HomeMy WebLinkAbout18 - Design Report - Flanders Mill - Water and Sewer DESIGN REPORT
WATER AND SANITARY SEWER
FLANDERS MILL SUBDIVISION
Prepared for:
Flanders Mill, LLC
235 Greenhills Ranch Road
Bozeman, MT 59718
Prepared by:
FC a rMA
Engineering and Surveying Inc.
1091 Stoneridge Drive • Bozeman, MT 59718
Phone (406) 587-1115 • Fax(406) 587-9768
www.chengineers.com • info@chengineers.com
Project Number: 14500 p
MAW A.CH* c
�'� CR
January 2018 � ���,� 4
Design Report-Page 2 of 11
INTRODUCTION
The proposed Flanders Mill Subdivision is a major residential subdivision located on a 131.1270-
acre parcel legally described as Tract 1 of Certificate of Survey No. 2834, except Tract A,
Certificate of Survey No. 2886, located in the East Half of the West Half of Section 3, Township
2 South, Range 5 East of P.M.M., City of Bozeman, Gallatin County, Montana. It is bordered by
Baxter Lane to the north, Ferguson Avenue to the east, and Flanders Mill Road to the west. The
subdivision will connect to existing City of Bozeman water and sewer mains.
The proposed subdivision includes 262 single family lots (16 of which are anticipated to have
accessory dwelling units) on 55.33 acres (zoned R-3) and 1 multi-family lot on 9.14 acres (zoned
R-4). This report assumes that the multi-family lot will contain 196 units per Architect Plans.
This results in a total of 474 dwelling units.
WATER DISTRIBUTION SYSTEM
Current water mains and stubs in the area utilized for this project include: the 12-inch ductile iron
pipe (DIP) located in Baxter Lane at the north subdivision boundary, the 10-inch DIP in the Oak
Street/Ferguson Avenue Intersection at the east central portion of the subdivision,and 8-inch DIP
stubs on the west side of Ferguson Avenue at the intersections of Moonstone Drive, Sunstone
Street, Annie Street, Renova Lane, and Tanzanite Drive.
A WaterCAD analysis is enclosed (Appendix A of this report) analyzing all mains installed with
this project. The connections to the existing system are modeled as two pumps representing the
connections near the south (Ferguson) and north (Baxter) ends of the subdivision with
characteristics matching pressure/flow data measured by the City of Bozeman Water Department.
Water Distribution System Demands
The design parameters used herein are according to the City of Bozeman Design Standards and
Specifications Policy(DSSP) dated March 2004.
Design Report-Page 3 of 11
Average Daily Residential Usage = 170 gallons per capita per day
Average Population Density = 2.11 persons/dwelling unit
Minimum Fire Hydrant Flow = 1,500 gpm
Residual Pressure Required = 20 psi for Fire Flow
Average Day Demand (Peaking Factor= 1.0)
Maximum Day Demand (Peaking Factor=2.3)
Peak Hour Demand (Peaking Factor= 3.0)
Water Demands (474 dwelling)
Average Day Demand= 474 d.u. x 2.l l persons/d.u. x 170 gpcpd= 170,023 gpd= 118.07 gpm
Maximum Day Demand = 118.07 gpm x 2.3 =271.57 gpm
Peak Hour Demand = 118.07 gpm x 3.0 =354.22 gpm
Water Distribution System Hydraulic Analysis
A water distribution model was created using WaterCAD Version 6.5 for demand forecasting and
describing domestic and fire protection requirements. In order to model the system, each junction
node of the water distribution system was assessed a demand based on its service area. The table
shown below quantifies the demands placed at the junction nodes and calculates the demands for
Average Day, Maximum Day and Peak Hour within the subdivision. The peaking factor for each
case is 1.0, 2.3 and 3.0 respectively. Refer to the site layout in Appendix A for node locations.
Design Report-Page 4 of 11
AVG. PEAK
JUNCTION #OF DAY MAX.DAY HOUR
NODE UNITS (GPM) (GPM) (GPM)
110 10 2.49 5.73 7.47
113 10 2.49 5.73 7.47
201 7 1.74 4.01 5.23
301 8 1.99 4.58 5.98
416 12 2.99 6.88 8.97
501 15 3.74 8.59 11.21
505 14 3.49 8.02 10.46
507 5 1.25 2.86 3.74
601 12 2.99 6.88 8.97
701 9 2.24 5.16 6.73
901 14 3.49 8.02 10.46
908 8 1.99 4.58 5.98
1101 10 2.49 5.73 7.47
1106 8 1.99 4.58 5.98
1501 12 2.99 6.88 8.97
1601 17 4.23 9.74 12.70
1715 5 1.25 2.86 3.74
1718 26 6.48 14.90 19.43
1801 46 11.46 26.35 34.38
1901 20 4.98 11.46 14.95
1904 4 1.00 2.29 2.99
2106 8 1.99 4.58 5.98
2201 18 4.48 10.31 13.45
2207 16 3.99 9.17 11.96
2210 5 1.25 2.86 3.74
2606 17 4.23 9.74 12.70
2607 11 2.74 6.30 8.22
2608 127 31.64 72.76 94.91
Total 474 118.07 271.57 354.22
Design Report-Page 5 of 11
Static, residual and pitot pressures were measured by the City of Bozeman Water Department for
the 8-inch water main in Andalusian Avenue north of Equestrian at Hydrant#2485 and the fl-
inch water main stub near the intersection of Ferguson Avenue and Sunstone Street. The
measurements at the Ferguson/Sunstone hydrant were taken on the low pressure side of the
existing pressure reducing valve (PRV) in Ferguson. The Hydrant Pressure/Flow Result Forms
are attached in Appendix A of this report. The results are shown below:
Location Hydrant# Static Pressure Pitot Pressure Residual Pressure
Andalusian near 2485 107# 94#
Kimberwicke
Andalusian 2484 80# (1500 gpm)
Ferguson/Sunstone 2278 81# 75#
Ferguson/Moonstone 2279 65# (1350 gpm)
This flow/pressure information was used to develop relationships between static head and flow at
the tie in points. This relationship was simulated in the WaterCAD model using pumps at the
connection points. The pumps are connected to reservoirs which act as a source of water. The
elevations of the reservoirs are fixed at the elevation of the pumps, which is also equivalent to the
elevation of the tie in point. The reservoir does not create any head on the system; the head is
generated entirely by the pumps. The input data and the pump curves are included in Appendix A
of this report.
Water Distribution System Design Summary
The model shows that the existing water distribution system provides adequate flow and pressure
for the proposed subdivision. The modeled connection point (pump) at Baxter Lane supplied
sufficient pressure to the system which forced the modeled connection pump at Ferguson to shut
off. The lowest pressure observed in the model was 81 psi at Junctions#263, and#261, and 80 psi
at #701 near the southwest boundary of the subdivision. The proposed 8-inch, 12-inch, and 16-
inch DIP water mains provide adequate capacity to serve the development.The flows and pressures
within the system for the Peak Hour Demands were generated using WaterCAD and can be found
Design Report-Page 6 of 11
in Appendix A of this report.
The capacity of the system to meet fire flow requirements was tested by running a steady state fire
flow analysis for all junctions at fire hydrant locations. The model shows that all hydrant junctions
satisfy fire flow constraints (residual pressure > 20 psi, flow rate > 1500 gpm), while providing
service to lots at peak hour. The results of the analysis at peak hourly flow are given in Appendix
A of this report.
SANITARY SEWER SYSTEM
Sewer main lines will be installed in nearly all streets in the subdivision and will connect to two
trunk/interceptor mains: the Valley West Trunk Main/Baxter Interceptor and the Ferguson Trunk
Main/27th Avenue Cattail Creek Interceptor.
Sanitary Sewer Design Load
The flow rates used herein are according to the City of Bozeman Design Standards and
Specifications Policy, March 2004 (COB DSSP). The peaking factor for the design area is
determined by calculating the equivalent population and inserting the population into the Harmon
Formula. An 8-inch main is the minimum diameter allowed within the City of Bozeman. The
proposed mains within the subdivision will be 8-inch, with the exception of the sewer main in
Riata Road,which will be 10-inch. All new sewer lines shall be sized to flow at no more than 75%
of capacity for peak hour conditions.
The city average of 2.11 persons per household is used to calculate the equivalent population for
the service area.
Valley West Trunk Main/Baxter Interceptor Connection:
The 18-inch Valley West Trunk Main flows west to east through the portion of the proposed
subdivision that lies south of future Oak Street before jogging 360-ft to the north and transitioning
to a 21-inch line near the Ferguson/Renova intersection. A majority of the lots adjacent to and
south of the Trunk Main will connect to the Trunk Main with two new manholes, two main
Design Report-Page 7 of 11
connections to existing manholes, and several direct service connections. The contributing area
includes 77 single family lots, with 12 of those lots anticipated to have accessory dwelling unit
lots. Therefore, the total number of contributing dwelling units is 89. The equivalent population
and assumed infiltration rate for the contributing area is calculated as follows:
Equivalent Population: (2.11 persons/d.u.)(89 d.u.) = 188 persons
Assumed infiltration rate: (150 gal/acre/day) (27.10 acres)= 4,065 gal/day
Total Design Load:
The peak flow rate is calculated by multiplying the City's design generation rate of 89 gallons per
capita per day by the population,multiplying by the peaking factor,and adding the infiltration rate:
Harmon Formula: Peaking Factor= (18 +Po.$)/(4 +po.$)
where: P =Population in thousands
Peaking Factor=(18 + 0.1880-5)/(4 +0.1880.5)
Peaking Factor=4.16
Peak Flow Rate: (89 gaVperson/day)(188 persons)(4.16) +4,065 gal/day
=73,557 gal/day
= 51.08 gpm (0.1138 cfs) = Qpeak
Sanitary Sewer Hydraulic Analysis:
The capacity of an 8-inch main is checked using Manning's Equation:
Q= (1.486/n)AR2/3S1'2
For an 8-inch PVC sewer main:
Manning's n = 0.013 for PVC
Minimum Slope = 0.004 ft/ft
A=area= (3.14/4)d 2= (3.14/4)(8/12)2= 0.34907 ft2
P =perimeter=2(3.14)r=2(3.14)(4/12) =2.0944 ft
R=hydraulic radius =A/P = 0.34907/2.0944 =0.16667 ft
Design Report-Page 8 of 12
Reis = 0.30105 ft
S = 0.004 ft/ft
Sue = 0.0632 ft/ft
Qf,11= (1.486/0.013)(0.34907)(0.30105)(0.0632) = 0.7592 cfs
QO.75 =(0.75)(0.7592) = 0.5694 cfs> Qpeax= 0.1138 cfs adequate
Based on these calculations, an 8-inch sewer main is more than adequate to carry the design flows
for the to the Valley West Trunk Main. According to Figure 4.5 of the 2007 Bozeman Wastewater
Facilities Plan,the Baxter Interceptor is flowing at less than 50%capacity for the peak day model.
The total capacity of the Baxter Interceptor is approximately 8-9 mgd, with unused capacity of
approximately 4-4.5 mgd. This indicates that the Interceptor has adequate capacity to manage the
additional flows from the proposed development.
Ferguson Trunk Main/2rh Avenue Cattail Creek Interceptor Connection:
The portion of the proposed subdivision lying north of the Valley West Trunk Main connects to
the existing Ferguson Trunk Main at the intersection of Ferguson Avenue and Tanzanite Drive. It
also connects to the Norton East Ranch Outfall Sewer at the intersection of Baxter Lane and
(future) Riata Road, which connects to the Ferguson Trunk Main at the Ferguson/Baxter
roundabout. The following analysis is provided for the connection to the Ferguson Trunk Main at
Tanzanite Drive. The contributing area includes 35 single family lots, with 4 of those lots
anticipated to have accessory dwelling units. Therefore,the total number of contributing dwelling
units is 39. The equivalent population and assumed infiltration rate for the contributing areas are
calculated as follows:
Equivalent Population: (2.11 persons/d.u.)(39 d.u.)= 82 persons
Assumed infiltration rate: (150 gal/acre/day) (13.9 acres) =2,085 gal/day
Total Design Load:
The peak flow rate is calculated by multiplying the City's design generation rate of 89 gallons per
capita per day by the population,multiplying by the peaking factor,and adding the infiltration rate:
Design Report-Page 9 of 12
Harmon Formula: Peaking Factor= (18 +Po.$)/(4 +Po.5)
where: P =Population in thousands
Peaking Factor= (18 +0.0820-5)/(4 + 0.082")
Peaking Factor=4.27
Peak Flow Rate: (89 gal/person/day)(82 persons)(4.27) +2,085 gal/day
= 33,247.46 gal/day
=23.09 gpm(0.0514 cfs) = Qpeak
Sanitary Sewer Hydraulic Analysis:
The capacity of an 8-inch main is checked using Manning's Equation:
Q= (1.486/n)AR2i3S1i2
For an 8-inch PVC sewer main:
Manning's n =0.013 for PVC
Minimum Slope =0.004 ft/ft
A= area= (3.14/4)d 2=(3.14/4)(8/12)2= 0.34907 ft2
P =perimeter=2(3.14)r=2(3.14)(4/12) =2.0944 ft
R=hydraulic radius=A/P = 0.3 4907/2.0944 =0.16667 ft
W13 =0.30105 ft
S =0.004 ft/ft
S1/2= 0.0632 ft/ft
Qf,11= (1.486/0.013)(0.34907)(0.30105)(0.0632) =0.7592 cfs
Qo.75 =(0.75)(0.7592) = 0.5694 cfs> Qpeak=0.0514 cfs •*. adequate
Based on these calculations, an 8-inch sewer main is adequate to carry the design calculations for
the subdivision to the Ferguson Trunk Main at Tanzanite Drive.
Design Report-Page 10 of 12
Norton East Ranch Outfall Sewer Connection:
Currently, the proposed sewer main connecting to the Norton East Ranch Outfall Sewer at Baxter
Lane and Riata Road has 2 main 8" branches within the subdivision. These branches meet at the
Ryun Sun Way / Riata Road intersection and flow through a 10" Main to the Norton East Ranch
Sewer in Baxter Lane. The 8" east branch of this contributing sewer main within the subdivision
travels north on Ryun Sun Way from Tanzanite Drive to Riata Road,while the 8"west branch will
travel north on Windrow Drive and Ryun Sun Way from Oak Street to Riata Road. At the time of
the construction of the sewer main in Riata Road, it was unclear how many units would be
proposed on the multi-family lot in Phase 7. In order to accommodate this, the section of sewer
main in Riata Road to Baxter Lane was upsized to a 10"main. The contributing area includes 150
single family lots, and 1 multi-family lot(9.14 acres, zoned R-4). The multi-family lot is assumed
to have a total of 196 units based on architect plans. Therefore, the total number of contributing
dwelling units is 346. The equivalent population and assumed infiltration rate for the contributing
area is calculated as follows:
Equivalent Population: (2.11 persons/d.u.)(346 d.u.) = 730 persons
Assumed infiltration rate: (150 gal/acre/day) (90.9 acres) = 13,365 gal/day
Total Design Load:
The peak flow rate is calculated by multiplying the City's design generation rate of 89 gallons per
capita per day by the population,multiplying by the peaking factor,and adding the infiltration rate:
Harmon Formula: Peaking Factor= (18 +Po.$)/(4 +po.$)
where: P =Population in thousands
Peaking Factor= (18 + 0.730o-')/(4 + 0.7300.5)
Peaking Factor= 3.88
Peak Flow Rate: (89 gal/person/day)(730 persons)(3.88) + 13,365 gal/day
= 265,719 gal/day
= 184.53 gpm (0.411 cfs) = Qpeak
Design Report-Page 11 of 12
Sanitary Sewer Hydraulic Analysis:
The capacity of a 10-inch main is checked using Manning's Equation:
Q= (1.486/n)AR2"Sli2
For a 10-inch PVC sewer main:
Manning's n =0.013 for PVC
Minimum Slope = 0.004 ft/ft
A= area= (3.14/4)d 2= (3.14/4)(10/12)2= 0.5454 ft2
P =perimeter=2(3.14)r=2(3.14)(5/12) =2.6180 ft
R=hydraulic radius =A/P =0.5454/2.6180 =0.2083 ft
R2l3 = 0.35139ft
S =0.004 ft/ft
S'/2= 0.0632 ft/ft
Qh,11= (1.486/0.013)(0.5454)(0.35139)(0.0632) = 1.3845 cfs
QO.75 =(0.75)(1.3845)= 1.0384 cfs> Qpeax=0.411 cfs •'• adequate
Based on these calculations, a 10-inch sewer main is adequate to carry the design calculations for
the subdivision to the Norton East Outfall Sewer Main in Baxter Lane.
Downstream from the proposed connections, the Ferguson Trunk Main transitions to an 18-inch
line before entering the Baxter Meadows Lift Station. According to Figure 4.5 of the 2007
Bozeman Wastewater Facilities Plan,the Ferguson Trunk Main and the 27th Avenue/Cattail Creek
Interceptor are flowing at less than 50% capacity for the peak day model. Total capacity is
approximately 1.5 mgd for the Ferguson Trunk Main and 13 mgd for the 27th Avenue/Cattail Creek
Interceptor, with unused capacity of 750,000 gal/day. This indicates that the lines have adequate
capacity downstream from the proposed subdivision.
Design Report-Page 11 of 11
APPENDIX A
WATERCAD MODEL &
COB HYDRANT DATA
.0 L'S
0
LLI
w 0 CL
Z
z
0
0
❑
fn
VA.
SO
4D
0
U)0
IL j
U)
0 o
Lh
(D C 4 F-,-
c)
T (3 C�
IN
IL
(D Z(1) +
Cl U)
L C C
❑
w LO
CLM
E E CD
U) 0
M C*4
COO
O
CD
-0
r CL
0 O
rL 0co�
I CD
CD
C)
LO
CD U7 N
A LLD O
0 p
LL 0o N
c u > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > W c a
N � LL LL LL L L L LL L LL LL LL L L LL LL LL LL L L LL L L LL LL L L LL LL LL LL LL
L lii r r r r r r r r r r f f� r r r r r r r Z u
ro
.Ni m U
Q
c E
O > > v
n a `� N n n � n n n n n N n n N n n N N N � r~i n n n n N n n N N n r T
r"1 r"1 r"1 r"1 r"1 r"1 r"1 r"1 '"1 ,"1 ,"1 ,"1 ,"1 �"1 '•'1 ,'•1 ,1 ,"1 ,"1 ,"1 i"1 ,"� ,'•1 ,1 ,"1 ,"1 i"1 rl ,'•1 C
Qf
L O O O O O O O O O O O O O Cl -4 N O O O Cl Cl O O O O O O O M O O m
N N v N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
J a
J a 22 c
N
L O O O O O O O O O O O O O O O O Cl O O O O O O O O O O O O O Cl
v N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
J E a
au
t aN
O
a +-i lD ri M M M M r+ N O N N M 00 O O O N Ln ri Ln lD M N O m lD M O Ln N
N N N v- M v' M N N V N N N N N N M N N N N M N N N N N N N
ii 7 10 O +
7� Q
U •In d U
C a L9
c 0)w�
LL .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 v o
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 0 U
Y/ J L o
0 C2n
al d n -
a °C 3 0■■ V J L la
N3 aJ
N lD M lD n N O N 00 M n M In M M O lD M v' 00 N Ol 01 Ol v' M M 1D O N
w�w� i••� In O Ln I� n Ln lD lD Ol Ot n v: n .-i ri Lfl I� n CT V: lD lD Ql N M O n Ql N rn v>>m
n n tD M O n O1 Cl 00 lD M O M N M v- N .i N M lD lD M v' �i M M N M O N O
F �!� d N Ln v Vl oo Ln n nt. M oo nz. .Ni .MI M M l�D M v' n M U M N tD N
?� •O N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N =g N
lO Q c y
— y
0000000NoOMoMNv' OMOOm lDNov- 00v wrl00 Eo
ate+ O O� O O O O 01 O O N O Ol I� O n O O al O n O O n m n O d �,•
O'0— CD Ln CD CDO CO O O Ln CDm CO M CDw CD CDN N O N CDM CD O M Ln N N CD ; c
a) E C7 CO CD CO CD O O O CO CO -4 O 0 CO CO CD CD CD C7 -4 O CO C7 CO O 0 O CO .-i CO 0 d
O 0 o. Lr Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Lr Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln T E
cu
Z O w Ov1 .1 .1 .1 rl . r1 . I .1 .1 .1 1 ri 1 C O
Z U
3 mo
E
O N CO M %D N N M N 00 O N O 00 M M N lD Cn Ln ri lD N On lD v' M M M n O N O
Ln O Ln It n In tO lD O� n n O n M M Ln I� n Ln al N %q N N (I N n Ln M y
�-. n -i lD M O N O v- 00 ,-i M ri CD 00 N N +-i v' lD Ln On M �--� +-i m lD N n N N
M N N In 00 -1 00 M -4 N n 00 -4 M N N -4 N M N M N 00 ri N %D O1 N n
w, �L!O E N V In * In 00 Lfl I1 Il M V rl V rl �•i .i M M %O M M L d' I� V' M N lD lO
L ` ; pnj N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
F6 U- v
T
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Cl n
GO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O U
aiE CD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ln Ln Ln Ln Ln Ln Lr in Ln Ln Ln LrL Ln Ln Ln Ln L Ln Ln Ln Ln Ln Ln Ln Ln Ln L Ln Ln V v 2
N N Ovnf .-i .--i .-i .� ri .4 1-4 -4 -4 'm
•- Z
LL
la
0
C
v
ii
tn 3 w al N N N N N w w w w w N N N w w al w w w w w w w w w w w w w N
WO L 7 7 7 7 7 7 7 7 n 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 c
1F L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L O_
LEA) V
Q
lD lD lD W W W WW lD V WlD WW VV V W WlD WlD lD lD v- lD lD lD VlD lD
c c )
O
LL +�
-
a)
w
v
C
r-I ri 00 O -4 Ln l0 M°D
0D 00 O O N n O O1 Ln ri -1 rl lD ri M �-i v' Ln O M Ln O N ri M N n .-i O O N LL o
�p 00 O M Ol lD lD Ln n lD O 01 N ri N lD O Ln Ln O\ -i O .-i Ln n Ln n O O .--I lD 00 O N
J N M N N N N .-i N N N N ri v' N N N N N .-i .-i In .-i N .-i N N In M �-i N N O n
ri M ri ri ri ri ri ri ri ri ri m " ri ri M M M ri ri ri rl M ri M ri rl rl M ri -1 a
CO U N
0 O
N
G w a)
N
Lij IL
LL LL LL LL L LL LL L LL LL LL LL LL LL LL L L L L
U Li r r r r r r f r r r r r r Z.r.
H m O
Q
c E v ,�
E c
n _ a`N' n n n n n n n n C) C:)
n n n n n n C) n N w
-
�"1 '..L . '.'1 r..l n . . i"1 . r..l n . . .
a)
L M O O O O O O O O O Cl O O O O O O O O m
0) N N N N N N N N N N N N N N N N N N N
J a I m c J nA
lJ vN
L O O O O O O O O O O O O O O O O O O O
w N N N N N N N N N N N N N N N N N NIn
N
� 3 _
J E n
,
t a N
v
iL O N M Ln LM .--I O M- Ln Ln M O n w 0 w C+1 Ln O
Go
_ N M M M N V N N N 't N M M M M N N NCe N
L :3
7 10 ^ +
a� `—' ten vQi
En
C
C o`er,
a>
LL. .. C) CD o CD CD C� CD C) Cl CD o o C) o CD CD CD CD Cl V o
w, v= N N N N N N N N N N N N N N N N N N N pU
` N�:L2 C oL16 U FF GJ 01 a 3D
a` oC 3 0
■■ V J G N W N�cD
w w w M lD n n M N n n M M n O M w N m
M -i O Cn n n lD Ln M O .--� .-� 00 -1 w N O M O �
F O - N M I- Ln O w rn 00 00 V, 00 M V- Lfl D; O 1\ o
E m m N -4 rl N m m In m -4 M w v N lD N w -q N o w
mn nz. tD n nt. n n lD N [r w � Ln lD n n lD Ln lD O m N
k 3 •f0 N N N N N N N N N N N N N N N N N N M =II N
LL Q cUE)i
L - N
� y'C
C) Ln Ln w C) o n lD 1l C) .4 w n w w N C) .+ CD E p
w, O C!) 'lT Cl O O O CY Cl O N T r� D1 M N O D1 O d >,
O M Ln O O O O 00 O .-i Ln N .--i 1' w CDV' C0
w E CD .--i -4 CD CD CD CD -4 C) CD .--1 C) -4 .q M CD C) CA CD (n a
O v a LQ q Ln Ln Ln Ln Lri q Vi Vi Vn q Ln Ln Ln Ln Ln Ln Ln T E
z 3 a) o
mo
3 "
E
O w M M .4 lD n n Cil Ln n LD Ol T w G% n N
Cn N lD O n n lD O M O ON N -1 M O O !n
N M O O O D1 M w 6 Id 6 n N M M +4 -; lD n N
mw .-L .4 -4 N m w m C, N n M m Ln N w -4
LL 10 E n lD n n n n lD N w q- Ln lD n lD kD Ln Ln Cl
CL
pl N N N N N N N N N N N N LV N N N N N Lh
E vcm
T
O O O O O O O O O O O O O O O O O O O n
3 O O O O O O O O O O O O O O O O O O O C
p CD C, O C) C) C) C) O C) C) C) CD CD C) C) C) C) O U
LL v E CDC) CD C) C) Cl CD C) Cl C) CD CD CD C) O C) O Cl
CL Ln Ln Ln Ln Ln Ln In Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln
` w Ovl
r / Y
a1
C_
N G OJ N O) 0) N N N N N N N OJ Ol O) O) N O) O) 0) LV
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 C
L L L L L L L L L L L L L L L L L L L o
H H H H H H H H H H H H H H H H H H H 12
inn u o
Q
� V- LD l0 lD lD lD V l0 lD n lD lD lD lD lD 0 lD lD V
3 c a)
O O m
LL m 3
Ln
w
a
c
lD lD -4 n -1 n w m ao
D1 O O O n O LD W -4 O O O O O M O LL o
Lp lD m N .-4 n w w O O M O .--1 lD N w LD v- lD oo N
N N N N N D� tD LM Ln .--� �--� N +--� N fn N N
r, r'1 r l r9 r l r l r9 r l r9 r9 r9 r9 A " A r9 r9 r9 -1 a
FlexTable: Junction Table
Label Elevation Demand Demand Hydraulic Grade Pressure
(ft) (Target) (gpm) (ft) (psi)
_ (gpm)
1-288 60.50 0.00 0.00 255.08 84
3-908 51.59 5.98 5.98 255.09 88
3-2301 43.80 0.00 0.00 255.11 91
3-290 52.58 0.00 0.00 255.09 88
3-262 40.21 0.00 0.00 255.15 93
3-267 15.78 0.00 0.00 255.40 104
3-1501 39.19 8.97 8.97 255.15 93
3-279 15.40 0.00 0.00 255.36 104
3-265 20.49 0.00 0.00 255.22 102
3-201 66.97 5.23 5.23 255.08 81
1-291 52.15 0.00 0.00 255.09 88
3-1718 17.48 19.43 19.43 255.36 103
3-416 58.99 8.97 8.97 255.08 85
3-2210 16.76 3.74 3.74 255.25 103
J-263 67.99 0.00 0.00 255.08 81
1-701 69.05 6.73 6.73 255.08 80
3-254 66.69 0.00 0.00 255.08 82
3-255 59.50 0.00 0.00 255.08 85
3-1904 24.76 2.99 2.99 255.20 100
1-113 61.30 7.47 7.47 255.08 84
3-505 53.43 10.46 10.46 255.09 87
3-1101 51.19 7.47 7.47 255.09 88
3-257 55.68 0.00 0.00 255.09 86
J-1715 17.68 3.74 3.74 255.36 103
3-253 66.63 0.00 0.00 255.08 82
3-272 47.47 0.00 0.00 255.11 90
3-507 49.51 3.74 3.74 255.09 89
1-301 58.99 5.98 5.98 255.08 85
1-110 64.53 7.47 7.47 255.08 82
3-2606 33.59 12.70 12.70 255.10 96
3-287 29.80 0.00 0.00 255.22 98
3-269 15.50 0.00 0.00 255.50 104
3-1901 27.82 14.95 14.95 255.17 98
3-2201 22.93 13.45 13.45 255.20 100
3-2106 21.80 5.98 5.98 255.21 101
3-277 24.88 0.00 0.00 255.20 100
3-280 21.34 0.00 0.00 255.30 101
3-286 28.37 0.00 0.00 255.17 98
3-901 59.45 10.46 10.46 255.08 85
3-601 55.26 8.97 8.97 255.09 86
3-336 10.92 0.00 0.00 255.50 106
3-501 58.29 11.21 11.21 255.08 85
J-1106 46.78 5.98 5.98 255.11 90
1-1601 29.00 12.70 12.70 255.22 98
3-2207 16.56 11.96 11.96 255.25 103
3-1801 26.44 34.38 34.38 255.17 99
3-2607 30.56 8.22 8.22 255.13 97
3-343 45.92 0.00 0.00 255.10 91
3-2608 38.51 94.91 94.91 255.07 94
3-2 27.06 0.00 0.00 255.21 99
14500 Flanders Mill WaterCAD_version2(16 in Bentley Systems,Inc. Haestad Methods Solution Bentley WaterCAD CONNECT Edition
Oak Main)-Copy.wtg Center [10.00.00.55]
1/17/2010 27 Siemon Company Drive Suite 200 W Page 1 of 1
Watertown,CT 06795 USA +1-203-755-1666
CO N N
A'n 0
w O
lL C3. W
F O
LLJ
Z
Z
O
O O O O O N O O li O .q O O O O O O l0 v v 0 0 .q 14 O O O O O .i O O .--I M U
O O O O O O O O O O .--I O O O O O O O O O O O O O O O O O O O O O O O C) O Q
O O O C) O C) C) C) O O O C) Cl C) C) O O C) O O CD O O CD O O O O O O O O O O C) O O U
O
ILl j
0) >
= T
N
C
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cl 0 0 0 0 0 0 0 0 0 0 Cl 0 0 0 lb
C) C) O O CD C) O C) C) C) C) C) O O Cl CD O O O C) O CD C) O C) O O C) O O C) O C) O C)
O O O O O O O O C! O O C! C! O O O O O O O O O O O C! O O O C) O CD O O O O O
C N��' O O O O O O O O O O O O O O O O O O O O O Cl O O O O O O O O O O O O O O
109
am) 12
.i Ln O N N M N .i O Ln O N N O N .1 N O ID n N .-i N O M tD M n M O .i Ln 0O V' V- O
.-i O O O O Cll 0 0 -! O O O O O O O O LD n LD O O +-I N —! -! O O O N —! O -! fn -! V:
^ O O O O O O O O O O -4 O O O O O O O O O O O O O O O O O O O O O O O O O
V1
09
�O n O ID V- Ln N N n M N n O tD n n LD -i M n CA 00 I- Ln O Ln O O -4 O M ID n V- U)
ID N O 00 1� ct q M N N 00 V: O O N N M n Ln N rl N O O! N G� Ln O M N O! LA N 00 :3
3 E N 00 O N M -i M +i W 00 Vt M M O CV -1 M �--� M V- M N M N V- V- N 00 00 n 00 00 N -4 N �
O d 1 Ln 1 1 py 1 Ln 1 1 1 H —4 M 1 1 N M- M N Ln N %D
N .--I N
Do
U F-
L)C) O C) C) C) C) O O Cl O O O O O O CD O O C) O O C) O O O O C) O O CD CD O O O O cO
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O �
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
H c J O O O O O CD C) O C) O O O CD O O O O O CD O O CD O C) C) C) O O O O O CD O O CD (0
'n
LJ 0 a1
o. g`o V L3�
.L - U
o In
w
as o In
NNn
.w., a) w A
W O O O O O O O O O O O O O O O O O O O O O O O O Cl O O O O O O
C) C) O O O O O O O O O O O O O O O O O O O O O O O O O O CD O O O C) O O Cl
� M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M Li m +
rl ri '-I rl �--I ri r-1 ri r-1 rl rl rl �--I r-1 ri r-I ri ri ri r-I ri r-I ri r-1 e-1 ri r-I ri r-I r-1 ri r-I ri rl r-1 rl C C
c �
MN O
= vU
C C
O O
mI
a7
t`
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C N
i�..I Oal OL OL O O O O O O OL OL OL O O O O OL O OL O O O H H O O O H O O O O O O H O
m H - - H H H H H H H - HHHH H H - - H H H H HH H H - - H
al al al al al al al al al al al al al a/ al al al al al al al al a/ al v al al al al al al al al al al
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >
❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑
C
0 0 0
N 00 00 00 M M 00 00 00 00 00 N M CO 00 00 00 00 N 00 N 00 00 00 O O M 00 O O O 00 M M M 00 00
E � o
LG C_
❑ W
N In n M ID %D M N O N M N M N N M M O N N N N M In %D M O V N V O N -4 %D kD N N
O
N � N N .-i N LD -1 N -4 M r1 N Ln Ln N M N N M N Ln N M M Ln N N '�
Ol �
(n.. O
L v
01 la
N
J -
Ln
W
a
C
� ai co
00 O .--I %D N Ln O W Ill n 00 M -i I� M 01 N n CO O -1 N (n rt Ln ID LL o
M n O O O .-+ O C tD O O Ol O Ln M I T � V' V- Ln Ln Ln Ln LD %D %D n n n n n n n o N
00 M li ri M Gl —4 rl Dl Ch ri � •-1 00 ri ri ,� —4 —4 rl —4 —4 r7 ri v ri rl IV —4 —4 —4 —4 —4 r-I rl —4 p�
I 1 1 1 I I 1 I 1 I I 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 I
O_ O_ D_ D_ D_ D_ D_ D_ n. D_ cL D_ D_ D_ D_ a D_ D_ D_ D_ D_ D_ D_ & D_ D_ D_ D_ D_ D_ D_ D_ D_ O_ D_ D_ v
CO W2!
p O
�5 0 N
W y
o L) �
Woa
Z
Z
O
U
O w O O O O —4 O O Ln 00 N O M —4 O O M O M V, 0 0 +-1 O O M M --I o
O N O O O O O O O O O O O O -! O O O O O O O O O O O O O O O Q
0 O O O O O O O O O O O O O O O O O O O O O Cl O O O O O O O O y
a7
fu
= T
N
C
O M O O O O O O O O O O O O O CO O O O O CD O O O CD O CD O O N
O O O O O O O O CD O O O O O O O O O O O O O O O O O O O O O m
O O CD O O O O O O O CD O O O O ClO CDO CD CD O CD CD CDO Cl CD O O
0 T O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
N LD LD .-i M O N O .-4 M O LD O M %D N O LD O m N V, LD O O O ri V, V,
O N O O O -4 O -4 V, �D v O M n O O M O rn O O -4 O O M M N N
O N O O O O O O O O O O O O O O O O O O O O O O O O O O O O
Ln
N�
O M M O -4 00 lD In O M -A � O M O M N W M M O O LD M -4 -4 �
LD N N 00 -4 -4 O kD n r+'1 n O [r n N O W O M .--1 00 01 M O O %D N Cl) ON
3 E rV -i cr Ci L6 Ln 00 00 .4 N 4 M O-; r4 CI 01 Ln O O 01 N v v O CI %6 00 LD LD LL7
0 CL CT Ln Ln , •--� -i Vi n Ln N kDD Ln -4 Ln %D LO I N N M M
v N t0
UC3
O O O O O O O O O O O O O O O O O O O Cl O O O O O O O O O O 0 U
CD O O O CD CD CD CD CD CD CD CD CD CD O O CD CD CD CD O CD O CD CD CD O
,Y 4-1 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 2
H O CD CD CD O O O O O CD CD O O O O O O O O O O CD CD O O O O O O O fn
0
W O J f;
■a � U v ��m
RoLO
yNr
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O N
m M M Ln M M M M M M M M M M M M M M M M M M M M M Ln m m M M M u a) +
ui
� U E�
dtu
m cn E
S dU
c 0
o
Ion) E
rn
10 C C C C C C C C C C C C C C C C C C C C C C C C C C C C N
�- O O O O O O O O O O O O O O O O O O O O O O O O O O O O
L L L L L � L L L L L L L L L L L L L L L L L L L L L L �
t 'dutitittttttt 'dtt 'Gttttt 'CttUtt 'dtt c
C
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N 00 00 00 00 00 OD 00 LD %D N N N 00 00 00 00 O 00 00 00 00 00 %D 00 00 O 00 00 00 00
�^ � .--I ri ri ri .--� .-1 � •--� N
E V O
ro C
6 m
Ol M In 01 LD -i M M n V- M O M M N %D M CD .-4 M M CD It N M N M M M c
r-1 O -4 V M In M 01 CO M N M M M ri M CO %D 00 %D N O n M N M 00 M 00 V O
'a . i V LO M V .4 M M M N +1 M M -4 � � M •� N N %D N M . i .1 V- V N N �
Ol >
�I
0
aL�V d
O� ip
N
ar
v
Ql C
a7 aD
n m O N M tt In %D r, CO m O -4 N M � In LO 00 m O M In W N 00 lL o
n n OD 00 00 W 00 00 00 00 00 01 01 Ol 01 O4 Ol Ol O O O O O O o N
,-4 1-4 ri r-7 .--4 ri .-I .--1 .-i .-i +-4 q+- N N N N N N .-1 N M �' o�
D_ a o_ o_ a a o_ o_ D_ o_ o_ o_ a a o_ o_ o_ o_ o_ o_ D_ o_ o_ o_ a a o_ o_ D_ o_ v
FlexTable: Pump Table
Label Elevation Status Hydraulic Hydraulic Flow(Total) Pump Head
(ft) (Initial) Grade(Suction) Grade (gpm) (ft)
(ft) (Discharge)
(ft)
PMP-2 10.92 On 10.92 255.78 354.23 244.86
PMP-1 66.97 Off 66.97 255.08 0.00 0.00
14500 Flanders Mill WaterCAD_version2(16 in Bentley Systems,Inc. Haestad Methods Solution Bentley WaterCAD CONNECT Edition
Oak Main)-Copywtg Center [10.00.00.55]
1/17/2018 27 Siemon Company Drive Suite 200 W Page 1 of 1
Watertown,CT 06795 USA +1-203-755-1666
C W N
a 0
V O
W O
�O N
Wod
z-�
z
O
U
0
Q
d
m
T
N
a
c
d
m
T
0
0
)rn
0 Uo
of
U
0-0 0
O En N00 2 N
C
O LL II ,Ni H o
0 'i N �
CL _ mom
m
0 -0
N
O
N
�y CS y
� C �
CD N C
L N
Q O T
Q C3 O In a
tE
0 C a Q aU
a)0y N C C
U (n m E
10 V 0) N
'
` C IC fn
c Ln w o o > a a>i `"
10
0 z EnLn o'
0
o rn a n U
N 00 1- O %0 N OO Ln .-i n M a% Ln -
O a-4 �0 O Ln OV: 0� M 00 M r� N %O -! +-� CD CD O CDO E M -4 CD00 %D Ln M N O G% I, 10 y C C 6 0 CD �
ao O�o � � � � � � ornao �oLn �t muaoo o
E 0
.. w
_ m
d N
L
V L �I
O
N O O O O O O O O O O O O T O. t
O O O O O O O O O O O O O
M O M M m O N M -4 m w O M f' � U �
.--I m N m In w r� In 1-1 Ln w -4 N
a Ln M w N t0 m N In w CDN In I �j' j C� IO 3
ri ri N N N M M M �' �' �' C L -
N3 E a� a�i a E ..
o m U � a, >
LL W w o a v _
a� O n w LL m fO m m
93 d 0- m m c OL cn oo izz
N
~ n
CO U N
0 O
W N
O N
O �
Woa
Z
Z
O
U
O
Q
0)
T
O1
C
Ul
m
C
0
7
0 Pump Efficiency (%) w
IL in o :;D
Ln N O In O In O l!'1 O Lnrn
N +-4 O r� lA N O f� In N O U m
.-I r-1 ri 00 N tD Ln M N -4 O O
�i o
O Co
o o$
m
C o �3to 0
N �3W
o
N
9 = CO3
O U�N
O co
O E C
}� O y
�C
E
a) o
C r�
O o mo
�+ o E
�. )
E n
o a N
m
0
1L
E O
O n
._ O o
O �
L I O
N �
m
Y
0
C
O m
O CN
O o
LO
ri N
tQ
L
W
C7
O O O O O O O O 0 0
O O O O O O O O O Lo
O Ln N O Ln N O a
N m a0
W) PeOH g N
r
v�
G�I l N
o lIl O
O�
W�
C
F o
W o 0.
Z
Z
O
U
Q
a)
m
T
N
C
ma
N
1
C
O
ra
NE
41
G
a
E
Uo
= oIR
�U
o
■■ O 3
O V) W
O O LL O.�
ri L
a co
d
3:
oG ."
N N r
=r co
w, Cc N
W GJ y C
■�
L N❑
0 T
Q CL
C M U
O u do
.� aj °° E
w m
!- Ln 0
+ O G �! N
Z
0
a
E n
E U
OL
.-I 1, M Om m N w v O lO N w m .--I N M m 111 o OI
,1 a N M I� N l0 -! l0 O In O1q: U� M CO M r� N lCj -! aj — p c
iO E i cV O M N l0 M .4 C) M lC M M N O M N l0 aj C p
C p p m
ILCO N N N N ,--� ^-i ,kD M-i ,M-i .N-i ,--i O MO t0 Ln '� m V d CD CD
+� O
N
C
U '�
o 0 0 0 0 0 0 0 0 0 0 0 Cl 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T
l0 M lO O M M M -4 N N lO O O M I�
N V, N M M M N M N O N M O M m N Ln CO
a Ln O I� c7 N l0 CO O .--� M lO 1� Cl O .-i V
N
C
0 LL w w O
N a m w U-
mE 7 w w o N
wa a m m v�
CC N N
0 O
W N
F O Ol
W O IL
Z
Z
O
U
Q
w
T
O1
C
U1
In
N
C
O
w
d +
Pump Efficiency (%) 9
IL o o g?�
0 0 0 0 0 0 �M
o r-
-4 00° 0 N O �o
o
�U
o
■■ O G1 I
O N 00
Cq o O 1
is Enj 0 �o(oo
! O v 3:-
O rt
v)
Y ' N CD
_ O
N
— C
E'C
n•
a) d�
Q 3 0 o.
Q o a>i 0
C °�j C C U
O (n Q M Ca.� (n 0
.� U w r. N
C v M a Co
N
CL
m
0 0
CL 0 CM
O
CL
E N U
L o a
0 0 S
o
o
O o
O r
o to
0
O N
rj C
0
E2
w
>
o p
U �
d
l0
a _ O
a E O O O O O O O O O O 0 0
.r > 7 O O O O O O O O O O O h
C d U- O In O M O In O in O In O N
a) ... to N O N In N O n In N
•� fO N N N m m
C t' v LL o
w a (ad) Pe9H o N
S cn
v�
F
� I
1 ( 1
1
2 O 2 O
Shaping Our Future Together
CITY OF BOZEMAN
HYDRANT PRESSURE/FLOW REQUEST FORM
Date: 2/14/14
Location Hydrant# Static Pressure Pito Pressure Residual Pressure
Ferguson/ Sunstone 2278 81# 75#
Ferguson/Moonstone 2279 65#
Requested By: Matt Hausauer C&H
Fax#
Nozzle Size Flowed: 2.5"
Done By: ES /RC
Comments: 1350 GPM
LNOVA L
2280 2296 1
2275 > f
t;j ' 2189 >
M N S1,r0 N Q 1
2279, _ 2276
---- - Q ' 2187.' "
�- S S ()NE
2278 2277 LQ Ir-
D - 2242
.1.52 �1521
RBON S ' OR`,V
1126 112t152315191520 2243 1
1.2149 42—737 736 F
• --12136
1
Jun. 10, 2013 2:04NM City Shops No. 364d N. 3
w VF
1i ( 1
2 O 4 2 0
Shaping Our Future Together
CITE' OF BOZEMAN
HYDRANT PRESSURE/FLOW REQUEST FORM
Date:6-10-13
Location Hydrant Static Pressure Pito Pressure Residual Pressure
Andalusian north of 2485 107 94
Equestrian µ
Andalusian 2484 80
f'
Requested By:Matt Hausauer-C&H Engineering
Fax#emailed
Nozzle Size Flowed: 2.5"
Done By: MD-AO
Comments: 1500 GPM
:J
a 2,121 lb 1,8
-- 161
19
503 KII�
n6.16.
- ,
2485 . 'p
1G 14 I u
212Q
2484 13 _
`� IG12 n L
2 2132� 2125
��21.7A. 1f 1610 1 G'I .
115LJA
2126 �
ter•: 1.N2130. 121-29' 2128 �� 2122
�08 G05
2127 21 16 1604
: i