HomeMy WebLinkAbout17 - Design Report - Osterman Commercial Condos - Stormwater ENGINEERING
CONSULTING
p� p� � PLANNING
i�[GINEER1NG� INC DESIGN
204 NORTH 11t11AVENUE,BOZEM1AN,MT59715 204N 11"'Ave. BOZEMAN,MT 59715 406-581-3319 WWW.g-e-i.net
Storm Water Management Design Report
Osterman Commercial Condos
660&670 Osterman Drive
Lot 1A-5A, Minor Sub 41-C
Bozeman, Montana
April 2017
Prepared By:
Genesis Engineering, Inc.
GEI Project#: 1086.010
Prepared For:
Longshot Equity, LLC
510 W. Hemlock
Bozeman, MT 59718
11`h 204 N. Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.q-e-i.net Page 1 of 7
NGtNE�filNG,li�lc
Storm Water Management Design Report
Table of Contents
I. Project Background.............................................................................................................. 3
1. Introduction............................................................................................................................... 3
2. Soil and Groundwater.............................................................................................................. 3
3. Land Use..................................................................................................................................... 3
II. Existing Conditions.................................................................................................................. 3
1. Drainage Basins and Pre-Development Peak Flows............................................................ 4
III. Proposed Drainage Plan and Post-Development Peak Flows........................................ 4
1. Major Drainage System........................................................................................................... 5
2. As-Built Storm Main ............................................................................................................... 5
3. Minor Drainage System........................................................................................................... 5
4. Maintenance............................................................................................................................. 6
IV.Conclusion................................................................................................................................ 6
List of Tables
Table 1. Estimated Pre-Development Peak Flows................................................................................... 4
Table 2. Estimated Capacity of Existing Drainage Conveyance Structures........................................ 4
Table 3. Estimated Post-Development Peak Flows................................................................................. 5
Table 4. Proposed Storm Detention Pond..................................... ............................................................5
Table 5. Proposed Drainage Conveyance Structures Capacities............................................................6
Appendix A—Exhibits and Calculations
Grading and Drainage Exhibits
Pre/Post Development Drainage Basin Flows
Conveyance Structure Modeling
List of References
City of Bozeman Design Standards and Specifications Policy, March 2004,and all addenda.
204 N. 11'h Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.g-e-i.net Page 2 of 7
' � NCYtN�ERiNG,1NC
YF.Y�yien�yn;el•xu.5�u�.fvjf.a.Nwno
I. Project Background
Introduction
The Osterman Commercial Condo project consists of two commercial buildings, located at 660&670
Osterman Drive on Lot 1A-5A of Minor Subdivision 41-C. The existing lot covers approximately 1.6 acres in
Section 9,T2S, RISE, PMM in Bozeman, Montana. The property lies north of Interstate 90,south of Frontage
Road and southeast of the cul-de-sac on Osterman Drive.
This design report outlines the storm water analysis conducted for the site and describes the storm water
drainage and management facilities required for the Site by state and local regulations. The storm water plan
follows the design standards set forth by the City of Bozeman in Design Standards and Specifications Policy,
March 2004 and three subsequent addenda.
Soil and Groundwater
The NRCS Soil Survey identifies the major soil type on the site to be Enbar-Nythar loams(532A). This soil
belongs to hydrologic soil group C as it is comprised primarily of loam covering deep alluvium gravels.
A geotechnical investigation was completed by a geotechnical engineer,and evidence of groundwater was
found as shallow as 4'below existing grade,which is close to what the NRCS report estimated. The presence
of groundwater will not likely affect pond construction methods. However, based on this information any
proposed ponds should likely have dry,vegetated pond bottoms.
Land Use
The pre-development land use on the site was a vacant lot from the Minor Subdivision. The land is currently
zoned M-1 and the proposed use is two commercial buildings.
II. Existing Conditions
The Project Site lies north of Interstate 90 and at the end of the Osterman Drive cul-de-sac. The project's land
slopes generally to the north at an approximate average grade of 3.0%. The existing high point of the property
is located at the southeast corner,with the low point being on the north property line. The existing
topography of the overall site conveys runoff to the north and eventually to the irrigation ditch along the south
side of the Frontage Road.
Drainage Basins and Pre-development Peak Flows
Genesis identified the onsite drainage basins as shown on exhibit GD1 found in Appendix A. The offsite flows
are limited by a flow split after the waterway flows under the interstate. The channel of the flow split that
comes east towards the subject property is limited to what fits within the small channel with the remaining
flow traveling north or east. Estimates of runoff and their respective calculations for the more local existing
drainage basins were completed using the Modified Rational Method. The local basin also uses the required
pre-development runoff coefficient of C=0.20.
Genesis looked at storm return intervals such as the 10-year,25-year and 100-yr during the analysis of the
existing storm water conveyance structures in or near the site. A summary of estimated pre-development
peak runoff rates as well as existing drainage conveyance structure capacities can be found in Tables 1 and 2.
Detailed calculations are available in Appendix A.
204 N. 11`"Ave., Bozeman,MT 59715 Cell:(406)581-3319 www.q-e-i_net Page 3 of 7
NGtrilEl~R[htC�,iNC
Table 1. Estimated Pre-Development Peak Flows(see GD-1)
Sub Area Description Area Tc Q10 Q25 Q100
(acres) (min) (cfs) (cfs) (cfs)
Offsite Offsite Basin 0.50 11 0.2 0.2 0.3
A Onsite Basin 0.04 9 0.02 0.02 0.03
B Onsite Basin 0.91 15 0.3 0.3 0.5
C Onsite Basin 0.46 13 0.2 0.2 0.3
Table 2. Existing Drainage Conveyance Structure Capacities
Description Depth Slope Struct.Cap.
(ft) M (cfs)
2'x3'Box Culvert 4 0.5 40.0
West Channel Split 1.4 0.5 16.6
Irrigation Ditch at NE Cnr 2.5 0.4 52.0
III. Proposed Drainage Plan and Estimated Post-Development Peak Flows
The proposed drainage plan shall build off of the existing or natural drainage system in place. Genesis'
drainage plan consists of two separate drainage systems. First,the major drainage system or backbone is
designed to have a much higher conveyance capacity and shall convey the excess runoff from the 100-year
storm without inundating any building structures. Secondly,the minor drainage system fits within the major
drainage system and feeds into it. The minor drainage system(s)are designed to accommodate moderate and
relatively frequent storm events without inconveniencing the public. The minor system is comprised of the
streets,inlets,and swales designed to convey runoff from the 25-year event,and the detention pond designed
to attenuate the 10-year storm event. Table 3 presents a summary of the expected post-development peak
flow rates passing through the proposed project.
Table 3. Estimated Post-Development Peak Flows(see GD-1)
Sub Area Description Area C Tc Q10 Q25 Q100
(acres) (min) (cfs) (cfs) Icfs)
Offsite Mite Basin 0.5 0.41 10 0.4 0.5 0.7
A Onsite Basin 0.04 0.90 9 0.08 0.09 0.1
B Onsite Basin 0.91 0.74 13 1.2 1.4 1.9
C Onsite Basin 0.46 0.60 11 0.5 0.6 0.9
Major Drainage System
The major drainage system in the area is comprised of the unnamed ditch to the east of the subject parcel.
The existing ditch has adequate capacity to convey the 100-yr event through the development in addition to
the existing flows without inundating the first floor of the proposed structures. Based on the proposed first
floor elevations and capacity of the unnamed ditch to the east as,we do not anticipate the structures being
inundated by storm events up to and including the 100-yr event.
Minor Drainage System
The proposed minor drainage system for the Osterman Commercial Condos includes an interior parking lot
with sheet flow directed into either Pond C or curb inlet which empty to Pond B,generally located in north
part of the project. Curb is proposed to direct runoff from the parking area into the above mentioned ponds.
The detention ponds are sized to detain the onsite, 10-year storm flows as required.Discharge from the ponds
is to be conveyed through the outlet structure, into a storm pipe emptying into the existing irrigation ditch. A
204 N.11" Ave.,Bozeman,MT 59715 Cell:(406)581-3319 vvww.g-a-i.net Page 4 of 7
NGIN�CRING,IC�C
Swale,located in the southeastern corner of the project will convey runoff from the south building and offsite,
around the south building and into ponds B or C. The existing irrigation ditch at the west split has the capacity
of 16.6 cfs, but then almost disappears. The irrigation ditch will be relocated and increased in size in order to
handle the 16.6 cfs that is received from the flow split. The 16.6 cfs is combined with the onsite flows and the
flows from the 2'x3'culvert and flow down the existing irrigation ditch to the north.
The catch curb and gutter of each of the parking lots will convey an estimated 5 cfs before inundating the
adjacent sidewalk which is many times greater than the 100-year flow rate contributed by impervious area on
site. The pipe leaving detention pond B is a 10" HP Storm pipe has a capacity of 2.0 cfs,which is greater than
the 100 year storm flows for that basin.The pipe leaving detention pond C is a 8" PVC Storm pipe has a
capacity of 1.1 cfs,which is greater than the 100 year storm flows for that basin. Each of the proposed inlets at
the approach have a capacity of 3 cfs,with a 10"pipe capacity of 2.0 cfs which exceeds the contributing Basin
B, 100-year post development event.
Storm Pond A is a retention pond that is design to handle a portion of the roof flows from the D&R Warehouse
Building.
Table 4. Detention Pond Volume(See GD-2)
Pond Type Depth Contributing Q10 Pre Req.Vol. Avail.Vol. Retains/Detains
Subarea (cfs) (cft) (cft) Design Storm
A Retention 0.5' A 106 110 Y
B Detention(Underground) B 0.3 745 750 Y
C Detention 1.0' C 0.2 246 270 Y
Table S. Proposed Drainage Conveyance Structure Capacities(See GD-2)
Description Contributing Depth Slope Q10PST Q2SPST Q10OPST Qcap Passes
Subareas (ft) N (cfs) (cfs) (cfs) (cfs) Design Storm
Curb Inlet Pipe B 1.0 0.50 1.2 1.4 1.9 2.0 Y
Pond B Outlet Pipe B 1.0 0.50 1.2 1.4 1.9 2.0 Y
Pond C Outlet Pipe C 1.0 0.50 0.5 0.6 0.9 1.1 Y
Outlet Structure Weir(B) B 1.0 Q10pre=0.29 0.29 Y
Outlet Structure Top Inlet(B) B 2.0 Y
Outlet Structure Weir(C) C 1.0 Q10pre=0.16 0.16 Y
Outlet Structure Top Inlet(C) C 2.0 Y
Maintenance
Regular maintenance of storm water facilities is necessary for proper functioning of the drainage system. In
general, regular mowing of any grass swales and storage ponds and unclogging of inlets and outlet works will
be required to prevent standing water,clogging,and the growth of weeds and wetland plants. More
substantial maintenance,such as sediment removal with heavy equipment, may be required in coming
decades to restore detention pond volume.
All maintenance and repair should be prioritized and scheduled in advance. Inlets&pipes should be visually
inspected yearly. Typical maintenance items include removing obstructions,cleaning and flushing pipes,
mowing grass and weeds,tree maintenance to prevent limbs from falling and blocking swales,and establishing
groundcover on bare ground.
204 N. 11`h Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.q-e-i.net Page 5 of 7
NG[NEERiNG,INC
IV. Conclusion
Storm water analysis and calculations indicate that the proposed storm water management plan for the
proposed site plan is adequate to safely convey the 10-year,25-year,and 100-year storm events while
satisfying state and local regulations for peak attenuation and storm water storage. No hazardous backwater
affects from downstream structures have been observed to affect the proposed site plan. The project as
planned and described within this report will not have any significant adverse effects on any neighboring
properties. Furthermore,the proposed first floor elevation for the proposed structures are above the
estimated 100-yr Base flood Elevations as estimated by Genesis Engineering.
H:\1086\010\DOCS\Design\STORM\StormwaterDR.doc
204 N. 11"'Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.g-e-i.net `1 Page 6 of 7
NGtNE�RE�tG,ANC
Appendix A
Exhibits & Calculations
"1 204 N. 11"'Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.o-e-i.net Page 7 of 7
_ FEi _ EXIsnNGCONCNErE
_ \�\\\ RETAINING WALL 1 /
PROPlzRf-BOUNDA Y�--__ ti
yak
< '//
/
XCII
r
W P'ROPO D 8,6140 SF BUILDIN�a
3TERMAN-DRIVE fin' I II / // I ' \ \\ \•/
\ I I I FFE=4629.20'
rn\
1 \ l r
\ n
\ a\\
LL
LL
FUTURE BUILD G SITE\\ I W ® /
ADDITIONAL SI PLAN
I I 1 / — REVIEW REQUI\ED
F_FE=4632.00'\
AT l
C-2
\ aw Ws w w w aw
OSTERMAN DRIVEPROPERfl'Ap NDARY\ 1
\ /
\\\
GRAPHIC SCALE
9 7.5 75
IN FEET)
30 I inch=———————————————— = t
i
VERIFY SCALE REVISIONS \ DRAWN BY:JRM PROJECT NUMBER
THESE PRIMS MAY BE NO. DESCRIPTION DATE BY - OSTERMAN COMMERCIAL CONDOS 1086.010
REDUCED.LINEBELOW CHK'D.BY:
MEASURES ONE MMN ON BOZEMAN 760&770 OSTERMAN DRIVE SHEETNUMBER
oRCINu BRAwINc. ��1 �m�� 204 N.111h Ave. APPR.BY: MT
-- Consulting
Design Bozeman,MT 59715 DATE:03/2018 DRAWING NUMBER
Phane:(406)581-3319
MODIFY SCALEACCOROINGLY ,,ENGINEERING, INC Planning Q.A.REVIEW STORM BASINS GD-1
BY:
H:11 0 8 6101 0V\CADISHEETSIMASTER SITEPLANIISTORM BASINS.dwg Plotted by ohdstopher wash on 4lM0186:14 PM 75e 11r irnrn o u;5`ra�,SturtQur�n Bmmilmrrtt OOPYRIGHfOGENE55 ENGINEERING,INRNt9 DATE:
_—_—_--_—— nsnN7lrc"wGNmEru--- 'I _--— -- //Q/
_ __ _ __ � 1\\ EXISTING CONCRETE /
— ——'�— `�' c: .�'•ay.cnuT�.�:...v..-...�......f———.———— —-_.———— —— — — '� RETAINING WALL 1 / // /
/ /
i PROPkRfYY BOUNDA Y——
PRdPOSE0110 CF
RET TIONPONDA
ZONE2NNE-----------------
\ \ \\ \
UTIL D-S\E ENT
35 WATERCOURSE
\\ 35'WATERCOURSE
SETBACK O POSED 270 CF \ \
\ \ \ \ O B \N .75 \ \ SE I \ \ �' \ _ //�
———— \ I \ \ TOP-626,75 ————
I11
\ I I PROPOSED 8,640 SF BUILDIN� / INSTALLS'X4'
760 OSTERMAN DRIVE / SIDEWALK
FFE=4�629.20'
INSTALL-4r HP STORM PIPE
W1 CONCRETE CbLLAR ON END
I I I I I I INSTALL S XTHICKENED E6-/
SIDEWALK/ GE
I \ \
/
I I I \
T 1 I I I I .0%I
INSTALL OUTLET STRUCTURE 11 1 a7a I I I ( l 3 I III 11 RAMP
I
C NB \RTOF T
\\
\\\\ \ \ sloEwLnL3)X4 I / !/ za'DRIv AISLE / \\ _ / 1 IIK
\\ fr a t / l l l I \ \ \ 1 I I I f I 1 /
\\\\ \ \ I o I I I / / N/ N / \ \ \ 1 I I 1 1 \\ GRAPHIC SCA
15 P 777 5 15
/ i ITRU CURB SEE / 4O lel I r \, \\\ \ \ '. 0k UEg
FUTURE BUILDING SITEINSTALL
II II II
i' INFILTRATIONNNDERGROUND/ / / / ADDITIONAL SI#PLAN
i' STORAGE SYSTEM PER SHEET C4 1 I I I REVIEW REQUIRED
\ STORAGE CAPACITY 7&(CFT _FFE=4632.00'
\
5..0% / / / / ✓ / / �¢
/ \ INSTALL 48' ZRM
'MAN
M NMOLE
\ T TAPERSM1YIN
4W
_ \ / INSTALL I y aW Ws W W 4W
26'DRIVE ISLE
`\\�, — CONCRETE STORM P \PE \. \S IVI+� FLAG-2 ReINLET I \ 4.4%
I \ 26.m
m \\\ \\\ NCLO
XTAPE NG9
10'UTIL 1.NOTES:
ALL 7BC DII ARE 3.0'UNLESS OTHERWISE NOTED.
ss I \ \ I I \ / 2.ALL CU, GUTTER SHALL INSTALLED PER DETAIL ON
OSTERMAN DRIVE I J \ —1 — �J / SHEETC-�
\ L I P OPERTi'Ap DAR / 3.SEE LANDSCAPE PLAN FOR LOCATION OF PROPO ED
LANDSA� AA \ I \\\ \\\ /` \\ \\\ `\ I� \ \\ I \ T l\ / 4.ALL LAST C PIPE ENDS THAT W ILL BE EXPOSE TO
\\ \\ \.\ 1 \ \\\\�' \ 1 1 \ \ / SUNLI HT SHALL HAVE PREFABRICATED END SE IONS OR
III CON ETE COLLARS POURED TO PROTECT THE PIPE.
5.C TCH TBC=FLAG+0.38'
—I--- I 6.S ILL TBC=FLAG+O-52'
7.TRANS TBC=FLAG+0.45
B. P=SPILL,LOW=LOW POINT,HI=HIGH POINT,VG=VALLEY
PUTTER,GB=GRADE BREAK,CA=CATCH.
B RGARO'HULLDING \\ \\ \\ I / / / /
VERIFYSCALE REVISIONS DRAWN BY:JRM PROJECT NUMBER
THESEPAWSMAYBE NO. DESCRIPTION DATE BY OSTERMAN COMMERCIAL CONDOS 1Dss.D10
AEOUCED.LINE BELOW CHICO.BY:
MEASURES ONE INCH ON !,
ORIGINALDMWING, , �e;,mrmg APPR.BY: BOZEMAN 760&770 OSTERMAN DRIVE SHEETNUMBER
I consBmng 2a N. xn Ave. MT
> m Bozeman,MT 59715 DATE:03/2018
Design Phone: DRAWING NUMBER
MODIFY SCAIEACCORgNGLV Plenning (406)581-3319 q.A.REVIEW
XNGINEERING, INC BY: GRADING&DRAINAGE GD-2
H:NO66\0101ACAD\SHEETSSMASTER SITEPLAN\GRADING-DRAINAGE.dwg Plotled by chds4opher wasW Dn 4I2RD16 fi:15 PM ''gTivOr innin o a;tirm,S'tanCarfo Dmmilmrnt COPYRIGHTOGENESKENGINFERING M.201B DATE:
GEI#: 1086.01
DATE: 3/19/2018
ENGINEER: JRM
RET-Pond-A-lOyr
NESIS
MODIFIED RATIONAL METHOD
NGINEERING, INC
Qp=CiA
2')IN 1!1,,a 9Ci>i1A>:.sYr!+'.9"l� , 4C76i!.sI:?a.lS,
PRE-DEVELOPMENT
RAINFALL FREQ= 10 YR(DURATION=1) 1=A*(Tc/60)_B (CITY OF BOZEMAN)
BASIN AREA PRE= 0.04 AC STORM EVENT STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEV Tc= 10.0 MIN 2 0.36 0.6 1.05
5 0.52 0.64 1.64
PRE-DEV C= 0.20 10 0.64 0.66 2.09
25 0.78 0.64 2.46
STORM A= 0.64 50 0.92 0.66 3.00
B= 0.66 100 1.01 0.67 3.35
STORM INTENSITY= 2.09 IN/HR
PRE-DEV Qp= 0.02 CFS
POST-DEVELOPMENT POND VOLUME: GONST:RELEASE
(CF)
BASIN AREA PRE= 0.04 AC
POST-DEV Tc= 9.0 MIN TRIANGLE RELEASE
DETENTION ( F}
POST-DEV C= 0.9
STORM INTENSITY= 2.24 IN/HR AVERAGI V(11 UME'
(CF)
POST-DEV Qp= 0.08 CFS 39,8 "
OUTLET STRUCTURE DESIGN RETENTION
(Cf)
POND: RET-Pond-A-10yr
REQUIRED VOL= 39.86 CF (AVG.B/W CONST.&TRIANGLE RELEASE)
DIAMETER= 6.00 IN
LENGTH OF PIPE= 10.00 FT QPRE= 0.02 CFS
HEAD WATER= 0.50 FT AREA= 0.01 SF
N= 0.012 ORIFICE= 4 1/2 IN
Ke= 0.50 ORIFICE FLOW= 0.04 CFS
SLOPE OF PIPE= 0.010 FT/FT
FLOW OUT= 0.34 CFS **NEED ORIFICE
AVE SURF AREA= 62.55 SF
H:\1086\010\DOCS\Design\STORM\POND A.xls 1 OF 2 PRINTED: 4/9/2018
RET-Pond-A-10yr
POND VOLUME CALC'S OUTLET STRUCUTRE CALC'S
Triangle Release Constant Release SLOPE OF ENERGY ORIFICE
DURATION INTENSITY Qp POND VOLUME POND VOLUME PIPE FLOW OUT
(MIN) (IN/HR) (CFS) (CF) (CF) (FT/FT) (CFS) (CFS)
8.55 2.32 0.08 33.97 26.98 0.000 0.000 0.042
9.55 2.15 0.08 35.11 27.76 0.001 0.107
10.55 2.02 0.07 36.13 28.41 0.002 0.151
11.55 1.90 0.07 37.07 28.98 0.003 0.185
12.55 1.80 0.06 37.93 29.45 0.004 0.214
13.55 1.71 0.06 38.71 29.86 0.005 0.239
14.55 1.63 0.06 39.44 30.20 0.006 0.262
15.55 1.56 0.06 40.11 30.48 0.007 0.283
16.55 1.50 0.05 40.73 30.72 0.008 0.303
17.55 1.44 0.05 41.30 30.90 0.009 0.321
18.55 1.39 0.05 41.84 31.05 0.010 0.338
19.55 1.34 0.05 42.34 31.15 0.011 0.355
20.55 1.30 0.05 42.81 31.23 0.012 0.371
21.55 1.26 0.05 43.25 31.26 0.013 0.386
22.55 1.22 0.04 43.66 31.27 0.014 0.400
23.55 1.19 0.04 44.04 31.25 0.015 0.414
24.S5 1.15 0.04 44.40 31.21 0.016 0.428
25.55 1.12 0.04 44.73 31.14 0.017 0.441
26.55 1.10 0.04 45.05 31.05 0.018 0.454
27.55 1.07 0.04 45.34 30.94 0.019 0.466
28.55 1.04 0.04 45.62 30.80 0.020 0.479
29.55 1.02 0.04 45.87 30.65 0.021 0.490
30.55 1.00 0.04 46.11 30.48 0.022 0.502
31.55 0.98 0.04 46.34 30.30 0.023 0.513
32.55 0.96 0.03 46.55 30.09 0.024 0.524
33.55 0.94 0.03 46.74 29.88 0.025 0.535
34.55 0.92 0.03 46.93 29.65 0.026 0.546
35.55 0.90 0.03 47.10 29.40 0.027 0.556
36.55 0.89 0.03 47.25 29.14 0.028 0.566
37.55 0.87 0.03 47A0 28.87 0.029 0.576
38.55 0.86 0.03 47.53 28.59 0.030 0.586
39.55 0.84 0.03 47.65 28.29 0.031 0.596
40.55 0.83 0.03 47.77 27.98 0.032 0.605
41.55 0.82 0.03 47.87 27.67 0.033 0.615
42.55 0.80 0.03 47.96 27.34 0.034 0.624
43.55 0.79 0.03 48.05 27.00 0.035 0.633
44.55 0.78 0.03 48.12 26.66 0.036 0.642
45.55 0.77 0.03 48.19 26.30 0.037 0.651
46.55 0.76 0.03 48.25 25.94 0.038 0.660
47.55 0.75 0.03 48.30 25.57 0.039 0.668
48.55 0.74 0.03 48.34 25.19 0.040 0.677
H:\1086\010\DOCS\Design\STORM\POND A.xls 2 OF 2 PRINTED: 4/9/2018
GEI#: 1086.01
DATE: 3/19/2018
ENGINEER: JRM
DET-Pond-B-10yr
NESIS
MODIFIED RATIONAL METHOD NGINEE RING, INC
Qp=CiA
20�N,Ii"I Avf:.
PRE-DEVELOPMENT
RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60).g (CITY OF BOZEMAN)
BASIN AREA PRE= 0.91 AC STORM EVENT STORM i COEFF INTENSITY
YR _ A B T (IN HR
PRE-DEV Tc= 15.0 MIN 2 0.36 0.6 0.83
5 0.52 0.64 1.26
PRE-DEV C= 0.20 10 0.64 0.66 1.60
25 0.78 0.64 1.89
STORM A= 0.64 50 0.92 0.66 2.30
B= 0.66 100 1.01 0.67 2.56
STORM INTENSITY= 1.60 IN/HR
PRE-DEV Qp= 0.29 CFS
POST-DEVELOPMENT POND VOLUME: 'tbNST.RELEASE .
lcF
BASIN AREA PRE= 0.91 AC 575,18
POST-DEV Tc= 13.0 MIN TRIANGLE RELEASE
DETENTION
POST-DEV C= 0.74 91A.6fi'
STORM INTENSITY= 1.76 IN/HR AVERAGE VOLUME
POST-DEV Qp= 1.18 CFS 744.92
OUTLET STRUCTURE DESIGN RETENTION
POND: DET-Pond-B-10yr 19gy;gg ,
REQUIRED VOL= 744.92 CF (AVG.B/W CONST.&TRIANGLE RELEASE)
DIAMETER= 6.00 IN
LENGTH OF PIPE= 10.00 FT QPRE= 0.29 CFS
HEAD WATER= 0.50 FT AREA= 0.05 SF
N= 0.012 ORIFICE= 4 1/2 IN
Ke= 0.50 ORIFICE FLOW= 0.16 CFS
SLOPE OF PIPE= 0.010 FT/FT
FLOW OUT= 0.34 CFS **NEED ORIFICE
AVE SURF AREA= 1150.37 SF
H:\1086\010\DOCS\Design\STORM\POND B.xls 1 OF 2 PRINTED: 4/9/2018
DET-Pond-B-10yr
POND VOLUME CALC'S OUTLET STRUCUTRE CALC'S
Triangle Release Constant Release SLOPE OF ENERGY ORIFICE
DURATION INTENSITY Qp POND VOLUME POND VOLUME PIPE FLOW OUT
(MIN) (IN/HR) (CFS) (CF) (CF) (FT/FT) (CFS) (CFS)
12.35 1,82 1,22 685.30 518.07 0.000 0.000 0.156
13.35 1.73 1.16 700.90 527.78 0.001 0.107
14.35 1.65 1.11 715.31 536.24 0.002 0.151
15.35 1.57 1.06 728.69 543.60 0.003 0.185
16.35 1.51 1.02 741.14 549.97 0,004 0.214
17.35 1.45 0.98 752.74 555.45 0.005 0.239
18.35 1.40 0.94 763.59 560.11 0.006 0.262
19.35 1.35 0.91 773.75 564.04 0.007 0,283
20.35 1.31 0.88 783.27 567.29 0.008 0.303
21.35 1.27 0.85 792,21 569.92 0.009 0.321
22.35 1.23 0.83 800.61 571.97 0.010 0.338
23.35 1.19 0.80 808.52 573.49 0.011 0.355
24.35 1.16 0.78 815.96 574.51 0.012 0.371
25.35 1.13 0.76 822.96 575.06 0.013 0.386
26.35 1.10 0.74 829.57 575.18 0.014 0.400
27.35 1.07 0.72 835.79 574.90 0.015 0.414
28.35 1.05 0.71 841.66 574.23 0.016 0.428
29.35 1.03 0.69 847.19 573.19 0.017 0.441
30.35 1.00 0.68 852.40 571.82 0.018 0.454
31.35 0.98 0.66 857.32 570.12 0.019 0A66
32.35 0.96 0.65 861.95 568.11 0.020 0.479
33,35 0.94 0.64 866.31 565.81 0.021 0.490
34.35 0.92 0.62 870.41 563.24 0.022 0.502
35.35 0.91 0.61 874.27 560.40 0.023 0.513
36.35 0.89 0.60 877.90 557.31 0.024 0.524
37.35 0.88 0.59 881.30 553.98 0.025 0.535
38.35 0.86 0.58 884.50 550.41 0.026 0.546
39.35 0.85 0.57 887.49 S46.63 0.027 0.556
40.35 0.83 0.56 890.28 542.64 0.028 0.566
41.35 0.82 0.55 892.89 538.44 0.029 0.576
42.35 0.81 0.54 895.31 534.04 0.030 0.586
43.35 0.79 0.53 897.57 529.46 0.031 0.596
44.35 0.78 0.53 899.66 524.70 0.032 0,605
45.35 0.77 0.52 901.59 519.76 0.033 0.615
46.35 0.76 0.51 903.36 514.66 0.034 0.624
47.35 0.75 0.50 904.99 509,39 0.035 0.633
48.35 0.74 0.50 906.48 503.97 0.036 0.642
49.35 0.73 0.49 907.82 498.40 0.037 0.651
50,35 0.72 0.48 909.03 492.68 0.038 0.660
51.35 0.71 0.48 910.12 486.82 0.039 0.668
52.35 0.70 0.47 911.07 480.82 0.040 0.677
H:\1086\010\DOGS\Design\STORM\POND B.xls 2 OF 2 PRINTED: 4/9/2018
GEI#: 1086.01
DATE: 3/19/2018
ENGINEER: IRM
DET-Pond-C-10yr
MODIFIED RATIONAL METHOD x NGINEERINGS INC
Qp=CIA
704 N.1][ t+v?t. 9:Ssi'ntan:,.MT SS')75
PRE-DEVELOPMENT
RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60)_e (CITY OF BOZEMAN)
BASIN AREA PRE= 0.46 AC STORM EVENT STORM i COEFF INTENSITY
YR A _ B IN HR
PRE-DEVTc= 13.0 MIN 2 0.36 0.6 0.90
5 0.52 0.64 1.38
PRE-DEV C= 0.20 10 0.64 0.66 1.76
25 0.78 0.64 2.08
STORM A= 0.64 SO 0.92 0.66 2.52
B= 0.66 100 1.01 0.67 2.81
STORM INTENSITY= 1.76 IN/HR
PRE-DEV Qp= 0.16 CFS
POST-DEVELOPMENT POND VOLUME: `CONSTsRELEASE
F}
�ic }BASIN AREA PRE= 0.46 AC ,2i
POST-DEV Tc= 11.0 MIN TRIANGLE RELEASE
DETENTION
POST-DEV C= 0.6 30fi,94
STORM INTENSITY= 1.96 IN/HR AVERAGE VOLUME
POST-DEV Qp= 0.54 CFS '246,09
OUTLET STRUCTURE DESIGN `RETENTION'.
POND: DET-Pond-C-10yr 814.75
REQUIRED VOL= 246.09 CF (AVG.B/W CONST.&TRIANGLE RELEASE)
DIAMETER= 6.00 IN
LENGTH OF PIPE= 10.00 FT QPRE= 0.16 CFS
HEAD WATER= 0.50 FT AREA= 0.05 SF
N= 0.012 ORIFICE= 4 1/2 IN
Ke= 0.50 ORIFICE FLOW= 0.16 CFS
SLOPE OF PIPE= 0.010 FT/FT
FLOW OUT= 0.34 CFS **NEED ORIFICE
AVE SURF AREA= 370.47 SF
H:\1086\010\DOCS\Design\STORM\POND C.xls 1 OF 2 PRINTED: 4/9/2018
DET-Pond-C-10yr
POND VOLUME CALC'S OUTLET STRUCUTRE CALC'S
Triangle Release Constant Release SLOPE OF ENERGY ORIFICE
DURATION INTENSITY Qp POND VOLUME POND VOLUME PIPE FLOW OUT
(MIN) (IN/HR) (CFS) (CF) (CF) (FT/FT) (CFS) (CFS)
10.45 2.03 0.56 247.04 173.85 0.000 0.000 0.156
11.45 1.91 0.53 253.27 177.15 0,001 0.107
12.45 1.81 0.50 258.88 179.77 0.002 0.151
13.45 1.72 0.47 263.95 181.80 0.003 0.185
14.45 1.64 0.45 268.55 183.30 0.004 0.214
15.45 1.57 0.43 272.72 184.35 0.005 0.239
16.45 1.50 0.41 276.51 184.98 0.006 0.262
17.45 1.45 0.40 279.96 185.24 0.007 0.283
18.45 1.39 0.38 283.11 185.15 0.008 0.303
19.45 1.35 0.37 285.97 184.76 0.009 0.321
20.45 1.30 0.36 288.58 184.08 0.010 0.338
21.45 1.26 0,35 290.95 183.14 0.011 0.355
22.45 1.22 0.34 293.10 181.95 0.012 0.371
23.45 1.19 0.33 295.05 180.54 0.013 0.386
24.45 1.16 0.32 296.81 178.92 0,014 0.400
25.45 1.13 0.31 298.40 177.10 0.015 0.414
26.45 1.10 0.30 299.81 175.10 0.016 0.428
27.45 1.07 0.30 301,08 172.93 0.017 0.441
28.45 1.05 0.29 302.20 170.59 0.018 0.454
29.45 1.02 0.28 303.18 168.10 0.019 0.466
30.45 1.00 0.28 304.04 165.47 0.020 0.479
31.45 0.98 0.27 304.77 162.69 0.021 0.490
32.45 0.96 0.27 305.38 159.79 0.022 0.502
33.45 0.94 0.26 305.89 156.76 0,023 0.513
34.45 0.92 0.25 306.29 153.62 0.024 0.524
35.45 0.91 0.25 306.59 150.36 0.025 0.535
36.45 0.89 0.25 306.79 147.00 0.026 0.546
37.45 0.87 0.24 306.91 143.53 0.027 0.556
38.45 0.86 0.24 306.94 139.97 0.028 0,566
39.45 0.84 0.23 306.88 136.31 0.029 0.576
40,45 0.83 0.23 306.75 132.56 0.030 0.586
41.45 0.82 0.23 306.54 128.73 0.031 0.596
42.45 0.80 0.22 306.26 124.81 0.032 0.605
43.45 0.79 0.22 305.90 120.81 0.033 0.615
44.45 0.78 0.22 305.48 116.73 0.034 0.624
45.45 0.77 0.21 305.00 112.58 0.035 0.633
46.45 0.76 0.21 304.45 108.36 0.036 0.642
47.45 0.75 0.21 303.84 104.07 0.037 0.651
48.45 0.74 0.20 303.17 99.71 0.038 0.660
49.45 0.73 0.20 302.44 95.29 0.039 0.668
50.45 0.72 0.20 301.66 90.80 0.040 0.677
H:\1086\010\DOCS\Design\STORM\POND C.As 2 OF 2 PRINTED: 4/9/2018
GEI#: 1086.01
DATE: 3/9/2017
ENGINEER: JRM
BASIN Mite
NESIS
MODIFIED RATIONAL METHOD ��. I EERI Gy INC
Qp=CiA
2Q>a"J.1±Iei:.uL •, 9:I�T.1'h�.M'f'S'i:7"x :R nCf.:?5�.33t9
PRE-DEVELOPMENT
RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60)_e (CITY OF BOZEMAN)
BASIN AREA PRE= 0.495409 AC STORM EVENT STORM i COEFF INTENSITY
YR A _ B IN HR
PRE-DEVTc= 11.0 MIN 2 0.36 0.6 1.00
5 0.52 0.64 1.54
PRE-DEV C= 0.20 10 0.64 0.66 1.96
25 0.78 0.64 2.31
STORM A= 0.64 50 0.92 0.66 2.82
B= 0.66 100 1.01 0.67 3.15
STORM INTENSITY= 1.96 IN/HR
PRE-DEV Qp= 0.19 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.495409 AC
POST-DEV Tc= 10.0 MIN
POST-DEV C= 0.41
STORM INTENSITY= 2.09 IN/HR
POST-DEV Qp= 0.42 CFS
H:\1086\010\DOCS\Design\STORM\Basin Offsite.xls 1 OF 1 PRINTED: 4/9/2018
GEttt: 1086.01
DATE: 3/9/2017
ENGINEER: 1RM
BASIN Offsite
MODIFIED RATIONAL METHOD NGINEERING, INC
Qp=CiA
M4"'9,ittei A, _. DC,1111.i1,MT°S0715 1 100,..tsi 3.1 1:2.
PRE-DEVELOPMENT
RAINFALL FREQ= 25 YR(DURATION=1) i=A*(Tc/60)_e (CITY OF BOZEMAN)
BASIN AREA PRE= 0.495409 AC STORM EVENT STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEVTc= 11.0 MIN 2 0.36 0.6 1.00
5 0.52 0.64 1.S4
PRE-DEV C= 0.20 10 0.64 0.66 1.96
25 0.78 0.64 2.31
STORM A= 0.78 50 0.92 0.66 2.82
B= 0.64 100 1.01 0.67 3.15
STORM INTENSITY= 2.31 IN/HR
PRE-DEV Qp= 0.23 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.495409 AC
POST-DEV Tc= 10.0 MIN
POST-DEV C= 0.41
STORM INTENSITY= 2.46 IN/HR
POST-DEV Qp= 0.50 CFS
H:\1086\010\DOGS\Design\STORM\Basin Offsite.xls 1 OF 1 PRINTED: 4/9/2018
GEIM: 1086.01
DATE: 3/9/2017
ENGINEER: 1RM
BASIN Mite
NESIS
MODIFIED RATIONAL METHOD NGINEERING, INC
QP=CIA
PRE-DEVELOPMENT
RAINFALL FREQ= 100 YR(DURATION=1) 1=A*(Tc/60)_e (CITY OF BOZEMAN)
--
BASIN AREA PRE= 0.495409 AC STORM EVENT STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEV Tc= 11.0 MIN 2 0.36 0.6 1.00
5 0.52 0.64 1.54
PRE-DEV C= 0.20 10 0.64 0.66 1.96
25 0.78 0.64 2.31
STORM A= 1.01 50 0.92 0.66 2.82
B= 0.67 100 1.01 0.67 3.15
STORM INTENSITY= 3.15 IN/HR
PRE-DEV Qp= 0.31 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.495409 AC
POST-DEVTc= 10.0 MIN
POST-DEV C= 0.41
STORM INTENSITY= 3.35 IN/HR
POST-DEV Qp= 0.68 CFS
H:\1086\010\DOCS\Design\STORM\Basin Offsite.xls 1 OF 1 PRINTED: 4/9/2018
GEM 1086.01
DATE: 3/9/2017
ENGINEER: JRM
4
BASIN A E S I S
r
MODIFIED RATIONAL METHOD 1'�GINEERIN , INC;
QP=CIA
2U.N.1! Alt HeSerxt+n,`n7 ;�37.9°: fCki a.�it :&i„!
PRE-DEVELOPMENT
RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60)_B (CITY OF BOZEMAN)
BASIN AREA PRE= 0.04 AC STORM EVENT STORM I COEFF INTENSITY
YR A 8 IN/HR
PRE-DEVTc= 10.0 MIN 2 0.36 0.6 1.05
5 0.52 0.64 1.64
PRE-DEV C= 0.20 10 0.64 0.66 2.09
25 0.78 0.64 2.46
STORM A= 0.64 50 0.92 0.66 3.00
B= 0.66 100 1.01 0.67 3.35
STORM INTENSITY= 2.09 IN/HR
PRE-DEV Qp= 0.02 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.04 AC
POST-DEVTc= 9.0 MIN
POST-DEV C= 0.9
STORM INTENSITY= 2.24 IN/HR
POST-DEV Qp= 0.08 CFS
H:\1086\010\DOCS\Design\STORM\Basin A.xls 1 OF 1 PRINTED: 4l9l2018
GEI#: 1086.01
DATE: 3/9/2017
ENGINEER: 1RM
BASIN A
E zo:34 1 S
MODIFIED RATIONAL METHOD NGINEERING, INC
Qp=CiA
2b4
PRE-DEVELOPMENT
RAINFALL FREQ= 25 YR(DURATION=1) i=A*(Tc/60)_e (CITY OF BOZEMAN)
BASIN AREA PRE= 0.04 AC STORM EVENT -STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEVTc= 10.0 MIN 2 0.36 0.6 1.05
5 0.52 0.64 1.64
PRE-DEV C= 0.20 10 0.64 0.66 2.09
25 0.78 0.64 2.46
STORM A= 0.78 50 0.92 0.66 3.00
B= 0.64 100 1.01 0.67 3.35
STORM INTENSITY= 2.46 IN/HR
PRE-DEV Qp= 0.02 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.04 AC
POST-DEV Tc= 9.0 MIN
POST-DEV C= 0.9
STORM INTENSITY= 2.63 IN/HR
POST-DEV Qp= 0.09 CFS
H:\1086\010\DOGS\Design\STORM\Basin A_xIs 1 OF 1 PRINTED: 4/9/2018
GEW 1086.01
DATE: 3/9/2017
ENGINEER: 1RM
BASIN A
MODIFIED RATIONAL METHOD NGINEERING, INC
Qp=CiA
2Gn*.. I 4i6 461330
PRE-DEVELOPMENT
RAINFALL FREQ= 100 YR(DURATION=1) i=A*(Tc/60)_B (CITY OF BOZEMAN)
BASIN AREA PRE= 0.04 AC STORM EVENT STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEV Tc= 10.0 MIN 2 0.36 0.6 1.05
5 0.52 0.64 1.64
PRE-DEV C= 0.20 10 0.64 0.66 2.09
25 0.78 0.64 2.46
STORM A= 1.01 SO 0.92 0.66 3.00
B= 0.67 100 1.01 0.67 3.35
STORM INTENSITY= 3.35 IN/HR
PRE-DEV Qp= 0.03 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.04 AC
POST-DEV Tc= 9.0 MIN
POST-DEV C= 0.9
STORM INTENSITY= 3.60 IN/HR
POST-DEV Qp= 0.13 CFS
H:\1086\010\DOCS\Design\STORM\Basin A.xls 1 OF 1 PRINTED: 4/9/2018
GEIN: 1086.01
DATE: 3/9/2017
ENGINEER: JRM
BASIN B
NESIS
MODIFIED RATIONAL METHOD NGINEERINC., INC
QP=CiA
PRE-DEVELOPMENT
RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60) ° (CITY OF BOZEMAN)
BASIN AREA PRE= 0.91 AC STORM EVENT _- STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEVTc= 15.0 MIN 2 0.36 0.6 0.83
5 0.52 0.64 1.26
PRE-DEV C= 0.20 10 0.64 0.66 1.60
25 0.78 0.64 1.89
STORM A= 0.64 50 0.92 0.66 2.30
B= 0.66 100 1.01 0.67 2.56
STORM INTENSITY= 1.60 IN/HR
PRE-DEV Qp= 0.29 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.91 AC
POST-DEV Tc= 13.0 MIN
POST-DEV C= 0.74
STORM INTENSITY= 1.76 IN/FIR
POST-DEV Qp= 1.18 CFS
H:\1086\010\DOCS\Design\STORM\Basin B.xls 1 OF 1 PRINTED: 4/9/2018
GEI✓;: 1086.01
DATE: 3/9/2017
ENGINEER: JRM
BASIN B NESIS
MODIFIED RATIONAL METHOD ", NGINEERIN , INC
QP=CiA „F
'I.CiA N.ii't x+hvs_ .F :?cirrf.sa�l'*n7'+ii'�1S , flfi6`.i513:st�
PRE-DEVELOPMENT
RAINFALL FREQ= 25 YR(DURATION=1) i=A`(Tc/60) ° (CITY OF BOZEMAN)
BASIN AREA PRE= 0.91 AC STORM EVENT STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEV Tc= 15.0 MIN 2 0.36 0.6 0.83
5 0.52 0.64 1.26
PRE-DEV C= 0.20 10 0.64 0.66 1.60
25 0.78 0.64 1.89
STORM A= 0.78 50 0.92 0.66 2.30
B= 0.64 100 1.01 0.67 2.56
STORM INTENSITY= 1.89 IN/HR
PRE-DEV Qp= 0.34 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.91 AC
POST-DEV Tc= 13.0 MIN
POST-DEV C= 0.74
STORM INTENSITY= 2.08 IN/HR
POST-DEV Qp= 1.40 CFS
H:\1086\010\DOGS\Design\STORM\Basin B.As 1 OF 1 PRINTED: 4/9/2018
GEI#: 1086.01
DATE: 3/9/2017
ENGINEER: JRM
BASIN B
NESIS
MODIFIED RATIONAL METHOD NGINEERINGf INC
Qp=CiA
2f).:^i.7!'[sF i+•ts'. v+,�XF�,4rn�:.^.9T?i<i71`5 :. '.Si¢i'!i:31.-�:31$
PRE-DEVELOPMENT
RAINFALL FREQ= 100 YR(DURATION=1) i=A*(Tc/60)_e (CITY OF BOZEMAN)
BASIN AREA PRE= 0.91 AC STORM EVENT STORM i COEFF INTENSITY
YR A _ 8 IN/HR
PRE-DEV Tc= 15.0 MIN 2 0.36 0.6 0.83
5 0.52 0.64 1.26
PRE-DEV C= 0.20 10 0.64 0.66 1.60
25 0.78 0.64 1.89
STORM A= 1.01 50 0.92 0.66 2.30
B= 0.67 100 1.01 0.67 2.56
STORM INTENSITY= 2.56 IN/HR
PRE-DEV Qp= 0.47 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.91 AC
POST-DEV Tc= 13.0 MIN
POST-DEV C= 0.74
STORM INTENSITY= 2.81 IN/HR
POST-DEV Qp= 1.90 CFS
H:\1086\010\DOCS\Design\STORM\Basin B.xls 1 OF 1 PRINTED: 4/9/2018
GEI#: 1086.01
DATE: 3/9/2017
ENGINEER: IBM
BASIN C
H MODIFIED RATIONAL METHOD NGINEERING, INC�°_,; �"
Qp=CiA
2t7v h3.t!rtt Au4. <M l7t�r[r,tau!N't'?i5i::5 :� af;�',;57..�,:s;R
PRE-DEVELOPMENT
RAINFALL FREQ= 10 YR(DURATION=1) i=A*(Tc/60)_a (CITY OF BOZEMAN)
BASIN AREA PRE= 0.46 AC STORM EVENT STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEV Tc= 13.0 MIN 2 0.36 0.6 0.90
5 0.52 0.64 1.38
PRE-DEV C= 0.20 10 0.64 0.66 1.76
25 0.78 0.64 2.08
STORM A= 0.64 50 0.92 0.66 2.52
B= 0.66 100 1.01 0.67 2.81
STORM INTENSITY= 1.76 IN/HR
PRE-DEV Qp= 0.16 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.46 AC
POST-DEV Tc= 11.0 MIN
POST-DEV C= 0.6
STORM INTENSITY= 1.96 IN/HR
POST-DEV Qp= 0.S4 CFS
H:\1086\010\DOCS\Design\STORM\Basin C.xls 1 OF 1 PRINTED: 4/9/2018
GEI#: 1086.01
DATE: 3/9/2017
ENGINEER: JRM
BASIN C
NESIS
MODIFIED RATIONAL METHOD NGINE RING, INC
Qp=CIA
n'.04^i.712e£Xuk.. .. f:7zE�.taa.',!NT?*<'➢31� .. F:;t4:igi.,?3 tL+
PRE-DEVELOPMENT
RAINFALL FREQ= 25 YR(DURATION=1) i=A*(Tc/60)-B (CITY OF BOZEMAN)
BASIN AREA PRE= 0.46 AC STORM EVENT STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEV Tc= 13.0 MIN 2 0.36 0.6 0.90
5 0.52 0.64 1.38
PRE-DEV C= 0.20 10 0.64 0.66 1.76
2S 0.78 0.64 2.08
STORM A= 0.78 50 0.92 0.66 2.52
B= 0.64 100 1.01 0.67 2.81
STORM INTENSITY= 2.08 IN/HR
PRE-DEV Qp= 0.19 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.46 AC
POST-DEV Tc= 11.0 MIN
POST-DEV C= 0.6
STORM INTENSITY= 2.31 IN/HR
POST-DEV Qp= 0.64 CFS
H:\1086\010\DOGS\Design\STORM\Basin C.xls 1 OF 1 PRINTED: 4/9/2018
GEI#: 1086.01
DATE: 3/9/2017
ENGINEER: 1RM
BASIN C :, w ifflEsis
MODIFIED RATIONAL METHOD N INEERING, INC
Qp=CiA
?Q) 11 1111,AVS..
PRE-DEVELOPMENT
RAINFALL FREQ= 100 YR(DURATION=1) i=A*(Tc/60)_e (CITY OF BOZEMAN)
BASIN AREA PRE= 0.46 AC STORM EVENT STORM i COEFF INTENSITY
YR A B IN HR
PRE-DEV Tc= 13.0 MIN 2 0.36 0.6 0.90
5 0.52 0.64 1.38
PRE-DEV C= 0.20 10 0.64 0.66 1.76
25 0.78 0.64 2.08
STORM A= 1.01 50 0.92 0.66 2.52
B= 0.67 100 1.01 0.67 2.81
STORM INTENSITY= 2.81 IN/HR
PRE-DEV Qp= 0.26 CFS
POST-DEVELOPMENT
BASIN AREA PRE= 0.46 AC
POST-DEV Tc= 11.0 MIN
POST-DEV C= 0.6
STORM INTENSITY= 3.15 IN/HR
POST-DEV Qp= 0.87 CFS
H:\1086\010\DOGS\Design\STORM\Basin C.xls 1 OF 1 PRINTED: 4/9/2018
81nch PVC
Project Description
Friction Method Manning Formula
Solve For Discharge
Input Data
Roughness Coefficient 0.010
Channel Slope 0.00500 ft/ft
Normal Depth 0.67 ft
Diameter 0.67 ft
Results
Discharge 1.13 ft'/s
Flow Area 0.35 ftz
Wetted Perimeter 2.10 ft
Hydraulic Radius 0.17 ft
Top Width 0.00 ft
Critical Depth 0.50 ft
Percent Full 100.0 %
Critical Slope 0.00601 ft/ft
Velocity 3.19 ft/s
Velocity Head 0.16 ft
Specific Energy 0.83 ft
Froude Number 0.00
Maximum Discharge 1.21 ft'/s
Discharge Full 1.13 ft'/s
Slope Full 0.00500 ft/ft
Flow Type SubCritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 It
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 100.00
Downstream Velocity Infinity ft/s
Bentley Systems,Inc. Haestad Methods Sotii&dle(CEtdwMaster V8i(SELECTseries 1) [08.11.01.03]
4/2/2018 6:13:36 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06796 USA +1-203-755-1666 Page 1 of 2
81nch PVC
GVF Output Data
Upstream Velocity Infinity f/s
Normal Depth 0.67 ft
Critical Depth 0.50 ft
Channel Slope 0.00500 ft/ft
Critical Slope 0.00601 ft/ft
Bentley Systems,Inc. Haestad Methods SoBdfdtapidwMaster V81(SELECTseries 1) [08.11.01.031
4/2/2018 5:13:36 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 2 of 2
101nch PVC
Project Description
Friction Method Manning Formula
Solve For Discharge
Input Data
Roughness Coefficient 0.010
Channel Slope 0.00500 ft/ft
Normal Depth 0.83 ft
Diameter 0.83 ft
Results
Discharge 1.99 ft'/s
Flow Area 0.54 ft2
Wetted Perimeter 2.61 ft
Hydraulic Radius 0.21 ft
Top Width 0.00 ft
Critical Depth 0.63 ft
Percent Full 100.0 %
Critical Slope 0.00577 ft/ft
Velocity 3.68 ft/s
Velocity Head 0.21 ft
Specific Energy 1.04 ft
Froude Number 0.00
Maximum Discharge 2.14 ft'/s
Discharge Full 1.99 ft'/s
Slope Full 0.00500 ft/ft
Flow Type SubCritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %
Normal Depth Over Rise 100.00
Downstream Velocity Infinity ft/s
Bentley Systems,Inc. Haestad Methods SoBdidlepEldwMaster VBi(SELECTseries 1) [08.11.01.03]
4/2/2018 6:13:59 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 2
101nch PVC
GVF Output Data
Upstream Velocity Infinity ft/s
Normal Depth 0.83 ft
Critical Depth 0.63 ft
Channel Slope 0.00500 ft/ft
Critical Slope 0.00577 ft/ft
Bentley Systems,Inc. Haestad Methods SoHdidlepElriwMaster V8i(SELECTseries 1) 108.11.01.031
4/2/2018 6:13:59 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203.755-1666 Page 2 of 2
Irrigation Ditch NE Corner
Project Description
Friction Method Manning Formula
Solve For Discharge
Input Data
Channel Slope 0.00400 ft/ft
Normal Depth 2.64 ft
Section Definitions
Station(ft) Elevation(ft)
0+00 4827.48
0+08 4827.12
0+11 4824.05
0+13 4824.64
0+19 4826.69
Roughness Segment Definitions
Start Station Ending Station Roughness Coefficient
(0+00,4827.48) (0+19,4826.69) 0.030
Options
Uurrent rtougnness vveigntea Pavlovskii's Method
Method
Open Channel Weighting Method Pavlovskii's Method
Closed Channel Weighting Method Pavlovskii's Method
Results
Discharge 51.67 ft'/s
Elevation Range 4824.05 to 4827.48 ft
Flow Area 14.70 ft2
Wetted Perimeter 12.37 ft
Hydraulic Radius 1.19 ft
Top Width 10.92 ft
Normal Depth 2.64 ft
Critical Depth 2.04 ft
Bentley Systems,Inc. Haestad Methods So89idlefftdwMaster V8i(SELECTseries 1) [08.11.01.031
4/2/2018 3:56:56 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 2
Irrigation Ditch NE Corner
Results
Critical Slope 0.01522 ft/ft
Velocity 3.52 ft/s
Velocity Head 0.19 ft
Specific Energy 2.83 ft
Froude Number 0.53
Flow Type Subcritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss 0.00 ft
Downstream Velocity Infinity ft/s
Upstream Velocity Infinity ft/s
Normal Depth 2.64 ft
Critical Depth 2.04 ft
Channel Slope 0.00400 ft/ft
Critical Slope 0.01522 ft/ft
Bentley Systems,Inc. Haestad Methods So6didlePEldwMaster V8i(SELECTseries 1) [08.11.01.03]
4/2/2018 3:56:56 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-765-1666 Page 2 of 2
West Split
Project Description
Friction Method Manning Formula
Solve For Discharge
Input Data
Channel Slope 0.00500 ft/ft
Normal Depth 1.40 ft
Section Definitions
Station(ft) Elevation(ft)
-0+02 36.30
0+00 36.00
0+05 35.64
0+07 34.75
0+09 35.04
0+10 35.96
0+13 36.18
Roughness Segment Definitions
Start Station Ending Station Roughness Coefficient
(-0+02,36.30) (0+13,36.18) 0.030
Options
current ttougnness vveignteo Pavlovskii's Method
Method
Open Channel Weighting Method Pavlovskii's Method
Closed Channel Weighting Method Pavlovskii's Method
Results
Discharge 16.58 ft'/s
Elevation Range 34.75 to 36.30 ft
Flow Area 7.29 f(Z
Wetted Perimeter 13.91 ft
Hydraulic Radius 0.52 ft
Top Width 13.27 ft
Bentley Systems,Inc. Haestad Methods SoG&dh!PEh1wMaster V8i(SELECTseries 1) [08.11.01.031
4/2/2018 3:45:17 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 2
RECONSTRUCTED CHANNEL
Project Description
Friction Method Manning Formula
Solve For Discharge
Input Data
Roughness Coefficient 0.030
Channel Slope 0.02500 ft/ft
Normal Depth 0.87 ft
Left Side Slope 2.00 ft/ft(H:V)
Right Side Slope 2.00 ft/ft(H:V)
Bottom Width 2.00 ft
Results
Discharge 17.15 ft'/s
Flow Area 3.25 ft2
Wetted Perimeter 5.89 ft
Hydraulic Radius 0.55 ft
Top Width 5.48 ft
Critical Depth 0.96 ft
Critical Slope 0.01677 ft/ft
Velocity 5.27 ft/s
Velocity Head 0.43 ft
Specific Energy 1.30 ft
Froude Number 1.21
Flow Type Supercritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss 0.00 f:
Downstream Velocity Infinity ft/s
Upstream Velocity Infinity ft/s
Normal Depth 0.87 ft
Critical Depth 0.96 ft
Channel Slope 0.02500 ft/ft
Bentley Systems,Inc. Haestad Methods So6&dtef&EMarMaster VSi(SELECTseries 1) [08.11.01.03]
4/2/2016 7:45:01 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06796 USA +1-203-755-1666 Page 1 of 2
RECONSTRUCTED CHANNEL
GVF Output Data
Critical Slope 0.01677 ft/ft
Bentley Systems,Inc. Haestad Methods SoRdidlef&EfderMaster V8i(SELECTseries 1) [08.11.01.031
4/2/2018 7:45:01 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06796 USA +1-203-755-1666 Page 2 of 2
NESIS
ISIGI EERING, INC
?fir+sgvwingofa�5irl.StartderdgF�unnsitatnt
Osterman Commercial Condos/D&R Warehouse
Storm Pond C
Engineer: J. May
04/02/18
36" Round Outlet Structure - Pond B
10 year pre 0.16 cfs
25 year post 0.6 cfs
Weir Height 1 ft
Using COB Weir Equation
10 yr flow through slot = CLHA(3/2)
Q= 3.33*L'1.0(3/2) 0.16 cfs
L=0.048' Qr� wide
During storms greater than the 10 year, some additional flow will overtop the weir
and flow through the outlet pipe. Remainder of flow up will enter the inlet on top of the structure.
NESIS
NGINE RING, INC
"" :....,.p- 'Ihe31r�sexro,»gnfx..`.Yeu,Sfare,farlu}'fomttitwr»E
Osterman Commercial Condos/D&R Warehouse
Storm Pond B
Engineer: J. May
04/02/18
36" Round Outlet Structure - Pond B
10 year pre 0.29 cfs
25 year post 1.4 cfs
Weir Height 1.33 ft
Using COB Weir Equation
10 yr flow through slot = CLHA(3/2)
Q= 3.33*L*1.5(3/2) 0.29 cfs
L=0.057' 0 irk ,, wide
During storms greater than the 10 year, some additional flow will overtop the weir
and flow through the outlet pipe. Remainder of flow up will enter the inlet on top of the structure.
D&R Warehouse 3/19/2018
BASIN Offsite BASIN A
Weighted C Weighted C
Area(sf) 21580 Area(sf) 1942
Area(Acres) 0.50 Area(Acres) 0.04
Area Impervious(0.9) 6528 Area Impervious(0.9) 1942
Area Grass(0.2) 15052 Area Grass(0.2) 0
Weighted C= 0.41 Weighted C= 0.90
BASIN B BASIN C
Weighted C Weighted C
Area(sf) 39667 Area(sf) 19960
Area(Acres) 0.91 Area(Acres) 0.46
Area Impervious(0.9) 30754 Area Impervious(0.9) 11509
Area Grass(0.2) 8913 Area Grass(0.2) 8451
Weighted C= 0.74 Weighted C= 0.60
Typical Values for the Rational C Coefficient
(McCuen, Richard H., Hydrologic Analysis and Design, 3rd Ed.,Pearson Prentice Hall, 2005.
TABLE 7,9 Runoff Coefficients for titer Rational Formula versus Hydrologic Soil Gtoup 1R,8,C,t)i and
Slope Annge
A B C 1)
lams tJse, O 2% 2-5, fi' to 2M, -2-6T, iml fir 2":1 2 G`,> G-2% 2-4Y%_.6__
Cultivatz;d
land 0,0V 0.13 0.lfi (.Bat 0115 0.21 0.14 4.199 0.216 0.18 0?3 031
0,14e 0.18 0.22, 0,16 0;2' 0,28 UO 0.25 0,34 0.24 0.29 0.41
P"mare. 0.12 ON 0,30 OAS 0.2s 0,37 U4 0:34 0,44 0.30 0.40 0,50
OM Q25 0.37 0.29 g.34 U.45 0,30 (w'z 0.52 0.17 01.50 0.62.
Meadow 0,10 0,16 US 0.14 0,22 0.30 ON 0.28 £1-36 0,24 030 0,40
014 0,22 0.30 £320 0.28 0.37 UO 0,35 Q.44 0.30 OAO 0,50
forest 0.05 0.18 0.11 010S tt.ft 414 0,10 013 Q.16 0.12 0,16 010
0.08 Oil 0.1.1 0AO 0,14 0.t,S 0,11 0,16 0,20 0,15 0.110 0,25
ReSid(Craia)
lot 025 028 (01 £i,,'.7 Usti 035 0.30 e3."53 111,38 033 0,36 0,42
siac 1:9 av're 0.33 U. ' 0140 0. 5 (}3u 6,1111 ii x8 0.41 0,19 041 045 0,54
Residential
lot 0.22 0.'6 0.20 0.2.1 0.29 0,13 0,27 101 0.36 1'1.3ti 0.314 0.40
size 114aac 0:30 0.34 017 031 037 0.42 D16 0.40 0.47 03t tlAZ 0.52
Residential
lot 019 0.23 0'26 O22 0,26 0.3u 0k25 029 034 0.28 0.32 0.39
stm 1.'3 acre 0.28 032 0.35 0.30 0,35 O)IQ W33 (1 38 043 1t30 0,40 0.4)
Residrnlial
lot 0.16 0.20 0-4 0.19 0.23 0,29 0,22 0,27 0,31 0.26 0'30_ 0.37
size 112 acre 0.2.5 0.29 0.32 0 2S 0.32 (IM, £131 0 3S 0.42 034 0..38, OAS
l~x;mdQ1[ttt
lot 0.14 0.19 0,22 0.17 0.21 0.26 0,20 0.25 0.31 0,<4 029 0.3
Sig,1 sere 87.22 4}26 0.19 Q.24 0.28 034 0.2S 032 0.40 0.31 0.3j U.46
Industrial G.67 0.69 C1,68 0.t 06.K (09 0.6$ 0.69 tr(0 f169 0.69 Qi-O
0,85 0.85 0.86 0,15 ).tiE 0.156 Q,S6 0.$6 o'87 016 0.36 0.43
Commerciat 0,71 0,71. 072 031 0.72 O.i2 0.72 0.72 0.72 0,72 072 072
O's8 7.63 O.S9 0.87 0.89 0.49 0.40 0.89 0.90 0.89 0.89 0,90
Sirens 0.?11 101 0.72 031 0.72 0.74 0.72 03,1 0.76 0.73 0.75 0,IS
0.76 0.77 0.70 0.84? 11&2 0.84 0.84 0.85 0.8e) 0,89 0.91 0.95
Open space 0.05 0.10 0.14 01% 0.13 0,19 0.12 0,17 0.24 016 021 0.28
0.11 0.16 0.20 0.14 0a9 0,26 0.14 17.23 0.32 0.2-' 0127 £t,a
Parkine 0.85 0.86 UP 0.=5 0.S6 0.;57 0.8,5 0.86 0.87 0,85 i7.86 01$7
(1,95 0,96 O,W 0.95 0.'% 0.97 0195 10,96 0.47 U.95 0.% t07
"Run off coefficietats for stoun.e,cu fro,ice intervals t s than 25 yests
Run aif eoe fficaenis for s€orot ie atrtenc e intervals of 25 soars or hmgov
Osterman Commercial Condos
Storm Water Facilities Operation & Maintenance Manual
Overview
The HOA is responsible for maintaining all of the onsite Storm Water Facilities,including storm inlets,storm pipe and
the storm water detention pond per the schedule below.
Maintenance
The storm inlets and pond outlet structure are to have the sediment removed from the sediment traps on a yearly basis
or an updated maintenance schedule as determined by monitoring the sediment build-up of the inlets quarterly.
The storm pipe between the storm inlets is to be monitored yearly for build-up of sediment or trash. If the storm
system is operating correctly the build-up should be minimal and therefore maintenance schedule will be directly
correlated to the yearly inspection findings.
The storm water ponds shall be monitored every five years for sediment build-up. When the sediment build-up starts
to decrease the capacity of the detention pond the sediment shall be removed mechanically and hauled from the site.
It the extraction of the sediment removes the vegetation from the bottom of the pond, it should be reseeded or re-
sodded and appropriate storm water BMPs are to be installed until the vegetation is stabilized.
The underground storm water detention pond shall be monitored yearly with maintenance occurring when two inches
of sediment is measured within the first lateral. The storm manhole that feeds the underground pond shall be cleaned
of sediment at least yearly to reduce the sediment load going into the underground pond.
The owners of the first constructed building will be responsible for maintenance of all of the above items until an HOA
is in place or until a second building is constructed. If two buildings are occupied,a HOA must be created which will
takeover all maintenance.
Contact Information
Property Manager:
Association President:
st
ENGINEERING
_.. + CONSULTING
PLANNING
NC
# dG NEEE,BZEGy I 5 204 N.III'Ave BOZEMAN,MT 59715 406-581-3319 . �B eIGN
2Ad NOliiN iitn AVENUE,6OXFMAN,MT 55Ti5
April 41h, 2018
Griffin Nielsen
City of Bozeman Engineering
20 East Olive Street
Bozeman, MT 59771
Re: Osterman Commercial Condos Master Site Plan
760&770 Osterman Drive
Groundwater/Storm Water Ponds
Dear Griffin,
This letter is to serve as the ground water monitoring information for the storm water ponds for the
Osterman Commercial Condo/D&R Warehouse Site. The groundwater levels have been visually
observed in respect to the deep irrigation ditch on the east property line since last summer. No
groundwater has been witness entering the side walls of the irrigation ditch and there is no vegetation
evidence that groundwater has historically entered the side of the ditch. The ditch bottom is below the
bottom of each of the ponds and therefore acts as an adequate groundwater monitoring station.The
proposed ponds are all less than one foot below native ground with the exception of the south end of
the southeast detention pond. The southeast pond is immediately adjacent to the deep irrigation ditch
with the bottom of the pond being over three feet above the bottom of the irrigation ditch.
The geotechnical test pits found evidence of groundwater as high as four feet below ground surface
which is additional proof that the ponds are above the seasonal high groundwater.
We are comfortable continuing design and construction of the storm ponds with the above information
but have installed a groundwater monitoring wells to be able to gather information this spring. We
reserve the right to adjust the pond designs if new information is discovered.
If you have any questions or comments, please contact me at 581-5730
Sincerely,
Za
J e riTny , P.E.
Genes Engineering, Inc.
w tw.g-e-i.net
H:\1086\010\DOCS\Design\STORM\groundwater letter.docx
204 N. 11'h Ave.,Bozeman,MT 59715 Cell:(406)581-3319 www.q-e-i.net Page 1 of 1