Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
16 - Design Report - Springhill Suites by Marriott - Drainage
Morrison Maierle 2880 Technology Blvd.W. • PO Box 1113 • Bozeman, MT 59771 engineers . surveyors . planners = scientists (406)587-0721 • www.m-m.net Comprehensive Drainage Plan Update SPRINGHILL SUITES BY MARRIOTT 2114 Boot Hill Court Bozeman, Montana April 2016 Prepared For: Bozeman Land Investors, LLC 1735 South 19th Avenue, Suite B PO Box 11890 Bozeman, MT 59719 MMI Project No. 5305.003 We create solutions that build better communities. AN EMPLOYEE-OWNED COMPANY • AN EQUAL OPPORTUNITY EMPLOYER—MINORITIES/FEMALES/DISABLED/VETERANS �1111� Morrison Comprehensive Drainage Plan Update Maierle engineers.surveyors-planners•scientists Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman, Montana iTa • of Contents Introduction Appendices Proposed Development........................1 Appendix A Development Description....................................1 Existing (Pre-Development) Drainage Basin Development Horizon .........................................1 Appendix B Post-Development Drainage Basins Existing Area Conditions......................3 Existing Land Cover& Slopes.............................3 Appendix C NRCS Soils.........................................................4 Pre-Development Runoff Analyses Existing Drainage Features.................................5 Appendix D Major Drainage Basins & Subbasins...5 Post-Development Runoff Analyses D-1: Water Quality Design Storm Existing (Pre-Development)................................5 Recurrence Interval Proposed (Post-Development)............................5 D-2: 10-Year Design Storm On-Site Major Drainage Basins...............5 Recurrence Interval Off-Site Major Drainage Basins............... 8 D-3: 25-Year Design Storm Recurrence Interval Methodologies .......................................8 D-4: 100-Year Design Storm Recurrence Interval Design Methodology...........................................8 Storm Water Runoff Analyses.............................8 Appendix E Storm Water Conveyance Facilities..................10 Inlet Interception Analyses Inlets..................................................... 10 E-1: Water Quality Design Storm Site Storm Drain Piping......................... 10 Recurrence Interval Storm Water Retention Facilities.......................11 E-2: 10-Year Design StormRecurrence Interval Maintenance Considerations .............11 E-3: 25-Year Design Storm Recurrence Interval Storm Water Conveyance Facilities..................11 E-4: 100-Year Design Storm Storm Water Retention Facilities.......................14 Recurrence Interval Subsurface Storm Water Retention Facility14 Appendix F Surface Storm Water Retention Facility.....14 Pipe Sizing Summaries Conclusions.........................................14 Appendix G References...........................................15 Storm Water Retention Analyses Table of Contents i Comprehensive Drainage Plan Update ® Morrison Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman Montana Maler�e � engineers�surveyors-planners scientists List of Figures Figure1: Site Location........................................................................................................................2 Figure2: Site Layout........................................................................................................................... 3 Figure3: Site NRCS Soils ...................................................................................................................4 Figure 4: Existing Drainage Basin...................................................................................................... 6 Figure 5: Post-Development Major Drainage Basins ........................................................................ 7 List of Tables Table1: Site Soils NRCS Properties...................................................................................................4 Table 2: Pre-Development Storm Water Runoff Analyses Summary............................................... 9 Table 3: Post-Development Storm Water Runoff Analyses Summary............................................. 9 Table 4: Post-Development Inlet Interception Capacity Summary................................................. 10 Table 5: Site Storm Drain Piping Summary .............................................................................12 & 13 Table 6: Retention Facilities Sizing Summary................................................................................. 13 ii I List of Figures&Tables Comprehensive Drainage Plan Update for SPRINGHILL SUITES BY MARRIOTT 2114 Boot Hill Court Bozeman, Montana Morrison Maerie engineers surveyors planners scientists Morrison 1C� Comprehensive Drainage Plan Update mow Maierle engineers surveyors planners scientists Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman, Montana Introduction This design report summarizes the management plan for storm water runoff from the proposed Springhill Suites by Marriott site at 2114 Boot Hill Court in Bozeman, Montana. The information contained in this report summarizes the basis of design for necessary storm drainage improvements. The methodology and analysis procedures utilized in the design of the site storm water management improvements are based on the standards found in the City of Bozeman Design Standards and Specifications Policy with Addendum Numbers 1 thru 5, dated August 26, 2013 (City of Bozeman Public Works Department— Engineering Division). 'Proposed Development Development Description The proposed development is located in Bozeman, Gallatin County on Lot 5 of Block 2 of Lewis & Clark Commercial Subdivision situated in the southwest quarter of Section 36, Township 1 South, Range 5 East, Principal Meridian of Montana. Generally, the property is bordered by Baxter Lane to the south, Boot Hill Court to the west, Interstate 90 to the east, and vacant (formerly agricultural) land to the north that is presently zoned M-1, Light Manufacturing District. The site location is depicted in Figure 1 on the following page. The proposed site consists of a 90 room hotel having a footprint of approximately 19,644 square feet (ft), on a total platted site area of 3.641 acres (158,602 ft2). The included drainage area for the proposed site encompasses approximately 4.33 acres (188,593 ft2). This consists of the building area, approximately 1.47 acres (64,186 ft2) of impervious surface, and 2.11 acres (92,052 ft2) of pervious area. The proposed site layout is shown in Figure 2 on page 3. Development Horizon It is currently proposed to install the necessary improvements to serve the proposed Springhill Suites by Marriott site with the initial development. It is estimated that full build-out of the site would be completed in the year 2016. 1 Comprehensive Drainage Plan Update ®� Morrison Springhill Suites by Marriott—2114 Boot Hill Court I Bozeman Montana � Maler-e � engineers•surveyors-planners-scientists t 1g •� _ 1j ram•- � �r"�' � rf ...! A•�u waw,� i ,.v� .,.w r.,r ' X7 ... ' PROPOSED . ' SITE IL iis�ffia x 7. •f' Figure 1: Site Location 2 -1, Morrison Comprehensive Drainage Plan Update . Merle engineers surveyorss planners scientists Springhill Suites by Marriott— 2114 Boot Hill Court Bozeman, Montana � • Figure 2: Site Layout Existing Area Conditions Existing Land Cover & Slopes The existing property to be developed is vacant, formerly agricultural land that has previously been pre- graded. The present land condition may be described as pasture/rangeland with a continuous mixture of weeds and grasses in good condition. The existing slopes on the site are predominantly one to one- and-a-half percent (1.0% - 1.5%), generally draining from north to south across the property. Along the southern boundary of the property, the existing ground surface has approximately 4:1 (horizontal:vertical) slopes (±25.0% grade) from the property line behind the existing sidewalk along Baxter Lane north for approximately ten feet (10') down to the pre-graded surface where the one to one-and-a-half percent slopes begin. 3 Comprehensive Drainage Plan Update A Morrison Springhill Suites by Marriott—2114 Boot Hill Court I Bozeman, Montana � M engineers�surveyorss lerle planners scientists NRCS Soils Data on existing site soils is provided in the Gallatin County Area, Montana Soil Survey dated September 3, 2014 through Web Soil Survey (WSS) operated by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS). According to information obtained from WSS, the subject property contains two soil types — Saypo silt loam, 0 to 2 percent slopes (5O6A) and Enbar loam, 0 to 4 percent slopes (5O913). The area of each soil type within the boundaries of the site and properties of each are provided in Table 1 below. The location of each soil type is shown in Figure 3 below. Table 1: Site Soils NRCS Properties Acres Hydrologic Classification In Site Soil Group . . • 506A Saypo Silt Loam 2.035 55.9% C CL ML A-4 0.32 0%to 2%Slopes I En Loam C CL-ML A 4 0.28 509E i 1.606 44.1 0%to 4%Slopes i i Figure 3: Site NRCS Soils 4 ,E] Morrison Comprehensive Drainage Plan Update ® Maierle engineers surveyors planners scientists Springhill Suites by Marriott—2114 Boot Hill Court I Bozeman, Montana � Existing Drainage Features There is an existing 50-foot wide easement for a drainage swale and public utilities along the eastern boundary of the site. Adjacent to the site to the south, there is an existing 15-inch RCP storm drain main in Baxter Lane beneath the curb and gutter on the north side of the roadway; however, the invert elevations of this main are above the elevations of the existing as well as the proposed site. Therefore, it is not feasible to connect storm drainage features from the proposed Marriott Springhill Suites site to the storm drain main in Baxter Lane. �Major Drainage Basins & Subbasins Existing (Pre-Development) The existing site includes a drainage area of approximately 4.69 acres (204,153 ft2), which is shown in Figure 4 on the following page. It includes the existing site as well as off-site contributing areas from fill slopes along Interstate 90 to the east and portions of right-of-way along the north side of Baxter Lane to the south. Storm water runoff from the existing site generally drains from the south to the north- northeast across the site to where it currently leaves the site along the northern boundary. The drainage flow path shown in Figure 4 on the following page includes a drainage swale along the north side of Baxter Lane that captures runoff between the north curb line and the existing sidewalk along the southern boundary of the development site. This runoff is then directed northerly along the eastern boundary of the site. Proposed (Post-Development) The proposed site development is to include a system of storm drainage inlets, piping, and a subsurface storm water retention system. There are four distinct major, post-development drainage basins proposed with the project. On-Site Major Drainage Basins Major Basin 1 consists approximately of the western third of the proposed Springhill Suites site, excluding a small portion of the northwest corner (Major Basin OS-1). It has a total contributing area of approximately 0.72 acres (31,253 ft2), and is further subdivided into three sub-basins. Runoff from within major Basin 1 is collected by a combination of roof drains, inlets, and piping. The collective runoff is then directed to a subsurface storm water retention system. The basin is shown in Figure 5 on page 7 and in Appendix B. 5 Comprehensive Drainage Plan Update 1, Morrison Springhill Suites by Marriott—2114 Boot Hill Court I Bozeman, Montana ® Maler�e engineers surveyors planners scientists EXISTING MAJOR DRAINAGE BASIN SUMMARY TOTAL AREA= 4.69 acres WEIGHTED RUNOFF COEFFICIENT,Cw= 0.21 DESIGN TIME OF CONCENTRATION,Tc= 63.37 min 0 150 10-YEAR PEAK RUNOFF RATE= 0.61 cfs ( IN FEET ) 10-YEAR PEAK RUNOFF VOLUME= 2,304 CF �( MAJOR BASIN DRAINAGE „ DESIGNATION FLOWPATH LOT 4,BLOCK 2 LEWIS&CLARK COMMERCIAL SUBDIVISION •r"«�� V\ s,-20— `'?20— C \ ..._ LOT 5 � \ BLOCK 2 � \` �\,\ 190 : A LEWIS&CLARK \\ ; {'O _ COMMERCIAL SUBDIVISION \�� r s -BARTER-LANEX. EE4TI LOT 2A OF o I COMMON OPEN SPACE 1~ SACCOCCIA MINOR SACCOCCIA MINOR SUBDIVISION 407C �► SUBDIVISION 407 1 � Figure 4: Existing Drainage Basin 6 No Morrison Comprehensive Drainage Plan Update Maierle engineers-surveyors-planners-scientists Springhill Suites by Marriott—2114 Boot Hill Court Bozeman, Montana POST-DEVELOPMENT MAJOR BASINS SUMMARY DESCRIPTION 1 2 OS-1 OS-2 Total Area= 0.72 acres 2.33 acres 0.05 acres 1.23 acres 10-Year Weighted Runoff Coefficient,Cw= 0.64 0.67 0.76 0.20 10-Year Time of Concentration,tc= 9.6 min 19.8 min 8.9 min 29.6 min 10-Year Peak Runoff Rate,Q-10= 0.98 cfs 2.06 cfs 0.09 cis 0,25 cfs 10-Year Peak Runoff Volume,R-10= 565 cf 2,443 cf 45 cf 442 cf X MAJOR BASIN DRAINAGE DESIGNATION FLOWPATH N OS-1 _ �\ 2 r\\� OS 2 � �- QAYTGD I \ _Y— BF_ Figure 5: Post-Development Major Drainage Basins Major Basin 2 consists approximately of the eastern two-thirds of the proposed site, excluding the portion of the southeast corner and adjacent to Interstate 90 (Major Basin OS-2). It has a total contributing area of approximately 2.33 acres (101,382 ft2), and is further subdivided into four primary sub-basins and twelve secondary sub-basins. Runoff from within Major Basin 2 is collected by a combination of roof drains, inlets, and piping. The collective runoff is then directed to a surface retention basin at the eastern edge of the site. The basin is shown in Figure 5 above and in Appendix B. 7 Comprehensive Drainage Plan Update , Morrison Springhill Suites by Marriott—2114 Boot Hill Court I Bozeman, Montana Malerle en iseers�curve ors�rlanners cienlisfs Off-Site Major Drainage Basins There are two major off-site drainage basins. Major Basin OS-1 includes a small portion of the northwest corner of the site, consisting of a total contributing area of approximately 0.05 acres (2,104 ft2). Runoff from Major Basin OS-1 drains to the gutter flow line along the east side of Boot Hill Court then north-northwesterly approximately 580 feet to an existing storm drain inlet on the east side of Boot Hill Court. Major Basin OS-2 primarily includes the 50-foot storm drainage easement area along the eastern property boundary as well as off-site contributions from the fill slopes along Interstate 90. It has a total approximate contributing area of 1.23 acres (53,413 ft2). As with the existing (pre-development) drainage basin, runoff generally drains northwesterly along the eastern boundary to where it currently leaves the site along the northern boundary. Major Basins OS-1 and OS-2 are shown in Figure 5 on the previous page and in Appendix B. Methodologies This section documents the methodologies and assumptions used to conduct the storm water runoff analyses for the proposed development. Comprehensive drainage plan methodology and analyses are based on the City of Bozeman's Design Standards and Specifications Policy. Design Methodology The storm water management system for the proposed development utilizes a system of curb, gutter, inlets, piping, a storm garden feature, a subsurface retention system, and a surface retention basin to collect, convey, and store storm water runoff. Summaries of runoff estimates, inlet and piping capacities, and retention volumes are provided in the sections that follow. Storm Water Runoff Analyses Storm water runoff analyses were performed using the Rational Method for pre- and post-development conditions. The analyses included evaluations of the water quality design storm event as well as the 10- 7 25-, and 100-year design storm recurrence intervals. Results of the analyses for pre-development conditions are summarized in Table 2 on the following page. Detailed calculations are included in Appendix C. 8 n Morrison Comprehensive Drainage Plan Update Maierle engineers-surveyors planners�scientists Springhill Suites by Marriott- 2114 Boot Hill Court I Bozeman, Montana � Table 2: Pre-Development Storm Water Runoff Analyses Summary DesignBasin Weighted Drainage Area Runoff Recurrence Concentration,tc Rate Basin (acres) Coefficient,Cwd Interval (min) (cfs) 0.21 Water Quality 106.02 0.17 A 4.69 10-Year 63.37 0.61 0.26 25-Year 59.45 1.05 100-Year 57.31 1.58 Results of the analyses for post-development conditions are summarized in Table 3 below. Detailed calculations of the water quality design storm event as well as the 10-, 25-, and 100 year design storm recurrence intervals for Major Basins 1 and 2 as well as the off-site drainage basins are included in Appendix D. Table 3: Post-Development Storm Water Runoff Analyses Summary Basin Weighted Design Storm Time of Peak Runoff Drainage Drainage Area Runoff Recurrence Concentration,tc Rate Basin Sub-basins (acres) Coefficient,Cwd Interval (min) (cfs) 0.64 Water Quali 10.17 0.32 1 1 A, 113, 0.72 10-Year 9.57 0.98 &1 C 0.74 25-Year 7.84 1.77 100-Year 7.37 2.91 2A-1,2A-2,2A-3, 0.67 Water Quality 19.79 0.73 _ 2A4,2A-5,2A-6, 10-Year 19.75 2.06 2 2A-7,2B-1,2B-2, 2.33 2B-3,2B-4,2B-5, 25-Year 13.62 4.04 2C,&2D 0.77 100-Year 12.99 6.45 0.76 W terQuality 8.90 0.03 OS-1 - 0.05 10-Year 8.86 0.09 25-Year [0.86 7.03 0.15 100-Year 6.65 0.23 LJ 0.20 Water Quality- ualit 29.62 0.09 OS-2 1.23 10-Year 29.62 0.25 - 0.30 25-Year 25.87 0.54 100-Year 24.57 F 0.85 9 Comprehensive Drainage Plan Update ®o Morrison Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman Montana Maler-e � engineers�surveyors�planners-scientists Storm Water Conveyance Facilities Inlets Inlets are to be installed for the collection of storm water runoff within Major Basins 1 and 2. With the exception of roof drainage, all of the proposed inlets are designed for ponded conditions. Inlet interception capacities and ponding depths are summarized in Table 4 below. Detailed calculations of inlet capacities are provided in Appendix E. Table 4: Post-Development Inlet Interception Capacity Summary AboveDesign Storm Peak Runoff Intercepted Depth of Water Drainage Inlet Recurrence To Inlet Runoff Sub-basin Storm I 25-Year 1.56 1.56 0.14 1 C Garden .56 100 Year 2.56 2.56 0.19 25-Year 0.37 J 0.37 0.12 2A-1 -o� 100-Year -0.57 LJ 0.57 0.15 25-Year 0.45 0.45 0.13 2A 2 102 100-Year 0.75 0.75 0.18 �25-Year 0.54 -� 0.54 0.15 2A-7 I-03 100-Year �- 0.83 0.83 0.20 25-Year 1.04 1.04 0.23 2B 4 104 100-Year 1.72 �- 1.72 0.32 25-Year 0.44 0.44 0.13 2B-5 105 100-Yea 0.65 0.65 0.17 25-Year 1.02 1.02 0.23 LLC [�El_ 100-Year 1.63 1.63 LJ 1 0.31 LJ Site Storm Drain Piping The storm drain piping system for the proposed development is designed to have maximum reliability of operation, minimal maintenance requirements, and to insure that inlets function to their design capacities while meeting necessary area drainage requirements. The 25-year design storm has been selected as the basis for design as that is the City of Bozeman requirement from the Design Standards and Specifications Policy. The City of Bozeman Design Standards and Specifications Policy requires that storm drain piping be designed to have a minimum velocity of 2.5 feet per second (fps) at the design depth of flow, or when flowing full, to prevent sediment deposits. 10 ■o Morrison Comprehensive Drainage Plan Update Malerle engineers•surveyors-planners scientists Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman, Montana � Design pipe calculations were performed using Manning's equation, which is as follows: Q = 1.486AR2/3S1/2 (Manning's Equation) n where: Q = Pipe flow in cubic feet per second (cfs); A= Cross-sectional area of pipe, in square feet(ft); n = Coefficient of roughness of pipe; R = Hydraulic radius=A/Wp, in feet(ft); Wp= Wetted perimeter of pipe, in feet(ft); and S = Slope of pipe, in feet per foot(ft/ft). A minimum pipe diameter of 10-inches was chosen for design, with the exception of the proposed roof drainage discharge. For the roof drain, a minimum pipe size of 4-inches was selected for design. A summary of the piping system for the proposed development is provided in Table 5 on the following page and the analyses are included in Appendix F. Storm Water Retention Facilities As discussed previously, storm water runoff from Major Basin 1 is proposed to be retained by a subsurface storm water retention system utilizing underground chambers at the western site parking lot. Storm water runoff from Major Basin 2 is proposed to be retained by a surface basin located within the 50-foot drainage and utility easement at the eastern edge of the site. In accordance with the Design Standards and Specifications Policy, the retention facilities have been designed based on the 10-year, 2-hour design storm event. A summary of the design parameters and sizing of the facilities is provided in Table 6 on page 13 and the analyses are included in Appendix G. Maintenance Considerations Storm Water Conveyance Facilities Storm drain inlets, catch basins, and piping should be inspected at least once per year and following large storm events. Any necessary repair or maintenance should be prioritized and scheduled through the spring, summer, and fall. These items may include inspecting for any damage, removing blockages, cleaning and flushing the length of pipes, establishing vegetation on bare slopes at or near inlets, and sediment removal. 11 Comprehensive Drainage Plan Update ® Morrison Mimi Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman Montana Maler-e � engineers•surveyors-planners-scientists Table 5: Site Storm Drain Piping Summary Design Pipe • .• Full Flow M - - I Downstream Pipe Flow Slope Diameter Velocity • . Junction Junction (cf S) N (in) (fps) %Full 1 A RD-1 1 #of Drain Pipe RD-1 0.13 2.08% 4.03 3.16 46.8% 1A RD-1B Roof Drain Roof Drain 0.13 0.80% 10.02 3.60 6.6% #RD-1-1 #RD-1-2 1 B RD-1 2 #of Drain Pipe RD-1 0.12 2.08% 4.03 3.16 44.0% RD-1 C Roof Drain 1A&1 B RD-2& #RD-1-2 MH#M-01 0.25 0.80% 10.02 3.60 12.9% RD-3 2A-1 SD A Inlet#I 01 Inlet#1-02 0.37Roof 0.30% 12.10 2.50 18.6% 2A 3 RD 4-1 #RD-4-1n Pipe RD 4 0.18 2.08% 4.03 3.16 64.4% 2A 3 RRD44B& #of Dan Pipe RD-6 0.18 0.80% 10.02 3.60 9.1% 2A 6 RD-5 1 #of Dan Pipe RD-513 0.14 2.08% 4.03 3.16 49.9% Roof Drain Roof Drain 2A 6 RD-56 #RD-5-1 #RD-5-2 0.14 0.80% 10.02 3.60 7.1 2A-5 RD-5 2 #of Drain Pipe RD-5C 0.20 2.08% 4.03 3.16 70.2% 2A-5& RD 5C Roof Drain Roof Drain 0.34 0.80% 10.02 3.60 17.0% 2A-6 #RD-5-2 #RD-5-3 2A 4 RD 5-3 #of Drain Pipe RD-5D 0.13 2.08% 4.03 3.16 48.1 2A-4,2A- RD-5D Roof Drain Pipe RD-6 0.47. 0.80% 10.02 3.60 23.9% 5,&2A-6 #RD-5 3 a Inlet#1-02 0.65 2 A Tt fi SD B Inlet#I 02 Inlet#1-03 1.29 0.30% 12.10 2.50 64.5% 2A- to SD C Inlet#1-03 Pond 1.59 0.25% 14.90 LE 50.1% 2A-7 L ] I 12 ®o Morrison Comprehensive Drainage Plan Update Maler-e engineers-surveyors-planners•scientists Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman, Montana Table 5: Site Storm Drain Piping Summary(cont.) Design Pipe Pipe� Full Flow Up-Stream Downstream Pipe Flow Slope Diameter Velocity Pipe M Junction Junction (cfs) N (in) (fps) %Full ... 2B 1 RD 3-1 #of Dan Pipe RD-313IF 0.32 2.08% 4.03 3.16 100% Roof Drain Roof Drain 2B-1 RD 3B #RD-3-1 #RD-3-2Roof Drai 0.32 0.40% 10.02 2.54 23.1 2B 2 RD 3 2 #RD-3-2n FF'Pe RD 3C 0.15 2.08% 4.03 3.16 52.9% RD-3C& Roof Drain I F Roof Drain 0.47 2B-2 RD-31D #RD-3-2 #RD-3-3 I F- I 2B 3 RD-3 3 #of Drain Pipe RD-3E 0.35 2.08% 4.03 3.16 100% 213-1 to RD 3E Roof Drain Inlet#1-04 0.82 0.40% 10.02 2.54 59.0% 213-3 #RD-3-3 213-1 to SD-D Inlet#1-04 Inlet#1-05 1.61 0.25% 14.90 2.62 50.8% 2B-4 2213 to SD E Inlet#1-05 Pond 1.93 0.25% 14.90 2.62 A001. 2B-52C SD F Inlet#I 06 Pond 1.02 0.80% 10.02 3.60 Table 6: Retention Facilities Sizing Summary DesignRequired 10-Year,2-Hour StorageDrainage Retention Volume Additional 1 130 System storage volume based on assumed 30%volume of voids Storm Garden within decorative rock and vegetation included in storm garden. 1 Design system utilizes StormTech SC-310 champers(16"x34")- Subsurface 2,095 2,572 Total Number of Chambers= 102 StormTech (25-Year,2-Hour) 1 Row of 6&8 Rows of 12 Chambers Each System 2 Maximum water depth=1.40 ft Retention 4,585 4,646 Maximum depth of pond=2.30 ft Basin Side and End Slopes=4:1(Horizontal:Vertical 13 Comprehensive Drainage Plan Update -, Morrison Springhill Suites by Marriott—2114 Boot Hill Court I Bozeman, Montana _ M engineers surveyorss lerle planners scientists Storm Water Retention Facilities Subsurface Storm Water Retention Facility Maintenance of the subsurface storm water retention system begins through prevention by monitoring inlets and catch basins to limit sediment infiltration into the chambers. The system has been designed with the inclusion of an isolator row to capture sediment and debris while also allowing for inspection and maintenance. Inspection of the isolator row should be performed at the same time as inspection of the site storm drain inlets, catch basins, and piping. This can be easily accomplished through the manhole or included inspection port. Local and OSHA rules for confined space entry must be followed. If upon visual inspection through the inspection port it is found that sediment has accumulated to an average depth exceeding three inches (Y), cleanout is required. The isolator row should initially be inspected immediately after completion of the site's construction. Construction activity provides the greatest opportunity for sediment to enter the retention system. Therefore, inspection and maintenance, if necessary, are recommended prior to the site's owner assuming responsibility for the improvements. Maintenance may include inspecting for any damage, removing blockages, and cleaning and flushing the length of the isolator row. JetVac maintenance is recommended if sediment has collected to an average depth of three inches (3") or more inside the isolator row. Surface Storm Water Retention Facility Maintenance of retention basin is also essential. General objectives of maintenance are to prevent clogging, standing water and the growth of weeds and wetland plants. This requires frequent unclogging of the outlets, inlets, and mowing. Cleaning out sediment with earth-moving equipment may also be necessary in 10 to 20 years. The included analyses and calculations show that the proposed storm water management system for the Springhill Suites by Marriott development to be located at 2114 Boot Hill Court on Lot 5, Block 2 of the Lewis & Clark Commercial Subdivision in Bozeman, Montana will adequately handle the design storm events. During the 100-year design storm recurrence interval, ponding may occur at inlets due to their capacities; however, depths are estimated to remain at or below the top-back of curb in the lower areas of the site. Based on the included analyses and calculations, the proposed storm water management system meets the requirements of the City of Bozeman Design Standards and Specifications Policy. 14 ■N Morrison Comprehensive Drainage Plan Update iiiiiiiii Maierle engineers-surveyors planners scientists Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman, Montana � References 1. Lindeburg, Michael R., PE. (2003). Civil Engineering Reference Manual for the PE Exam, Ninth Edition. Belmont, CA: Professional Publications, Inc. 2. McCuen, Richard H. (1998). Hydrologic Analysis and Design, Second Edition. Upper Saddle River, NJ: Prentice Hall. 3. Public Works Department— Engineering Division I City of Bozeman. (August 26, 2013). Design Standards and Specifications Policy with Addenda 1 through 5. Bozeman, MT: Author. 4. StormTech. (2015). Design Manual — StormTech Chamber Systems for Stormwater Manaqement. Rocky Hill, Connecticut: Author. 5. United States Department of Agriculture. Natural Resources Conservation Service. Conservation Engineering Division. (1986). Urban Hydrology for Small Watersheds: TR-55. Washington, DC: Author. 6. United States Department of Transportation. Federal Highway Administration. National Highway Institute. (August 2001). Hydraulic Engineering Circular No. 22, Second Edition: Urban Drainage Design Manual. Washington, DC: U.S. Government Printing Office. 15 APPENDIX A EXISTING (PRE-DEVELOPMENT) DRAINAGE BASIN Morrison Maierle engineers surveyors planners scientists EXISTING MAJOR DRAINAGE BASIN SUMMARY TOTAL AREA= 4.69 acres LOT 4,BLOCK 2 WEIGHTED RUNOFF COEFFICIENT,Cw= 0.21 LEWIS&CLARK COMMERCIAL DESIGN TIME OF CONCENTRATION,Tc= 63.37 min \ SUBDIVISION \ `, 10-YEAR PEAK RUNOFF RATIE= 0.61 cfs \ \ 10-YEAR PEAK RUNOFF VOLIUME= 2,304 CF w _ MAJOR BASIN DRAINAGE a>,�59 v 4720- \\\ J` DESIGNATION FLOWPATH PROPERLY \ \ \\ J LL BOUNDARY(TYP) \ \\ (•��, \ \\\\ 0 80 \ LOT 5 \� \\ \ \ ( IN FEET ) \ BLOCK2 �rl \ LEWIS&CLARK 1 COMMERCIAL SUBDIVISION \ \\ \ I O a \— T \ \\ \ DRAINAGE FLOW -1\ o 1 p \ —*� \ \ \ DRAINAGE BASIN I m BOUNDARY(TYP) — • BF 8( BF BF 6F 6F—;F��.- .'=_ `� •-� \ ---- ------- — s r r _` _ s r BAXTER LANE \\ /�Br eF eF 6F aF aF aF u eF m `� - - �•-. --•�� 1 E E e E < � E \ —"_- �_ �_ —_ �— —I�t .��_ � �_ tom\ -` � �-'!� � � �r 111 .�_� "�^ �\ --. _ w► \ r Ix LOT 2A OF I I of COMMON OPEN SPACE x SACCOCCIA MINOR Ul SACCOCCIA MINOR w SUBDIVISION 407C I �� SUBDIVISION 407 rr � yy i - MORRISON Ergm°ers 28M Technology Blvd-W. DRAWN BY: TEE PROJECT NO. Bozeman MT 59716 MARRIOTT SPRINGHILL SUITES Surveyors CHKD.BY: 5305.003 TAT sdanears BOZEMAN MONTANA �_j MAIERLE,INC. Planners Phone:(406)22-67021 APPR.BY: Fax:(406)922.6702 DATE: 0&2015 APPENDIX A FIGURE NUMBER An ErnPInJ�v.�On'nvv/C'omPany ctwvn o,r z.—Ison# ME.I...2ou EXISTING(PRE-DEVELOPMENT)DRAINAGE BASIN N:15 3 0 510 0 3WCAD1Drainage Plan FigureslDminage-Plan_Figure-04_Pre-Deve-lopmenl-Basin.dwg Rotted by torn eastwood on Aug12112015 APPENDIX B POST-DEVELOPMENT DRAINAGE BASINS ® Morrison ■� Maierle engineers surveyors planners scientists \ \ POST-DEVELOPMENT MAJOR BASINS SUMMARY LOT 4,BLOCK 2 \ `\ , \ DESCRIPTION 1 2 OS-1 OS-2 LEWIS&CLARK \COMMERCIAL \ \ \ Total Area= 0.72 acres 2.33 acres 0.05 acres 1.23 acres ` � \� ��. \ \\ 10-Year Weighted Runoff Coefficient,Cw= 0.64 0.67 0.76 0.20 \ SUBDIVISION BASIN \ 10-Year Time of Concentration,tc= 9.6 min 19.8 min 8.9 min 29.6 min \BOUNDARY 10-Year Peak Runoff Rate,Q-10= 0.98 cfs 2.06 cfs 0.09 cfs 0.25 cfs _ \ � �1. (TYP) \ 10-Year Peak Runoff Volume,R-10= 565 cf 2,443 cf 45 cf 442 cf PROPOSED STORMTECH SUBSURFACE STORM f MAJOR BASIN O MINOR SUBBASIN �..=.-y-- r\ ` � � WATER RETENTION BASIN r� \ \ \ �\ �\ DESIGNATION DESIGNATION DRAINAGE N - _ u• FLOWPATH SD-- 6-5 2A-1 2 / 20 a RETENTION BASIN r�, 2 - - s xj tl J -- 1 C ■ ■ ■=`SD s OS 2 m - - -- - -- -- ----GRP - - — - _ P OH HP- : is '- .. i ' ` '..,.'- - -_� I3 �— — — __ • BF BF- B BF BF -6 STORM GARDEN FEAT R BARTER LU LOT 2A OF -= `\ \ ��\ o COMMON OPEN SPACE SACCOCCIA MINOR c� SACCOCCIA MINOR SUBDIVISION 407C cn SUBDIVISION 407 —� MORRISON �g,-ors 2880 Technology Blvd.W. DRAWN BY: TEE SPRINGHILL SUITES BY MARRIOTT PROJECT NO. --AJSurveyors Bozeman MT 59718 CHK'D.BY: 2114 BOOT HILL COURT 5305.003 MAIERLE,INC. sc anu BOZEMAN MONTANA Planners Ph no;(406)587-0721 APPR.BY:—o Fax:(406)922-6702FIGURE NUMBER A.Empl.3— 1w—)C—y—y, DATE: 04/2016 APPENDIX B COPYROIR OMORRISON#AIERLG,INC.,YJI6 POST-DEVELOPMENT MAJOR DRAINAGE BASINS B APPENDIX C PRE-DEVELOPMENT RUNOFF ANALYSES Morrison �■ Maierle engineers surveyors planners scientists 8� C a 5 E � E LL a >Y ti 3 � FY Fy 2 s gE C D b E � E ; '� - 'S E 'E U E ? g E F &1 u g yp F ; a C ap..v rd a gf o • _ m m 0 CD Is a� LL s �1 LLFF ela e J C C z PamLA. sS 4 8 E 3 0 Z G 3 g s R � e .� W c Fs �a "U E. m '"' O H Q 0 ry S g W IL J I O Zr mmY I, O G y� yet P 6 §! ) ) { ; e \ 2 ) \ ! \ /} \ ! {_ ! !! \ ) / } \ E \{ . ! / 7 ■ ) ! , | i = = « / \ . , ] « i 2f } { ƒ § i � ! ! 1"L 2 \ / \ \ ] ) ` / ) / \ \ Z 2 § ° 2 =! • - � § k q# � . §■ : � ■, \ ! �! • � 2 ! �! • � . §n , -! : k Q k ) * _ / 2 ) aLLI E � ; ,! ; ' ƒ » ^ ) _ : ! �N § ) /} � \ \ lit \ 8< S� 5 E Y E 5 1^ F F 9 S E E a F 3 g > c d y Z $ w Ste° v + � a�a A s s S m m F Co, � ti _ epic a �Ice e J 6 e a {L IL ° '8 O s R G OC m 0 Ln r E a ~ 8 o ry a s Fla m� ° ,qyk o m �c - c I cST m $ LL ~II _ I� m V III g S �� Q CL a 0 H F r E E E �6 �S m tl � do ,gyp iv � i b° c 3 � - LL ' A E .E E S mE � 3 yy Em yy r�li o �i cc m b° LL A c o u x ale IL x d �••� E r; b � a a � � � a � � � II ti s o� 33 0 . a m --� _^ q o . •- o m ¢ � 4 � �'E j a 4 - `s - s m � sad e cpp` �\ N i o ryry 8 cr LL O y ; 8 .E 9SS IL N O C A LL 3 s 8 a 3g m CS .7 N C 1.2 LL o 6 LLOGG Z F 10 o i s APPENDIX D POST-DEVELOPMENT RUNOFF ANALYSES ■ Morrison Maierle engineers surveyors planners scientists Morrison Maierle engineers surveyors planners scientists APPENDIX D-1 WATER QUALITY DESIGN STORM RECURRENCE INTERVAL \2 § \\\! ) ! \ƒ ) \ !! |) � ) i \ \ \ : ` E 2 + ■ {§ ; ) ! \ �` ` . kk \ � � ■ k ) | 2 | J ! : | ! ! ! : � § \ ! § to 2 ~ {f | � =w • ! _ IF . f ! i cL � ] • / | / k k / k oja | ' ■ § I } 6 � |f ! ! G � ; @« ` ! £ � } { : ! ) }�; » ! |■ • | E '! 7 / X § { ƒ# }\ § ! }# k � ! ! / § )3 ! } ! {$ 7 ! ! . } \ \ � � § _ �} / 2 )] / • | ME , § . § « t • 2 ii - | ; = i �� z = . § : { { � ! ! / - \ It ! / {{) . : k : ( } ` f ` \� § / ; !/! k k !| • / _ | z CL � ! • ! � � |/ • \ 1 m ` } � / / ƒ ) {ƒ { j /\ \ ; • | t } § - ! ' }K® | §{l a ■\ } \ . } \J ` ) ) f | b—! o ! \ I L :Bit 7 ® ; 0 \) § / \! ! * !] \ ! )3 ! } |) a f{ ! ) ! ! { f \) k \« !) �C , « cy a « !, if ! • ;! - ! CL k � i ` � ■ ` ` \ 2 u , , > } � ` \ :_ / | • : : { � . : �,2 / \ � ! , | !! • , ! \ 12 � is &; §7; A ; !_ ! : ) ' ! \ { :�( $ \\ § ! j � � ! \ ) / k : n ) f! � : : %\ , � ■ ) / � \\� ) j a ! ) � 3 / (_ � \ 2 !) / 1 ! ƒ } ! • $]( - . ! � � 6 \1 . : �) | m •� ! { ter ! § \k7 ' ;# . { ,§ / 1 • ! . } \ ( MM \!! ■ ; �« �! . f \` ' ! )! \ \\_ + o,: o • �§ . ; � |/ ! !a } | ! � � 7 . '.[ = 7 , 0 ` ! /) § k ( ! k � | ) # . . } . ! ) { } \ } _ ) /) Es Gam! ® � � ) \ ; - | | } • � ` : • % — §�[ \ co § { { )\ Z� \ / : { . ■ : }! � • ° ) )� ° )! if} =z • kCy ® - ®® T : f : f � ! ■m§ _. $ � � ` § ® % . \\\ k ` } : : !■ - � } \ � e§ : f / } \ � \ : / U ` # ic E k � } \\\ � � )| } ;, { � 1 - ;, ` / . • _ . § 2 . $ { ■ )&& ! \ ■ k k | § { /¥ • $ 1 ¥!R ! • / % - !! | ƒ> ° / } ` | \ 4 k /f� ! . ! k _ | • } / \G � )) / ! 0Fu R c !) ! '! 3: {/ \ ) # ) ( \ } j ) © )) } } ! ; . )� «� ! f \ ] ®b \ # ' ; # • 2 , = - 0]' � ( ) \ « - f ] | • � � k � � � j \ \ A ) IL & ;■ � _ • ' ! : : _ / ; LL § ! {\! ) �& ! \§ � . IJ ! ° / • i J )=; § � • #• • ; ■ a f\ ) ! ' \ \ , �1 . ; � : ! )!! ! .( k / / �n| 2 � ' _ ! . k , . \) �a f \� � \ 2 ( ! ! ! ! \ ! i! ! k |f ) ) 7 / \ , \\ \ ) h ;2 ] � ` } } \ • � � ! % �\ / � �� } . \ \ | ® ! , §f� \ • § \ \][ 3 � ] | k � ( \ ! \ \ ) ■ ® : f § ` `) � \n _ ! � / ¥;:, !; / : @ E ;i ! . : ■ a � if . m@¥@ //) 1 � ■ 77 fjl . } { k { ; i q■ ) \£2 : e ! f ' ® : f > : o k \� / !| 1 • f \ _ � � � | � ■ }7\ 2 / | } & _ ! ,\ ` �! {` § \ \; . \ } ( \ / ■ ; !% ! ! , ! , G 2�/} | J=; § _ . ! !! | §f� � ; �\ : ! : )! ) . f \ } }/)� | \% : ) ■ w § | ^( § - ]! :�� § { /! r ! ; | {) ! j / { \ \ ) \ \} k } \ 1 ] FE oy � t , - • � - : 7l ; 2k { � \)( J ! ! 4 3 ` Z, \) ƒ \ ! �2� - ® - - - \ ) t & ] i > / 7 � � ! \ { \) _ ( 1 \ . !! - ! i § ° ) . : ( !§ ) � • i7 cr \ k} -g )7f , ■ ! ! ! \` . z { � \ �} } / � ` \ � \ �, 7 ƒ \ �{ � { � \\ • . � � k (( � ` . � \ � k )_& � � f| • | E2 ;! !\ . ) . : ! . ) . 7 . i • ¥ ' k )3® ] . )§ )§ !\ § ! / ) � ! ® ! 7 f72 , 6i § ƒ J !! ! f; E ; /} \ 6 28, \ . � \ ) \) , ` ■ /$ f » - � ( ; lf , | ! ! • � 2k � , ` ! § \ { { \j Cc 6 0 \: : !k � . ` # � n k�� §)/ � • ! { / � 2 f ¥ � {£4 . . � F / . _ ; � _ ■ 12 EZ CL � | k § ■ � ` $ ° | � )2= } / t } ± ) : , , kk § . .( w \ . / / /§ ( | $ / \ ] ) )3 ! \ ) { \ } \ : ! \ ! � \. | \ * § ( } k / \ ! ! � 2 77 \ CM ; § q /) : / \ { � • ' } } - i! ! 2 {f . ' ■ \) $ } : ( ( / z ® ` ( ] ( k ! • - ` « ` ; k - / ) � � � � ' � � ; f \! ! \ (! • ; I ! w } �! _ ! ° : k ` ] \) § . § ! \ /! � }— ! � !) | % � { ! | } { fƒ ) ) ii \ # - - \ � � � f � % \ ! k , ° ■ 2} ( } & f { { cr § _ z § _ ■ : { . | }: l |, ! • ! f ! ! ®{ ƒ!| } lk k ! � ■ �� : { � ! f | { cL � k # ■ § {E\ ` • ` � ! � } : f � : f k k } || . • f / _ § 9 � � � | � ■ )f\ � / I } £ ) K f |¥ . i ' ! . \ \ ƒ ƒƒ | � | 2 • } c.; \�{ o r.( � :\ k ® k ( ) \ \ ® ! !# « ! < _ � \ � � ! ! $ � �k } • , § ®` 2 \ � ; § . . 0»t \ ; \ f = | | ! • � # % ° � � §4( � ■ 7 { � , u 4 • . ,@ E > ! | | �} : { \ } �, . f { \ // � 2| / \ \} • \ . i 2 ! ) k L |r � \) § § / ) � ( � ! ! 7 ' )5 ! } �) ƒ ! s ° {) ! ` | \ 7 ) ] f > , tr )\' e \ \ ki ' f ) ) • _ \] » • - � ! § # § _ ° "� } • !«® � f ° , | 2! t| \ !f §] ! ®| ! | : ` /$ l ■"� : f \/ } ƒ k a k • � . .j 9 ^ � � ) \ § } } ! � � } . ■.� § � f , - | ®! / � § C4 | }f§ \ \ ) ! ` } / ) // � B2% � ) / • ! § � §\ ` ! � . | , { � \ IJt; !!! / !/ • | §�' 2 a k \ ! | \�( § E) � � ■ � � ! . / � . , o � a - u 8 m e LL n m E N m N O € 2 m o -m15 g 5 ¢ E y 3 0 s Flo s z E �o = _ �O E s E 5I g m o � �a & U. to o' > LLo z gg y a U. s 6 a � _ � 8 € a c € 2 c Mm 2 2 N _ O V N a� A a k s s C Q v, q e 8 $ e ` � a 2 V 1 O 2 $ $ > c LL to &a h 4 E `- O n a y d N m b e g Q g g LL 4 m � ■ I ¢ N o � O (r u t F ' F E E E E � r � m E 5 ag 3 E o E = f s a - b s F 44 - �y LL d U q ix , i U + o - 6 2 m e ii ti s LL FF n rv� $ a � a & E r E IL p 9 x E g Z S 3 8 R o s a a l ais a n oC Fb� LLr, a y3 F , r$; Y s U \ • IO J p 9 Urf 9 NO CL Z r y Sb �• • �� o _ .■ �• F = m d� 8 E E � E 'r By @ E a a � u � n� O s 2 x < g a s A _ s E E 8 E y Nt •. a m C b p �, o E d 2:2 _■ .w m m 3 � a m m � � � � � �'{ • _ � m m .: 0 .. .. 13 m .. n� a e y o y � o m � 4 iE a �di S d` �'"I� g O H o 5i z`2 > a s o E g � $ Oa 3g 8„9 sc A r 2 d V aca lz .■ Q o_ S _� o i c � e ■'I 6' rn g � � u w F a nE c g E E a ` e S r r Y2 y V hbh � u m 5 o � a ^ g ii 5 V c.19 LL s 8 q2 u � c agi a a P - & L6 Q y F'LL S O E cc e OOl � t �'. 6 N _ of c E E � E E E U $ss � a a v� c c E E E E m 3 • `o cc F II y N tr IL{: 5 E E n o E d° � E N � r O 'co r O 3 g a s �o q� 3 8 E n E E y� E$ A r r � E E E IS � i� E E u�E � C a � E ••� g�$ y $ m m � � € z ._ coco• � F a � S - ° � ._.- � S � E a � u o � a U. p e a a 6 c w m U) o�g c Z o a ylo O C o o a = $ J a g n No ;e O m ^m v 955 o h u �1 t A m V O ct uti F a°a 5 ffi E E_ ~ c 8 E � m 5 o $ E u g � E ~ vi 2 g ' E E - - F F JJVff o > c g�g A > n Q o w H a d WF m S N gab � a J > LLLL. O dca n $ oC N O a gLL R = N 8 4 C U lz 9 3 2 9 o� a� $ E E i E $ l E o $ a a � € E E _ 75 � •1� mI A � U m a p � 2 LL Z e S ^ v m S2 g0 � d s A E p'tp• O �■'I � uai � 2 p' F- V N F a oa �h �e 5 8 s E E F c E 'H Bi @ o $ � � E E y � E E E o �S s `p'�o' .fit � mm s 3 � ti mmm 3 � m � _ m S s a 5 0 m m a - s s F' C d b 7 m E v ee K fJ C � a a - Q m LL CLL Z a LL a a g _ `o $m �e C 8 E o $� H b � � y 7R x � 12 E T U): Ellb S o E a m A u u" o� m $ m e a m - X V & p a °s Z m o g J� «�� O E E c 4 g m e � plr LL v Q E O N �' v ttc3331 E - _ Z roc" � a ID g a 22s G 5 & F A . o 8 E E F .. E am§� 3Q $ 9 g L U � E � m E n ° n y E E E o u� F n ii E E Y. 'y5 2 E 1 'E � H M R O > H gg LL 3 m m m i z d m d p m R a` R 8 O m CL z - � J d ole Q y R $ U O 4 2 U. a E 3 8 E a O Ix LL 2NJ 46 ■ y o� &m �e c 8 E H E Bi yx@ u U gy � L _ z � u E, 5g F i Cl + m 6 it• a 5 n a d c� 3 •'i m V. � u � R o� u u $ � c g 8 m d EE e$ ] 3 � g O E m p ~ plc U. LL N O N zee E A tl G s �^ s � $ b E u o III cc O :Ea n a ~II •m Ilu s� ■ N � � O V N o E E a' E Yy 3e s � L � u y r h? e � q E g� E 2 2 �6 n E E E � E � b E o u F F-4 i� 3 F 38 E " o LL — aF o U r i• K 5 m p�; ti + E ti b L ci .a = 8 as, -Z m m 3 a m� � d � L E 2 m g �J sRSRSm y^o ylo CL # @�@ LL O Z 6e € ogm E € € H S S ry E f �e �°'`• z Y N e � @ •• O U N o a F7 q�o 8 E E U E p yFL u c E E i ILI `- N; P t bb y A o - k r !, \ § \ { , k§m ` ` / \7 `� • \ # / § ] ■! • { .,§} ( I ! t !! ■ kkk /\ . / )\ �§ \ / �) \) © )} } _ ! ~ lI ; E m $ R\! J a ! ! N � � 7 x € c � n C6 9 $emu _ � 3 � ggRQ k�ka mgmg R E 9 C (T O N FE 2 g SZ cm F i rv6 8 E E i E r ti� 9 E a � E E Y C5 $ $ c poldg ': :.�'' m 1 V V A o d N $ m E y E E v m > C1 a Q F• Ol >.5f n � � � 3 333 > �v_J n yjo a3s �' �m a 3 666 a 9 m R N $s r s E ~5 8 E f' E 4 E � .Y P E 0'�' � am - - a m � � J m V a IL m a 8 a O F . O 6 g $ ~ ? o J S = - N i I'L C s E E �tl y s - a � � o � " qg ■ � � � m � � a � m � a m � !\ ] f . f \f ! % � � § � / � {! \ - { !k ) ®� ) � � �/ ! ! }/ ° . � 72 � / . � � ! _ , » l � - � - � � ; k ) ) }/ � \ � � � � � \ � | i ) ; � ! f) / } , !J ` ° ® \ 2m , / ! J !! # ` ■ kI ) � - ƒ \ | ) � ) ) �\ k � f/ / tz \ ) ( � 7 | � � � + 7 >& ! i \ ) ! ! ) ! \ . m . . 2 ! _ ! ! r ! ' | §a ) \ ; ) 7 � � f ) 2 • i � » ' � � ! ® � i {\| / J ! ! / � ; § ! | " 2 £) f � k � ! � > \ ��! � & ) 2 ! kJ � 3 ) � f } � � , _� � � & ! \ } . . � & ! ! � ! Morrison 1 Maierle engineers surveyors planners scientists APPENDIX D-2 7 0-YEAR DESIGN STORM RECURRENCE INTERVAL \\ ) / \ ) f !| � ) ) k k ® )) § } ! ! llf , ! e2 - ! | � 2t ! 2 � � 2 / ` � � k7 { ■ ! = � |! ! , . � »_ ) & | / � � ; \ ] ! f | ! • _ k } « • , . 2 J ! ! z \| \ \ ! } f : c ! L6 ` ! ) )) 7 : /OM - ! � #| • m {) | 1 : f \ƒ� : : ƒ k \ § c \ \� / \ {E u | i} k S ) } | ■ . o ( • ! ., | i ! - , L6 ƒ / \/ ( { \ ƒ /; • | f / . } J ; !_ ; \ ! { )} § ! k� ,! |! ! / $ § {¥ I « ; � ) ; \ ! ! : ! f " )f ® . )�� _ k \ ; \ f , f | ] • � ` ® ` � ~ ' ] ( / #\ ) � ! ® . Sa a ! 7 � \ \\� � { § / I ' w . E ® ` \ CL • \ \ \�§ � : � � k � � � k � ` � � \ � >o 0 t ! !§ • _ _ { ] } _ ; � � � ' � § ) {{ ■ ; )® • ; §& § ) a . : ) _ ! \ ■ \ { { { J ~�( _ .o . EX . ~ , /) § / / ) � ! � | � ! � \7 . k { _ { } ) ±! } |f & �� [ ■ \7 ! \ f § © ! } \ \ { � 7k ( _ 7 § ; • , i ! \ ! } \ k2 ! . & § / / 6 � !! ® \ { §j ))} ■;! : \/\ \ : . � ! \ _ ■ � : { } { 01. n IL 1 1 k - ` \� : \ � z ® } : / ] • ` ! ■ | , / � . - ~ \ } § k . / | ! r` - ) ) �E £ \ � l7 § } 2 \§ � � ' ƒ /; � / ki{ � 7|\ § ! \\ I ) {\ ; ) : f ' / \ \ \ k { \ . \ It �FCL \\ § t }J \� ) \ ® & & \ \; 2 2f » ; ! \ \ 7 ® � ■ ! ` { f/ � - ' ) �` | \ § §§\: � : • , ! ) 2 \ � ` ) » ' ; * � ! ! ! { \ \) 6o / § \ � � . \° @■ �� - : ƒ � : { a | qa ] � )! . • - ! - w� . ) ( �0 ! � �( : ƒ ` re : \ { } / � ] / \ i{ � |! f \ )k • . � | k\ ° �, ) i !§ § ! k � fk ) § )) k IF- / . _ � " ° / } \ } ■ f ! ! J) ) « • � a . _ - ! ; $ - ! ! ! • - - §�[ :�� ! a ! ! ! a2 ; ! ! ! ■ � ! ! } 6 # � / �} ( !■ : f fl ! • ' : / 6 ; !! - | ,!$ ■ $ k | . „ {) f � n� : : )/! . . ® } { § M � ; nm■ _- ! ^ ` } \\\ k } } ze■ � } \ ■■ : / / } \ � e : / } U C k {{§ ' \ k ®_! / !! ■ , k § � 17 ' 2 | ) \ ��. 0 = �� ) I _! )/ § ! \ / � ) ) � ! ] { - ! 49 tz . § k ; j ` $ } ; \ k ) ) ' } { $ } )} \ : . § ! ! § ! ` ■ , ; . ® ; { ; ± . - « ; ! \ - ; l : \ | ; • « , §\) � J ( ; ! : ) ! t | : 2f} 2f ' � ® Z2 i u�� % ! ! ! ] ■ , AA ■ _ ` ){ 41 cr ( \t )k ! L6 ° �k -2 _ !■ a! ! #| ) � ° k � , § ; o \ / \\ ) {�§ ) } 55u � ! § X ( ) � _, - - � ! � • ©� | ' l k ; ) \} � i ; • / | k y ! , \ � f k ~ 2 ) °�! CL )) �{ ! k ® k� } / |) f ME ! {{ § K {! in ! �) ) \ ! / E f|\\ 1.3 f{ ; )\ E ! ! � } / { � } k ƒ ' | § § ; lf ® cu � ) k§&- ; | ( � ) ) ` � ) $ ! / ! . � . | t # , ! \ k cr . � !f _ ° k _ § | _ : f ! { cv! s % / \L / , ■! | !!7 : . : 55!! ƒ k I ! { ! 16 § � �! � °� ƒ � � � ! !7 ■ k ){ k � ®\ §7. ; !; 2 . ! k - i !! ■ | zo o ; b4! [ § { {§ ; \~ \ � • ! \ \ ) 7 ! I \{ |) & | \ ! ; E e ° - r � ) « | cle _ ■ ! 7 � } ! { { \( ! ! � � !) L6 t - • 3 : ( ` ,! : § � // . ■ \ � ' : / � � � : { / _ ! \ » � . % c � cL k iL � § � � • \ 1 k = } Ike ) )\ 2 \\ . = 2 /§ _ 2, �) § \ !/ § ! ) f ) � ! ) |] \ \ ^ 7 \ ; - - ` ■ }; | } t � ) ) m | ! § ) ` \ / � i � # J • ; 7S 9 § ! • § - ! \ , ' JO ) ! ' ! •! . ! " ! • . _ kIc El 1 : { 2IL ! • u ; k k ' \ � � /� 1 • � I � . - _ ` / 1 - _ ` � � � � | � ■ )2/ | ! / k ± | � \ �/ } f \ ` I %, } / k � � � ! 7 /{ • . { . \ �! � ` \) § $ 2 ! \ ! ) � \3 ! } ƒ\ § ] a } ; l = ; E e : ®E )] � \ 2) \ \ / � ` ` � EZ � % ® » , l � ff �� § « • ! ! ){� � � ; \ 7 ( f | | ' 44 : • | ° - - \�} - ( \ � ƒ \ \ ) \] ] , V ) \ k ■ . � �) : : ! � \ : : ( , : � 0 / �\ } ' • , - E - } \ k � ) f � \ : § o . 4 i } } / � ■ % \{ ƒ / /i ! 22( ; !_ ; ! • ! ; . 3.1 # | P ! ^�( � a \) | ! \ � !{ � ) )2 ! \ | we ) {\ |$ & ; ! k ! | \{ ! ) \ ) \ E\ ) ) )k , ° � ■ 77 f CF ' \ \ ! ( ic`- )/ \ t ){: ' / !O*Fo� . | \ ( ( 6 A # « � � ID - ` ) � ° / k k) � )§ / • \ f !+! - k � � \/ • ` �// � f f/� } f k ! { \° k / \ . � )| . • » ! / _ � \ ! ) A c | { ■G � q& { 1 ■ ` { ' | % � ! !| � 2 \{ . � ; « ` § s % s : ! | )=4 � 2 | • | \\ °Lu a \ , :�} § L ! !/ \ k � , ! k ) | f )2 a } ! ` �{� � \ \ \ . � | | t ' % j ; • , e ! ( , $ kg }� E § 1 • : { Vi ! � ) • ) \ ! {\ • ` }) | 1 !~ § ! • j { 4 ) > 7 !° - B Al ± ' � } • ~ |ER ! ƒ 0 4 ■ �® ; | ' ! / . ( \ \ | ) \% - )| { \\& �® z • /$ �/} 2 f L | = : : | y w / 1 ! \ } / - ; # « 0 ! = 0 I . \\ 7 / k � ! � !] / > ! / k )) ! } !_ � k ) � ! �7 ; � # ! )/ � • 1. 12 ` � ) \ � � � ! ® ! ! ! ■ § " ; §{ ; 7 | ! . ; z ; � ! ) \§( \ / ! ! z iAA ■ | � _ ! ' ■ § � . •;� ƒ . . ! )\ \ \ \ } { 0 - � } S � 2 !�l . ! ` ■ \�` ( •■■ | � � | � U. kk7 LLI �k( 2 � !! 1 � � � | J �� � } ■ � } \\ § ! § k ! / ¥ )5 ! } ! \! ! « | \ \ ! ! ' � 7a « \ ) - § \ # ; f22 ' $${ ! \ & � ! R!■ ! \ . : ■@�� . 7 . : ) f/ ^ �§ 2 ` ,•,; ` 7 �) � ! � )% ] e « • =z • ; § / . ( § | \ - q § : $ ZZ ! ( ' ! _ E _ B 4 £ " � • ,■„ ° ; � 0 k k � � ) ) / ƒ \f\ ) �{ i ( • \ a ! •! � ` %} ` � � ! ` ! � )// i!!! } f {{ • | ■ k ) ! § • } - . i `§\( 61 4 §|!! \% | . . z --owl( 2 a /( § / / ! � ! ! | | � | ~ ! � ! ! } } �. \ \ ) 2 ) , ° ■ kf I � d � k ; $ , 0 ! ; \ ! , | ! ! j � 2i • , ` - } | 0M k: § z i |! ! ! � ! ! f! ! ; }Em � ! ! ~) \ \ � \! - ' k } \f } aa■; �] $ � � - � \j� ! { . i § .2 - - 4 k ) § : , ,LL. � #■# \ } i \ ' ! !, f \§/ J2 / |\ ¥ ! !> | • • !; ` 2 i' | a== � f| • | %! 7 \) § \ f ; $ k ] ) � / \ { - f! - - J ) | ]_ & { \ E )E \ \ ~ e ! }{ 7 ) ` { � ! } { � ) § ; �/ $ � l � \ • k | ( ) { j} k \ � 2l , ! )2 \ Iƒ !. f ` K kIn $ k § : . � /k 7 : f � � f $ k§! F ! r; , , { { U. j § , • >! ) ) f \�§ ■ } ± \ f ° ; �� ( � « • . q& • 1 .¥R : \ { } \ ! !) / \ {/ \ # j \� { • , !, w . / . : 2 . {») § A /;! % ` | || 2 cj \ �§; § { 0 e E E 79 � LL U g 5 L 2 b E CC ■ m u � u a o O a5 2 E ^ i �Y3o a F e^q v $ m B s lk J 6 C y IL16 ZN� ms m13S O e 9 € & 3 NJ � u � qqa gg@ c`Ocp; A 3 eC I 6m V II �\ f k } \ � ] ) \ )2 $ f & � \ - § « ! . _ | l /. � i ! ! ) is | 77 | ) \ ig \ \ � \® } \ r {� � !® &® g #! ) § m _ ® ■ is ° 4 ! §! 0IL � � • - ! $! � ± ! f | o � � � � � � ■ � �{ � � }\ . | f ƒ • ! tiff a . | = ' | | \ . § ' !} ! f . ! ! t• ) | . .2 ! \% \a} § 2 &] ' ! � Iz \} § ! % { � } \ � ! ! ^ ! ! ! ! e � ] � ) ) ) z ! ! ! ! $7 ) ! : 2z& � , ; J a . - t ! � ( Z5-f� . i ( ) ! ) 22 ! ! . § P. ai22 � | � \ { _ z { \- k { ° - k ^ Zi� • /fI : | § � ƒ - ■ � : f � } $ \ � . ! : � • . � 5 a / B ko L \ ° . i ] 1 e { _ � / 1 • _ | § | )f\ k ! k ! $ � ! � , • � � � \; ) � \ {ƒ } $ ` ! ! � { f ƒ! 1 | ® �! #_ {) z; ] \ ! \ \ ] � ] \ \ ® )) ! } ]` k ! ! ® m ® \ ! : _ ! : - kl : , }� ! ) ! �{� � � ) \ } � f § ) \ � ` » • ¥ � � � � \2( | r § ; l � - • | ' ! {) ƒ : ! ƒ } ! ! 3@ . . ) : ! ! ! / & 7 \ | cr f � • �§ ` _ : 55. § !! • § ! , _ ° • ® � ! . « 41 \\ / # _ § cL ] A a. N ! i| \ { / k ( • � § 2 ,$ • | 1 R ƒ � | � ! ■ ® )i } �. ) ! !$ , ! 5 . « ` 7 . / 2,& ' !! ° »! • ! ■ a �} � § . } \ ; , !! } }!: | �/ \� § ! {# } � | | I � a / fk \ \ : - bS ® ` |,) ! | \ f ) ) EE � � \ ( / �r . . \ ) ) f ! > = $) \! > 2 >& f $ ! §Q) ! ! ! / \ / : f - _� « D CL \u a � ! 2 ƒ § � LL §u. .j a . ! k �) ` 7 ` k �\ \2 f f `�| � \{ § ! \ } ] % ] \ \ ® )) � � \ ! !\ !) } ) f l . . . n �\ \ \ ` / { ' / k ! , } \ \ ' j } \ ) � I�' � a ! ! a ! ■ a ! ! ! � | zi ! ' } L \; � ! oo i ! � ° ' � ! n � � ƒ r ] � % ) ` • � ® �` } . 0 ; . \ 0 \ Hs ' / / • ! , , 1� ! ! {$ ! / § \); §! !\ § / k} 2 � f ) ! }} } &i k ` E E. 07' § \ 6 _ � !!) . ice ! | ® _ § ? { E k ` ` / / ! {a| } : . 1,� - f � : • a : � � : { k 1 f �7 f 0, !!77 ){ It | � � §§ ! � } % 7 : k )=\ § ` ! f� • | 0\� )/( ° a cL 19 \) § , } � � \ ) � ! / \ \ \{ E . \ ; ! \ .2 /2 §»� - � � / / )) / • : , � { &! 7 : \ !! ! ! )f a7 . , !» • § | § f u 2 cq k � ! � �| • � - ! : a / - } o cm § � qw � ��� & } ` !!$ ■ 7 )\ � f \\ . � \\ | ƒ ) \\� | \—\( ; k) } /!ƒ ` ) | ! " | � $ }. 2/ § > \� ! * ! ) ! )� )) } # I § ! ! ) § - /) ) ` _ \ ) k) , ` ■ � / | !# » §«� � ( \ ; ! ! ; ! | | • \ 2 ; : ; 7 ) ) ' | . , � � � � | # , _ � ! ' ■ � _ ! ® ! § fk )} | • /!/ R a k u _ � 9 • ` 7 /] � ! � I � | LL § q¥ • { !, ƒ I £ a ! ` / | �! ! | ^~ f � � � ' � | |� | § �� ! ■ � |\ . � � §} ` ! i � ` � f ' ƒ )t& _ � fl� • | ■ � •� | f | . � � : �i!! - � .�_ o )`witIL {) § ! kf | ] . ) \ ® & & \ _ } - :.. � § \ \ \) � | ! E � . ■ : { . - . $ | {/ : ¥@a {) 7 } ! # \/� • \ f k � ■ ww! _ ! � � 2 \ , � \ � °�� ` \ }�k } % !3e " { � } \ z■ : \ Z ) \ : � f ! 17 . 1 2 .! . ! , . • ! | _ 2 ! ) � /; \ mek } } } / !!7 � ) ƒ/ \| \ j \\ • i � � §\ : ; / 3 % % � . / ) �� § � � !| • | {\ § / / 7� ! � ! / k )\ ` )} ) 1! ! | : ! f ■ ! t ! E § , 7; f} ! § ) § q �J \ { ) \) \ ` � ■ ! , f ' $ � 7 \ f # § ; ; �� � k }) } • ! ` | ( | \ ) ) ! ® I ) 2 • � G » , � -6 ) §e( / ! | . . � � � i ! ! | ■ , � _ & � | \ � | - \r 7\ 6 •� ) �; � ! 8QV k \ � \° ■°�.�, �� : k � � k 2 k 70 k | z z - � � § � ! � ! }:; � / ■ k k � � N ) 2 §,u J ® z f \\� ° s LEI § $ ƒ! \) § ! 7f , ! � ) $ ! \! k !! ) ; & ) { \ \ y> § � � \ / k) , ` ■ � / | ■ : fE § } � / ` \ { rJ ' \ §rAI} � � \ § u. 21 k \ � - ;■§ : ! § ` ° ` Rc / } i : � ,■ / - � ! t � : . - . � _�` • : | � : | z � , 1 ■■f � ` / \| `� / / j ! � \ § ] A ! E } \` §\} ; !2 ) - . !| 7 ( � � • | • , � /\ / ) \ � ! 7 | $ ! ` # ; ) } - ! ! ; E \ } \ ) / \ kk } � � ( } \ • t � ) ) \\ / ) )\ & • | § \ ; \ ' , , ! §7' . , , | a ; \ ! . ! f ! ! • _ _ A ® A A ( - § ! ){ !§ E - ! ; \ kI ƒ y ■■q■#q : ƒ ! U. § _ { >! { } ! , . • , §/ G&� J 4 k f$| z ! !« , !! : ) � � } ƒƒ9ikf » �\ � ` � �\� • | 2 !\ § ! | ! | ! ! | ) \ { \ \ \ : ; ! | 7 )}{ } ) ; ; , > E \ 2 , !fx )) ) ! ■ . ® fl ; i { ! �, l : ) ! f I i ; t | f , { � � ! . ; ! • ! ��� Qt 03��; ! # / _- \y LL .2 } \) \ � \ � • � � \} ` §!!! \\ \ & : � }! - z � { } § / qa f }«) } : : ■!§! : f � : f � : f k | `! ' ) / f i )ol —. \ 0 ; ) q& • ! :� : } } k ! ! \ fj � | 3t i § \ (/ )*' ■ !\ - : t! / . ƒ \ 2 ` k \\ � | ) ` -.LU � ) }/ \�( �.! # !\ § / k ! || ) ) ! }j } | {{ 7 ){ § } ) z k7 � . \) , ` ■ / / ) ! f ! § _ | ! / ! ° 5 ƒ } � ■ , ' } - �§� ! cr to ! - \// . - ! k /{ @ \| � : { \ • § ` { - � k ( { e - k LL § ^ - , k \ . / \| . • ; : I� 1 / ■_ � \ ~ \] * \ } > § ■ . � (\ ` ! : � i ±=; ; !■ . . } 77� ! !\ t ! ] ' \ \ \ ! ƒ \% ` \\2 2 • - 2 \ I : ] . I / `� Morrison i■ Maierle engineers surveyors planners scientists APPENDIX D-3 25-YEAR DESIGN STORM RECURRENCE INTERVAL )/ F\ § \� ! § /} 2f . { ! !! ! {\ |) z k k ! ! \{ ! ) \ � , $ ) qp \ 7 ~ } / \ ■ \ } / ) ) � { { &e \ { . 2 � ) / . | 2 ! $ _ k k G > , _ ky ■ )f\ kto / § tCL / - ! ! \ / / ■ } 2/ § w \ / � ! ] ( )) a } !� \ } ) § ) {7 ; ) _ _ \ \ � ! ! ! § � 2 ( ® ` _ ! /` • - � � � k � o ■ � !! - � _ / - � § • ) ait |\ ! f $ • : | ! ' lJ== | §�! 0 �ƒ § { \) § k� ! |% ) k k © \) ! } ! ! | } , \} \ \ •.} \ '6ƒ ! ! ! & | !! | . § . ° , � ; . r >e � � . ■ / \ )° I ( \ li ; } f | ! • 33 : � ; k § ir \ \ f § _ { . \® \ � y $ {f7 !�; !§ ! • } f � - %f �§\ °~ � \}� • } { § ` /` . A \ u ! © | - � ;L6 , ■ ):v ! ! « ) 2 � | � � »} ` ` } , & ! ! J=i !!® ! If • | �-0,� k ,§ \( k\ • ; ; ; ; ! / ! �) i § {{ ; ) v /\ � � \ / \ - ! | } \ \ z \ \ \ \ ) ) f ± \ \ \\ \ \ \ � \ \ \ ) - � ® } ) . $ k Am a !/ � ) f m / § ( ! \ 4¥ te V : { : { c \` - ) E v > �® ! \ ^§ K f tf| { 2a , § IL _! ` / {! { o c % 7E # : !� k "� � & } / � !` ■ | )\ ) k \\ ! ! ! ■ - �{ ` ` i . } \ ~ � 2\ � ! »_& $k % ! 2\ � | , a ;� ) f. | . \ • , . • | Jt= . §)[ o • �] 2 ^.( \\ § ] \ � } $ \ � ! ! , \\ } - f- k { !f ! A. ! ! ) # ■ ) ; f • 2 / \ § | ) k ! ! °° ) { | , » �>; • - � � - ! ) � � ; 9 � � � . ! 2 % ; ! - ° _ { / ) : •¥: )\ \ . f NO : { ® - § � | m�a | {,§ • \ ' - ' - § ! k / § §■n _ ` 2 \] � . { ! : . § ` f 10 x / . i - } #ƒ | } B0 { > ){ � ;22 co a /! ! b2| |} : § I {\ \ � ) / ) ! | ; ! n \ { � ! - - �±' — t ; l ; - | § ) i / \ • , � ) ) : { \]' § / 2 ; a � ! & | ' ` #) ! § & r ! • 03 \ / E � - § 2\ #! z \\\ j ' • \ /\ . ' :!! \)\ � � ƒ�� � \ § § f f z — 1 §§ '_ ! | t! ' • � # ' • ! ! LT tq q • { • ) \ ! ! ! !{ i ! f{ | � � � ! � - � . `|� J ) \/ ! # } )$ • t )*) kk. }) / / k Al ! )\ { )) } { , k !}# ! T ) ! |! a ! ! ; » • , #; ) , e ' ) ! \ ' | � � � \\ � } | , Es _ ! ; , ! / eGa « { cr all • i , = � • ! \ ) � : *® # � , / \ ! }® « ) k, « k o ; G 2 -6 ( ! . m - $) \ � ! {\ i) \ . - � ;! • } { ƒ k § f _ ! { � 41 E } \ \ \ k |) f { § \§ 2 § ; • � ' J \ , � !! / § a® |! i } : 7 / ! !) £ ! ,; ! � � � � � � � � ��k} . } fff � ) � } {� • � s _ �: ` ! : ! • . ! „ § ' k—lu ° ) . t ;/ § f | || \ ■ \ \ {. .�| }§ �\ ! \ � ! ! )3 ! } \ {! # § §g! =� � ) \ ; mil : • , � ; i � » - - b)� - �� \ / ! {In ° � �� )) f • : / \f� . } { Aw L6LL. k\] o ! / ! ,| � � §q ` ` § . � \ ' ! � 3�/ ! t{ • | � s •� : ! | }3= � §I 4 f +2 ; \ ' ! s \% § \/[ - � � l }2 / ) � kk ) � )) « ) | ! k /) ! § }^ ■ : � E � ) . � ( \ \ ( \ \ t } } J1 \\ ; : ( ƒƒ ! ` " � ) \ � � - . § ) AR � � \ cr ! \ \ f L ! ! ) k! e � § » Ln § � � k / - k ! ■ ! � z| ` ` � � } : � � : � § ; § ]7 : I f� { | / ! 2 ! § - 0 2 q ' \ 1 ® } ` f % � !ƒ 7 2 ■ ` - ! � � � ) ` | | � /{ . °�[ � � /( 2 ! \ � ; $ ! \\ ! } 7 \ ; T ! § • , 77 ! § ■ : , : ! ; § ! « | {{ I ) ) \ / \ * : : ` ) ;> » . � ) ) !f ; . ƒ ( � 4 ) : ) ) \ � \ / f) f1k �§� \ - � ƒ \« !) % - + ! , - k_ $f\ - �40, k - § v k ® | {^| t k } � m � ) { ƒ }7§ � � ■ ) � ) § ) | 1 r ¢ � | 3 ■ ] )\ ( k \\ . � - � . §q ` ® } . 2 \ ~ : ! ƒ J=; . % § 2/ • E� J In om o � . , : � } � , ■ . )^�( _ ! u _ /) § � k { j \ ! )) ! } / ! { ! EE ]! ! } ) : | & f , AE „ § ! / | ! | } / ! t 7 ■ ! ' ; 7f ( \ ) / ) \\ � \ f ■ \ � � 6 | � �� �\k � i \/� • � { In zz _ ! cL 2 § ! ■ | {a7 . . ` / ' - � ' - ■ � ■ f ` | � ! ):& � ! / } k ) k , ` � i ' /;_ { 7 {f I2 )7 • 2 — j)\ k :�( � {) § ! / w5 )5 k } § !t I $! t {/ c °fja \ ) \ ) ) S 2 ) ; ! ( \ ) - ,� • � ®\ ! . � k! } ._ !f| � }{ : \k { .■ : { �) � : � | _ | ! � • � _! ' k \ \ \� { � k v � ! ! ^; ( \ \ � ` k k � ! !| . - � • �® � - � ( ) !) \ ! }i® $ ;] ! § , ° % 55 ` ! 12 ) 2:2 k /& . w ) / ) |! � �_ ! }\ 7 / ! � !* ! ] j + |k k ` }2 ! } k f! k ) - , �\ § % ) |) , . � } \ } / 1 / } � � k ; ; �\ \ ) }! / • ! ` | I \ ) 6 ) � / $ ;, / \ � I / . § )7� � � ; ! ) ; f | } ' ; \) = . ; e ! • U. ■■�2 § ■ ƒ � 7 / § } k \�\ � : ° ' ' { � } •#■ ƒ � : f , � s ; ! `• � � ; ) k { ' ® ®~• ' - ; § § `& . \ * : } ƒ ! ■ « )k \ ,. � `` f|f �{/ z f \�} to �[ ■ �_ _ f {/ . t ! ! ® � \ a )) k } \# ! ) k } \ ) - r ) ¥ § f{ ! ) ( • | ! X ; § } k ] / � ! t ; , - § §«� . ° \ i \ ] � $ ! ] • i { » ' � � ) # # - _ E � �) ! ! k < , ! ! } . ;lay : ! ;! ƒ } • \ ( _ § ;i {\ ; • !!! - ; k } Im \ /� \)) ) ' \ " o r # • . { ! }ff } rƒ § k k | � • \ : » § — ! /$ ) � � ` f 0 _ ! ± . | ■ | �' \ �., i ] \f ! x 2 ~( ! I � . | , ( n $$ 2■�a a ! ,> . ! � ! : - • } � | J�` , §/ k !/ ! k j f=, z = /) § ) !� | 7 | � ) ) © )) } is ! k k» ) ! _ § ; j ` -f2 07. ; \ ! ! l � f ! ! ' � ) : • t ` - ) ! \\( - . | \ / \u Ir ® : { U. \, s EM ! „ \\\al § | k { U. k § 0 , ■n§ ! § r 0 ) H¥ *»' j k ƒ\ : ) »_ } !! ■ | 9 \\ f£ . ! ! ! J ® f & ■ ; / . : § I /( § ! k # \ � | } 77 # \/ } !! a �f i \ klf § ! • A _ ! ! � ® A . — ® — t „ � ! ! � } • ; : { _ : cr a !k !9 -2 k § [ §! ) : | °) \ { § ) ■e§ - ) { ® < fk\ { �;� - � {�/ } } � ��,l : 7 � 1 . .■ : { � � f 1 ;§§ ;® : � \| ce � K k : • { _: 22 } 01� ) ! 4> , ! �m s E E 4yZ= C g 4 AA b a E Fp Jf £1L F �� , iU 4 F a �' e C F � �` �` • j � c c � � 8 ONE �'- `o W o 0 v' ' o O'fo' c= b F m w e = S S 4 6 g3 E ro z R .5 Z m 5Ir U. n E O co F_ O a HffN� LL, c 1 .2 iz ° !/ § {y \ � \ � ) {! k { ! ! ! ! §� t : / + _ - ! ! | • ! ! = z ! ° ` ! ' { OW . k / ) ) ^mc tr / \ ; \ \ \ \ j B / : � d \ k` ` } f • ! l • , _ _ _ | U. ! � }16 // . / ) I � • ! | § fƒ ° ` ° ! � ID I � - j .3 ( ■ IN t \ §$ LIn 10 ! \) § f / ! § ! 7 ) si ! 2 ^ t ^ � | _ / {� k I /{ / \ \ : � § ] ` | ) )2; - » ! ! > , f ! ! • $ & _ , , & b)! $ 2 4E % fj � « z a : ~§ \ � � \r $� { �}� : ! { r{ | ! ! • /!! . _ f ! f § c ] c v k L ! 7 ! : | , ! / ] § ) ! \ \ ■ � !} � a ' _ \\ 2 { \\ ` j ) : | ' Si / �\ 1 ' }) �\ > k } ) ) ) \ \ ) ) / ) \ \ : k±( _ : \ ; ; $ , $ ! | ` i24 • � — { ! ! \) \ / / L % - � f! S \ ` • � / {\ ` � \) \ |! : i ƒ/� - z � k ! § BCL A a. j k j \ / | ]| . : . ' .ps j ! ;• , K � q¥ • � 1 ; ! • | \_ ! ]/ / i ) / ! ■ a 22 � t . i \ ; � !! • - �_; | ){) :k� ) IL f o> {/ z¥ § ) k { } $ ) \ ] � )) ! } cr ( \ \ \ \ 22 „ , / : � / ) ) I • $ ! = $f \ z : 2 >= # , ^ ! \}� ��� t ! ! > , f ) | • ) l ; : , fa ! - !� � \ ) ) ! k ! ! . ) {} / \ | � \ k { _ : § / \ | ) k } § LO \ ) f k ) !| • _ / - ! o a . LL ( k ƒ ƒ ~ k | o� a� E E & N � E � m H E = ri ry Ic T �q d 0 ms y y 21 O m E ylo d N 2 4 OODSSS � V P2 oa`rf � a Flo, s � c §! !\ § / ) � . ! � ! ! | � i ! � E I }f \ \* \ ? �k " ` ■ � ; > >/ \\ / . ( /) } • : | / ! ! § • } _ , ! } ! � ; } ! §{! \ - , • � � \ \—§} | J ! al ; ! & | - \) f ' ■ ® / ! ! k � � � � � }! ! . . In _ I k Q � Ic { j §o ! ! \ : .l, k z § I f )!2 ! ! t } £ \ o ! ! ;! ! • , � � q/ { � ar ƒ � k � !!7 ■ �� 22 `ƒ o�� {) § ! k� !� ! ] ) © && ) _ ! \ {{ ] §\ 21 \) ! ,� : : }\ \ ~ � ■ ) ! ! !fs \ \ / ■ � \ � : | 'is ! ) - § if ) k! • {) | 1 - � } � § { { ° . 20 0c4 § � . ;m$ _ f �! • / # ` � � §14 � ; - { � � } �t� / \ !{ � i ■ ! ]7 • i §} ` , } \ !} � ) J\& § * f{ • | . ) . { , �k k ::! } � §! !/ § ! {` 2| \� ) ) ` )) } { {f ! }{ f ) ( _ ( } !; , � ■ 77 � \ � � § ; � (/ \ ) )) & • � {) ZE / / ! \ \ § § � : � } • • : f � 6 � ° ! ) 6#,� !! _ � . ! � , • _ ! 2 r$ $} ) � \// : ■ _ !� !� ! • ! : ( r) . : ■ , in o , !Ic E ! ` .j #a $ !!) ` : v `� ' u 4 � § | I ) / # � , « | � ! •� & i / ' | 0 ! / � \ 4 § ! !\ | / � ' i § } �}&! • | >�_ 2{� | \)� ) \—! o i |7 = )f ' ! - * 7 k t � � } / o� m� E i E F�- V F 3 2 4 E .E E N Cdr 3 0 c`p'tccp E �= b i� .a° 'a ff € a a� •a° II a G G C m U G A o o Fa 79 m r g o t� Pi FS m c ho O E s E ^�� s d � aCL OS a } E 0 S Hs ic a S p N ° m y c o b � a Is F a ■ N V g o' E �. w. i - {f § ] / 7� ! � \\ § I © }2 ) cr kE r \\ \ _ . � \ }� ` ■ § $ / 0m: . } \ ( ® ) ` k } \ k � \ tr \ \ � !7 � L6 ! , . ! : ( \f! . : ■ . rz _ § l(n4 { ! •a;¥-§ ] cL ® ! ! . | ma { {£§ : : e ! � / ww��� � cq § ! ; • 1 7; ( 3 . ! � !f / ! ! RQ .j \m( : : )- 7 , } \ � /}721$ f �/ | \? | '■ k ® . - . . & ; \) § ! \ � } � ) \ ® )3 } \I ! _ ) ! ! _, ± # - 1 : ! _ - _}; ` \ D m#@ ! w U. k § { � � ■ * ` f ±72 ` ! � k k • § „ � f • k i ! � . | | @f{ � l , . • ! � " (\ ` « . 2 \ 2� ƒ J =i _ ® !| • ' | | {j} k f :�( a # ; a � § ! / ) � k� | | ) k © \) } � ( � � ; § 19 \ � | I z ! )) / \ \ 7; . & !! ! | e { ZZ2 \ ; " . ° / � �) ( : e!wlee � f � } } �■ : { � } } � � { � � § f ! z | � § ; ƒ ®®® - & : ? y . |/!f7` / | •; , ] ff §g /� : | lf! ) . \ � \ifkk � \) • ` \\� ) \�( § !! \ _ƒ ��| = 0 . \\ § ; § # } ( k \ ! | ! , ) i! ! ! a - }/ f ) ,SEE' ) , } } / ' 0 - _ 7r !/ ;k / . i • s ! k R„9 . ) \ ) : \ ! ' { ;) • ! { E ƒ!! . o {) \ : § iz z 4 } | ƒ }&& Al ƒ ! ( § k § qq { ®� ` \ } / � ! ! ■ � 2� k � `� { §\ .4 ! +} ; | ; § t :22 \ Imo; :.. �a s s E E E g E � g m ^c @ a E y� -E E -E ^ Ew 8 m _ a LL i Ir g ; •`� QOq � � 3o c O € � � � m Q O •� o LL L G�'• m ` m m U K p, m 8 � U R � a Y m17 a U d E u e .n 6 ..1 N E R g 5 II Yg€ 0 2 5 > L6 m 8 Y. > O IL v O a r g N � - Morrison Maierle engineers surveyors planners scientists APPENDIX D-4 7 00-YEAR DESIGN STORM RECURRENCE INTERVAL o� 8 a E � � E F fi EE 'a H ii 'E 'E ✓d E % 'E ` � �.� aOFq - w lz U o� }a K s - a a s d e 1 $g 0 aAn d ti a a z ' O rg $ h ry Q JE E C h F Z d e a 1 a LL 09 Z � y c O E3 LL @ O b :\ \ # ) \ ) ) )3 ! } � ! $ }\ 7 ) � k \( � E \ / § 5 }2 ) } { � { )! ® / | { \ ) ot ! L _ \ ! \ ! , ! ! ] . ; : _ : L ` - \*} ! : L ! ! ! may k ! ) !! ` : / :§ ! � • : f � . \ B _ / { [ 15 \ B ! k \�k : • � ` ! � : : ( � : � � ■ ; ! {} > 0 ! f■ • | tD � � / \ t C \ )\ § ! / ! { k ! ! k ! f � }) \ ) ®$ � ! | | a / \} ) \ \ � EE (_ < f> ! \) ! e ! _ } /) ; ` ■ ! / I 2 / )«` � � ; \ / ; f | ! , \ : _ • ; ` - ] k]( , • : - ° _ _ & | � , = , ] � � z2 ! ' | ; @ : f \\ § Ir ! } / f - � ! � \f\ �®® : / )k / • } f ! \{ ƒf | $| ; ` ƒ i ƒ a\ % • - m!! : / �! � \ f ! { |� ! • =z • k | _ ■ � - ! � ¢ / . ` \ � k ■ | )f\ k ! § } k | § k `¥ � 1 k ` } � / � - ! ■ % �{ § / 2 ®/ 77� 7 m �vs\ :�( , E E E E � e � b c r � X a > 3 15 cF b E tl p'F E F 3 ate. 8 a p° ii4 a� ■ m U U : rvE = E g a a a u d 2 C v in g89 R Z - y z � E � o Z a y a e 5 € e ME IR 21 12 o $ p E n m ■ a a o v g. o F fj ai F $m g E ~ .G E E $g e U $ b F_Fp 9 b a N 8 LL = I CQ rvE e S S Sm R o ry a ry m m I..cN^o geo a a - V IL 2 > S LL C $ {{. 0 E fi O E m 5 cq N. �Z; II o� m� E E 3 'y 1@- g� e 8 II� 119 E �g y '� s 2 � A 1_ 'E' O j O U 1: a € o rm a�u. Z o 5~ y � < a ac E EcL J m n > m Q 41 E 5 5 O a° _ ^as € Z — E LL � ¢gg5 ~ 8. y �9 LL Vm s b LLm 9 W « �53 ■ EL l u) @ O. N W \) !e § ! / )/ k] /2 § k © )} ) �\ �! # ! \ ) { \ \ \ )_ | E , JJ ' / - 7 } ® � � ; § / { k ` ) ! l • ! \ \ ( \ ) 2 = : , ` ! ! ! ( ! ! ` c t ■ - | 2 ! r !2 t ! k n»r; 2] $ ■ : f ,f } { . ! k ( Na: V. \ k cn� $ { 2 2 C 2 • . j , f ; f L6 � ) \ , ! x 2 !! ■ ; »» - ! ! % % « If' ƒ )2/ ! !| • | § ; u \�: ]: 2 \ �( ) � L. 0 \ to MELLO ) \) :; \ ! § f / ( ® � r f ] $ { ! l ; tE ! E E \ � ~ | \ \ \ }/ ; } / � k \a( | 2 l ; ; ! | \ k < 2 {) ! 1a { \ ! ! / \ ` . 7 . ( o ! - § ) «! i! § • ƒ{: . . : / � ! / c ] t ` ® ) , T v C? � ; § _ ) o z ! - § n r - § t! \ k ƒ !�k ) a{ f ) \ • | � « f • §/ ` ( , § \ \ i ƒ Jt; _ 63 • | §g; 2 b�1 0 • . ) . ; . ; ; } _ ! cL \) !$ 2 ! \ � !! � | | + )) ! } ) !# ! \f ) ) \ ! | }§ ! ) ( �J ! / , }s !I » } f / { ) \ - | Cc )2k � cc . _ ■ I f § ) } / { / �� ) f2 §7 - 2 ! . ; \ ; \ ! ! ƒ 2 | • 33 \ ! ` ! ` , ! - | ' 75 \\( | z ! � 7 ! f # � . { � : l � ) \ ! 2 | \) f f Is 6 ! ! ' \| g � _ k n §) a _ & )k\ • \ \ #!! - ! / 2 f. o ke ] CL : ) \ . ! ` _ ! • k , 2 !!k � : � � ■ } : � " f k k | ! k ! | ` / ■ )!f � ! ! / k £z k RHO / ` 3 z . § § - a \/} k 0 !\ § ! \ f k \ k ; \\ ) } ) ! I 1| �{� � ( ; \ / ! ! | | •_ 22 ; : % ` - } ! = = i ' � : � ) - ��� . ! § { { \ 6 CM - ; : { : } k ) { L ` / { ! \ ~ - - S « ' k ! ! § ) LQ f # . / � \ /$ 1 w } ' / \_ § ) )\ // / | ®/ §\) a f ; ! : ! ] . • 2 | \% | \% | b'/( o = \ `:( IL 0 \) § ! k � !� ! 7 | * )\ \ ® )) ! } ! !k ! ! ! ! f |f a tft / 2 /; � ! ■ /{ ; j ! ) ) / ) � : _ ` } . I ; \ ; / ! = f | ! kk } : | / \ ) • ! \ \ } � / § ® " §) ) ` : f |] � • \ { M § z# !! • � ƒ!$ - § § k ) ƒ \ I � ; - n { • � 5 ] c k k !| • ! { ( § \ !{ U. ) \ , ! . ) _ , 1 ; 7 ■ i )! - . � E» k �2 $ . : $ � ! \�[ •�� ul ; k ; /) § ) j / \ § )5 ! } �J ) \ / )) \ ` � ■ } � { ) § | . ■ ! \ \ \ . : • ! ! ! \ � ! ! | §{: - � !}$ �§ - &� } . - ƒ ! ! ' . \ { i{! _ ! ; ; / {/ , {\ � � ■: : 7 {)k \ " � ( ! / § ) | & . � . a ! - ` - \ ` \ ig � § � : { !, . • » { - ;_ \ ! § A H§ i 3 . � \ . / � ' 3� . | i7 ;| 2 =® ` ® ƒ ~ , / 3/{ ' /i ! § 2 • | � «� § t � ƒ � . ■ " ! !! ' | J=; ] §{. �; _ ! . ! 1 . 1 \ - \k • , ! | \% ] ` � / / ]�� � # & ; 0 i }) \ ; k$ �k | ] )) ! } ig \) : k \ )7' I ; \ ; l ; ; f | ! • ! _ ; f � . ` : \ ! • - — ) \ \ ,.! ; } }{ \7 | ■m� _ { |)k - ; )� ! e | • _! | § . IL LL � # 7 • § \ / 16| � � c4 | { ■ }f\ \ / \ £ : : §. # ' ! $ /) \ ; \$ )) ! } _ ! ` ] f{ E }\ � ) ) § § ) } \ / cP §° - 0. ] aa ! { : CA �.en : ! �) I : _ ;, z . • : / _ $$! . - ® F « )f !! ! • _! - ; k E � vIL ) i !| • . -_ ,��� . - � § 2 Taff * ■ k o ( , f • | ° � � ( ! ■ � )� ! | \) ! ilk; ' ! \ , f �o[ ■ \) § ! \ � !$ % ! ! |\ ` )) } i# ! \ ) { \ ) } \ \ \\ i | ; f ) ; ) !e} ` $ 0w! \ ) \ f , f | ! • ; ) ; : % ® ! § \§} . ! ( � ( � ! \ \ \ _ \ } � . � \ / } L6 - | . _ / k 1�:; /k\ ® : { \k / ` • ! f D )f i #!! co e { _ � / / { • : ° 2 „a 2 !� ! k k | ) ' : f § ) > ° • $ #■; \ } i \ ! !] ■ T B ! `R - . §/ ` ! � ` � i )t; ! #§ • | ■ | -� | . | . $ \` � }� . . � !y, §� !2 - • : !/! . _ u § !+ 2 $ ) ( ] \ ® }§ : ] } § \ ) I ` � \ § � l ! ' . . - ) ! § af ! ! j §—} J § - . § 6 }; ; \ D \ to s )■ ! - ' «\ f| ; } z � ! . § ( c ;e§ ] LL. oIL # !| . =.n ! • • f ! § � f � #§§ - - t \\� � ( ■ / * ! ■ f \ : ; ;! A � { . ] 1 m¥R § � q\ | � ƒ ; ! !| ■ ! �; , 2 \/ ! iz ` ` f !$ • | ! •� i ( . , � . ' 7 )K= )ƒ a ! �2 ' - ; � : | \�( § t )$ \ \ . !i| | • ! 77 J | \�; § { ^.! _ ! . . , �g Y E � S22 C � h �4 C Ll cm s g soa€ = olu s _ 5 O E o ` JU F3eF3� \h�io yl S s 5 a m 4 y� p Q"g .Omilk y g? r S 5 2 o IL s IL h E E F O n e g N 9 = IL p > C m p $ u � § ! k # \ ( k } ) \ \ ® )) ] } a � § / 7 \ ƒ � k § ; �� � } � ! / • } ! ! ! ! ! z \§ k CL - ) � . 22! ■ ; " § t • i \ . i ` ):; ! )k} o \ $ƒ! § f :� f 1 | ® 7 } / } ( �! ; 7 a 2 / : i 1 . 0 \� ) ! \ ) � | \ ! � ) \ k © )3 k \ {3 ) )\) ] �) �| • \ { z\ 2\\ ` \k\ � { k \El � - § _ { { ` � � \ - � � \ \} • � f ! } • : § q j | ƒ . : . a : ! } : f \� ' : ■ u A U. ! / f • 2 IL ! k � § § ! H ` � «` ` | Z | _ : ƒ - ! | `7 � � ' \/ ! k )! • � ir §�( § ) ,fF • ^�| ) t ` _ # ; $ to ! \� § ! ! \ } J � § j k ® )5 � E , {) ! § \/ E | : 2 ! ) r )f ( r ! ! ! | ) § §} > 2\ \ >_ ! \ \ - �i} ! / ! ! ! � ■ a ! ! ! 2 2 aa ' cr 41 LL § f / f ! | r f !� m \ { : ( \ § CL $ _ � } 4 e ■ f {37 \ ® | ! cb o , � ! �, . - � ! • ) 2 : { fƒ\ ! ■ \ i { 31 ■ a / $ / /) : \\ CL ) ! | ;! !/ § ; k � ! $ \ § ) k k ® )) ! } \ k )) » ( ` � f ) ) � t; e ; 2 � # : ; • � 4 ® ° | ){( � � ° ° — ! ) ! • � � » , \ � ) � :2 \ k \ \ k \ kZ ! ! { ( ! \ / ! >�! \ � § 2 ) `i� . • � I ! B ]) \ • be lb ) � / | )f\ k ! ■ k k i If � j k ir7 ! k\� SO I �! 1 ! f t/ ) } ,�! # ! ; . . ! {) § ; / ) ( ] \ ) ® }) ! } )ka / ƒ © ! } } ; § • ■ l � f . )) / , ' | !! _ & ! E ) k . � ) /] ) ' #mn \ : � ! � ) k \ \ 100, § C4 Im, / j � 2 �} ` / � } � 7 / )f\ i!! � 7 \f • \ j ! 22 \ ' ! ; , ; ■ /b : | \\� | ){ / )$| 2 f 2! !/ § ! | ! \\ \ k © )) } \f ! ! n )ƒ \ \ � | > , . \� + ■ f} 7 ) ` } !! y • � _ \ E- ' | ( ! ! { Iff / )f ) : � ■ z& ! \ § ■ ! / | § � k ! / � ! ƒ � . ' ! ! ©—' } \ \ ) \ � / � k � ` ! ! � — { . � ° ! � k7 � ;§ ƒ • ! f !!! - !! �! \ / � { k j 2 ! 10 ! k \ � � § k `® ƒ �� } � � � !!` � � �� } j /� • � $IL:�� 2 / 2 » | )\ !\ \ & � } ) \ ® & & ) ) { } \ ) : � ~ \ ■ t ! ; , — , \ l �uJf _ ) ! K \: \ / - *A� ; \ ) ' % ! ! ! . / � � ■ ` : !! � ` !!f � f i\ . !lf . � r! . _ ■ k E ! ` / ;�a \ {!\ } : l5e " f : • z! ' ƒ > : / ! ! !, 2 N � § 0 2 §/ / / 0 — ' \\ !; § k � !* ! ] JJ ) )i \ } / : \ | % ! k # ■ \{ ; ) f \\ ji \ ' !2 & � � \ { k \ } � � � ƒ} ) { • � ƒ\ { \ ' I ; • = | k � f ! ® � , ! ! ' � 0 7 ` » ' , ` - ! \) } / § { ) 2 / : - § � • ® : f _ / ®2 !} ( : � /{/ • : � k CL 0 k 2 § ■ � $ � � )f/ ) ! tk i � i ( , | « ■ k )� | | _ w ) � k *� � E ` \ � � � � \f\� . � /fƒ �) � lf� • | ' - � ®�% 1 ) ■ � ! CL NJ � . + _ \! Z\ ] ! \ t \ � ! ] � ! ] \ / \ §k � ! ! _� {\ \ � � ■ }f ! \ � § § § � � � � !k T • )lo ` k ƒ � } § ){� ; l ; , % « al . \ / « _ &! — # lf: \ � & a \ }�� } : eee � { � : \ ■ : / Z : \ z : { ! � � ; ! ■! ® - � � U. ! ! 2! U. 2 ' ;■f ! ;,. - ! • . - ` / , , . ! | `2 : • } ƒ ' ! c4 § \ \ 1A � � .# � { #e§ ƒ \ ( / • !!� j7 )/ \ | $ f /{ E k • � � IL \/ § ¥ §f ) $ ! ; \\ )) ) ! � , ! ) {{ f 'A ` ! ; �z } } \ \ | � � � } ) ) : • � �� / & ^ ( ■ t . 7\� \ cr ■ * � � 6 � ! / �| 1 e { k k CL 4 | � a ■ � iL j . � ! °� f t )&4 ) �/ ■ ! k ! Lu - ! � ! � $ §} ` ! ) } \ f } ) \ff � ! /f • ! . o i �7 ! � i • 7 / | ! �\ ! �/ | { co ! /\ § / f k � \ / � 2 a . ) ,) k{ ) k : E E ftfj� \ t ! 3 ° ` ■ ; ! ) > ! . � �f ƒ \ i ; \ 2 ;\—} A | } A : { . - \! !) }! ) . ) ! • _ ;� — . k T° { _ P@ �® ; : ( ` F : ■ §} § , #! ! k § CR§§ , ) : 5 K � E ! ! : u ■ { 2 > � z z a I ^ f \\§ k \ £ \ £ • § § � '¥ � . � & : !! ■ | ,_ } I \! ! i I � !° ( ! {{ • ! ,! ! / Jt> • t : ` | ' l=> §� a ! , k) ` `�` ; M6 c /| } j ! _ ! ; 0 . ! § ! \ � kk ! ] k , n 7 !) , ƒr o«� � ( \ ) ) ! = f | ) • _ � % � ' � � � ! ) • : , � . - ° ~ . . _■ : 7 ° / n�;=„ - �§ k ` E !, ! . • \ � � U) § ? ( @�;�a . ® • . - ! L6 | ƒi ! \ � � � $ \ ■ )f2 ! / § ! � � ! �{ ? a |f §g; e Z , k�/ `� w , . \\ ] > \ J k2 | ] ; ! ! \\ } !_ ! \ / } ` ! ! tt § n f , / } | � � § § !\ � ) ) ! l • | E, \ ; \ ? • � ! ! ! . ; l = . | ® - ] . - A A_ _ ! { i � :I - k k| . �� � � ` m : / ƒ! � } ( _ )& | 2 ! • ° ! u ■� ; / `; § � 2 no. , ! § � (7 � « . % \ ` : �7§� : | J&& \ ! !■ . | ! )K® )/ 4 ! jIs`— |e = 77 . ! | , , \\ 2 ƒ « , \ ' %� _ \ t | / |! C6 \) At ! It } ® !) | | k/ © )2 } � ! ! .` ! K CF 5, • ! §& � \ | kj { z ; \ ; / l : ! ! • « 2 } � , ` ; \\} | J ! a ( | ) ! ' • ' - - - | i , = = i , Z A ( : ) \� !k ; f - - !. , i f, l . - - E:R: k / - " . f - ■ ' { § ; j % \, ; n $ / • ! ' / ƒ � ! ! ) . t = � �� • / § � �} ` ` - , } } % � f ƒ J„ � ! !( - • ! . � • � i7= i §f \^( § } | �: £ APPENDIX E INLET INTERCEPTION ANAL YSES Morrison �■ Maierle engineers surveyors planners scientists Morrison � Maierle engineers surveyors planners scientists APPENDIX E- 1 WATER QUALITY DESIGN STORM RECURRENCE INTERVAL Morrison Maierle •i,)'inci•,s survt'ynrz ,I.„i,s•,s tic it•ilizlz INLET INTERCEPTION CAPACITY ANALYSES Subbasin I - Storm Garden Feature I Post-Development Water Quality Design Storm Frequency Design Storm Frequency= WQual equals Water Quality (Enter WQual,2,5,10,25,50,or 100) GRATE CHARACTERISTICS& DESIGN CONSTANTS Design Grate Elevation= 4723.30 ft DOaDConcrete Storm Drainage Outlet Chase Overflow Elevation= 4723.43 ft Design Maximum Water Depth Above Inlet= 0.13 it 1.56 in Weir Perimeter of Grate= 3.90 ft Free Open Area of Grate= 0.90 ft' Total#of Grates= 3 INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Inlet(s)Operating as a Weir Qr—W = CWPoYdl•s where Ql.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Pc=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate(s),yd= 0.04 It Perimeter of Grate(s),Po= 11.70 ft Weir-Inlet Interception Capacity,Ql.w= 0.35 cfs Calculate Capacity of Inlet(s)Operating as an Orifice Q1-0 =COAc(Z9Yd)°•5 where 01-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient Ao=Clear Opening Area of Grate(ft) g=Gravitational Constant(fl/sec) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.04 It Clear Opening Area of Grates,AG= 2.70 fe Orifice-Inlet Interception Capacity,Ql-0= 3.16 cfs Gravitational Constant,g= 32.17 fUsec` INTERCEPTIONDESIGN INLET PONDED INLET Calculate Design Inlet Interception Capacity Qr = Q, where Qi=Design Inlet Interception Capacity(cfs) - Ec Op=Design Peak Storm Runoff to Inlet(cfs) EG=Inlet Grate Efficiency(%) Design Storm Runoff to Inlet(s),Qd= 0.28 cfs Inlet Grate Efficiency,Eo= 80% Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.35 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff •• by • 1 .28 cfs Page 1 of 2 FAMonison-Maiede,IncTrojects1530510030esign DocslCalcslStonn Water Post-Developmenlllnlet CapacitieslSubbasin-01C_Inlet-Capacties_WQ.xlsx Pdnted On:4/26/2016-9:06 PM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Subbasin I - Storm Garden Feature I Post-Development Water Quality Design Storm Frequency Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Inlet,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I,w • , Inlet Capacity,• • 0.05 80% 0.43 0.35 3.39 2.71 0.35 0.10 80% 1,22 0.98 4.79 3.84 0.98 0.15 80% 2.24 1.79 5.87 4.70 1.79 0.20 80% 3.45 2.76 6.78 5.42 2.76 0.25 80% 4.83 3.86 7.58 6.06 3.86 0.30 80% 6.34 5.08 8.30 6.64 5.08 0.40 80% 9.77 7.81 9.59 7.67 7.67 0.50 80% 13.65 10.92 10.72 8.58 8.58 0.75 80% 25.08 20.06 13.13 10.50 10.50 1.00 1 80% 1 38.61 1 30.89 15.16 1 12.13 1 12.13 Inlet Capacity Summary 45.00 40.00 35.00 30.00 o1000 --$-Weir Operation 25.00 w -W-Adjusted Weir Operation v a 20.00 - Orifice Operation v V a --X Adjusted Orifice Operations 15.00 Design Operation 10.00 - -� 5.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 R\Monson-Maierle,Inc\Projecl0305\0030esign Dccs\Ca1cs\Stone Water\Post-Development\Inlet Capacities\Subbasin-01C_Inlet-Capacities_WO.x1sx Printed On:4/2612016-9:08 PM Morrison No Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-1 I Combination Manhole & Inlet #I-01 Post-Development Water Quality Design Storm Frequency Design Storm Frequency= WQual equals Water Quality (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET -_ 3e 3/4' I CURB BOX ADJUSTABLE B"TO 9" 35 1/a•� r 5 3/4' -- 17 3Y4• yr I _ _ _ �1 vz• 1 331r 43- DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,nP INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Q/—w=CWPGYd 1's where Q,-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd Perimeter of Grate,PG= 3.60 ft Weir-Inlet Interception Capacity,Ql.w= 0.08 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q7-0 =COAG(29Yd)o'5 where Qi-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(f/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.04 ft Clear Opening Area of Grate,AG= 1.36 ft2 Orifice-Inlet Interception Capacity,Qld= 1.46 cfs Gravitational Constant,g= 32.17 ft/sec` Pagel of 2 N:\5305\003\Design Docs\Calcs\Stonn WaterTost-Development\Inlet Capacities\Subbasin-02A-01_Inlet-Capacity_WQ.xlsx Printed On:4127/2016-10:09 AM Morrison ME 411111111 Maierle enylnecrs ,urvcyara planners ulenpsrs INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-1 I Combination Manhole & Inlet #I-01 Post-Development Water Quality Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY PONDED INLET Calculate Design Inlet Interception Capacity Qr Q1 where Qi=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) =- EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Old= 0.07 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.08 cfs Trash Accummulation or Clogging= P0% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION InterceptedRunoff by Inlet, a 0.07 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,Q1.w Inlet Capacity,Q'I.w Inlet Capacity,01.0 Inlet Capacity,Q'1.0 Inlet Capacity,Q, 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 1 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 't 8•00 -9 Weir Operation v -B-Adjusted Weir Operation m 0a 6.00 Orifice Operation u v -0-Adjusted Orifice Operations c 4.00 - Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\0030esign Docs\Calcs\Stonn WaterTosl-Developmenl\Inlet Capaci0es\Subbasin-02A-01_Inlet-Capacft"Q.xlsx Printed On:4/27/2016-10:09 AM Morrison ME idiiin Maierle engincni surveyors plauics sslcntsts INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-2 I Combination Manhole & Inlet #1-02 Post-Development Water Quality Design Storm Frequency Design Storm Frequency= WQual equals Water Quality (Enter WQual,2,5,10,25,50,or 100) _ 30 3/4' -I CURB BOX ADJUSTABLE 6"TO 6" 35 1/a' r-5 3/A' �— 17 3/•1' A - -..NOW • 33' A3` 31' DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp= 2.61% Width of Gutter at Inlet,WG= 15.00 in = 1.25 it Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 it Coefficient for Gutter,nG Length of Inlet Grate,LI= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET APA •1 1 I ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w=CWPGYd 1's where Ql.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG= Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.04 ft Perimeter of Grate,Pc= 3.60 ft Weir•Inlet Interception Capacity,QI-w= 0.10 cis Calculate Capacity of Grate Inlet Operating as an Orifice Qr—o =CoAG(29Yd)o's where QI-0=Orifice-Inlet Interception Capacity(cfs) Cc=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.04 ft Clear Opening Area of Grate,AG= 1.36 ft2 Orifice-Inlet Interception Capacity,QI-0= 1.56 cfs Gravitational Constant,g= 32.17 ft/see Page 1 of 2 NA5305WIDesign Docs\Caks\Storm WaterlPost-Development inlet Capacities\Subbasin-02A-02_inlet-Capacity_WQ.xlsz Pr nted On:4I27I2016 Page 1 AM f 2 Morrison ME immillill Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-2 I Combination Manhole & Inlet #1-02 Post-Development Water Quality Design Storm Frequency INTERCEPTIONDESIGN INLET A- -• • • INLET Calculate Design Inlet Interception Capacity _Q, where Qi=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) Qt EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.08 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.10 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted by Inlet,Qd lr: cfs Calculated Inlet Interception Capacities for Various Runoff Depths AboveWater Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design • Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 1 5.29 5.29 1.00 80% 11.89 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 8.00 -+--Weir Operation -4*-Adjusted Weir Operation m - o- 6.00 Orifice Operation w `w -*--Adjusted Orifice Operations c 4.00 Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:1530510031Design DocslCalcslStoim WaterPost-Developmenlllnlet Capaci0eslSubbasin-02A-02_Inlet-Capac ty_WQ.xlsx Printed On:4/27/2016-10:16 AM N� Morrison lllll� Maierle engineer,."""Y",.Plano"',."w"t"l, INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-7 I Combination Manhole & Inlet #1-03 Post-Development Water Quality Design Storm Frequency Design Storm Frequency= WQual equals Water Quality (Enter WQual,2,5,10,25,50,or 100) CHARACTERISTICSINLET 3e 3/4- CURB BOX ADJUSTABLE B"TO 8" = 17 3/4' .•�--_ -`► f I h--1 1/z_ I-1 114" � i z• I � �1 1/91 _ f G• - --- -- --_- I I- tt 93• � 4a 3r DESIGN CONSTANTS Curb Height at Inlet,he= 5.5D in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 it Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Q7—w = CwPcYdi.s where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(it) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.05 ft Perimeter of Grate,PG= 3.60 ft Weir-Inlet Interception Capacity,Qi.w= 0.13 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =CoAc(29yd)°'S where Q,d=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd Clear Opening Area of Grate,AG= 1.36 fe Orifice-Inlet Interception Capacity,QI-0= 1.70 cfs Gravitational Constant,g= 32.17 ft/see Pagel of 2 Rftnison-Maierle,IncTrojects1530510030esign DocslCalcslStorm WateAPost-DevelopmentllnletCapacRieslSubbasin-02A-07_lnlet-Capacity_WQ.xlsx Printed On:4127/2016-10:25 PM Morrison No Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-7 I Combination Manhole & Inlet #1-03 Post-Development Water Quality Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity _QP where Qi=Design Inlet Interception Capacity(cfs) EG=Inlet Grate Efficiency(%) Qr EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.11 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.13 cfs Trash Accummulation or Clogging= 20% (Minimum ofWeirand Orifice Capacities)_>WEIR OPERATION Runoff Intercepted by Inlet,Od I .11 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,C1,w Inlet Capacity,Q'I.wC , • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 1 9.52 1 7.63 1 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 N 0 c 8.00 - -4-Weir Operation -*-Adjusted Weir Operation m CL 6.00 row --Ar-Orifice Operation V `m iE 'Adjusted Orifice Operations c 4.00 -31E-Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0,50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 F:1Mordson-Maierle,IncTrojects1530510030esign DocsTalc0torm WaterlPost-Development\Inlet Capacities&bbasin-02A-07_Inlet-Capacity_WQ.x1sx Printed On:4127/2016-10:25 PM Morrison Maierle qpm INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-4 1 Combination Manhole & Inlet #1-04 Post-Development Water Quality Design Storm Frequency Design Storm Frequency= WQual equals Water Quality (Enter WQual,2,5,10,25,50,or 100) INLET CHARA C TERIS TICS 30 3/4' CURE SOX ADJUSTABLE 6"T119" 35 1/4" q21 I --i t A0 33' 43 DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,W(3 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,do1.00 in = 0.08 It Manning's Roughness Width of Inlet Grate,W, in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,L, in = 2.94 it Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI—W=CWPGYd 1.5 where Ql.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw Depth of Water Above the Grate,yd ft Perimeter of Grate,PG ft Weir-Inlet Interception Capacity,Qj.w cfs Calculate Capacity of Grate Inlet Operating as an Orifice Qj_0 =CoAG(2gyd)0-1 where Q1_0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/seC2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co Depth of Water Above the Grate,yd ft Clear Opening Area of Grate,AG ft2 Orifice-Inlet Interception Capacity,Qjo cfs Gravitational Constant,9 ft/sec` Pagel of N:\5305\003\DesignDocs\Calcs\StorrnWater\Post-DevelopmentklnletCapacifies\Subbasin-02B-04 Inlet-Capac"Q.x1sx Printed On:4128/2016-10:30 AM Morrison ME miiiiiiii Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-4 1 Combination Manhole & Inlet #1-04 Post-Development Water Quality Design Storm Frequency DESIGN INLET INTERCEPTIONPONDED INLET Calculate Design Inlet Interception Capacity _QP where Q,=Design Inlet Interception Capacity(cfs) EG=Inlet Grate Efficiency(%) Qr Eo Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.20 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Q,= 0.25 cfs Trash Accummulation or Clogging= P0% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION InterceptedRunoff by Inlet,Qd 0.20 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,. • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 1 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 7,63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 8.00 -Weir Operation v --11-Adjusted Weir Operation m n 6.00 Orifice Operation J 000-0 u v -Adjusted Orifice Operations c 4.00 m3k®Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 W530510030esign DocslCalcs0onn WaterPost-Developmentllnlet CapacibeslSubbasin-028-04_Inlet-Capacity_WQ.xlsx Printed On:4/28/2016-10:30 AM M� Morrison � Maierle cny""" surveyors planners s<ien.— INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-5 1 Combination Manhole & Inlet #1-05 Post-Development Water Quality Design Storm Frequency Design Storm Frequency= WQual equals Water Quality (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 30 3/4' - CURB BOX ADJUSTABLE B"TO B" 35 114' 5 3/4, = — 17 3y4' r [ 1 1/p' 111 4. Ala DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,Wo= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 It Coefficient for Gutter,nG Length of Inlet Grate,LI= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Q/—w= CwPGYd 1.5 where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Pc=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd= Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.04 It Perimeter of Grate,Pc= 3.60 ft Weir-Inlet Interception Capacity,QI.w= 0.09 cis Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =CoAc(29Yd)°'5 where Qi-0=Orifice-Inlet Interception Capacity(cis) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0,7p Depth of Water Above the Grate,yd= 0.04 It Clear Opening Area of Grate,AG= 1.36 112 Orifice-Inlet Interception Capacity,QI o= 1.50 cfs Gravitational Constant,g= 32.17 ft/see Page 1 of 2 NA530510030esign DocslCalcsl5lonn WateiTost-DevelopmentWet CapaciBeslSubbasin-02B-05_Inlet-Capacity_WQ.xlsx Punted On:4I28/2016 Page 1 fAM 2 Morrison I>• Maierle rnyinaas suvcYur> >launeis sciau>tt INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-5 1 Combination Manhole & Inlet #1-05 Post-Development Water Quality Design Storm Frequency INTERCEPTIONDESIGN INLET PONDED INLET Calculate Design Inlet Interception Capacity _Q, where Qi= Design Inlet Interception Capacity(cfs) Ec=Inlet Grate Efficiency(%) Qr EG Qp= Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.07 cfs Inlet Grate Efficiency,Eo Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.09 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted e 0.07 Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,. . , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 1 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 0000� 8.00 t Weir Operation (Adjusted Weir Operation w 0 6.00 -Orifice Operation v w -- -Adjusted Orifice Operations c 4.00 Design Operation 2.00 1, 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\0030esign Docs\Ca1cs\Storm Water Post-Development\Inlet eapacitieslSubbasin-02B-05_Inlet-Capacity_WQ.xlsx Printed On:4/28/2016-10:37 AM Morrison Wililillill Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2C I Combination Manhole & Inlet #1-06 Post-Development Water Quality Design Storm Frequency Design Storm Frequency= WQual equals Water Quality (Enter WOual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 36 3/4* I CURB BOX ADJUSTABLE 11"TOO" 31 1/4' 314——r-5 3/4' 21V—,q 4 _4 T 3 41' 31 DESIGN CONSTANTS Curb Height at Inlet,he in = 0.46 fit Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG in = 1.25 It Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,do in = 0.08 ft Manning's Roughness Width of Inlet Grate,W, in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,Li in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI-W=CWPGYd 1.5 where Qj_w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG= Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw Depth of Water Above the Grate,yd Perimeter of Grate,PG It Weir-Inlet Interception Capacity,Ql.w ds Calculate Capacity of Grate Inlet Operating as an Orifice Q1_0 =CoAG(2gyd)0-1 where Qj_0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec?) yd= Depth of Water Above the Grate(ft) Orifice Coefficient,C. Depth of Water Above the Grate,yd ft Clear Opening Area of Grate,AG ft, Orifice-Inlet Interception Capacity,QI-o cfs Gravitational Constant,g= 32.17 ft/sec` Page 1 of 2 N:\5305\0030esignDors\CalcslStormWaterTost-Development\lnletCapacites\Subbasin-02C—Inlet-Cap ac"Q.xlsx Printed On:4/28/2016-11:47 AM I Morrison ME Maierle en4 necs s 1v yllI pl-1-11 sclentiali INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2C I Combination Manhole & Inlet #1-06 Post-Development Water Quality Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity _QP where Qi=Design Inlet Interception Capacity(cfs) EG=Inlet Grate Efficiency(%) Qr EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.18 cfs Inlet Grate Efficiency,Eo Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.23 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted . r .18 cfs Calculated Inlet Interception Capacities for Various Runoff Depths AboveWater Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design • Inlet Capacity,.I.w • • (ft) EG (cfs) (cfs) (cfs) (cfs) cfs) 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 1 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 1 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 N 8.00 --*--Weir Operation cc: -FAdjusted Weir Operation v w 6.00 Orifice Operation u `m -0 Adjusted Orifice Operations c _ 4.00 - aim Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 W5305\0030esign DocslCaIWStorm Water Post-Developmentllnlet Capacities\Subbasin-02C_Inlet-Capacity_WQ.xlsx Printed On:4/28/2016-11:47 AM -- Morrison Maierle engineers surveyors planners scientists APPENDIX E-2 7 0-YEAR DESIGN STORM RECURRENCE INTERVAL Morrison lll� Maierle �ngineeo uv�ey,,,a pl.uuuvr.uiuiiuw INLET INTERCEPTION CAPACITY ANALYSES Subbasin 1 C - Storm Garden Feature I Post-Development 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) GRATE CHARACTERISTICS 00V A Design Grate Elevation= 4723.30 ft 40re'lD` Concrete Storm Drainage Outlet Chase Overflow Elevation= 4723.43 It V Design Maximum Water Depth Above Inlet= 0.13 it 1.56 in Weir Perimeter of Grate= 3.90 ft Free Open Area of Grate= 0.90 ft2 Total#of Grates= 3 INTERCEPTIONINLET APA '• I I ORIFICE OPERATION Calculate Capacity of Inlet(s)Operating as a Weir QI—W= CW PGYd 1-s where Qi.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Pc=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate(s),yd= 0.09 ft Perimeter of Grate(s),Pc= 11.70 It Weir-Inlet Interception Capacity,Qi.w= 1.08 cfs Calculate Capacity of Inlet(s)Operating as an Orifice QI—o = CoAc(29yd)°-5 where Qio=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient Ao=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.09 It Clear Opening Area of Grates,Ao= 2.70 e Orifice-Inlet Interception Capacity,Qio= 4.60 cfs Gravitational Constant,g= 32.17 ft/sec` DESIGN INLET INTERCEPTIONPONDED INLET Calculate Design Inlet Interception Capacity QI = QP where Qi=Design Inlet Interception Capacity(cfs) EG Op=Design Peak Storm Runoff to Inlet(cfs) EG=Inlet Grate Efficiency(%) Design Storm Runoff to Inlet(s),Old= 0.86 cfs Inlet Grate Efficiency,Ec Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 1.08 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff • • by r .86 cfs Pagel of 2 F1Morrison-Maiede,IncTrojeds1530510030esign DocslCalcslStonn WatedPost-Developmentllnlet Capacities\Subbasin-01C_Inlet-Capacities_10-YR.xlsx Printed On:4/26/2016-9:12 PM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Subbasin 1 C - Storm Garden Feature I Post-Development 10 Year Design Storm Frequency Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Inlet,Yd Efficiency, Inlet Capacity,Ql.vv Inlet Capacity,Q'I.w Inlet Capacity,Q,_() Inlet Capacity,Q'1.0 Inlet Capacity,Q, 0.05 80% 0.43 0.35 3.39 2.71 0.35 0.10 80% 1.22 0.98 4.79 3.84 0.98 0.15 80% 2.24 1.79 5,87 4.70 1.79 0.20 80% 3.45 2.76 6.78 5.42 2.76 0.25 80% 1 4.83 3.86 7.58 6.06 3.86 0.30 80% 6.34 5.08 8.30 6.64 5.08 0.40 80% 9.77 7.81 9.59 7.67 7.67 0.50 80% 13.65 10.92 10.72 8.58 8.58 0.75 80% 25.08 20.06 13.13 10.50 10.50 1.00 80% 38.61 1 30.89 1 15.16 1 12.13 12.13 Inlet Capacity Summary 45.00 -- 40.00 35.00 t 30.00 o -*--Weir Operation 25.00 -- v =Adjusted Weir Operation a 20.00 Orifice Operation m -�E-Adjusted Orifice Operations 15.00 CIE-Design Operation 10.00 - 5.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 F:1Mordson-Maiede,IncTfojects15 3 0 510 0 31Design DocslCalcslStorm Water Post-DevelopmentSInlel CapacitieslSubbasin-OlC-Inlet-Capacities_10-YR.xlsx Printed On:4/26/2016-9:12 PM � I Morrison NN Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-1 I Combination Manhole & Inlet #1-01 Post-Development 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS F 36 3/4' CURB BOX ADJUSTABLE 6"rO 9" 351/4' [-5 3/4' 1114, 211 1 r 4' JP: 33' 31• DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG in = 1.25 it Slope of Gutter at Inlet,SG= Depth of Gutter at Inlet,dG in = 0.08 It Manning's Roughness Width of Inlet Grate,W, in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,L, in = 2.94 It Manning's Roughness Coefficient for Pavement,np= 0.016 INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI-W =CWPGYd where Qj_w=Weir-Inlet Interception Capacity(cis) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw Depth of Water Above the Grate,yd Perimeter of Grate,PG ft Weir-Inlet Interception Capacity,Qj.w cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1_0 =CoAG(2gyd)0-1 where Qjo=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(h) g=Gravitational Constant(ft/seC2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co Depth of Water Above the Grate,yd ft Clear Opening Area of Grate,AG ft2 Orifice-Inlet Interception Capacity,Qjo cfs Gravitational Constant,g= ---3-2171ft/see Page 1 of 2 NA5305030esign DorskCaIcs\Storm WaWPost-DevelopmentVnIet CapacifieskSubbasin-02A-01—Inlet-Capacity-10-YR.xlsx Printed On:4127/2016-10:11 AM Morrison ME Maierle nl'inecri fuivcyas planners 3[ienllsls INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-1 I Combination Manhole & Inlet #1-01 Post-Development 10 Year Design Storm Frequency INTERCEPTIONDESIGN INLET PONDED INLET Calculate Design Inlet Interception Capacity Qr Q, where Qi=Design Inlet Interception Capacity(cfs) Ec=Inlet Grate Efficiency(%) = EG Op=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.20 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.25 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted by Inlet,Qd 0.20 cls Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,. • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 1 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 f r, 0 8.00 �� --.-Weir Operation � -1 =':=Adjusted Weir Operation a ,rL 6.00 Orifice Operation V a -"-Adjusted Orifice Operations e 4.00 -IE-Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:153 0 510 0 31Design DocslCalcslSlorm Water Post-Developmenlllnlel CapacibeslSubbasin-02A-01_Inlet-Capac4_10-YR.xlsx Printed On:4/27/2016-10:11 AM Morrison lllNo Maierle e,inc .wr ,Yur,.plm —.s6m.l.- INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-2 I Combination Manhole & Inlet #1-02 Post-Development 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 36 3/4' CURB BOX ADJUSTABLE 6"TO S" .[-5 3/4' --- 1 7 3!•1' 7� 1 1/4" �. 21Y'i.— — ( r,. I• _I�1 1/2' 1 4a^ I I a1• —� CONSTANTSDESIGN Curb Height at Inlet,he= 5.50 in = 0.46 It Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,We= 15.00 in = 1.25 It Slope of Gutter at Inlet,Sc Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 It Coefficient for Gutter,nG Length of Inlet Grate,LI= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Q7—w=CWPGYdl's where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Pc=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.09 ft Perimeter of Grate,Pc= 3.60 It Weir-Inlet Interception Capacity,QI_w= 0.30 cis Calculate Capacity of Grate Inlet Operating as an Orifice Q7-0 = CoAc(79Yd)°'S where Qi-0=Orifice-Inlet Interception Capacity(cfs) Cc=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.09 it Clear Opening Area of Grate,AG= 1.36 fe Orifice-Inlet Interception Capacity,QI-0= 2.23 cfs Gravitational Constant,g= 32.17 fill Pagel of 2 N:1530510030esign Docs\Calcs\Storm Watei Post-Developmenhlnlet CapacitleslSubbasin-02A-02_Inlet-Capacity_10-YR.xlsx Printed On:4/27/2016-10:20 AM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-2 I Combination Manhole & Inlet #1-02 Post-Development 10 Year Design Storm Frequency INTERCEPTIONDESIGN INLET -• . . INLET Calculate Design Inlet Interception Capacity _Qp where Qi=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) Ql EG Qp= Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.24 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.30 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runofft Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 1 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 7.63 1 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 - YI °c 8.00 -4--Weir Operation v =_ (Adjusted Weir Operation a 6.00 Orifice Operation --7 00, -0 Adjusted Orifice Operations c - 4.00 -#(-Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\0030esign Docs\Calcs\Storm Wate\Post-Development\Inlet Capacities\Subbasin-02A-02_Inlet-Capacity_10-YR.xlsx Pdnted On:4/27120%-10:20 AM Morrison lllillllE Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-7 I Combination Manhole & Inlet #1-03 Post-Development 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 30 3/4" }-I CURB SOX ADJUSTABLE 6"TO 9" _ 5 3/4" 0_4 `} 33' 43. DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 It Slope of Gutter at Inlet,So Depth of Gutter at Inlet,dG= 1.00 in = 0.08 It Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 It Coefficient for Gutter,nG Length of Inlet Grate,LI= 35.25 in = 2.94 It Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET '• / I ORIFICE Calculate Capacity of Grate Inlet Operating as a Weir Qr—w=CWPGYal'5 where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.10 It Perimeter of Grate,PG= 3.60 ft Weir-Inlet Interception Capacity,QI-w= 0.39 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =COAG(Z9Yd)o'5 where Qi o=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(fC) g=Gravitational Constant(ft/sec?) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.10 It Clear Opening Area of Grate,AG= 1.36 ft? Orifice-Inlet Interception Capacity,Q1-0= 2.44 cfs Gravitational Constant,g= 32.17 ft/sec` Pagel of 2 F:1Monison-Maiede,IncTmjects\5305\003\Design Docs\Cah\Storm WateriPost-DevelopmentkInlet Capacities\Subbasin-02A-07_Inlet-Capacity-10-YR.xlsx Printed On:4/27/2016-10:29 PM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-7 I Combination Manhole & Inlet #1-03 Post-Development 10 Year Design Storm Frequency INTERCEPTIONDESIGN INLET -. . . INLET Calculate Design Inlet Interception Capacity _ Q, where Qi=Design Inlet Interception Capacity(cfs) EG=Inlet Grate Efficiency(%) Qr EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd 1 0.31 Jcfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.39 cfs Trash Accummulation or Clogging F 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted by Inlet, e I .31 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above • Inlet Capacity,• • Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 Ut 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 7.63 6.10 1 6.10 Inlet Capacity Summary 14.00 12.00 10.00 N 8.00 tWeirOperation -441-Adjusted Weir Operation e, I o- 6.00 -*-Orifice Operation m -4E--Adjusted Orifice Operations c 4.00 -ME-Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 F ftrfton-Maierle,IncTrojects15 3 0 5100 31Design DocslCalcslStorm WalerlPost-Developmentllnlet CapacitiesVSubbasin-02A-07_inlet-Capacity_10-YR.xlsx Printed On:4/27/2016-10:29 PM i Morrison Maierle ,-y,pl,,.s,je .- INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-4 1 Combination Manhole & Inlet #1-04 Post-Development 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 36 314" CURB BOX ADJUSTABLE 6"TO 9" 35 1/4' r5 3/4' 114 0 k 4 II + I),K T 6' DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 it Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG in = 1.25 it Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG in = 0.08 ft Manning's Roughness Width of Inlet Grate,W, in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,L, in = 2.94 it Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI—W=CWPGYII 1.5 where Qj_w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(it) Weir Coefficient,Cw Depth of Water Above the Grate,yd ft Perimeter of Grate,PG It Weir-Inlet Interception Capacity,Qj.w cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1_0 =C0AG(2gyd)1-5 where 01-0=Orifice-Inlet interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec 2) yd=Depth of Water Above the Grate(it) Orifice Coefficient,Co Depth of Water Above the Grate,yd it Clear Opening Area of Grate,AG= 1_3_6 ft2 Orifice-Inlet Interception Capacity,01,o cfs Gravitational Constant,g= 32.17 ft/sec` N:\5305\003%DesignDomkCalcslStoiTnWaterPost-DevelopmentinletCapacifies\Subbasin-028-G4 Inlet-Capacity_10-YR.x1sx Pr rited On:4/2812016 Page 1of AM2 -10:32 Morrison 00 Maierle rnyi„eis suvcyors ylaiss s<ia ntisi> INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-4 1 Combination Manhole & Inlet #1-04 Post-Development 10 Year Design Storm Frequency INTERCEPTIONDESIGN INLET -. . . INLET Calculate Design Inlet Interception Capacity _Q, where Qi=Design Inlet Interception Capacity(cfs) EG=Inlet Grate Efficiency(%) Qr Ec Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.58 cfs Inlet Grate Efficiency,Er Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.73 cfs Trash Accummulation or Clogging= P0% (Minimum of Weir and Odfice Capacities)=>WEIR OPERATION Runoff d by Inlet,Qd I Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, In let Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 1 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 1 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 8.00 - +Weir Operation a FAdjusted Weir Operation a m 6.00 Orifice Operation u v E Adjusted Orifice Operations c - - 4.00 -�K-Design Operation 11-01 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N15305\0030esign Docs\Calcs\Storm Water\Post-DevelopmenNnlet Capacities\Subbasin-02B-04_inlet-Capacity_10-YR.xlsx Printed On:4/28/2016-10:32 AM -] Morrison No Maierle enyintcrs sur veyars plannc:s scienuats INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-5 1 Combination Manhole & Inlet #1-05 Post-Development 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 30 3/4' - CURB BOX ADJUSTABLE 9"TO 9" -- 35 1/4'/� _ I — 1 1/2' 21\ { —_- 1' 33" 1 CONSTANTSDESIGN Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,We= 15.00 in = 1.25 ft Slope of Gutter at Inlet,Sc Depth of Gutter at Inlet,do= 1.00 in = 0.08 It Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET •• ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w=CWPGYa 1'S where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Po=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd Perimeter of Grate,Pc= 3.60 ft Weir-Inlet Interception Capacity,Qi.w= 0.26 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =CoAc(29Ya)°'S where 01-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ftlsee) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.08 ft Clear Opening Area of Grate,AG= 1.36 ft Orifice-Inlet Interception Capacity,Qlo= 2.14 cfs Gravitational Constant,g= 32.17 ft/sec` Page 1 of 2 N:1530510031DesignDocslCaicslStonnWaleAPosl-DevelopmenlllnlelCapacities\Subbasin-028-05_Inlet-Capacity_10-YR.xlsx Punted On:4/2A/2016ge1 A Morrison ME idiiiiiii Maierle "gin c.. 'ur y"' pl. c scien.i INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-5 1 Combination Manhole & Inlet #1-05 Post-Development 10 Year Design Storm Frequency INTERCEPTIONDESIGN INLET PONDED INLET Calculate Design Inlet Interception Capacity _Q, where Qi=Design Inlet Interception Capacity(cfs) Ec=Inlet Grate Efficiency(%) Qr Eo Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd 1 0.21 1cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.26 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted by Inlet,Qd I .21 cfs Calculated Inlet Interception Capacities for Various Runoff Depths AboveWater Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design . Inlet Capacity,•I.w • , Inlet Capacity,• '1,0 Inlet Capacity,Q, 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 1 6.61 5.29 5.29 1.00 80% 11.89 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 00 8.00 -+-Weir Operation eox v -i-•Adjusted Weir Operation m o. 6,p0 ?. Orifice Operation a u `m X Adjusted Orifice Operations c 4.00 -0Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:1530510030esign DocslCalcslStonn WalerTost-Developmentllnlet Capacifies\Subbasin-02B-05_Inlet-Capacity_10-YR.xlsx Printed On:4/28/2016-10:38 AM N� Morrison Maierle engineers surveyors planners s<ientsts INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2C I Combination Manhole & Inlet #1-06 Post-Development 10 Year Design Storm Frequency Design Storm Frequency= 10 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 36 3/4' CURB 80X ADJUSTABLE 6"TO 9" 35 1/4' DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,We= 15.00 in = 1.25 ft Slope of Gutter at Inlet,S6 Depth of Gutter at Inlet,do= 1.00 in = 0.08 It Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,LI= 35.25 in = 2.94 It Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w=CwPGYdl•5 where Qj_w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.14 ft Perimeter of Grate,P6= 3.60 It Weir-Inlet Interception Capacity,Qi-w= 0.65 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Qr—G =CoAG(29Yd)o'$ where Q1-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(fttsec) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.14 ft Clear Opening Area of Grate,AG= 1.36 Orifice-Inlet Interception Capacity,QId= 2.90 cfs Gravitational Constant,g= 32.17 ft/sec` Page 1 of 2 N:1530510031Design Docs1Ca1csl8tonn Water Post-Developmentllnlet Capacities\Subbasin-02C—Inlet-Capacity-10-YR.xlsx Pr nted On:4/28/2016-11:48 AM Morrison Maierle engin . S., yur p11111 "ie-El INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2C I Combination Manhole & Inlet #I-06 Post-Development 10 Year Design Storm Frequency DESIGN INLET INTERCEPTIONPONDED INLET Calculate Design Inlet Interception Capacity _ Q, where QI=Design Inlet Interception Capacity(cfs) Eo= Inlet Grate Efficiency(%) Qr 8o Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.52 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.65 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted . t .52 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 1 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 1 5.29 1.00 80% 11.89 9.52 1 7.63 1 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 8.00 t Weir Operation dl -*-Adjusted Weir Operation a a 6.00 ' Orifice Operation m u `v H Adjusted Orifice Operations c 4.00 -44--Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\0030esign Docs\Calcs\Storm Water\Post-Developmenftinlet Capacifies\Subbasin-02C_Inlet-Capacity_10-YR.xlsx Printed On:4/28/2016-11:48 AM --, Morrison Maierle engineers surveyors planners scientists APPENDIX E-3 25-YEAR DESIGN STORM RECURRENCE INTERVAL Li® Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Subbasin 1 C - Storm Garden Feature I Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) GRATE CHARACTERISTICS&DESIGN CONSTANTS �A Design Grate Elevation= 4723.30 ft DOUD` Concrete Storm Drainage Outlet Chase Overflow Elevation= 4723.43 ft Design Maximum Water Depth Above Inlet= 0.13 it 1.56 in Weir Perimeter of Grate= 3.90 ft Free Open Area of Grate= 0.90 It, Total#of Grates= 3 INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Inlet(s)Operating as a Weir Qr—W = CWPCYd 1.S where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Po=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate(s),yd= 0.14 ft Perimeter of Grate(s),Po= 11.70 ft Weir-Inlet Interception Capacity,Ql.w= 1.95 cfs Calculate Capacity of Inlet(s)Operating as an Orifice Q/—o =CoAG(29Yd)o-5 where Qi o=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec?) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.14 ft Clear Opening Area of Grates,AG= 2.70 ftz Orifice-Inlet Interception Capacity,Qj o= 5.61 cfs Gravitational Constant,g= 32.17 ft/see DESIGN INLET INTERCEPTION '• I I INLET Calculate Design Inlet Interception Capacity Qr =Q, where Qi=Design Inlet Interception Capacity(cfs) Ec Qp=Design Peak Storm Runoff to Inlet(cfs) Ec=Inlet Grate Efficiency(%) Design Storm Runoff to Inlet(s),Qd= 1.56 cfs Inlet Grate Efficiency,Ec Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Ql= 1.95 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted by Inlet,Qd 1.56 cfs Page 1 of 2 Rftno son-Maiede,IncTrojects15305\0030esign DooskUcslStorm Water\Post-Developmentllnlet CapacitieslSubbasin-01C_Inlet-Capacities_25-YR.xlsx Pdnted On:4/26/2016-9:17 PM ' Morrison lll� Maierle engin ers suiv y" -1>I "i,"t.- INLET INTERCEPTION CAPACITY ANALYSES Subbasin 1 C - Storm Garden Feature I Post-Development 25 Year Design Storm Frequency Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Inlet,Yd Efficiency, Inlet Capacity,Q1.w Inlet Capacity,Q'I.w Inlet Capacity,Qlo Inlet Capacity,Q'14 Inlet Capacity,Q, 0.05 80% 0.43 0.35 3.39 2.71 0.35 0.10 80% 1.22 0.98 4.79 3.84 0.98 0.15 80% 2.24 1.79 5.87 4.70 1.79 0.20 80% 3.45 2.76 6.78 5.42 2.76 0.25 80% 4.83 3.86 7.58 6.06 3.86 0.30 80% 6.34 5.08 8.30 6.64 5.08 0.40 80% 9.77 7.81 9.59 7.67 7.67 0.50 80% 13.65 10.92 10.72 8.58 8.58 0.75 80% 25.08 1 20.06 1 13.13 10.50 10.50 1.00 80% 38.61 1 30.89 1 15.16 12.13 12.13 Inlet Capacity Summary 45.00 40.00 35.00 30.00 o -+-Weir Operation 25.00 v -#-Adjusted Weir Operation o-20.00 Orifice Operation v u `m -}f-Adjusted Orifice Operations 15.00 -)I(-Design Operation 10.00 - I` 5.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 P ftnison-Maiede,Inc\Projects\5305\0030esign DocslCalcs\Storm Water\Post-Development\Inlet Capacities\Subbasin-01C_inlet-Capacities_25-YR.xlsx Printed On:4/26/2016-9:17 PM Morrison 1� Maierle engineers-%u ,yo planners.scientis is INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-1 I Combination Manhole & Inlet #I-01 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS �. 36 3/4' CURB BOX ADJUSTABLE 6"TO 6" 35 1/4' -� - - [_5 3/4' 1 T 3/•1' I I/4'w R21i' \` 33 I I� CONSTANTSDESIGN Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp= 2•77% Width of Gutter at Inlet,We= 15.00 in = 1.25 ft Slope of Gutter at Inlet,So Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,W1= 17.75 in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Q7—w=CWPGYd 1's where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Pc=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd Perimeter of Grate,Pc= 3.60 ft Weir-Inlet Interception Capacity,Qi-w= 0.46 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Qr-0 =CoAG(29Yd)°'s where Qi-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.12 ft Clear Opening Area of Grate,AG= 1.36 ft Orifice-Inlet Interception Capacity,QI-0= 2.59 CIS Gravitational Constant,g= 32.17 ft/sec` Page 1 of 2 W5305030esign Docs\CalcslStonn WaterlPost-Developmenl\lnlel Capacities\Subbasin-02A-01_Inlet-Capacity_25-YR.xlsx Printed On:4/27/2016-10:13 AM Morrison idiiiiiii Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-1 I Combination Manhole & Inlet #I-01 Post-Development 25 Year Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity _ QP where Qi=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) Qr EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.37 cfs Inlet Grate Efficiency,Eo Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.46 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted by Inlet, e t .37 cfs Calculated Inlet Interception Capacities for Various Runoff Depths AboveWater Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design • Inlet Capacity,.I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 1 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 N 8.00 -h-Weir Operation v t-Adjusted Weir Operation a 6.00 -Orifice Operation m01 V w 000-11 -4E4Adjusted Orifice Operations 4.00 - Design Operation 2.00 0.00 - 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\0030esign Docs\Calcs0orm Waler\Post-Developmentllnlel Capacities\Subbasin-02A-01 Intel-Capacity_25-YR.xlsx Printed On:4127/2016-10:13 AM Morrison No Maierle engineers survcyor> planners scientists INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-2 I Combination Manhole & Inlet #1-02 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 36 3/4• -I CURB BOX ADJUSTABLE 6"TO 9" 35 1/4 • 17 3/4' [-5 3/4' __ _.. _. l 6( i 33" 43 31' CONSTANTSDESIGN Curb Height at Inlet,he= 5.50 in = 0.46 it Pavement X•Slope at Inlet,Sp= 2 61 Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 it Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—W=CWPOYd 1.5 where Qi.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.13 ft Perimeter of Grate,PG= 3.60 ft Weir•Inlet Interception Capacity,Qi.w= 0.57 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q/-0 =CoAG(29yd)o'S where 01.0=Orifice-Inlet Interception Capacity(cis) Co=Orifice Coefficient AG=Clear Opening Area of Grate(112) g=Gravitational Constant(ft/seC2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.13 ft Clear Opening Area of Grate,AG= 1.36 ftz Orifice"Inlet Interception Capacity,Qj o= 2.77 cfs Gravitational Constant,g= 32.17 ft/sec` N:\5305\0030esign Docs\Calcs\Storm WaterlPost-Develo Page of 2 g prtrenlllnlel CapaciOeslSubbasin-02A-02_Inlet-Capacity_25-YR.xlsz Printed On:4/27I2016-10:21 AM ® Morrison ME Will Maierle engin crs survcyaisplanners-scientists INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-2 I Combination Manhole & Inlet #1-02 Post-Development 25 Year Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity _Q, where Qi=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) 47 EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.45 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.57 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted . 0.45 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gufter,Yd Efficiency, In let Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0,15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80 0 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 yN. U 8.00 t Weir Operation v -11-Adjusted Weir Operation m " 0 6.00 Orifice Operation v u m -)4-Adjusted Orifice Operations c 4.00 - -#-Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:1530510031Design DocslCaicslStonn WaterlPost-Developmentllnlet CapacifieslSubbasin-02A-02_InW-Capac y_25-YR.x1sx Printed On:4/27/2016-10:21 AM 1_ " Morrison ME Maierle g"11111-1111"Y", P1 I—. INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-7 I Combination Manhole & Inlet #1-03 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS CURB BOX DJUSTABLEW-TOV 35 114'- 117 314' 5 3W 7 3/4 f 1/4 4 t it 4 _Z T W 33'- DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 it Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 It Slope of Gutter at Inlet,Sc Depth of Gutter at Inlet,do in = 0.08 It Manning's Roughness Width of Inlet Grate,W, in = 1.48 It Coefficient for Gutter,nG Length of Inlet Grate,L, in = 2.94 It Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI—W= CWPGYd 1.5 where Qj_w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(it) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw Depth of Water Above the Grate,Yd ft Perimeter of Grate,PG It Weir-Inlet Interception Capacity,Qj.w cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1_0 =CoAG(2gyd)0-5 where Q1_0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(fe) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,Yd ft Clear Opening Area of Grate,AG fe Orifice-Inlet Interception Capacity,Q1.0 cfs Gravitational Constant,g= 32.17111/see F:Worfton-Malede,IncTrojects\5305\0030esign DocskCalcslStornn WaterkPost-DeveloprnentVnlet Capac�ieskSubbasin-02A-07_lnlet-Capacity 25-YR.xlsx Page 1of2 Printed On:4127016-10:33 PM Morrison mill Maierle •„°ini i,s s,irveyo,s.„I.,,,,i•,s av ic,itiv5 INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-7 I Combination Manhole & Inlet #1-03 Post-Development 25 Year Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity _QP where QI=Design Inlet Interception Capacity(cfs) EG=Inlet Grate Efficiency(%) Qr EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.54 cfs Inlet Grate Efficiency,Eo Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.68 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff d by Inlet,Qd I .54 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,• '1.0 Inlet Capacity,Q, 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 1 7.63 1 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 8•00 -4--Weir Operation v --*-Adjusted Weir Operation a n• 6.00 - Orifice Operation m m I -X--Adjusted Orifice Operations c ( 4.00 -,:1.Design Operation 2.00 1.4 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 F1Moaison-Maiede,Inc\Projeds1530W030esign Docs\Ca1WStonn WatehPost-Devebpmentllnlet Capacdies\Subbasin-02A-07_Inlet-Capadty_25-YR.x1sx Printed On:4/27/2016-10:33 PM Morrison ME Maierle i ,y.,, pl, 6- INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-4 1 Combination Manhole & Inlet #1-04 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 3G 3/4* BOX ADJUSTABLE 6'TO 9" 35 114' r5 314' 17 3/,1*- r 1 1/41 •q21 I 1-1 1/2' 1-1 114 r2' 112, 4 t 6. 43` DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG in = 1.25 fi. Slope of Gutter at Inlet,SG= Depth of Gutter at Inlet,dr, in = 0.08 ft Manning's Roughness Width of Inlet Grate,W, in = 1.48 ft Coefficient for Gutter,nG Length of Inlet Grate,L, in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI—W=CWPGYd 1.5 where Qj_w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(fit) Weir Coefficient,Cw Depth of Water Above the Grate,Yd ft Perimeter of Grate,PG It Weir-Inlet Interception Capacity,Ql.w cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1_0 =CoAG(2gyd)0.1 where Q1_o=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/seC2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co Depth of Water Above the Grate,Yd ft Clear Opening Area of Grate,AG fi? Orifice-Inlet Interception Capacity,01.0 cfs Gravitational Constant,g= 32.17 ft/sec` N:k5305k003OesignDoc,slCaics\StormWate�Post-DevelopmentkinletCapacifieslSubbasin-028-" n1et-CapadyJ Pr nted On:4/2812016 5-YR.x1sx Page 1 of 2 -10:33 AM Morrison No Maierle engineers sprveyors planners scicnlsis INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-4 1 Combination Manhole & Inlet #1-04 Post-Development 25 Year Design Storm Frequency INTERCEPTIONDESIGN INLET PONDED INLET Calculate Design Inlet Interception Capacity Qr QP where Qi=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) =- EG Op=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 1.04 cfs Inlet Grate Efficiency,Ea Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 1.30 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted by Inlet, e 1.04 cis Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth G rate Weir Operation Adjusted Weir Oriflce Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 1 4.21 3.36 5.40 4.32 1 3.36 0.75 80% 1 7.73 6.18 6.61 5.29 5.29 1.00 1 80% 11.89 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 N 100 8.00 --*--Weir Operation °C 00# -FAdjusted Weir Operation m a 6.00 lee -Orifice Operation a `m ➢Q�Adjusted Orifice Operations c 4.00 - Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\0030esign Docs\Calcs\Stonn Water\Post-Developmenlllnlet Capaci0es\Subbasin-02B-04_Inlet-Capacity_25-YR.xlsx Panted On:4128/2016-10:33 AM Morrison Maierle en9inecs-w 1ya .plan"',."te t"m INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-5 1 Combination Manhole & Inlet #1-05 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 3G 3/4' - CURB BOX ADJUSTABLE B"TO 9" as v4• .0 �5 3/4' 17 3/4' 1/4 12 r 7 JI�a,K T�� _ 33, 43' 31' DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 it Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 It Coefficient for Gutter,nG Length of Inlet Grate,Li= 35.25 in = 2.94 it Manning's Roughness Coefficient for Pavement,np= 0.016 INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Q/—w=CWPGYd 1'S where QI-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(it) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.13 it Perimeter of Grate,PG= 3.60 it Weir-Inlet Interception Capacity,QI.w= 0.55 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q/-0 =CoAc(29Yd)°'S where QId=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/seC2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.13 ft Clear Opening Area of Grate,AG= 1.36 Orifice-Inlet Interception Capacity,QI o= 2.73 cfs Gravitational Constant,g= 32.17 ft/see Page 1 of 2 N:1530510031Design DoGslCalcslStorm Water\Post-Developmenlllnlet CapaciOeslSubbasin-02B-05_Inlet-Capacity_25-YR.xlsx Pr nted On:4I281201age 1 2 Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-5 1 Combination Manhole & Inlet #1-05 Post-Development 25 Year Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity _Q, where Qi=Design Inlet Interception Capacity(cfs) Ec=Inlet Grate Efficiency(%) Qr Eo Op=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.44 cfs Inlet Grate Efficiency,Er Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.55 cfs Trash Accummulation or Clogging= 40% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION InterceptedRunoff by Inlet,Odr . Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth G rate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 1 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 8.00 -0 Weir Operation z -0--Adjusted Weir Operation v a a m l -- Adjusted Orifice Operations 6.00 Orifice Operation c 4.00 -- �#=Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:1530510030esign DocslCalcslStorm WaterlPost-Developmenl\Inlet Capacities\Subbasin-028-05_Inlet-Capacity_25-YR.xlsx printed On:4/28/2016-10:39 AM .- Morrison No Maierle enyincers suvcyors Planners scien,y,y INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2C I Combination Manhole & Inlet #1-06 Post-Development 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 36 3/4' - CURB BOX ADJUSTABLE 6"TO 9'• 35 1/4' 3!n' 7 3/4' s ! v4'; z,r � � / ;' \• Aa 43' 31'� DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 it Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 It Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 it Coefficient for Gutter,no Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I -• ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w=CWPGYd 1'S where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.23 it Perimeter of Grate,PG= 3.60 ft Weir-Inlet Interception Capacity,Qi-w= 1.28 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Qr—o =CDAG(29Yd)o'S where Qi-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/se62) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.23 ft Clear Opening Area of Grate,AG= 1.36 ft Orifice-Inlet Interception Capacity,Qld= 3.63 cfs Gravitational Constant,g= 32.17 ft/sec` W530510030esign Docs\CalcslStonn WaWPost-Develo Page 1 of 2 pmentllnlet Capacities\Subbasin-02C_Inlet-Capac ty_25-YR.xlsx Printed On:4/28/2016-11:49 AM Morrison ON Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2C I Combination Manhole & Inlet #1-06 Post-Development 25 Year Design Storm Frequency DESIGN INLET INTERCEPTIONPONDED INLET Calculate Design Inlet Interception Capacity _QP where Qi=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) Qr EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 1.02 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 1.28 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted . 1.02 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,•l.w Inlet Capacity,•I.w • , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 1 7.63 1 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 N 8.00 --0--Wei r 0 perati on 0 M-Adjusted Weir Operation a - a 6.Op - Orifice Operation aC 6 a �E-Adjusted Orifice Operations 4.00 -*--Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\0031Design DocslCaIcs0onn Water,Post-Developmentllnlet Capacities\Subbasin-02C_Inlet-Capacity_25-YR.xlsx Printed On:4/2812016-11:49 AM Morrison Maierle engineers surveyors planners scientists APPENDIX E-4 100-YEAR DESIGN STORM RECURRENCE INTERVAL T Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Subbasin 1 C - Storm Garden Feature I Post-Development 100 Year Design Storm Frequency Design Storm Frequency= 100 Years (Enter WQual,2,5,10,25,50,or 100) GRATE CHARACTERISTICS CONSTANTS Design Grate Elevation= 4723.30 it DpOD` Concrete Storm Drainage Outlet Chase Overflow Elevation= 4723.43 ft Design Maximum Water Depth Above Inlet= 0.13 it 1.56 in Weir Perimeter of Grate= 3.90 it Free Open Area of Grate= 0.90 ft' Total#of Grates= 3 INTERCEPTIONINLET APA 'I I • ORIFICE OPERATION Calculate Capacity of Inlet(s)Operating as a Weir QI-W = CWPcYd1.5 where Qi-w=Weir-Inlet interception Capacity(cfs) Cw=Weir Coefficient Pc=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate(s),yd= 0.19 ft Perimeter of Grate(s),Po= 11.70 it Weir-Inlet Interception Capacity,QI-w= 3.20 cfs Calculate Capacity of Inlet(s)Operating as an Orifice Q1-0 =COAc(29YOO.5 where Qi-o=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ftiseC) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.19 ft Clear Opening Area of Grates,AG= 2.70 ft Orifice-Inlet Interception Capacity,Qla= 6.61 cfs Gravitational Constant,g= 32.17 ftfsecZ INTERCEPTIONDESIGN INLET •A '1 I I INLET Calculate Design Inlet Interception Capacity Qr = QP where Qi=Design Inlet Interception Capacity(cfs) - Ec QP=Design Peak Storm Runoff to Inlet(cfs) Eo=Inlet Grate Efficiency(%) Design Storm Runoff to Inlet(s),Qd= 2.56 cfs Inlet Grate Efficiency,Ec Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 3.20 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION InterceptedRunoff by Inlet, • Page 1 of 2 F:1Monison-Malede,IncTrojecls15 3 0 510 0 31Design DocslCalcslStorm WaleAl'ost-Developmenlllnlet CapacilieslSubbasin-01C_Inlet-Capaciks_100-YR.xlsx Pdnled On:4/26/2016-9:21 PM n Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Subbasin 1 C - Storm Garden Feature I Post-Development 100 Year Design Storm Frequency Calculate Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Inlet,Yd Efficiency, Inlet Capacity,Q1.w Inlet Capacity,Q'I,w Inlet Capacity,Q1_0 Inlet Capacity,Q'1,0 Inlet Capacity,Q, 0.05 80% 0.43 0.35 3.39 2.71 0.35 0.10 80% 1.22 0.98 4.79 3.84 0.98 0.15 80% 2.24 1.79 5.87 4.70 1.79 0.20 80% 3.45 2.76 6.78 5.42 2.76 0.25 80% 4.83 3.86 7.58 6.06 3.86 0.30 80% 6.34 5.08 8.30 6.64 5.08 0.40 80% 1 9.77 7.81 9.59 7.67 7.67 0.50 80% 13.65 10.92 10.72 8.58 8.58 0.75 80% 25.08 20.06 1 13.13 10.50 10.50 1.00 80% 38.61 30.89 15.16 12.13 12.13 Inlet Capacity Summary 45.00 - 40.00 35.00 30.00 o tWeir Operation 0 25.00 z -6-Adjusted Weir Operation v a.20.00 Orifice Operation w u m --E-Adjusted Orifice Operations c 15.00 Design Operation 10.00 = ' 5.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 Rftnison-Maiede,IncTrojecls15 3 0 510 0 31Design DocslCalcslStonn WaterlPost-Developmentllnlet Capac tieslSubbasin-01 C_Inlet-Capac ties_100-YR.xlsx Printed On:4/26/2016-9:21 PM Morrison Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-1 I Combination Manhole & Inlet #1-01 Post-Development 100 Year Design Storm Frequency Design Storm Frequency= 100 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 3r 3/4" I CURB BOX ADJUSTABLE 6' 70 9" 35 114'- 17314'-_ 33' DESIGN CONSTANTS Curb Height at Inlet,he in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,Wr in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,do in = 0.08 ft Manning's Roughness Width of Inlet Grate,W, in = 1.48 it Coefficient for Gutter,nG Length of Inlet Grate,L, in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI-W=CWPGYd l s where Qjw=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(fit) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw Depth of Water Above the Grate,yd ft Perimeter of Grate,PG ft Weir-Inlet Interception Capacity,Qj.w cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1_0 =CoAG(2gyd)o-5 where Q1_0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(fi?) g=Gravitational Constant(ftlsec) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co Depth of Water Above the Grate,yd it Clear Opening Area of Grate,AG ft2 Orifice-Inlet Interception Capacity,Qjo cis Gravitational Constant,g= 32.17 ft/sec` N:15305\0030esignDocskCalcslStormWater\Post-Development\lnletCapacifies\Subbasin-02A-01-Iniet-Capacity Pr nted On:4/2712016 100-YR.x1sx Pagel of AM2 i -10:14 Morrison No Maierle nnglneera surveyors planners ssicnn sis INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-1 I Combination Manhole & Inlet #I-01 Post-Development 100 Year Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I -• . . INLET Calculate Design Inlet Interception Capacity _ Q, where QI= Design Inlet Interception Capacity(cfs) EG=Inlet Grate Efficiency(%) Qr EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.57 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.72 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted . I .57 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,•I.w • , Inlet Capacity,. • 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 1 11.89 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 N 8.00 tWeirOperation v -411-Adjusted Weir Operation u m 6.00 Orifice Operation u m --N-Adjusted Orifice Operations c 4.00 -*-Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 W530510030esign Docs1C&sl9torm Water Post-Developmentllnlet CapacifieslSubbasin-02A-01_Inlet-Capacity_100-YR.xlsx Printed On:4/2712016-10:14 AM Morrison ME Maierle enginears surveyors planners.asientisis INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-2 I Combination Manhole & Inlet #1-02 Post-Development 100 Year Design Storm Frequency Design Storm Frequency= 100 Years (Enter WQual,2,5,10,25,50,or 100) 3G 3/4" �I CURB HOX ADJUSTABLE 9"TO e" = w as t/a 17 314" 1/4 ' tj 33' DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,Wo= 15.00 in = 1.25 ft Slope of Gutter at Inlet,So= Depth of Gutter at Inlet,do= 1.00 in = 0.08 It Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,LI= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET -O ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Q7—W=CWPcYd 1.5 where Qi.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,ye= 0.18 ft Perimeter of Grate,Pc= 3.60 ft Weir-Inlet Interception Capacity,Ql.w= 0.93 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q7-0 =CoAc(Z9Yd)o's where Q1-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient Ao=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.18 It Clear Opening Area of Grate,AG= 1.36 112 Orifice-Inlet Interception Capacity,Qtv= 3.27 cfs Gravitational Constant,g= 32.17 ftlsec` N:15 3 0 510 0 31Desi n DocslCalcslSlorm WaterlPost-Develo Page 1 of 2 g pmentllnlet CapacitieslSubbasin-02A-02 Inlet Capac ly_100-YR.xlsx Printed On:4/2712016-10:23 AM Morrison No Maierle engineers surveyura ylnnca sricnuaa INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-2 I Combination Manhole & Inlet #1-02 Post-Development 100 Year Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity _Q, where QI= Design Inlet Interception Capacity(cfs) Ec=Inlet Grate Efficiency(%) Qr EG Qp= Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.75 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 0.93 cfs Trash Accummulation or Clogging= 20"/° (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted by Inlet, to I .75 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above • Inlet Capacity,• • , Inlet Capacity,• '14 Inlet Capacity,Q, 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 8.00 _ tWeirOperation v -41-Adjusted Weir Operation r 0 6.00 Orifice Operation m d X-Adjusted Orifice Operations c 4.00 Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\003\Design Docs\Calcs\Storm Water\Post-Development\Inlet Capaci0es\Subbasin-02A-02_Inlel-Capacity_100-YR.xlsx Printed On:4/27/2016-10:23 AM '__, Morrison llNo Maierle engineers sr,rvcyors I,lan„ers sricirtisls INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-7 I Combination Manhole & Inlet #1-03 Post-Development 100 Year Design Storm Frequency Design Storm Frequency= 100 Years (Enter WQual,2,5,10,25,50,or 100) 36 3/4' CURB BOX ADJUSTABLE 6"TOO" 35 1/4' 5 3/4" 2W On, 4 1, ................. �j 33 DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 It Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,We= 15.00 in = 1.25 It Slope of Gutter at Inlet,Sc Depth of Gutter at Inlet,do= 1.00 in = 0.08 It Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 it Coefficient for Gutter,no Length of Inlet Grate,LI= 35.25 in = 2.94 it Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w= CWPcYd1.5 where Ol.w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Pc=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd Perimeter of Grate,P6= 3.60 It Weir-Inlet Interception Capacity,Qi.w= 1.03 cis Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =CoAG(z9Yd)o•s where Qi-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft2) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.20 ft Clear Opening Area of Grate,An= 1.36 ft2 Orifice-Inlet Interception Capacity,Qj o= 3.38 cfs Gravitational Constant,g= 32.17 ft/see Page 1 of 2 Rftnison-Maierle,IncTmlects\530510030esign D6cs1CaIcslStorm WaterlPost-DevebpmentVnlet Capacities\Subbasin-02A-07_Inlet-Capacity_100-YR.xlsx Printed On:4/27/2016-10:36 PM ' Morrison ME WiliIiiiiii Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2A-7 I Combination Manhole & Inlet #1-03 Post-Development 100 Year Design Storm Frequency INTERCEPTIONDESIGN INLET •• , , INLET Calculate Design Inlet Interception Capacity _Q, where Qi=Design Inlet Interception Capacity(cfs) Ec=Inlet Grate Efficiency(%) Qr E, Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.83 cfs Inlet Grate Efficiency,Ec Inlet Discharge Reduction Due to Design Inlet Interception Capacity,QI= 1.03 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted by lnlet,Qd 0.83 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,.I.w • , Inlet Capacity,• '1.0 Inlet Capacity,Q, 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 1 9.52 1 7.63 1 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 0 8.00 -0-Weir Operation a -0-Adjusted Weir Operation d E 6.00 Orifice Operation m u v -E--Adjusted Orifice Operations c 4.00 - -M(-•Design Operation 2.00 -004 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 P:\Momson-Maierle,IncTrojectsWOM0030esign Docs\Calrs\Storm WaterlPost-DevelopmenhInlet Capac ties\Subbasin-02A-07_Inlet-Capacity_100-YR.xlsx Pdnted On:4/27/2016-10:36 PM Morrison ON Wililim Maierle enqneers surveyors pl,snners s<ensists INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-4 1 Combination Manhole & Inlet #1-04 Post-Development 100 Year Design Storm Frequency Design Storm Frequency= 100 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 3e 3/4" CURB BOX ADJUSTABLE 9"TO 9" - - 17 3/4' 33"- CONSTANTSDESIGN Curb Height at Inlet,he= 5.50 in = 0.46 It Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,We= 15.00 in = 1.25 ft Slope of Gutter at Inlet,So Depth of Gutter at Inlet,do= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 It Coefficient for Gutter,no Length of Inlet Grate,Li= 35.25 in = 2.94 It Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir Qr—w=CWPcYdl'S where QI-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient Po= Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.32 ft Perimeter of Grate,Po= 3.60 ft Weir-Inlet Interception Capacity,Qi.w= 2.15 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Qr—o =CoAc(29yd)o-s where 01-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.32 It Clear Opening Area of Grate,AG= 1.36 ftz Orifice-Inlet Interception Capacity,QI-0= 4.32 cfs Gravitational Constant,g= 32.17 fVsec` Page 1 of 2 N:1530%031DesignDocstCalcslStomtWaleAPost-DevelopmentllnletCapacities\Subbasin-02B-04_lnlet-Capacity_100-YR.xlsx Printed On:4I281201age1 A Morrison l� Maierle INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 26-4 1 Combination Manhole & Inlet #1-04 Post-Development 100 Year Design Storm Frequency INTERCEPTIONDESIGN INLET PONDED INLET Calculate Design Inlet Interception Capacity Q QP where Qi=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) E, Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 1.72 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 2.15 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted by Inlet,Od 1.72 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,• Inlet Capacity,• . , Inlet Capacity,• • 0.05 80% 0.13 0.11 1.71 737 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 1 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 1 5.40 1 4.32 3.36 0.75 80% 7.73 6.18 1 6.61 1 5.29 5.29 1.00 80% 11.89 9.52 1 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 N 8.00 - -0--Weir Operation 01� u -11-Adjusted Weir Operation w �- a 6.00 Orifice Operation u V w 4 Adjusted Orifice Operations c 4.00 - -W-Design Operation 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305030esign DocslCalcs\Stone WateAPost-DevelopmenNnlet Capacides\Subbasin-02B-04_Inlet-Capacity_100-YR.xisx Printed On:4/2812016-10:34 AM M� Morrison idiiiiii Maierle enyinecr> surveyor planner> scientists INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2B-5 I Combination Manhole & Inlet #1-05 Post-Development 100 Year Design Storm Frequency Design Storm Frequency= 100 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 30 3/4' —«'I CURB BOX ADJUSTABLE 6"TO 8" - � 35114• 1-1 112' — 1 Iw1 „4' ?• � i IDL 33 _—'j'� _ 43" CONSTANTSDESIGN Curb Height at Inlet,Inc= 5.50 in = 0.46 ft Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,WG= 15.00 in = 1.25 ft Slope of Gutter at Inlet,SG Depth of Gutter at Inlet,dG= 1.00 in = 0.08 ft Manning's Roughness Width of Inlet Grate,WI= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,LI= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INTERCEPTIONINLET •• ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI—w=CWPGYd 1'S where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(it) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.17 ft Perimeter of Grate,Pc= 3.60 ft Weir-Inlet Interception Capacity,QI-w= 0.81 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Q1-0 =CoAG(Z9Yd)o'S where 01-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0,70 Depth of Water Above the Grate,yd= 0.17 ft Clear Opening Area of Grate,AG= 1.36 ft2 Orifice-Inlet Interception Capacity,Q1-0= 3.12 cfs Gravitational Constant,g= 32.17 ft/sec` Page 1 of 2 N:153051003\Design Docs\Calcs\Storrr,Water\Post-Development\Inlet Capacities\Subbasin-02B-05_Inlet-Capacity_100-YR.xlsx Printed On:4/2B/201age 1 f 2 Morrison ME milimill Maierle cnyineeri .ut veyurf ylanncia scenlals INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 213-5 1 Combination Manhole & Inlet #1-05 Post-Development 100 Year Design Storm Frequency DESIGN INLET INTERCEPTION CAPACITY I PONDED INLET Calculate Design Inlet Interception Capacity _ Qp where Qi= Design Inlet Interception Capacity(cfs) Eo=Inlet Grate Efficiency(%) Q/ Eo Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 0.65 cfs Inlet Grate Efficiency,EG Inlet Discharge Reduction Due to Design Inlet Interception Capacity,Qi= 0.81 cfs Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)=>WEIR OPERATION Runoff Intercepted by Inlet,Od I .65 cfs Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth G rate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above • Inlet Capacity,•l.w01.0 Inlet Capacity,• '1,0 Inlet Capacity,Q, 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80% 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 5.29 5.29 1.00 80% 11.89 9.52 1 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 c8.00 _ 0.1 -$--Weir Operation - Adjusted Weir Operation � C a 6.00 Orifice Operation m `' -0-Adjusted Orifice Operations c 4.00 -*--Design Operation 2.00 -004 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:15305\0030esign DocslCa1csl5tonn Water\Post-Development\Inlet Capacities\Subbasin-02B-05_Inlet-Capacity_100-YR.xlsx Printed On:4/28/2016-10:40 AM Morrison ME Maierle �oa�een surveyan panncs scansi: INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2C I Combination Manhole & Inlet #1-06 Post-Development 100 Year Design Storm Frequency Design Storm Frequency= 100 Years (Enter WQual,2,5,10,25,50,or 100) INLET CHARACTERISTICS 3e 3/4' -I CURB BOX ADJUSTABLE 6"TO 9" 17314• -� , 114— 33' I _43 — DESIGN CONSTANTS Curb Height at Inlet,he= 5.50 in = 0.46 It Pavement X-Slope at Inlet,Sp Width of Gutter at Inlet,We= 15.00 in = 1.25 ft Slope of Gutter at Inlet,So Depth of Gutter at Inlet,do= 1.00 in = 0.08 It Manning's Roughness Width of Inlet Grate,Wi= 17.75 in = 1.48 ft Coefficient for Gutter,no Length of Inlet Grate,Li= 35.25 in = 2.94 ft Manning's Roughness Coefficient for Pavement,np INLET INTERCEPTION CAPACITY I PONDED INLET- WEIR VERSUS ORIFICE OPERATION Calculate Capacity of Grate Inlet Operating as a Weir QI—W =CWPGYd 1 5 where Qi-w=Weir-Inlet Interception Capacity(cfs) Cw=Weir Coefficient PG=Perimeter of Grate,Excluding Bar Widths and Side Against Curb(ft) yd=Depth of Water Above the Grate(ft) Weir Coefficient,Cw= 3.30 Depth of Water Above the Grate,yd= 0.31 ft Perimeter of Grate,Pc= 3.60 It Weir-Inlet Interception Capacity,QI-w= 2.04 cfs Calculate Capacity of Grate Inlet Operating as an Orifice Qr—o =CoAG(29Yd)°'S where Qi-0=Orifice-Inlet Interception Capacity(cfs) Co=Orifice Coefficient AG=Clear Opening Area of Grate(ft) g=Gravitational Constant(ft/sec2) yd=Depth of Water Above the Grate(ft) Orifice Coefficient,Co= 0.70 Depth of Water Above the Grate,yd= 0.31 ft Clear Opening Area of Grate,AG= 1.36 ft2 Orifice-Inlet Interception Capacity,QI.O= 4.24 cfs Gravitational Constant,g= 32.17 ft/sec` Pagel of 2 W530510030esign DocslCalcslStonn WalerlPost-Developmentllnlet CapacilieslSubbasin-02C—Inlet-Capacity-100-YR.xlsx Printed On:4/28/2016-11:51 AM Morrison 111No Maierle engl°eers survmymia planners-scisnrisn INLET INTERCEPTION CAPACITY ANALYSES Springhill Suites - Subbasin 2C I Combination Manhole & Inlet #1-06 Post-Development 100 Year Design Storm Frequency DESIGN INLET INTERCEPTIONPONDED INLET Calculate Design Inlet Interception Capacity _QP where QI=Design Inlet Interception Capacity(cfs) EG= Inlet Grate Efficiency(%) QI EG Qp=Design Peak Storm Runoff to Inlet(cfs) Design Storm Runoff to Inlet,Qd= 1.63 cfs Inlet Grate Efficiency,EG Design Inlet Interception Capacity,QI= 2.04 cfs Inlet Discharge Reduction Due to Trash Accummulation or Clogging= 20% (Minimum of Weir and Orifice Capacities)_>WEIR OPERATION Runoff Intercepted . Calculated Inlet Interception Capacities for Various Runoff Depths Water Depth Grate Weir Operation Adjusted Weir Orifice Operation Adjusted Orifice Design Above Gutter,Yd Efficiency, Inlet Capacity,Q1w Inlet Capacity,Q'Iw Inlet Capacity,Q1.o Inlet Capacity,Q'1.0 Inlet Capacity,Q, 0.05 80% 0.13 0.11 1.71 1.37 0.11 0.10 80% 0.38 0.30 2.41 1.93 0.30 0.15 80% 0.69 0.55 2.96 2.36 0.55 0.20 80% 1.06 0.85 3.41 2.73 0.85 0.25 80% 1.49 1.19 3.82 3.05 1.19 0.38 80% 2.73 2.19 4.67 3.74 2.19 0.50 80 0 4.21 3.36 5.40 4.32 3.36 0.75 80% 7.73 6.18 6.61 1 5.29 5.29 1.00 80% 11.89 1 9.52 7.63 6.10 6.10 Inlet Capacity Summary 14.00 12.00 10.00 8.00 --*-Weir Operation v -1111-Adjusted Weir Operation m o- 6.00 - -sG�-�Orifice Operation -N-Adjusted Orifice Operations c 4.00 - -)*-Design Operation 11,000, 2.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth of Runoff Above Inlet Grate(ft) Page 2 of 2 N:\5305\0030esign DocslCalcslStonn WaterlPost-Developmentllnlel Capacities\Subbasin-02C_Inlet-Capacity_100-YR.xlsx Printed On:4128/2016-11:51 AM APPENDIX F PIPE SIZING SUMMARIES Morrison � Maierle engineers surveyors planners scientists Morrison Maierle PIPE SIZING ANALYSES Pipe RD-1-1 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT I • TA Contributing Drainage Basin, Subbasin 1A-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-1-1 to Storm Drain Pipe RD-1 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.1307 cfs = 58.68 gpm Design Minimum Flow Velocity,Vmin- 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 3.10 in = 0.26 ft Design Pipe Diameter,D= 4.026 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 ft Manning's Roughness Coefficient-Full,nmll Design Pipe Slope,S= 2.08 % 0.0208 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'°= 2.30 in = 0.19 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 7.53 in = 0.05 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 6.91 in = 0.58 It Hydraulic Radius at Design Minimum Velocity,R'h= 1.09 in = 0.09 ft Manning Roughness Ratio at Design Min.Velocity,Onfull Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.73 % 0.0173 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,do= 2.19 in = 0.18 ft Cross-Sectional Flow Area at Design Slope,A= 7,07 in = 0.05 ft2 Wetted Perimeter at Design Slope,P= 6.67 in = 0.56 ft ) 4.03 Hydraulic Radius at Design Slope,Rh= 1.06 in = 0.09 ft Top Width of Flow at Design Slope,T= 4.01 in = 0.33 ft 2.19 Manning Roughness Ratio at Design Slope,n/mm1, Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,do= 2.43 in = 0.20 ft Critical Slope at Design Flow Rate,S,= 1.42 % 0.0142 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.66 ft/sec Pipe Full Flow Rate at Design Slope,Qrull= 0.26 cfs = 125.44 gpm Pipe Percent Full= 46.78% Page 1 of 1 N:1530510031Design DocsQ1cslSlonn WaterTost-DevelopmentTipe Sizing125-Year Design StorTnTipe_RD-01-01_25-YR.xlsx P nted On:4/26I2016ge 1 AM 1 Morrison so Maierle rnyiii.rz ......... ,.luirnrrz scirnrsts PIPE SIZING ANALYSES Pipe RD-1 B 1 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasin 1A-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-1-1 to Building Roof Drain Connection#RD-1-2 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.1307 cis = 58.68 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,D,°i°= 3.10 in = 0.26 ft Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 0.80% F 0.0080 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Depth at Design Minimum Velocity,d'n= 1.52 in = 0.13 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 7.53 in = 0.05 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 8.01 in = 0.67 ft Hydraulic Radius at Design Minimum Velocity,R'h= 0.94 in = 0.08 ft Manning Roughness Ratio at Design Min.Velocity,n'inr°ii Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 2.23 % 0.0223 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d = 1.97 in = 0.16 ft Cross-Sectional Flow Area at Design Slope,A= 10.97 in = 0.08 ft2 Wetted Perimeter at Design Slope,P= 9.21 in = 0.77 ft Hydraulic Radius at Design Slope,Rh= 1.19 in = 0.10 ft Top Width of Flow at Design Slope,T= 7.97 in = 0.66 ft 10.02 Manning Roughness Ratio at Design Slope,ninr°o Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d,= 1.86 in = 0.16 ft Critical Slope at Design Flow Rate,S,= 1.00 % 0.0100 ft/ft 1.97 Flow Type= Supercritical Velocity of Flow at Design Slope,V= 1.72 ft/sec Pipe Full Flow Rate at Design Slope,Qf°ii= 1.97 cfs = 884.27 gpm Pipe Percent Full Page 1 of 1 N:\5305\003\Design Docs\CalcslStonn Water\Post-Development\Pipe Sizing\25-Year Design Stonn\Pipe_RD-018_25-YR.x1sx Printed On:4/2612016-1:58 PM �® Morrison Maierle PIPE SIZING ANALYSES Pipe RD-1-2 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGNINPUTDATA Contributing Drainage Basin, Subbasin 16-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-1-2 to Storm Drain Pipe RD-1 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.1229 cfs = 55.16 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 3.00 in = 0.25 ft Design Pipe Diameter,D= 4-0 2-61 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 ft Manning's Roughness Coefficient-Full,nr°ii Design Pipe Slope,S= 2.08 % 0.0208 ft/ft DESIGN MINIMUM PIPE SLOPE Normal Depth at Design Minimum Velocity,d'n= 2.19 in = 0.18 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 7.08 in = 0.05 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 6.68 in = 0.56 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.06 in = 0.09 ft Manning Roughness Ratio at Design Min.Velocity,n'lnr°ii Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.83 % 0.0183 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 2.12 in = 0.18 ft Cross-Sectional Flow Area at Design Slope,A= 6,7g in2 = 0.05 ft2 Wetted Perimeter at Design Slope,P= 6.53 in = 0.54 ft 4.03 Hydraulic Radius at Design Slope,Rh= 1.04 in = 0.09 ft To Width of Flow at Design Slope, 2.12 P e,T= in ft 9 P 4.02 0.34 Manning Roughness Ratio at Design Slope,nlnr°u Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 2.36 in Critical Slope at Design Flow Rate,S°= 1.41 % 0.0141 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.61 ft/sec Pipe Full Flow Rate at Design Slope,Q/°n= 0.28 cfs = 125.44 gpm Pipe Percent Full Page 1 of 1 N:1530510030esign DocslCalcslStonn WalerTost-DevelopmentlPipe Sizing125-Year Design Slorm%pipe_RD-01-02_25-YRxlsz Printed On:4/26/2016-1:27 PM Morrison ME oll Maierle n 9lneeo.,�rvcyo„.Planners uicntub PIPE SIZING ANALYSES Pipes RD-7 C, RD-2, & RD-3 I Post-Development -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Subbasins 1A&1B-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-1-1 to Storm Drain Manhole#M-01 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.2536 cfs = 113.84 gpm Design Minimum Flow Velocity,Vmi°= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 4.31 in = 0.36 ft Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,nr,u Design Pipe Slope,S= 0.80 % 0.0080 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 2.41 in = 0.20 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 14.61 in2 = 0.10 ft Wetted Perimeter at Design Minimum Velocity,P'= 10.28 in = 0.86 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.42 in = 0.12 ft Manning Roughness Ratio at Design Min.Velocity,Onr�ii= 1.29 Manning Roughness at Design Minimum Velocity,n'= r 0.017 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.37 % 0.0137 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 2.76 in = 0.23 ft Cross-Sectional Flow Area at Design Slope,A= 17.68 in2 = 0.12 ft2 Wetted Perimeter at Design Slope,P= 11.08 in = 0.92 ft Hydraulic Radius at Design Slope,Rh= 1.60 in = 0.13 ft Top Width of Flow at Design Slope,T= 8.95 in = 0.75 It 10.02 Manning Roughness Ratio at Design Slope,nlnr°il Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 2.61 in = 0.22 ft 2.76 Critical Slope at Design Flow Rate,S.= 1.00 % 0.0100 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.07 ft/sec Pipe Full Flow Rate at Design Slope,Qf°n= 1.97 cfs = 884.27 gpm Pipe Percent Full Page 1 of 1 N:1530510031Design DocslCalcslSt°rm WaterlPost-DevelopmentlPipe Sizing125-Year Design StoffnTipe_RD-01C-RD-02-RD-03_25-YR.xlsx Printed On:4/26/2016-3:05 PM Morrison Maierle mecn-s��yms v+ <s xcoosis PIPE SIZING ANALYSES Pipe SD-A I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT D.TA Contributing Drainage Basin, Subbasin 2A-1 Basins,or Pipe: Combination Manhole&Inlet#1-01 to Combination Manhole&Inlet#1-02 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.3717 cfs = 166.84 gpm Design Minimum Flow Velocity,Vml = 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 5.22 in = 0.44 It Design Pipe Diameter,D= 12.100 in = 1.01 It Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nail Design Pipe Slope,S= 0.30 % 0.0030 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'.= 2.92 in = 0.24 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 21.41 in = 0.15 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 12.43 in = 1.04 It Hydraulic Radius at Design Minimum Velocity,R'h= 1.72 in = 0.14 ft Manning Roughness Ratio at Design Min.Velocity,n'/n,u„ Manning Roughness at Design Minimum Velocity,n'= 0.017 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.06 % 0.0106 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,da= 4.03 in = 0.34 ft Cross-Sectional Flow Area at Design Slope,A= 33.49 in = 0.23 ft2 Wetted Perimeter at Design Slope,P= 14.88 in = 1.24 ft Hydraulic Radius at Design Slope,Rh= 2.25 in = 0.19 ft Top Width of Flow at Design Slope,T= 11.40 in = 0.95 It 12.10 Manning Roughness Ratio at Design Slope,n/nmil Manning Roughness at Design Slope,n= 0.017 Critical Depth at Design Flow Rate,d,= 3.01 in = 0.25 ft 4.03 Critical Slope at Design Flow Rate,S.= 0.94% 0.0094 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 1.60 ft/sec Pipe Full Flow Rate at Design Slope,Qmli= 2.00 cfs = 895.46 gpm Pipe Percent Full= 1g.83��a Page 1 of 1 N:1530510031Design DocslCalcslSlarm WateiTost-DevelopmentlPipe Sizing125-Year Design Ston Tipe_SD-A_25-YR.xlsx P med On:4/27l20 - 1 1 Morrison ME MIN Maierle PIPE SIZING ANALYSES Pipe RD-4-1 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasin 2A-3-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-4-1 to Storm Drain Pipe RDA Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.1798 cfs = 80.72 gpm Design Minimum Flow Velocity,V1°I°= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dm;°= 3.63 in = 0.30 ft Design Pipe Diameter,D= 4-0-2 61 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 ft Manning's Roughness Coefficient-Full,nfull= 0.013 Design Pipe Slope,S= 2.08% 0.0208 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 3.05 in = 0.25 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 10.36 in = 0.07 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 8.51 in = 0.71 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.22 in = 0.10 it Manning Roughness Ratio at Design Min.Velocity,n7nr°n Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.27 % 0.0127 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 2.62 in = 0.22 it Cross-Sectional Flow Area at Design Slope,A= 8.76 in = 0.06 ft2 Wetted Perimeter at Design Slope,P= 7.55 in = 0.63 ft L, / 4.03 Hydraulic Radius at Design Slope,Rh= 1.16 in = 0.10 ft 2.62 Top Width of Flow at Design Slope,T= 3.84 in = 0.32 ft Manning Roughness Ratio at Design Slope,nlnr°n Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 2.87 in = 0.24 ft Critical Slope at Design Flow Rate,Sc= 1.54 % 0.0154 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.96 ft/sec Pipe Full Flow Rate at Design Slope,Qf�il= 0.28 cfs = 125.44 gpm Pipe Percent Full= 64.359/1, Page 1 of 1 N:1530510030esign DOcslCalcslStorn Wat&Post-DevelopmentTipe SizingNater Quality Design Stonn\Pipe_RD-04-01 25-YR.xlsx Pdnted On:4/27/2016-10:58 AM Morrison ME Mimi Maierle [[rs survcyors planncis s[ic�lisl> PIPE SIZING ANALYSES Pipes RD-4A & RD-413 I Post-Development-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT D. TA Contributing Drainage Basin, Subbasin 2A-3-Building Roof Runoff Basins,or Pipe: Storm Drain Pipe RD-4 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.1798 cfs = 80.72 gpm Design Minimum Flow Velocity,Vmin= 2.50 11/sec Design Minimum Full Flow Pipe Diameter,Dmi°= 3.63 in = 0.30 it Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 it Manning's Roughness Coefficient-Full,nmil Design Pipe Slope,S= 0.80% 0.0080 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'°= 1.89 in = 0.16 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 10.36 in = 0.07 ftz Wetted Perimeter at Design Minimum Velocity,P'= 9.01 in = 0.75 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.15 in = 0.10 ft Manning Roughness Ratio at Design Min.Velocity,n'lnf°il Manning Roughness at Design Minimum Velocity,n'= 0.017 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.77 % 0.0177 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d = 2.32 in = 0.19 ft Cross-Sectional Flow Area at Design Slope,A= 13.g4 in = 0.10 it Wetted Perimeter at Design Slope,P= 10.06 in = 0.84 ft Hydraulic Radius at Design Slope,Rh= 1.38 in = 0.11 ft Top Width of Flow at Design Slope,T= 8.46 in = 0.70 ft 10.02 Manning Roughness Ratio at Design Slope,nlnmll Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 2.19 in = 0.18 it Critical Slope at Design Flow Rate,S°= 1.01 % 0.0101 ft/ft 2.32 Flow Type= Supercritical Velocity of Flow at Design Slope,V= 1.87 ft/sec Pipe Full Flow Rate at Design Slope,Qfull= 1.97 cfs = 884.27 gpm Pipe Percent Full= Page 1 of 1 N:1530510031Design DocsTalaslSlorm WaterlPost-DevelopmentTipe SizinglWater Quality Design StonnlPipe_RD-04_25-YR.xlsx Pr med On:4127l201 age I AM I Morrison llon Maierle PIPE SIZING ANALYSES Pipe RD-5-1 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasin 2A-6-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-5-1 to Storm Drain Pipe RD-5B Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.1395 cfs = 62.63 gpm Design Minimum Flow Velocity,V.I.= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 3.20 in = 0.27 It Design Pipe Diameter,D= 4.026 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 ft Manning's Roughness Coefficient-Full,mmll= 0.013 Design Pipe Slope,S= 2.08 % 0.0208 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Depth at Design Minimum Velocity,d'°= 2.43 in = 0.20 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 8.04 in = 0.06 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 7.17 in = 0.60 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.12 in = 0.09 ft Manning Roughness Ratio at Design Min.Velocity,Onrull Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.62 % 0.0162 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 2.27 in = 0.19 ft Cross-Sectional Flow Area at Design Slope,A= 7.38 in = 0.05 ft, Wetted Perimeter at Design Slope,P= 6.83 in = 0.57 It Hydraulic Radius at Design Slope,Rh= 1.08 in = 0.09 ft 4'�3 Top Width of Flow at Design Slope,T= 3.99 in = 0.33 ft 2.27 Manning Roughness Ratio at Design Slope,n(nr°u Manning Roughness at Design Slope,n= 0.016 Critical Depth at Design Flow Rate,do= 2.52 in = 0.21 ft Critical Slope at Design Flow Rate,S°= 1.43 % 0.0143 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.72 ft/sec Pipe Full Flow Rate at Design Slope,Qmn= 0.28 cfs = 125.44 gpm Pipe Percent Full Page 1 of 1 N:15305\0031Des1gn DocslCalcslStorm WaterlPost-DevelopmentlPipe SizinglWater Quality Design SlonnRpe_RD-05-01_25-YR.x1sx Pdnted On:4/27/2016-2:45 PM M I Morrison Mimi Maierle m 9mn .w ye .plmvurs PIPE SIZING ANALYSES Pipe RD-513 1 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGNINPUTDATA Contributing Drainage Basin, Subbasin 2A-6-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-5-1 to Building Roof Drain Connection#RD-5-2 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.1395 cfs = 62.63 gpm Design Minimum Flow Velocity,Vmi = 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,D.j.= 3.20 in = 0.27 ft Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,mmjj= 0.013 Design Pipe Slope,S= 0.80% 0.0080 Wit DESIGN MINIMUM PIPE SLOPEANALYSIS Normal Depth at Design Minimum Velocity,d' = 1.59 in = 0.13 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 8.04 in = 0.06 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 8.21 in = 0.68 it Hydraulic Radius at Design Minimum Velocity,R'h= 0.98 in = 0.08 ft Manning Roughness Ratio at Design Min.Velocity,n7nr�ii Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 2.13% 0.0213 fdft DESIGN VALUE RESULTS Normal Depth at Design Slope,d = 2.05 in = 0.17 It Cross-Sectional Flow Area at Design Slope,A= 11.57 in = 0.08 ft2 Wetted Perimeter at Design Slope,P= 9.40 in = 0.78 ft Hydraulic Radius at Design Slope,Rh= 1.23 in = 0.10 ft Top Width of Flow at Design Slope,T= 8.08 in = 0.67 It 1 0.02 Manning Roughness Ratio at Design Slope,nlnmll Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,do= 1.92 in = 0.16 ft Critical Slope at Design Flow Rate,Sc= 1.00% 0.0100 ft/ft 2(05 Flow Type= Supercritical Velocity of Flow at Design Slope,V= 1.74 ft/sec Pipe Full Flow Rate at Design Slope,Qmil= 1.97 cfs = 884.27 gpm Pipe Percent Full= Page 1 of 1 N1530510030esign DecstCalcstStonn WaterlPost-DevelopnnenllPipe SizingMater Quality Design StonnlPipe_RD-058_25-YR.xlsx Pr med On:M27120 - 1 1 Morrison Maierle PIPE SIZING ANALYSES Pipe RD-5-2 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasin 2A-5-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-5-2 to Storm Drain Pipe RD-5C Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Cp= 0.1961 cfs = 88.01 gpm Design Minimum Flow Velocity,V.I.= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 3.79 in = 0.32 ft Design Pipe Diameter,D= 4.026 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 ft Manning's Roughness Coefficient-Full,nmli Design Pipe Slope,S= 2.08 % 0.0208 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'°= in = 0.28 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 11.29 in = 0.08 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 9.23 in = 0.77 It Hydraulic Radius at Design Minimum Velocity,R'h= 1.22 in = 0.10 It Manning Roughness Ratio at Design Min.Velocity,Onr°il Manning Roughness at Design Minimum Velocity,n'= 0.014 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.18 % 0.0118 Wit DESIGN VALUE RESULTS Normal Depth at Design Slope,d = 2.76 in = 0.23 ft } Cross-Sectional Flow Area at Design Slope,A= 9.28 in = 0.06 ff2 T Wetted Perimeter at Design Slope,P= 7.84 in = 0.65 ft i Hydraulic Radius at Design Slope,Rh= in = 0.10 ft � -,,fir-. - r 4.03 2.76 Top Width of Flow at Design Slope,T= 3.74 in = 0.31 ft Manning Roughness Ratio at Design Slope,n/nr°u Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 2.99 in = 0.25 ft Critical Slope at Design Flow Rate,S°= 1.60 % 0.0160 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 3.04 ft/sec Pipe Full Flow Rate at Design Slope,Qr°n= 0.28 cfs = 125.44 gpm Pipe Percent Full Page 1 of 1 N:1530510031Design DocslCalcslSlorm WaterlPost-DevelopmentTipe SizinglWater Quality Design SlonnlPipe_RD-05-02_25-YR.xlsx Printed On:4/27/2016-2:19 PM Morrison iiiimiiii Maierle cnyiiicai suivcy�s ,luiina-s scicilals PIPE SIZING ANALYSES Pipe RD-5C I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Subbasins 2A-5&2A-6-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-5-2 to Building Roof Drain Connection#RD-5-3 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.3356 cis = 150.64 gpm Design Minimum Flow Velocity,Vm;,,= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 4.96 in = 0.41 ft Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,nmll Design Pipe Slope,S= 0.80 % 0.0080 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d' = 2.94 in = 0.25 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 19.33 in = 0.13 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 11.48 in = 0.96 ft Hydraulic Radius at Design Minimum Velocity,R'n= 1.68 in = 0.14 it Manning Roughness Ratio at Design Min.Velocity,n'/nmil Manning Roughness at Design Minimum Velocity,n'= 0.017 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.09 % 0.0109 tuft DESIGN VALUE RESULTS Normal Depth at Design Slope,cin= 3.19 in = 0.27 ft Cross-Sectional Flow Area at Design Slope,A= 21.57 in2 = 0.15 ft, Wetted Perimeter at Design Slope,P= 12.01 in = 1.00 ft Hydraulic Radius at Design Slope,Rh= 1.80 in = 0.15 ft Top Width of Flow at Design Slope,T= 9.33 in = 0.78 ft 10.02 Manning Roughness Ratio at Design Slope,n/nmll Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 3.02 in = 0.25 ft 3.19 Critical Slope at Design Flow Rate,Sc= 0.99 % 0.0099 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.24 fUsec Pipe Full Flow Rate at Design Slope,Qmll= 1.97 cfs = 884.27 gpm Pipe Percent Full= 17,04��a Page 1 of 1 N:\5305\003\Design Docs\Calcs\Storm Waler\Post-DevelopmentTipe Sizing\25-Year Design Ston-nTipe_RD-05C_25-YR.xlsx P nted On:4/27/20 - I 1 Morrison lll� Maierle PIPE SIZING ANALYSES Pipe RD-5-3 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasin 2A-4-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-5-3 to Storm Drain Pipe RD-5D Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.1345 cfs = 60.37 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 3.14 in = 0.26 ft Design Pipe Diameter,D= 4.026 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 ft Manning's Roughness Coefficient-Full,nmli Design Pipe Slope,S= 2.08% F 0.0208 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'°= 2.36 in = 0.20 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 7.75 in2 = 0.05 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 7.02 in = 0.58 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.10 in = 0.09 ft Manning Roughness Ratio at Design Min.Velocity,n'/nmu Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.68 % 0.0168 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 2.22 in = 0.19 it Cross-Sectional Flow Area at Design Slope,A= 7.21 in2 = 0.05 ftz Wetted Perimeter at Design Slope,P= 6.74 in = 0.56 ft Hydraulic Radius at Design Slope,Rh= 1.07 in = 0.09 ft r� 4'03 Top Width of Flow at Design Slope,T= 4.00 in = 0.33 ft 2.22 Manning Roughness Ratio at Design Slope,nlnl°ll Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 2.47 in = 0.21 ft Critical Slope at Design Flow Rate,Sc= 1.42 % 0.0142 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.69 ft/sec Pipe Full Flow Rate at Design Slope,Qrull= 0.28 cis = 125.44 gpm Pipe Percent Full Page 1 of 1 N:1530510030esign DocslCalc0tonn Wat0ftst-DevelopmentTipe Sizing\Water Quality Design SlonnlPipe_RD-05-03_25-YR.xlsx Printed On:4/27/2016-11:52 AM . , Morrison ME Mimi Maierle cnyinca•rs survc Yors pl saic too PIPE SIZING ANALYSES Pipe RD-5D I Post-Development-25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasins 2A-4,2A-5,&2A-6-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-5-3 to Storm Drain Pipe RD-6 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.4701 cfs = 211.02 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 5.87 in = 0.49 ft Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,nf°n Design Pipe Slope,S= 0.80 % 0.0080 ft/ft DESIGN MINIMUM PIPE SLOPE Normal Depth at Design Minimum Velocity,d'°= 3.76 in = 0.31 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 27.Og in = 0.19 ff2 Wetted Perimeter at Design Minimum Velocity,P'= 13.22 in = 1.10 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.05 in = 0.17 ft Manning Roughness Ratio at Design Min.Velocity,n7nmii Manning Roughness at Design Minimum Velocity,n'= 0.017 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.82 % 0.0082 Wit DESIGN VALUE RESULTS Normal Depth at Design Slope,d = 3.79 in = 0.32 ft Cross-Sectional Flow Area at Design Slope,A= 27.33 in = 0.19 ft2 Wetted Perimeter at Design Slope,P= 13.28 in = 1.11 ft Hydraulic Radius at Design Slope,Rh= 2.06 in = 0.17 ft Top Width of Flow at Design Slope,T= 9.72 in = 0.81 ft 10.02 Manning Roughness Ratio at Design Slope,nlnmll Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d.= 3.59 in = 0.30 ft 3.79 Critical Slope at Design Flow Rate,S.= 0.98% 0.0098 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.48 ft/sec Pipe Full Flow Rate at Design Slope,Qtull= 1.97 cfs = 884.27 gpm Pipe Percent Full Page 1 of 1 N:1530%031Design DocslCalcslStonn WaterlPost-DevelopmentApe Sizing125-Year Design StonnTipe_RD-05D_25-YR.xlsx Printed On:4/27/2016-4:13 PM Morrison so iniiiiiiiii Maierle cnVnte,s suvt•Ye,s-PlJnnt•1s stet nlats PIPE SIZING ANALYSES Pipe RD-6 I Post-Development- 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasins 2A-3 to 2A-6-Building Roof Runoff Basins,or Pipe: Reducing Double-Wye#SDDW-01 to Inlet#1-02 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP F 0.6500 cfs = 291.74 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,D.I.= 6.90 in = 0.58 ft Design Pipe Diameter,D= 11.938 in = 0.99 ft Design Pipe Radius,r= 5.97 in = 0.50 ft Manning's Roughness Coefficient-Full,nrull= 0.013 Design Pipe Slope,S= 0.50 % 0.0050 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'°= 4.40 in = 0.37 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 37.44 in = 0.26 fl? Wetted Perimeter at Design Minimum Velocity,P'= 15.57 in = 1.30 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.40 in = 0.20 ft Manning Roughness Ratio at Design Min.Velocity,n'/nron Manning Roughness at Design Minimum Velocity,n'= 0.017 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.66 % 0.0066 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 4.74 in = 0.39 ft Cross-Sectional Flow Area at Design Slope,A= 41.39 in = 0.29 ftz Wetted Perimeter at Design Slope,P= 16.28 in = 1.36 ft Hydraulic Radius at Design Slope,Rh= 2.54 in = 0.21 ft Top Width of Flow at Design Slope,T= 11.68 in = 0.97 ft 11 94 Manning Roughness Ratio at Design Slope,nlnrou - Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,do= 4.04 in = 0.34 ft 4.74 Critical Slope at Design Flow Rate,Sc= 0.93 % 0.0093 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.26 ft/sec Pipe Full Flow Rate at Design Slope,Qmll= 2.48 cis = 1115.22 gpm Pipe Percent Full= 26.16% Page 1 of 1 NA5 30 510 0 31Design DocslCalcsMonn Water Post-DevelopmentlPipe Sizingl25-Year Design StonnlPipe_Ra06_25-YR.x1sx Printed On:4/27/2016-4:51 PM ®■ Morrison Maierle nqnven .w�eyun nm ,c,+ suuums PIPE SIZING ANALYSES Pipe SD-B I Post-Development -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasins 2A-1,2A-2,2A-3,2A-4,2A-5,&2A-6 Basins,or Pipe: Combination Manhole&Inlet#1-02 to Combination Manhole&Inlet#1-03 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.2870 cfs = 577.65 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 9.72 in = 0.81 ft Design Pipe Diameter,D= 12.100 in = 1.01 ft Design Pipe Radius,r= 6.05 in = 0.50 ft Manning's Roughness Coefficient-Full,nrnll Design Pipe Slope,S= 0.30 % 0.0030 ft/ft DESIGN MINIMUM PIPE SLOPEANALYSIS Normal Depth at Design Minimum Velocity,d'n= 7.44 in = 0.62 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 74.13 in = 0.51 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 21.81 in = 1.82 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.40 in = 0.28 ft Manning Roughness Ratio at Design Min.Velocity,n7nf�ll Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.37 % 0.0037 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,do= 7.87 in = 0.66 ft Cross-Sectional Flow Area at Design Slope,A= 7g.23 in = 0.55 ftz Wetted Perimeter at Design Slope,P= 22.71 in = 1.89 ft 1210 Hydraulic Radius at Design Slope,Rh= 3.49 in = 0.29 ft Top Width of Flow at Design Slope,T= 11.54 in = 0.96 it Manning Roughness Ratio at Design Slope,n/nf°il Manning Roughness at Design Slope,n 7.87 Critical Depth at Design Flow Rate,d°= 5.74 in = 0.48 ft Critical Slope at Design Flow Rate,Sc= 0.94% 0.0094 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.34 ft/sec Pipe Full Flow Rate at Design Slope,Qmli= 2.00 cfs = 895.46 gpm Pipe Percent Full Page 1 of 1 N:15 3 0 510 0 31Design DocslCalcslStorm WateiTosl-DevelopmentlPipe Sizing125-Year Design StonnTipe_SD-B_25-YR.xlsx Printed On:4/27/2016-5:47 PM Morrison No Maierle PIPE SIZING ANALYSES Pipe SD-G I Post-Development -25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasins 2A-1,2A-2,2A-3,2A-4,2A-5,2A-6,&2A-7 Basins,or Pipe: Combination Manhole&Inlet#1-03 to Pond Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.5900 cis = 713.62 gpm Design Minimum Flow Velocity,Vmjn= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 10.80 in = 0.90 ft Design Pipe Diameter,D= 1_4 9-001 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,nr.0 Design Pipe Slope,S= 0.25% 0.0025 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d',= 7.75 in = 0.65 it Cross-Sectional Flow Area at Design Minimum Velocity,A'= 91.58 in = 0.64 ft Wetted Perimeter at Design Minimum Velocity,P'= 24.00 in = 2.00 It Hydraulic Radius at Design Minimum Velocity,R'h= 3.82 in = 0.32 ft Manning Roughness Ratio at Design Min.Velocity,n7nr°11 Manning Roughness at Design Minimum Velocity,n'= 0,016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.34% 0.0034 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 8.41 in = 0.70 ft Cross-Sectional Flow Area at Design Slope,A= 101.41 in = 0.70 if Wetted Perimeter at Design Slope,P= 25.33 in = 2.11 ft 14.90 Hydraulic Radius at Design Slope,Rh= 4.00 in = 0.33 ft Top Width of Flow at Design Slope,T= 14.78 in = 1.23 ft Manning Roughness Ratio at Design Slope,nlnr°n Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d,= 6.01 in = 0.50 ft Critical Slope at Design Flow Rate,Sc= 0.86% 0.0086 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.26 fUsec Pipe Full Flow Rate at Design Slope,Qrull= 3.17 cfs = 1424.05 gpm Pipe Percent Full= 50.11 Page 1 of 1 F:\Momson-Maiede,Inc\Projects\5300030esign Docs\Calcs\Storm Water\Post-Development\Pipe Sizing\25-Year Design Stonn\Pipe_SD-C_25-YR.x1sx Printed On:4/2712016-9:41 PM s� Morrison Maierle PIPE SIZING ANALYSES Pipe RD-3-1 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasin 2B-1-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-3-1 to Storm Drain Pipe RD-3B Friction Analysis Method: Manning Formula Design Storm Flow Rate,Qp= 0.3222 cfs = 144.60 gpm Design Pipe Diameter,D= 4.026 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 It Manning's Roughness Coefficient-Full,mull Design Pipe Slope,S= 2.08% 0.0208 ft/ft DISCHARGEPRESSURIZED PIPE FLOW Flow Type= Surcharged Pipe Percent Full Pipe Full Flow Discharge Rate,Qr°ii= 0.32 cfs = 144.60 gpm Approximate Velocity of Discharge,V= 3.64 fttsec (4-03 Page 1 of 1 F:1Monison-Maierie,IncRojects1530510030esign DocsTaicslStOnn Water\Post-DevelopmentlPipe Sizing125-Year Design StormlPipe_RD-03-01_25-YR.x1sx Printed On:4128/2016-2:42 AM Morrison 00 Maierle PIPE SIZING ANALYSES Pipe 1113-313 1 Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DA TA Contributing Drainage Basin, Subbasin 2B-1-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-3-1 to Building Roof Drain Connection#RD-3-2 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.3222 cfs = 144.60 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 4.86 in = 0.41 ft Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,nr°u Design Pipe Slope,S= 0.40% 0.0040 ft/ft DESIGN MINIMUM PIPE SLOPE Normal Depth at Design Minimum Velocity,d'°= 2.86 in = 0.24 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 18.56 in = 0.13 ftZ Wetted Perimeter at Design Minimum Velocity,P'= 11.29 in = 0.94 it Hydraulic Radius at Design Minimum Velocity,R'h= 1.64 in = 0.14 ft Manning Roughness Ratio at Design Min.Velocity,n'/nr°n= 1.29 Manning Roughness at Design Minimum Velocity,n'= 0.017 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.13% 0.0113 Wit DESIGN VALUE RESULTS Normal Depth at Design Slope,d°= 3.73 in = 0.31 ft Cross-Sectional Flow Area at Design Slope,A= 26.74 in = 0.19 fl? Wetted Perimeter at Design Slope,P= 13.15 in = 1.10 ft Hydraulic Radius at Design Slope,Rh= 2.03 in = 0.17 ft Top Width of Flow at Design Slope,T= 9.69 in = 0.81 ft 10.02 Manning Roughness Ratio at Design Slope,n/nf°u Manning Roughness at Design Slope,n= 0.017 I Critical Depth at Design Flow Rate,do= 2.96 in = 0.25 ft 3.73 Critical Slope at Design Flow Rate,S.= 0.99% 0.0099 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 1.74 ft/sec Pipe Full Flow Rate at Design Slope,Qr°u= 1.39 cfs = 625.27 gpm Pipe Percent Full Page 1 of 1 F1Mordson-Maierle,Inc\Projecls\5305\003\Design Docs\Calcs\Storm Water,Post-Development\Pipe Sizing\25-Year Design Storm\Pipe_RD-03B_25-YR.x1sx Printed On:4/28/2016-4:08 AM �® Morrison Maierle PIPE SIZING ANALYSES Pipe RD-3-2 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGNINPUTDATA Contributing Drainage Basin, Subbasin 2B-2-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-3-2 to Storm Drain Pipe RD-3C Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.1479 cis = 66.38 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Drain= 3.29 in = 0.27 it Design Pipe Diameter,D= 4.026 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 ft Manning's Roughness Coefficient-Full,nail Design Pipe Slope,S= 2.08 % 0.0208 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d',= 2.55 in = 0.21 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 8.52 in = 0.06 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 7.42 in = 0.62 ft Hydraulic Radius at Design Minimum Velocity,R'h= 1.15 in = 0.10 it Manning Roughness Ratio at Design Min.Velocity,Onruli Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 1.53% 0.0153 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,dn= 2.34 in = 0.20 ft Cross-Sectional Flow Area at Design Slope,A= 7.68 in = 0.05 ft2 Wetted Perimeter at Design Slope,P= 6.98 in = 0.58 ft Hydraulic Radius at Design Slope,Rh= 1.10 in = 0.09 ft 4.03 Top Width of Flow at Design Slope,T= 3.97 in = 0.33 it 2.34 Manning Roughness Ratio at Design Slope,nlnmll Manning Roughness at Design Slope,n= 0.016 Critical Depth at Design Flow Rate,d,= 2.59 in = 0.22 ft Critical Slope at Design Flow Rate,S,= 1.45% 0.0145 ft/ft Flow Type= Subcritical Velocity of Flow at Design Slope,V= 2.77 ft/sec Pipe Full Flow Rate at Design Slope,Q,un= 0.28 cfs = 125.44 gpm Pipe Percent Full Page 1 of 1 F:1Monison-Maierle,IncTmjecls15 3 0 510 0 31Design DocslCalcslStonn WateAPost-DevelopmentTipe Sizing\25-Year Design SlormlPipe_RD-03-02_25-YR.x1sx Pdnted On:4/28/2016-3:28 AM Morrison EN Maierle englnreis,vn veyms PLuuu•.. ua•nliela PIPE SIZING ANALYSES Pipes RD-3C & RD-3D I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT•A TA Contributing Drainage Basin, Subbasins 2B-1&28-2-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-3-2 to Building Roof Drain Connection#RD-3-3 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 0.4701 cfs = 210.99 gpm Design Minimum Flow Velocity,Vmjn= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmjn= 5.87 in = 0.49 ft Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,nr°il Design Pipe Slope,S= 0.40% 0.0040 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Depth at Design Minimum Velocity,d'°= 3.76 in = 0.31 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 27.08 in' = 0.19 It, Wetted Perimeter at Design Minimum Velocity,P'= 13.22 in = 1.10 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.05 in = 0.17 ft Manning Roughness Ratio at Design Min.Velocity,Onr.ii Manning Roughness at Design Minimum Velocity,n'= 0.017 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.82% 0.0082 ft/ft DESIGN VALUE Normal Depth at Design Slope,d°= 4.56 in = 0.38 ft Cross-Sectional Flow Area at Design Slope,A= 34.92 in2 = 0.24 Wetted Perimeter at Design Slope,P= 14.84 in = 1.24 ft Hydraulic Radius at Design Slope,Rh= 2.35 in = 0.20 ft Top Width of Flow at Design Slope,T= 9.98 in = 0.83 ft 10.02 Manning Roughness Ratio at Design Slope,nlnr°il Manning Roughness at Design Slope,n= 0.016 Critical Depth at Design Flow Rate,d.= F 3.59 in = 0.30 ft Critical Slope at Design Flow Rate,Sc= 0.98% 0.0098 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 1.94 ft/sec Pipe Full Flow Rate at Design Slope,Qf°il= 1.39 cfs = 625.27 gpm Pipe Percent Full Page 1 of 1 F:\Morrison-Maierle,IncNroject0300030esign Docs\Calcs\Storm Water\Post-Development\Pipe Sizing0-Year Design 5tormFpe_RD-03D_25-YR.x1sx Pdnted On:4/28/2016-5:11 AM � ' Morrison Maierle PIPE SIZING ANALYSES Pipe RD-3-3 I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT • .TA Contributing Drainage Basin, Subbasin 2B-3-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-3-3 to Storm Drain Pipe RD-3E Friction Analysis Method: Manning Formula Design Storm Flow Rate,Qp= 0.3517 cfs = 157.85 gpm Design Pipe Diameter,D= 4.026 in = 0.34 ft Design Pipe Radius,r= 2.01 in = 0.17 ft Manning's Roughness Coefficient-Full,nr°n Design Pipe Slope,S= 2.08% 0.0208 tuft PRESSURIZED PIPE FLOWDISCHARGE Flow Type= Surcharged Pipe Percent Full Pipe Full Flow Discharge Rate,Qmu= 0.35 cfs = 157.85 gpm Approximate Velocity of Discharge,V= 3.98 ft/sec (4-03 Page 1 of 1 F:1Monison-Maierle,IncTrojects1530510030esign DocstCah\Storm WateftPost-DevelopmentlPipe Sizingl25-Year Design StofmFpe_RD-03-03_25-YR.x1sx Printed On:4/28/2016-6:15 AM Morrison NN Maierle engineers ssirvr•Y�rs Irini,isr•,s srir•iilisls PIPE SIZING ANALYSES Pipes RD-3E I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT DATA Contributing Drainage Basin, Subbasins 2B-1,213-2,&2B-3-Building Roof Runoff Basins,or Pipe: Building Roof Drain Connection#RD-3-3 to Inlet#1-04 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,QP= 0.8218 cfs = 368.84 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dm1°= 7.76 in = 0.65 ft Design Pipe Diameter,D= 10.020 in = 0. 44 It Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,nrmli Design Pipe Slope,S= 0.40% 0.0040 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Depth at Design Minimum Velocity,d'n= 5.80 in = 0.48 it Cross-Sectional Flow Area at Design Minimum Velocity,A'= 47.33 in = 0.33 ft, Wetted Perimeter at Design Minimum Velocity,P'= 17.33 in = 1.44 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.73 in = 0.23 ft Manning Roughness Ratio at Design Min.Velocity,Onr°ii Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.50% 0.0050 ft/ft DESIGN Normal Depth at Design Slope,d,= 6.19 in = 0.52 ft Cross-Sectional Flow Area at Design Slope,A= 51.16 in2 = 0.36 ft Wetted Perimeter at Design Slope,P= 18.13 in = 1.51 ft 10.02 Hydraulic Radius at Design Slope,Rh= 2.82 in = 0.24 ft Top Width of Flow at Design Slope,T= 9.74 in = 0.81 ft Manning Roughness Ratio at Design Slope,n/nfull Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 4.81 in = 0.40 ft Critical Slope at Design Flow Rate,S.= 1.01 % 0.0101 Wilt Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.31 ft/sec Pipe Full Flow Rate at Design Slope,Qr°u= 1.39 cfs = 625.27 gpm Pipe Percent Full= 58.99% Page 1 of 1 F\Monson-Maiede,Inc\Projects\5305\0030esign Docs\Calrs\Storm Water\Post-Development\Pipe Sizing\25-Year Design Storm\Pipe_RD-03E_25-YR.x1sx Pdnted On:4/28/2016-7:06 AM Morrison Maierle PIPE SIZING ANALYSES Pipe SO-D I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT I •TA Contributing Drainage Basin, Subbasins 213-1,2B-2,2B-3,&2B-4 Basins,or Pipe: Combination Manhole&Inlet#1-04 to Combination Manhole&Inlet#1-05 Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.6105 cfs = 722.86 gpm Design Minimum Flow Velocity,Vmin= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 10.87 in = 0.91 it Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,nr°„ Design Pipe Slope,S= 0.25 % 0.0025 ft/ft SLOPEDESIGN MINIMUM PIPE Normal Depth at Design Minimum Velocity,d'n= 7.82 in = 0.65 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= gp,77 in = 0.64 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 24.16 in = 2.01 ft Hydraulic Radius at Design Minimum Velocity,R'h= 3.84 in = 0.32 ft Manning Roughness Ratio at Design Min.Velocity,n'/mm11 Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.33 % 0.0033 ft/ft DESIGN VALUE RESULTS Normal Depth at Design Slope,do= 8.47 in = 0.71 ft Cross-Sectional Flow Area at Design Slope,A= 1p2,2g in = 0 71 ftz Wetted Perimeter at Design Slope,P= 25.44 in = 2.12 ft Hydraulic Radius at Design Slope,Rh= 4.02 in = 0.33 ft 1490 Top Width of Flow at Design Slope,T= 14.76 in = 1.23 ft Manning Roughness Ratio at Design Slope,n/nr°n Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d°= 6.05 in = 0.50 ft e.47 Critical Slope at Design Flow Rate,S°= 0.86 % 0.0086 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.27 ft/sec Pipe Full Flow Rate at Design Slope,Qmn= 3.17 cfs = 1424.05 gpm Pipe Percent Full Page 1 of 1 N:1530510031Design DocslCalcslStorm WaterlPost-DevelopmentTipe Sizing125-Year Design SlonnlPipe_SD-D_25-YR.x1sx Printed On:412812016-9:44 AM . Morrison ME MEE Maierle cnyinacrs suivcyuia-planners sienn sia PIPE SIZING ANALYSES Pipe SD-E I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT D.TA Contributing Drainage Basin, Subbasins 213-1,2B-2,2B-3,2B-4,213.5 Basins,or Pipe: Combination Manhole&Inlet#1-05 to Pond Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.9324 cfs = 867.31 gpm Design Minimum Flow Velocity,V.I.= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 11.90 in = 0.99 ft Design Pipe Diameter,D= 14.900 in = 1.24 ft Design Pipe Radius,r= 7.45 in = 0.62 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 0.25 % 0,0025 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Normal Depth at Design Minimum Velocity,d'a= 9.08 in = 0.76 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 111.30 in = 0.77 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 26.70 in = 2.22 ft Hydraulic Radius at Design Minimum Velocity,R'h= 4.17 in = 0.35 It Manning Roughness Ratio at Design Min.Velocity,n'Inr°n Manning Roughness at Design Minimum Velocity,n'= 0.016 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.28 % 0.0028 It/ft DESIGN Normal Depth at Design Slope,d°= 9.38 in = 0.78 It Cross-Sectional Flow Area at Design Slope,A= 115.59 in 2 = 0.80 ft2 Wetted Perimeter at Design Slope,P= 27.31 in = 2.28 ft Hydraulic Radius at Design Slope,Rh= 4.23 in = 0.35 It Top Width of Flow at Design Slope,T= 14.39 in = 1.20 ft Manning Roughness Ratio at Design Slope,n(nr°u Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,d,= 6.65 in = 0.55 ft Critical Slope at Design Flow Rate,S°= 0.87% 0.0087 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 2.41 ft/sec Pipe Full Flow Rate at Design Slope,Qr°li= 3.17 cfs = 1424.05 gpm Pipe Percent Full Page 1 of 1 N:1530510030esign DoaslCalc0tonn WaterlPost-DevelopmentlPipe Sizing125-Year Design SlormlPipe_SD-E_25-YR.x1sx Printed On:4/20/2016-10:55 AM Morrison 00 iiimii Maierle cnyii ', s ,"Y", plai, , "icnli PIPE SIZING ANALYSES Pipe SD-F I Post-Development - 25 Year Design Storm Frequency Design Storm Frequency= 25 Years (Enter WQual,2,5,10,25,50,or 100) DESIGN INPUT D•TA Contributing Drainage Basin, Basins,or Pipe: Subbasin 2C I Combination Manhole&Inlet#1-06 to Pond Friction Analysis Method: Manning Formula Design Minimum Flow Rate,Qp= 1.0244 cfs = 459.80 gpm Design Minimum Flow Velocity,Vwn= 2.50 ft/sec Design Minimum Full Flow Pipe Diameter,Dmin= 8.67 in = 0.72 ft Design Pipe Diameter,D= 10.020 in = 0.84 ft Design Pipe Radius,r= 5.01 in = 0.42 ft Manning's Roughness Coefficient-Full,nmu Design Pipe Slope,S= 0.80 % 0.0080 ft/ft DESIGN MINIMUM PIPE SLOPE ANALYSIS Depth at Design Minimum Velocity,d'°= 7.02 in = 0.58 ft Cross-Sectional Flow Area at Design Minimum Velocity,A'= 59.01 in = 0.41 ft2 Wetted Perimeter at Design Minimum Velocity,P'= 19.87 in = 1.66 ft Hydraulic Radius at Design Minimum Velocity,R'h= 2.97 in = 0.25 ft Manning Roughness Ratio at Design Min.Velocity,Onr°n Manning Roughness at Design Minimum Velocity,n'= 0.015 Design Minimum Pipe Slope at Design Minimum Velocity,S'= 0.41 % 0.0041 ft/ft DESIGN Normal Depth at Design Slope,do= 5.77 in = 0.48 ft Cross-Sectional Flow Area at Design Slope,A= 47.01 in = 0.33 ftz Wetted Perimeter at Design Slope,P= 17.26 in = 1.44 ft Hydraulic Radius at Design Slope,Rh= 2.72 in = 0.23 ft Top Width of Flow at Design Slope,T= 9.90 in = 0.83 ft Manning Roughness Ratio at Design Slope,n/mull Manning Roughness at Design Slope,n Critical Depth at Design Flow Rate,do= 5.40 in = 0.45 ft Critical Slope at Design Flow Rate,S,= 1.02% 0.0102 ft/ft Flow Type= Supercritical Velocity of Flow at Design Slope,V= 3.14 ft/sec Pipe Full Flow Rate at Design Slope,Qmn= 1.97 cfs = 884.27 gpm Pipe Percent Full= 52.00% Page 1 of 1 NA530510031Design DocslCalcslSlonn WaterlPost-Development0pe Sizing125-Year Design Slor nRpe_SD-F_25-YR.xlsx Pr med On:4(29/201 age 1 1 APPENDIX G STORM WATER RETENTION ANALYSES Morrison Maierle engineers surveyors planners scientists - o oo � _ I` O O O N O m - O Lo r- w O N M V V V LV N V V (5 0 0 Lo Lo O - O N N N N ti N CV cq N N N CN N (V O O O O O O O O O N LV CV N N N N N LV O O O O O O O O O LO X r ti Ln /w O oo CD a0 a0 M m oo N N p Y/ L • O O N M M �' Lq cq W r o 0 0 0 0 o O o o _ v� H v .�.1 m " a E AW' • O a0 O O Lo Lo O O coVf O O IDO O a N o 0 0 0 0 0 0 0 0 o78 • {L m ,w C v � O N N N N N N N . . O V 'IT V' V V � � ti ti ti n ti ti ti � a 0 W o ° o o W N � U U U Q Y o o o U w �L d d 3 cFu W '� >_ o v Ora N LL U /1 d L N o W o L N E o a') v o o li o C m o Q y o •` L r CV allo. rn o o r o o v v O ^ N N M M M M M M M 5 i. N N N N N N N N N C n � o V' � V V -It V V V' V F �L CL 0 ■'v v/ ,,,Morrison Ire Maierle SUBSURFACE STORM WATER MANAGEMENT SYSTEM SIZING Springhill Suites by Marriott-2114 Boot Hill Court I Bozeman, Montana PROJECT Design Storm Recurrence Interval= 25 Year Drainage Basin Area,A lacres (Enter WO,2,5,10,25,50,or 100) Weighted Runoff Coefficient,C d= 0.81 Design Storm Duration,to= 120.00 min or 2.00 hr Rainfall Intensity,i= 0.50 inlhr Storm Water Runoff Flow Rate,Q= 0.29 cfs Q= C_jin Volume of Runoff to be Retained,V= 2094.74 cfs V=60Qt, Storage Volume Retained in Pipes, Inlets,Manholes,andlor Ponds= 167.45 ft3 REQUIREMENTSSYSTEM Design Storage Volume,SVfeq= 1927.29 0' Selected Subsurface Storm Water Chamber Manufacturer: StormTech Foundation&Embedment Stone Porosity,n= 40% Manufacturers Subsurface Storm Water Chamber Model: SC-310 (Industry Standard=40I) Subsurface Storm Water ChamberInstallation Data Design Foundation Stone Depth,D= 12.00 in Manufacturers Specified Base Width of Chamber,W= 34.00 in Design Embedment Stone Depth Above Chambers,E= 6.00 in Manufacturers Specified Height of Chamber,H= 16.00 in Average Depth of Cover Over Chambers,C= 18.00 in Manufacturers Specified Thickness of Chamber Walls,T= 3.27 in Design Spacing Between Parallel Rows,S= 6.00 in Manufacturers Specified Installed Length of Chamber,Lc= 85.40 in Design Perimeter Offset Parallel to Chambers,P= 12.00 in Manufacturers Specified Chamber Storage Volume,VC= 14.7 ft3 Design Perimeter Offset at End of Rows,PEnd F-12-3-3-1 in Manufacturers Specified Length of End Cap,LEC= 6.00 in Include Foundation Stone in Storage Volume? NO (EnterYES or NO) Manufacturers Specified End Cap Storage Volume,VEC= 2.0 ft' NON-WOVEN GEOTEXTILE PAVEMENT SURFACE SURROUNDING CHAMBER BED C r NT STONE S �J SUBSURFACE HSTORMWATER CHAMBER(TYP)ON STONE D /�%j` SUBGRADE SOILS W T Subsurface Storm Water Chamber System Sizing Data Limiting Dimension of Chamber Bed Controlled by Width(Rows)or Lengthl LENGTH (Enter WIDTH or LENGTH) Design Limiting Dimension,Blimit= 92.00 ft Maximum Number of Chambers Long= 12 ea Design Number of Rows to be Installed= ©Total Maximum Number of Rows= ea 0 Rows with ©Chambers per Each Max Number of Chambers Required= 84 ea ®Rows with F-72-7 Chambers per Each Max Number of End Caps Required= 14 ea Design Area of Perimeter Stone= 37,239.47 in' = 258.61 ft2 Max Length Based on#of Chambers= 1,060.80 in = 88.4000 it Design System Storage Volume= 4,443,600.07 in' = 2,571.53 ft3 Max Width Based on#of Rows= 298.00 in = 24.83 ft Maximum System Storage Volume= 3,704,779.43 in3 = 2,143.97 1`13 Page 1 of 1 RIM.,d—Maierle,IndP.,.ts1530WOIDosign Doc Cel s Slon WaledPost-DevelopmenARelenlion Analy ISubsurfam-SWSlorag&ChamberAnaysis_SlormTe h_SC310.xlsx Printed:4/26/2016-11:45 PM Morrison No Maierle RATIONAL METHOD FOR ANALYSIS OF STORM WATER RETENTION Springhill Suites- Basin 2 1 Post-Development- 10 Year Design Storm Frequency Design Storm Frequency= 10 Year (Enter WQual,2,5,10,25,50,or 100) DRAINAGE Input values for runoff coefficients from appropriate tables. CoefficientWeighted Adjusted Runoff Runoff Runoff Frequency CoefficientSurface Area,A Area,A D' wd wd 00 Basin 2 101,382 1 2.327 0.67 1.561 0.67 1.00 0.67 0.67 1.561 Totals 101,382 2.327 1.561 1.561 'Weighted runoff coefficient,Cwd=ECAI/Eaj where Cj is the adjusted runoff coefficient for surface type j and Al is the area of surface type j RETENTIONBASIN • Calculation of Storm Water Runoff Flow Rate: Q=CwdiA Q=Storm Water Runoff Flow Rate(cfs) i=Rainfall Intensity(in/hr) Cwd=Weighted Runoff Coefficient A=Storm Drainage Basin Area(acres) Storm Drainage Basin Weighted Runoff Coefficient,CWd= 0.67 Rainfall Intensity,i= 0.41 in/hr(10-year,2-hour Design Storm) Storm Drainage Basin Area,A= 2.327 acres Basin Design Peak Flow, • = l Calculation of Required Retention Volume: V=7200Q Q=Storm Water Runoff Flow Rate(cis) V=Required Retention Volume(cf) Storm Drainage Basin Runoff Flow Rate,Q= 0.64 cis Basin Required Retention Volume,V= l Page 1 of 1 N:15305A03tDesign DocslCakslSlorm WeleAPosl-0evabpmenllRalanOon AnalyseslBasin-02_Retention-Required_10-YR_2-HR.xlsz Printed:4/28/2016-1:12 PM O N O M M M N M O O M O - O NLO00 N O �' � � l!7 O p 04 O 00 `4 M CM o0 O O r- N (D t- I` _ N N M ti N 00 I-- ti O M • O N � 00 "t N Lo 00 , Lo 00 N (Da Ln r- N N N M M d d O (C w 00 O M 00 co 00 co 00 It O Lf) O (D N N - O O O N N N E co O d' O to qt co N CO LO L 0 00 LO N m ti N m r- U-) coO • O r- N ,t (D I-- O r- CO d M 00 O N CO N N N N N N co co co M co d 't II II N U.co • MN OO N � MM d MN N o� W LnMM OOd' 'IT OOLOU) (D (o 00N MOLf) NOOM (D uj Ln6ti � W • N r- O 00 (D U') d CO O 07 CO ti (D LIB _ J r �• O N CO d' M (D I-- CO 00 M O V- N Q (� Q ti N N N N N N N N N N N N co CO M Cto d Z LO Q Q I— a " W 'n MNO0000a0 CDMCD MMO00d EO O �• o v LO O M r— N f� M 00 M O d' O m �- N L ' Q 00 NNN �t m at O M d' M N n �/ N �- 00 Ln N O N O ti L() M r O • d O N d CD ti O M Z (D 00 O N M a)O N N N N N N N N M M M M M d �t 0 O a (n m i o O W *, C7 E QO O O O o 0 0 0 0 0 0 0 0 0 0 0 - 3 () • O r- N M V LO (D 1` 00 O ID r- N M d O • T O O O O O O O O O O > co N Q t O a � o L Z O O O m a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Z r 0 0 0 o O O O O O O O O 0 0 0 r O Q Z o L M N 00 M 00 O M M O (D d' N (D Y F- L() M N N N N M M M rt I- LO W N h 3 W 0ptitioaMtiN00Lf) MNN co* (D N O (D M � 00 LO M O 00 (D d' N O 00 • O .- (M L() � 00 O N d' L() t` O �- M dT M M M M M M ,q U WN cq _ co • •� v __ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000O NMd' Ln (DI-- 000O N g O C(3n t OOaOOaOOOOOO � r- r- �� � 1i � � NNNNNNNNNNNNN o O■ IttiITIt � hITITI` IITIt IT g� d d � � d It � � V 'IT It rt � I o •Q ' - U) U Z