1 Y `I Y �T .� q `T ' >Y Y ' > J J 4 J' J ' 4J `! ' 9 'UV2 t�'�2 UU� UV2 UV� c�U2 UUZ UUZ c�U� uU� UU UU� UU uU UU> uU UU UU UU uV uV UU>> UU U.U>> UU UU UU U.0 UU UU UU U'V>> WU c)U UUZ (�U� c��2 UV� �1 U[] V>> UU UU>> UU>v> UU UU>> UU UU>> UU-wLL- wLL- w1Ui_ wLL- wLL wlVi- w1Ui- wLL_ wLL_ w�- wLL- DULL- wlVi- wLL- w1Ui- wLL_ wLL- wlVi_ DULL wLL wLL wLLZ wLL w�? wLL wU wLL DULL DULL wLL wLL w,LLZ IVi wLL_ wV- w�LL- wLL- wLL- wV'- wLL t�LLZ (�� w�Z U�2 wLL ULL2 ULL w�2 wLL DULL U 8+50 9+00 9+50 10+00 10+50 11+00 11+50 12+00 12+50 13+00 13+50 14+00 14+50 15+00 w 15+50 16+00 16+50 17+00 17+50 18+00 18+50 19+00 w 19+50 w 20+00 w 20+50 21+00 21+50 VERIFY SCALP REVISIONS NO, DESCRIPTION BY DATE • _''•�a�d�'A �1 DRAWN BY: CPK PROJECTNUMBER THESE PRINTS MAY BE REDUCED. 1 i DSGN.BY: CPK NELSON MEADOWS SUBDIVISION 2288.009 LINESELDW MEASURES ONE INCH 1 CITY REVIEW CPK 0 5/1 712 01 9 ■ Morrison 2880 Technology Blvd West fir �� ON ORIGINAL DRAWING. V INFRASTRUCTURE IMPROVEMENTS SHEET NUMBER 2 COBREVEIW#2 08/052019 .■ • Bozeman,MT 58718 M �% APPR.BY: MEE gOZEMAN • 1 M a i e rl a �• 406.587.0721 853PE W? DATE: 019 MONTANA MODIFY SCALE ACCORDINGLYI ® www.m-m.net O/25/10/9?= DRAWING NUMBER T S`?EN6Ep�V= O.C.REVIEW PRINCE LANE WATER IMPROVEMENTS ,n I_A engineers.surveyors•planners•scientists BY: STA 8+ V V �'F NA726610WWCAMSHEETMWATERAWG PLOTTED BY:MATT E.EKSTROM ON JuWY2019 COI`RIGHTOMORRISC-ERLE,INC.,2010 'r` `"��P„NAB:�'` DgTE: 50 TO END R Morrison Illy Maierle ..y...w... r , 1 ,._,,.... RATIONAL METHOD FOR RUNOFF CALCULATIONS Nelson Meadows I Post-Development Subbasin RWW-01A- 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) ,,DRAINAGE BASIN CHARACTERISTICS Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency Surface Area,A Area,A Coefficient Coefficient' Factor C,=Cwd x Ct 00 Lot 24&Portion 25 Asphalt/Concrete 5,142 0.118 0.95 0.112 Existing Pasture Land 106,315 2.441 0.23 0.561 0.26 1.00 0.26 0.26 0.673 'Weighted runoff coefficient,Cwd=EGAi/Eaj where Cj is the adjusted runoff coefficient for surface type j and Aj is the area of surface type j RETENTIONI BASIN • Calculation of Storm Water Runoff Flow Rate: Q=CWdiA Q=Storm Water Runoff Flow Rate(cfs) i=Rainfall Intensity(in/hr) CM=Weighted Runoff Coefficient A=Storm Drainage Basin Area(acres) Storm Drainage Basin Weighted Runoff Coefficient,Cwd= 0.26 Rainfall Intensity,i= 0.41 in/hr(10-year,2-hour Design Storm) Storm Drainage Basin Area,A= 2,559 acres iBasin Design Peak Flow, • r .27 cfs Calculation of Required Retention Volume: V=7200Q Q=Storm Water Runoff Flow Rate(cfs) V=Required Retention Volume(co Storm Drainage Basin Runoff Flow Rate,Q= 0.27 cfs Basin . - Page 1 of 1 NV28MOO 104 Designlcaics ston WateARelenlion AnalyseslNelson-Meadows Basin-RWWOIA_Retention-Required_10-YR_2-HR.xlsx Printed:012019-10:09 AM 00 O CD M a0 00 O � M O M "T M N "Y LO Ln O CDCDCD CD - M Lo f- • O O co O LO LC) N O ti M '�}- CO O N N ti ti ti ti N O LC) CDti O w CD O cof-- CD — O L(j 00 m LO N O O "I: o LC) d' LC) M - e- N O LO CV CD 00 CO) • O �t ('r) LO M L[) CD LC) N O 00 ti N N co d' d' LC) I • fN LLI a � ZLOO O O LL7 O O M 'IT r�- O) 00 O CD O N V' O CD CO CO N CD CD LC) Q • CD N M CD f ti N co � CV CI) O Lf CO � • O �- CD � 00 d' LO LO C W N M �i' CD 00 N N M C 0 _ _ H rn M o CD c0 (.0 - L(-) ti D) 00 LC) O CV f� O A ~ • � N CO LC) O M o O 'd' O LO ,I- LO CI) • (Is LC5 00 m N LC) �- N 0) LC) N CD 00 L ' M Lf) a0 LC) O LC) CV O 00 f- •� • W = - CV CV CO -zd- V Lr) a H m fa to = o V� o 0 CD CD 0 0 CD 0 0 0 0 0 0 0 - > Q • O - N M -ZI: Lq CD f� 00 O O N M @ • ' O O O O o o O O O O Z c O 0. E co y Z O N m A� N� OA • CD CD CD CD CD CD CD O CD CD CD CD CD CD O O O O O O O CD O O O O O O Z WQ C O W *0 z I- o T W a • ,,:I- co N LO N LO - CD CD 00 COD r- OL o CD C, L(7 O CD M CD LC) CD O ti O LC� N 00 LC) M CO cc) O M O CD O � N 00 CD N CV • O N CAD m M N N M L('J C9 W E- o ° (3) i_ ,�_ • • 0 0 0 0 0 o CD 0 0 0 0 0 0 0 O ? N CI? "Zf LL7 CD � Co O O - N (I? :f LC) r` r` ti ti ao ao 00 00 C6 o0 0 0 rn rn rn rn rn rn rn rn rn rn rn rn m rn > IA LO LO LO LC) L() LO LO U') LO LC) LO LO LO LO YI T 'r IT d- 0 ®' 5 U) Z z Z W W �1 1 O o � W - - 0 zZ f- -' Im --- w - --- ` W - _ / o of of ZOf _ _ I o LIJ - O� Z Z W N ow W O —iin a6,6 oo 0 r � W a tl' a 04 / W O z W W I— U:u I/ w 0 0 wl i>:3 > i /' �;'W W w �-jw Al C0 0 r or \ , Quo //�/;�/% o 0 LLI / ,0.0�0• OLU a T / 00 V 0 / / % ( �I f / U •— A, ol o• a v ol 0 ry z �- J- - _ N 6'WIDECRUSHED CIVIL SITE F. JRE NOTES BY SYMBOL: n �YFLLOWSTONE PIPELINE FINES PATH(TYP) O STA23+13.72-8.BTRT _--45� J v�, J BUILDINY NG S IETBACKF WA� 2400 I I I INSTALL NEW STORM DRAIN MH NSOMH-iB 2•00' / BOUNDARY(TYP) 0)PROPOSED 12'A-2000 STA �' / TA 23+25.91 INSTALL NEW STORM DRAIN PIPE SDP-RW-16 UTILITY CONDUITS IOr17 LT29AFUTURE SWIDE / •� I PT END �T 2 t29 LF BID Ott 12'HP STORM s1.00%SLOPE /A I 37.23' / SIDEWALK(TYP) / SEE DETAIL PETRO-- - --PETRO�----PETRO---PETRO-- - - PETRO-- -PETRO---PETIT%"�PETRO---PETRO-- '"")131 00� iTR ---PET OI I58'L-PETR -/ -P R 459 PETRO- ' O STA23+27.223 42-16.50'LT INSTALL NEW 48-0 COMBINATION STORM DRAIN MH&INLET OSMRW-09 '� I 1 4 / / WITH EJIW 703OZI FRAME&7030MA GRATE OR D&L 1351GR8 FRAME&3517-02 GRATE - / Arfi 0.1 I __ _ STA 23+259 4/�'94 TBC ELF=4592.04 - / --- _ _ _--- GRATE FL=NVO 591.59 ------------- ( )-458823 - m O/517.50 LT 1 HPSTORMI UT SE -----_--__-��- ------ TBC APRON j - -- - R - / SUMP=4587.48 ------- ------_-PC j 6 4SM05 _ 4 � / - ✓ O STA 23+27.@•16,50'RTIINSTALL NEW 48'OCOMBINATION STORM DRAIN MH&INLET MSDWW-10 _ -- --- ---- - _ INSTALL NEW STORM 4 WITH EJIW 7030Z1 FRAME&7030M6 GRATE OR D&L 13516-RS FRAME 8 3517.02 GRATE ew a 8W aWgw ew aw ew - ew_ w ew�� a III RAIN PIPE SDP-RW-16 TBC ELEV=4592,04 17.W' I b`'`/- i-8w e 3 �t29 LF 12'HP STORM �' 20+50 - 0+ 21+00 - ' / III 2 �t1.00%SLOPE GRATETFL=4591.59 NS'24> \ 21+50__ - 21+75 22+25 yl}d 23+0 -0 3+5 /23+50 SUMP=TORM INV OUT(SE)=4588.11 SUMP=45B7.36 ' 94.5' I_ 17.50' y -A�2 I�JIIM ° ) O INSTALL NEW DRIVE APPROACH PER 4sD 24SO 45DI 245� 2450 2a5D 246D Z4SD-�2ASD _ _24SD 24SD I I 2 ' S CITY OF BOZEMAN STANDARD DRAWING 02529-12 _ I R15. I I 5 STALL NEW DRIVE APPROACH PER ROYAL WOLF WA �459Y I - 6/ 4 O CITY OF BOZEMAN STANDARD DRAWING 02529-13 -- --------j ---- - 28.37' STA 23+25.91 STA 23+2&, ----------- ---� ---------------- ----- -'--� 01 1Z50 RT -AT+R = __ --_ 4.DDTM TBCIAP ' OIS2 RT RON i U = INSTALL NEW STORM DPollN PIPE SDP-RW-15 STA 22+21.32 R25.00' P TBC='- ON' END Syy= 4592.05 I H -P831F 224'HP STORM @ t0.20%SLOPE O/S 17.50 RT 4592.36 14592.26 I 1 4592.15 �- / / W ' r PC TBC= 31.00'm 1 1 /I I I / U 459284 I m ISTOR&•DRUN I }I i i TENANCE 1 � 20 10 0 20 40 24A0' CESS ROAD ( 1 SEEDETAIL HORIZ SCALE IN FEET REFER TO SHEET R-15 2 1 0 2 4 I_ FORADDITIONAL_ _____-_' / I I .I STORM DRAIN DETAIL i VERT.SCALE IN FEET _I-_- __-- - ---.---.___ ROYAL WOLF WAY4595 - -- I -- - -- ----- -- o - 4595 a PROPOSED FINISHED GROUNDATCENTERLINE O n _ u EXISTING GROUND 1SURFACE AT - I -- I I -- --�3 2D-O00 --------- CENTERLNE II 4590 C1s& 4590OITS I ' - - - _ - I I INSTALL NEW STORM DRAINPIPE SOP R 75.. PROPOSED . SANITARY SEWER -__... _ .._...._._.. ._. ------- - _ - _--- -t283 LF24'HP STORM - - MANHOLEOYN-,. -- 4585 L_..._..-..... ---- - -_ 4585 -_PROPOSED MNN ) T INSTALL SEW 6P 3.STANDARD -----..__-_. -____-_____ _ - -STRAIGHT STORM DRAIN MH MSDM1-1-18 WIT i EJIW3771/3772 SERIES FRAME&COVER _ --- --ORD&L A-1172 FRAME&A-1178 COVER ---- --_- --- - _ ---- -- COVER RIM=4592.02 '12 HP STORM INV IN(NW)=4587.98 i 12'HP STORM INV IN(NE)=4581.99 24'HPSTORMINVIN(S)=458547 _-._ _ 24'HP STORMINVOUi(Ei=458527 4580 - _ . _. - SUMP=45e4.52 - 4580 s r s3lllm m R $I ry �' SIN 83 LL iLL W LL ;LL LL LL LL .ILL LL LL LL ILL 20+50 21+00 21+50 22+00 22+50 23+00 23+50 VERIFY SCALE! REVISIONS 11j I DRAWN BY: CPK NO. DESCRIPTION BY DATE ■ ;s '�'A'� 1j PROJECT NUMBER THESE PRINTS MAYBE REDUCED. - 1 DSGN.BY: CPK NELSON MEADOWS SUBDIVISION 22e6.009 LINE BELOW MEASURES ONE INCH 1 CITY REVIEW TEE 05/17/2019 2860 Technology Blvd West �+ ON ORIGINAL DRAWING, Morrison V 9 eman,M1T 59718 - M INFRASTRUCTURE IMPROVEMENTS SHEET NUMBER 2 COBREVIEW02 06/06/2019 on - T W APPR.BY: MEE BOZEMAN MONTANA - �� ` 406.587.0721 853PE W' DATE: 01/2019 MODIFY SCALE ACCORDINGLYI M a i e rl e ® www,m-m.net '%y == OYAL WOLF WAY DRAWING NUMBER r�/ZS/ZO/9 Q.C.0 REVIEW engineers.surveyors•planners.scientists r4 /EN c°�_` BY: STREET&STORM DRAIN IMPROVEMENTS R-10 N:12285T009VCADISHEETSIR-10 ROYAL-WOLF-WAY STA•20+50-TO-FND.DWD PLOTTED BY:MATTE.EKSTROM ONJ-1062019 NPYitIOHfOMOggISON#INERLE.INC.,301i 11j1HONA`,. '� DATE: STA 20+50 TO END