Loading...
HomeMy WebLinkAbout17- Water Facility Plan Update Water Facility Plan Update PREPARED FOR: AE2S Project No. P05097-2013-001 July 2017 REPORT Advanced Engineering and Environmental Services, Inc. 1050 East Main Street, Ste. 2 Bozeman, MT 59715 Ph: 406-219-2633 Web: www.AE2S.com Water Facility Plan Update Professional Certification July 2017 P05097-2013-001 Page i PROFESSIONAL CERTIFICATION WATER FACILITY PLAN UPDATE FOR Bozeman, MT JULY 2017 I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the laws of the State of Montana. Name: __________________________________________________________________________ Date: ________________________________ Registration Number: __________________ Prepared By: Advanced Engineering and Environmental Services, Inc. 1050 East Main Street, Suite 2 Bozeman, MT 59715 Scott L. Buecker July 5, 2017 40518PE CL N L N R O AIS M O NTANA P R O FES E N G E E SCOTT BUECKER I No. 40518 PE IDESNE July 5, 2017 P05097-2013-001 Page ii Water Facility Plan Update Table of Contents July 2017 P05097-2013-001 Page ii TABLE OF CONTENTS Professional Certification ......................................................................................... i Table of Contents ..................................................................................................... ii List of Tables........................................................................................................... viii List of Figures ........................................................................................................... xi List of Appendices ................................................................................................ xiv Glossary of Terms and Abbreviations .................................................................. xv Chapter 1 Existing System ....................................................................................... 1 1.1 Overview of Existing Water Supply Facilities ................................................ 1 1.1.1 Hyalite/Sourdough Water Treatment Plant ................................................. 1 1.1.2 Lyman Spring Water System .......................................................................... 2 1.2 Overview of Existing Pressure Zones .............................................................. 2 1.3 Overview of Existing Water Distribution Network ........................................ 5 1.3.1 Pumping Facilities .......................................................................................... 5 1.3.2 Distribution Storage Facilities ........................................................................ 6 1.3.3 Water Main ..................................................................................................... 7 1.3.4 Hydrants and Valves ..................................................................................... 8 Chapter 2 Basis of Planning .................................................................................. 11 2.1 Project Objectives and Deliverables .......................................................... 11 2.2 Previous Studies .............................................................................................. 12 2.3 Planning Periods ............................................................................................. 12 2.4 Study Service Area ........................................................................................ 13 Chapter 3 Water Use Characterization ................................................................ 15 3.1 Definition of Terms .......................................................................................... 15 Water Facility Plan Update Table of Contents July 2017 P05097-2013-001 Page iii 3.2 Source Data .................................................................................................... 16 3.2.1 Data Anomalies ............................................................................................16 3.3 Historical Water Use ....................................................................................... 18 3.3.1 Water Production..........................................................................................18 3.3.2 Water Consumption .....................................................................................19 3.3.3 Non-Revenue Water .....................................................................................25 3.3.4 Existing Water Demand Summary ...............................................................27 3.4 Environmental/Meteorological Conditions ............................................... 27 3.4.1 Summer Precipitation and Summer Water Demand .................................27 3.4.2 Evapotranspiration .......................................................................................27 3.4.3 Irrigation .........................................................................................................30 3.5 Water Demand Projections .......................................................................... 32 3.5.1 Future Land Use ............................................................................................33 3.5.2 Water Duty Factors .......................................................................................37 3.5.3 Future Water Demand Summary .................................................................44 Chapter 4 Water Distribution System Model Update .......................................... 45 4.1 Existing Model Conversion and Development .......................................... 45 4.2 Demand Allocation ....................................................................................... 46 4.2.1 Base Demand ...............................................................................................46 4.2.2 Diurnal Demand Pattern ..............................................................................46 4.3 Field Testing & Data Collection ................................................................... 49 4.3.1 Fire Hydrant Flow Tests ..................................................................................49 4.3.2 Extended Pressure Testing ............................................................................50 4.4 Model Calibration .......................................................................................... 54 4.4.1 Calibration Process .......................................................................................54 4.4.2 Calibration Results ........................................................................................55 4.4.3 Extended Period Simulation (EPS) Calibration Results................................60 Chapter 5 Design Parameters and Evaluation Criteria ...................................... 63 5.1 Water System Pressure .................................................................................. 63 5.1.1 Maximum Pressure ........................................................................................64 Water Facility Plan Update Table of Contents July 2017 P05097-2013-001 Page iv 5.1.2 Minimum Pressure .........................................................................................66 5.2 Distribution System Storage .......................................................................... 67 5.2.1 Operational Storage ....................................................................................69 5.2.2 Fire Storage ...................................................................................................70 5.2.3 Emergency Storage ......................................................................................70 5.2.4 Total Storage .................................................................................................71 5.3 Pumping Facility Capacity ........................................................................... 72 5.4 Transmission and Distribution Main .............................................................. 72 5.4.1 Velocity and Headloss Criteria ....................................................................72 5.5 Fire Protection ................................................................................................. 76 5.5.1 Methods for Calculating Fire Flow Requirements for Structures................76 5.5.2 City of Bozeman Fire Flow Requirements ....................................................78 5.5.3 City of Bozeman Fire Flow Availability .........................................................80 5.5.4 Considerations for Fire Suppression Design .................................................81 Chapter 6 Existing System Evaluation .................................................................. 83 6.1 Existing System Demands .............................................................................. 83 6.1.1 Existing Average Day Demand ...................................................................83 6.1.2 Existing Summer Day Demand.....................................................................83 6.1.3 Existing Maximum Day Demand ..................................................................84 6.1.4 Existing Winter Day Demand ........................................................................84 6.1.5 Existing System Demand Summary ..............................................................84 6.2 Existing System Modeling Scenarios ............................................................ 85 6.3 Water System Pressure .................................................................................. 86 6.3.1 System Pressure during Average Day Demand .........................................86 6.3.2 System Pressure during Maximum Day Demand .......................................87 6.4 Distribution System Storage .......................................................................... 90 6.4.1 Reservoir Operations ....................................................................................92 6.4.2 Water Quality Considerations ......................................................................94 6.4.3 Multiple Fire Impact Evaluation ...................................................................95 6.5 Distribution System Pumping Capacity ...................................................... 96 Water Facility Plan Update Table of Contents July 2017 P05097-2013-001 Page v 6.5.1 Pear Street Booster Station Pumping...........................................................97 6.5.2 Knolls Booster Station Pumping ....................................................................98 6.6 Transmission and Distribution Main Capacity ............................................ 99 6.7 Fire Flow Analysis .......................................................................................... 102 6.8 Summary of Existing System Evaluation .................................................... 106 6.8.1 Pressure Evaluation Summary .................................................................... 106 6.8.2 Storage Evaluation Summary .................................................................... 106 6.8.3 Water Main Capacity Evaluation Summary ............................................. 107 6.8.4 Fire Flow Evaluation Summary ................................................................... 108 6.9 Additional System Considerations and Recommendations ................. 108 6.9.1 Pressure Regulating Facilities ..................................................................... 108 6.9.2 Existing PRV Facilities Abandonment ........................................................ 110 6.9.3 SCADA for Water Distribution Remote Facilities ....................................... 111 6.9.4 Lead Service Line Connections ................................................................. 111 Chapter 7 Pressure Zone and Pressure Reduction Evaluation ......................... 112 7.1 Existing System Pressure Reduction Concept .......................................... 112 7.2 Pressure Reduction Hydraulic Model Evaluation .................................... 113 7.2.1 Pressure Reduction Modeling Scenarios ................................................... 113 7.2.2 Reduced Pressure Modeling Results.......................................................... 113 7.3 Fire Suppression Systems ............................................................................. 115 7.4 Pressure Reduction Options and Recommendation ............................. 119 7.4.1 Option 1: Existing System Pressure Reduction Concept ................................................................................................... 119 7.4.2 Option 2: Phased Development of Long-Term Pressure Management ................................................................................................................... 119 7.4.3 Recommended Pressure Reduction Approach for the City ................... 120 Chapter 8 Non-Potable Irrigation Evaluation .................................................... 121 8.1 Non-Potable Specifications........................................................................ 121 8.1.1 Non-Potable Irrigation Background .......................................................... 121 8.1.2 Non-Potable Irrigation System Standard Specifications .......................... 122 Water Facility Plan Update Table of Contents July 2017 P05097-2013-001 Page vi 8.2 Non-Potable Study ...................................................................................... 123 8.2.1 Non-Potable Project Location ................................................................... 123 8.2.2 Non-Potable System Design ....................................................................... 123 8.2.3 Cost-Benefit Comparison ........................................................................... 128 8.2.4 Summary ...................................................................................................... 132 Chapter 9 Future System Evaluation .................................................................. 133 9.1 Future System Demands ............................................................................. 133 9.2 Future System Modeling Scenarios ........................................................... 135 9.3 Future Water Distribution System Pipelines ............................................... 136 9.4 Future Water System Pressure Evaluation ................................................. 139 9.4.1 Future Pressure Zone Overview .................................................................. 139 9.4.2 Average Demand Conditions ................................................................... 145 9.4.3 Maximum Day Demand Conditions ......................................................... 146 9.5 Future Distribution System Storage Evaluation ........................................ 150 9.5.1 Reservoir Operations .................................................................................. 153 9.6 Future Distribution System Pumping Capacity ........................................ 154 9.7 Future Transmission and Distribution Main Capacity .............................. 155 9.7.1 Future Transmission Main Overview ........................................................... 156 9.8 Future Fire Flow Analysis .............................................................................. 160 9.9 Additional Model Scenarios Evaluations .................................................. 162 9.10 Summary of Future System ....................................................................... 170 9.10.1 UBO Water Main Overview ...................................................................... 170 9.10.2 Transmission Main ...................................................................................... 171 9.10.3 System Pressure ......................................................................................... 171 9.10.4 System Storage ......................................................................................... 173 9.10.5 Pumping Capacity ................................................................................... 173 Chapter 10 Recommended Improvements ...................................................... 174 10.1 CIP Project Categories .............................................................................. 174 10.1.1 Condition Assessment .............................................................................. 174 Water Facility Plan Update Table of Contents July 2017 P05097-2013-001 Page vii 10.1.2 Growth and Development ...................................................................... 175 10.1.3 Optimization .............................................................................................. 176 10.1.4 Rehabilitation and Repair ........................................................................ 176 10.1.5 Storage ...................................................................................................... 176 10.1.6 Studies ........................................................................................................ 176 10.1.7 Supply ........................................................................................................ 176 10.1.8 Transmission ............................................................................................... 177 10.2 Opinion of Probable Project for CIP Development .............................. 177 10.2.1 Opinion of Probable Project Costs Basis ................................................. 177 10.2.2 Estimate Classification .............................................................................. 178 10.2.3 Estimating Exclusions ................................................................................. 178 10.2.4 Total Estimated Project Cost .................................................................... 179 10.3 CIP Prioritization and Implementation .................................................... 184 10.3.1 CIP Prioritization Criteria and Process ...................................................... 187 10.4 Recommended Capital Improvements ................................................ 188 10.4.1 Short-Term (0-5 year) CIP Projects ........................................................... 189 10.4.2 Near-Term (5-15 year) CIP Projects .......................................................... 191 10.4.3 Long-Term (Unscheduled) CIP Projects ................................................... 193 10.5 City of Bozeman Fiscal Years 2018-2022 Capital Improvements Program .................................................................................................... 195 10.5.1 City of Bozeman Fiscal Years 2018-2022 Water Capital Improvements ................................................................................................................... 197 Water Facility Plan Update List of Tables July 2017 P05097-2013-001 Page viii LIST OF TABLES Table 1.1: Existing Pressure Zone Summary ......................................................... 2 Table 1.2: Pear Street Booster Station Summary ................................................. 5 Table 1.3: Knolls Booster Station Summary .......................................................... 6 Table 1.4: Distribution Storage Information ......................................................... 7 Table 1.5: Water Main Information........................................................................ 8 Table 2.1: Planning Period Summary .................................................................. 12 Table 3.1: Existing System Demand Summary .................................................. 27 Table 3.2: Estimated Irrigation Water Use .......................................................... 31 Table 3.3: Future Infill Area Zoning Summary .................................................... 36 Table 3.4: Future Service Area Land Use Summary ......................................... 36 Table 3.5: Existing Land Use WDFs ....................................................................... 39 Table 3.6: Existing Infill Zoning District WDFs ...................................................... 40 Table 3.7: Future Infill Zoning District WDFs ........................................................ 41 Table 3.8: Future Service Area Land Use WDFs ................................................. 42 Table 3.9: Future Service Area Land Use WDFs with Water Conservation .... 43 Table 3.10: Future System Demands .................................................................. 44 Table 4.1: Fire Flow Test Model Calibration Results Summary ........................ 55 Table 4.2: Fire Flow Test Results ........................................................................... 57 Table 4.3: Observed versus Simulated Model Results for Water Storage Levels and Extended Pressure Tests ......................................................... 61 Table 5.1: Hydraulic Criteria Pressure Recommendations.............................. 63 Table 5.2: Montana Pressure Evaluation ............................................................ 65 Table 5.3: Recommended Maximum Pressures ............................................... 66 Table 5.4: Recommended Minimum Pressures ................................................ 67 Table 5.5: Hydraulic Criteria Storage Recommendations .............................. 69 Water Facility Plan Update List of Tables July 2017 P05097-2013-001 Page ix Table 5.6: 2017 IFC Minimum Require Fire Flow and Flow Duration for Buildings ........................................................................................................... 79 Table 5.7: Fire Flow Availability Guidelines ....................................................... 80 Table 6.1: Existing System Demands .................................................................. 84 Table 6.2: Existing System Modeling Scenarios ................................................ 85 Table 6.3: Existing System Pressure during Average Day and Maximum Day Demand............................................................................................ 87 Table 6.4: Existing Distribution Reservoir-Pressure Zone Summary ................ 90 Table 6.5: Existing Distribution System Storage Evaluation ............................. 91 Table 6.6: Summary of Typical Water Quality Problems Associated with Potable Storage Facilities .............................................................. 94 Table 6.7: Summary of Two-Fire Event................................................................ 96 Table 6.8: Pear Street Booster Station Capacity ............................................... 97 Table 6.9: Knolls Booster Station Capacity ........................................................ 98 Table 6.10: Available Flow at System Hydrants .............................................. 103 Table 7.1: Existing System Modeling Scenarios .............................................. 113 Table 7.2: Available Flow at System Hydrants with Reduced System Pressure ......................................................................................................... 114 Table 8.1: Cost-Benefit Summary ...................................................................... 129 Table 8.2: Capital Cost Summary ..................................................................... 130 Table 8.3: Overall Cost-Benefit Summary ........................................................ 131 Table 9.1: Future System Demands .................................................................. 133 Table 9.2: Future System Demands by Pressure Zones .................................. 135 Table 9.3: Future System Modeling Scenarios ................................................ 137 Table 9.4: Future System Pressure during Average Day and Maximum Day Demand.......................................................................................... 145 Water Facility Plan Update List of Tables July 2017 P05097-2013-001 Page x Table 9.5: Proposed Distribution Reservoir-Pressure Zone Summary ........... 151 Table 9.6: Proposed Distribution System Storage Evaluation ........................ 152 Table 9.7: Proposed Pump Station Capacity .................................................. 155 Table 9.8: Summary of Proposed System Improvements.............................. 170 Table 9.9: Summary of Pressure Zones ............................................................. 172 Table 10.1: Transmission Pipeline Cost per Linear Foot ................................. 180 Table 10.2: Existing Transmission Pipeline Cost per Linear Foot ................... 180 Table 10.3: Non-Potable Pipeline Cost per Linear Foot ................................. 181 Table 10.4: Total Estimate Project Markup Summary ..................................... 184 Table 10.5: Prioritization Factors ........................................................................ 187 Table 10.6: Short-term (0-5 Year) Capital Improvement Recommendations ......................................................................................................... 190 Table 10.7: Near-term (5-15 Year) Capital Improvement Recommendations ......................................................................................................... 192 Table 10.8: Long-term (15+ Year) Capital Improvement Recommendation ......................................................................................................... 193 Table 10.9: City of Bozeman Fiscal Years 2018-2022 Capital Improvements ......................................................................................................... 198 Water Facility Plan Update List of Figures July 2017 P05097-2013-001 Page xi LIST OF FIGURES Figure 1-1: Existing Water Distribution System by Pressure Zone ..................... 3 Figure 1-2: Existing Water Distribution System by Water Main Diameter ........ 9 Figure 1-3: Existing Water Distribution System by Water Main Material ........ 10 Figure 2-1: Water Facility Plan Study Area Boundary ...................................... 14 Figure 3-1: Average Annual WTP vs. Metered Data ......................................... 17 Figure 3-2: Adjusted Average Annual WTP vs. Metered Values .................... 17 Figure 3-3: Historical Annual Water Production 2006 – 2015 .......................... 18 Figure 3-4: Water Production vs. Metered ......................................................... 19 Figure 3-5: Average Daily Water Usage per Month ......................................... 20 Figure 3-6: Summer (June – August) and Winter (November-March) Water Usage per Month by Customer Type ........................................... 21 Figure 3-7: City of Bozeman Population Growth from 1950 to 2015 .............. 22 Figure 3-8: City of Bozeman Population Growth from 2005 to 2015 .............. 22 Figure 3-9: Per Capita Water Use ........................................................................ 23 Figure 3-10: Average Per Capita Water Use by Customer Class ................... 24 Figure 3-11: Seasonal Per Capita Water Use by Customer Class (2006-2015) ........................................................................................................... 25 Figure 3-12: Non-Revenue Water Volume (% of Total).................................... 26 Figure 3-13: Summer Precipitation vs. Water Demand .................................... 28 Figure 3-14: Evapotranspiration vs. Water Demand ........................................ 28 Figure 3-15: Summer Precipitation, Evapotranspiration, and Water Demand ........................................................................................................... 29 Figure 3-16: Overview of Future Water Demand Projection Methodology .. 32 Figure 3-17: Water Facility Plan Study Zoning Designations for Infill Area .... 34 Figure 3-18: Water Facility Plan Study UBO Land Use Designations .............. 35 Water Facility Plan Update List of Figures July 2017 P05097-2013-001 Page xii Figure 3-19: Geographically Linked Water Meter Records to Land Use Polygon Illustration.......................................................................... 38 Figure 4-1: Typical Summer/Maximum Day Diurnal Demand Pattern .......... 48 Figure 4-2: Typical Average/Winter Day Diurnal Demand Pattern................ 48 Figure 4-3: Fire Flow Test Locations ..................................................................... 51 Figure 4-4: Diffuser, HPR, and Data Collector.................................................... 52 Figure 4-5: Operation of a Flowed Hydrant ....................................................... 52 Figure 4-6: EPS Test Locations .............................................................................. 53 Figure 4-7: Water Storage Level Comparison – August 20, 2015 ................... 62 Figure 5-1: Storage Requirements Overview .................................................... 68 Figure 5-2: Fire Flow Availability Guideline Based on Land Use .................... 82 Figure 6-1: Diurnal Demand Curves ................................................................... 85 Figure 6-2: Existing Water Distribution System Minimum Pressure during Average Day Demand (5.2 MGD)................................................ 88 Figure 6-3: Existing Water Distribution System Minimum Pressure during Maximum Day Demand (11.7 MGD) ........................................... 89 Figure 6-4: Existing Water Distribution System Reservoir Levels during Average Day Demand (5.2 MGD)................................................ 92 Figure 6-5: Existing Water Distribution System Reservoir Levels during Maximum Day Demand (11.7 MGD) ........................................... 93 Figure 6-6: Existing Water Distribution System Reservoir Levels during Two-Fire Event ................................................................................................. 96 Figure 6-7: Existing Water Distribution System Maximum Headloss during Maximum Day Demand (11.7 MGD) ......................................... 101 Figure 6-8: Existing Water Distribution System Available Fire Flow during Maximum Day Demand (11.7 MGD) ......................................... 105 Water Facility Plan Update List of Figures July 2017 P05097-2013-001 Page xiii Figure 7-1: Existing System Operation and Pressure Zone Boundaries (System Reconfiguration to operating working pressures 50-110 psi) 117 Figure 7-2: Water Distribution System Available Fire Flow during Maximum Day Demand and Reduced Pressure (11.7 MGD) ................... 118 Figure 8-1: Non-Potable Project Location and Dual Pipe System Layout .. 124 Figure 9-1: Typical Future Diurnal Demand Curves ....................................... 134 Figure 9-2: Proposed Water Distribution System by Water Main Diameter 138 Figure 9-3: Proposed Water Distribution System by Pressure Zone .............. 144 Figure 9-4: Proposed Water Distribution System Minimum Pressure during Average Day Demand (23.9 MGD) ........................................... 148 Figure 9-5: Proposed Water Distribution System Minimum Pressure during Maximum Day Demand (53.6 MGD) ......................................... 149 Figure 9-6: Proposed Water Distribution System Reservoir Levels during Average Day Demand (23.8 MGD) ........................................... 153 Figure 9-7: Proposed Water Distribution System Reservoir Levels during Maximum Day Demand (53.6 MGD) ......................................... 154 Figure 9-8: Proposed Water Distribution System Maximum Headloss during Maximum Day Demand (53.6 MGD) ......................................... 159 Figure 9-9: Proposed Water Distribution System Available Fire Flow during Maximum Day Demand (53.6 MGD) ......................................... 161 Figure 9-10: Proposed Water Distribution System with Groundwater Well Field ......................................................................................................... 164 Figure 9-11: Proposed Water Distribution System Reservoir Levels with Phase 1 of the West Transmission Main ................................................. 166 Figure 9-12: Proposed Water Distribution System with Phase 1 of the Transmission Main ......................................................................... 167 Water Facility Plan Update List of Appendices July 2017 P05097-2013-001 Page xiv Figure 9-13: Proposed Water Distribution System Reservoir Levels with Phase I Transmission Main and shutdown between WTP and Sourdough Reservoir ......................................................................................... 168 Figure 10-1: Future Project Implementation Pathways .................................. 186 Figure 10-2: Recommend Capital Improvements Overview ....................... 194 LIST OF APPENDICES Appendix A: Existing System Hydraulic Profiles Appendix B: FME Script for GIS export/Model Import Appendix C: Fire Flow Tests Appendix D: Extended Period Simulation (EPS) Tests Appendix E: EPS Calibration Results Appendix F: Non-Potable Irrigation Evaluation Appendix G: Opinion of Probable Project Cost Methodology Appendix H: Prioritization Matrix Appendix I: Short-Term Project Narratives Water Facility Plan Update Glossary of Terms and Abbreviations July 2017 P05097-2013-001 Page xv GLOSSARY OF TERMS AND ABBREVIATIONS __________________A__________________ AAD ACP ADD Average Annual Demand Asbestos Cement Pipe Average Daily Demand AE2S Advanced Engineering and Environmental Services, Inc. AWWA American Water Works Association __________________BC__________________ C-factor CCP Roughness Coefficient Concrete Cylinder Pipe CIP Capital Improvement Plan CI Cast Iron Pipe __________________D__________________ D/DBP Disinfectants/ Disinfection By-Products DI Ductile Iron DIP Ductile Iron Pipe DIPRA Ductile Iron Pipe Research Association __________________EF__________________ EPS Extended Period Simulation ET Evapotranspiration FPS Feet per Second FT Feet FT/1,000 FT Feet per 1,000 Feet __________________G__________________ GIS GPCD Geographical Information System Gallons Per Capita Per Day GPM Gallons Per Minute GSR Ground Storage Reservoir __________________H__________________ HGL HP Hydraulic Horsepower HVAC Heating, Ventilation, and Air Conditioning _________________I__________________ IBC International Building Code IFC International Fire Code IITRI Illinois Institute of Technology Research Institute Water Facility Plan Update Glossary of Terms and Abbreviations July 2017 P05097-2013-001 Page xvi ISO Insurance Service Organization ISU Iowa State University __________________JKLMN__________________ MDD Maximum Daily Demand MG Million Gallon MGD MMD Million Gallons per Day Maximum Month Demand MR&I MSU Municipal, Rural, and Industrial Montana State University NAVD 88 North American Vertical Datum 1988 NFF Needed Fire Flow NFPA NRW National Fire Protection Association Non-Revenue Water __________________OPQ__________________ PE Polyethylene PHD PPC Peak Hour Demand Public Protection Classification PRV Pressure Reducing Valve PSI Pounds per Square Inch PVC Polyvinyl Chloride __________________RSTUV__________________ RCP Reinforced Concrete Pipe SCADA Supervisory Control and Data Acquisition SDWA STL Safe Drinking Water Act Steel TDH Total Dynamic Head UBO Ultimate Build-out USGS United States Geological Survey VFD Variable Frequency Drive __________________WXYZ__________________ WDD Winter Day Demand WTP Water Treatment Plant Water Facility Plan Update Chapter 1 – Existing System July 2017 P05097-2013-001 Page 1 CHAPTER 1 EXISTING SYSTEM Major components of the water system include the following:  Two water production facilities  Six pressure zones  22 pressure regulating facilities  Two booster stations  Four finished water storage reservoirs  Approximately 271 miles of transmission and distribution piping  2,448 fire hydrants There is a Supervisory Control and Data Acquisition (SCADA) central site in place at the City Shop Complex that focuses on the reservoir facilities and Lyman Spring production. The Sourdough Water Treatment Plant (WTP) has SCADA locally, including Sourdough reservoir elevation, and the soon to be completed ground storage reservoir at the WTP. None of the twenty-two PRV facilities is on SCADA. The components identified above provide water service to the City’s existing population of approximately 43,405 people via 12,000 metered connections. The following sections provide an overview of the existing major components of the Bozeman water distribution system. 1.1 Overview of Existing Water Supply Facilities The City’s current water sources are Sourdough Creek and Hyalite Reservoir / Hyalite Creek in the Gallatin Mountains, and Lyman Spring in the Bridger Mountains. The sources of water are captured and utilized as described in Section 1.1.1. Water production facilities include the Sourdough WTP, which treats water from the Hyalite and Sourdough drainages, and the Lyman Spring chemical treatment facility. 1.1.1 Hyalite/Sourdough Water Treatment Plant The Sourdough WTP is a 22 Million Gallons per Day (MGD) membrane microfiltration plant constructed in 2014. It is located south of town at the mouth of Sourdough Canyon. The membrane filtration plant utilizes grit removal, conventional coagulation-flocculation- sedimentation and straining (300 microns) for membrane pre-treatment. Membrane feed water Water Facility Plan Update Chapter 1 – Existing System July 2017 P05097-2013-001 Page 2 is then pressurized to Pall Aria microfiltration skids and through 0.1 micron membrane pores. Membrane filtrate is injected with sodium hypochlorite for disinfection, with contact time provided by a serpentine 96-inch diameter HDPE pipeline. Sodium hydroxide is added for pH adjustment and corrosion control, and fluoride is added for dental cavity prevention. Current plant capacity is 22 MGD, with a future expansion capacity of up to 34 MGD. 1.1.2 Lyman Spring Water System Lyman Creek originates as a spring, discharging from a Mission Canyon limestone formation in Lyman Canyon. The City has constructed three spring collectors since 1999. A spring collector junction box was added in 2008. The junction box feeds spring water into a 16-inch Ductile Iron Pipe (DIP) and 18-inch Asbestos Cement Pipe (ACP) transmission main, which conveys the water down Lyman Canyon to a chemical treatment facility. There are two pressure reducing vaults on the transmission main. The spring water is chlorinated and fluoridated before being discharged into the 5.0 MG Lyman reservoir, an in-ground lined concrete basin that is covered. Finished water is discharged from Lyman reservoir to the distribution system, by gravity. 1.2 Overview of Existing Pressure Zones The City’s water distribution system is comprised of six pressure zones that serve elevations that range from 4,600 to 5,100 (ft) above mean sea level. The pressures zones include the Gallatin Park, Northwest, West, Northeast, South, and Knolls. Table 1.1 lists each pressure zone, operating Hydraulic Grade Line (HGL), elevation range, and pressure range across the zone. Figure 1-1 shows the pressure zones described in this section. Summary descriptions of each pressure zone are provided in the following pages. Pressure Zone Operating HGL (ft) Elevation Range (ft) Pressure Range (psi) Lowest Highest Lowest Highest Gallatin Park 4885 4684 4701 77 85 Northwest 4940 4609 4788 59 144 West 4980 4735 4820 69 107 Northeast (Lyman) 5038 4680 4806 91 145 South (Sourdough) 5125 4740 5105 6 160 Knolls 5185 4992 5064 52 83 Table 1.1: Existing Pressure Zone Summary Water Facility Plan Update Chapter 1 – Existing System July 2017 P05097-2013-001 Page 4 Gallatin Park (HGL 4885) The Gallatin Park Pressure Zone is a small sub-zone within the Northeast Zone. It operates at an HGL of 4885 ft. Two Pressure Reducing Valve (PRV) facilities provide water to this zone. There is no water production, storage or pressure relief facilities within this zone. Northwest (HGL 4940) The Northwest Pressure Zone is a large zone and operates at an HGL of 4940 ft, and 14 PRV facilities provide water to this zone. No water production or storage locations within this zone. The Northwest Zone is a sub-zone to the South Zone and the Northeast Zone. There is one pressure relief facility within this zone. West (HGL 4980) The West Pressure Zone is a small zone and operates at an HGL of 4980 ft. Three PRV facilities provide water to this zone. There are no water production, storage or pressure relief facilities within this zone. The West Zone is a sub-zone within the South Zone. Northeast (Lyman) (HGL 5038) The Northeast (Lyman) Pressure Zone is a large zone and operates at an HGL of 5038 ft. The Lyman reservoir and spring boxes provide water to this zone. The Lyman Creek water source generally produces between 600 and 2,600 Gallons per Minute (GPM), depending on the time of the year. Finished water is stored in a 5.3 MG reservoir. Pear Street Booster Station lies within this pressure zone and transfers water to the South Zone. One PRV actively provides water from the South zone to the Northeast Zone. A second PRV located within the Pear Street Booster Station can also transfer water from the South zone to the Northeast Zone, but it is not actively used. South (Sourdough) (HGL 5125) The South (Sourdough) Pressure Zone is the City’s largest and is also referred to as the Sourdough zone, as the pressure is established by the water surface elevation in the Sourdough reservoir. It operates at HGL 5125 ft. Additional water may be pumped from the Northeast Zone into the South Zone through the Pear Street Booster Station. There are two finished water storage facilities within this zone. The Sourdough and Hilltop reservoirs, which hold 4 MG and 2 MG, respectively. Four pressure relief valves for this zone are located within PRV facilities feeding adjacent zones, and one facility is dedicated to pressure relief only. Knolls (HGL 5185) The Knolls Pressure Zone is a small sub-zone of the South Zone. It operates at HGL 5185 ft. The Knolls booster station provides water and pressure to this zone. This facility has multiple pumps to meet both domestic and fire flow requirements. There is a PRV located within the booster station. There are no water production or storage facilities within this zone. Water Facility Plan Update Chapter 1 – Existing System July 2017 P05097-2013-001 Page 5 Water Treatment Plant (HGL 5221) The Water Treatment Plant Pressure Zone will operate at an HGL of 5221 ft when the WTP reservoir comes on line in 2017 and will have a storage volume of 5.3 MG. This zone does not serve users directly and only consists of the transmission main between the WTP and the Sourdough reservoir. An existing flow control valve controls the rate of flow from the WTP reservoir to the Sourdough reservoir. Hydraulic Grade Line Profiles Hydraulic grade line profiles have been developed for each pressure zone to graphically depict the water flow and pressure set points for all existing PRV facilities within the system. The profiles are included in Appendix A. 1.3 Overview of Existing Water Distribution Network 1.3.1 Pumping Facilities There are two pump stations in the City’s distribution system, Pear Street and the Knolls booster stations. Key criteria are summarized in the following paragraphs. Pear Street Booster Station The Pear Street Booster Station lies within the Northeast Zone and is used to pump water from the Northeast Zone to the South Zone. There are two large pumps and one small pump within the station. Currently, a single large pump is operated to transfer water into the South zone during the summer months when Lyman spring production is at its highest. Lyman spring water does not require conventional treatment, so it is very inexpensive, but production from the spring exceeds the demand within the Northeast Zone during limited periods in the late spring and summer. The Pear Street Booster Station is utilized to increase the availability of the spring water to areas of the distribution system. Table 1.2 provides a summary of the Pear Street Booster Station. Pump Manufacturer/ Model VFD or Constant Speed Horsepower (Hp) Design Head (ft) Design Flow (gpm) Pear Street No. 1 Fairbanks Morse constant 10 70 300 Pear Street No. 2 Fairbanks Morse constant 50 93 800 Pear Street No. 3 Fairbanks Morse constant 50 93 800 Total - Nominal Design Pump Capacity 1,900 Firm Pump Capacity (with the largest pump out of service) 1,100 Table 1.2: Pear Street Booster Station Summary Water Facility Plan Update Chapter 1 – Existing System July 2017 P05097-2013-001 Page 6 Knolls Booster Station The Knolls booster station provides water to the Knolls Zone, which is situated on a bluff in the eastern-central portion of the City. Four pumps are sized to meet domestic water demand and provide constant pressure to the pressure zone through Variable Frequency Drives (VFD). Two fire pumps are sized to meet the fire flow requirements of the pressure zone. Table 1.3 provides a summary of the Knolls booster station. Domestic Pump Manufacturer/ Model VFD or Constant Speed Horsepower (Hp) Design Head (ft) Design Flow (gpm) Knolls No. 1 Grundfos CR 32-2-1 VFD 7.5 139 128 Knolls No. 2 Grundfos CR 32-2-1 VFD 7.5 139 128 Knolls No. 3 Grundfos CR 32-2-1 VFD 7.5 139 128 Knolls No. 4 Grundfos CR 32-2-1 VFD 7.5 139 128 Total - Nominal Design Pump Capacity for Domestic Service 512 Firm Pump Capacity for Domestic Service (with the largest pump out of service) 384 Fire Pump Manufacturer/ Model VFD or Constant Speed Horsepower (Hp) Design Head (ft) Design Flow (gpm) Knolls Fire No. 1 Peerless 8AE12 constant 40 70 1,650 Knolls Fire No. 2 Peerless 8AE12 constant 40 70 1,650 Total - Nominal Design Pump Capacity for Fire Service 3,300 Firm Pump Capacity for Fire Service (with the largest pump out of service) 1,650 Table 1.3: Knolls Booster Station Summary 1.3.2 Distribution Storage Facilities The Bozeman water distribution system has three existing storage facilities that provide operational storage to meet the system demands, emergency storage, and fire flow storage; as well as maintain a uniform pressure in the distribution system during peak hourly demands. Water storage facilities include the Sourdough reservoir (4.0 MG), the Hilltop reservoir (2.0 MG), and the Lyman reservoir (5.3 MG). Water reservoir information including size, head range, base elevation, and overflow elevation is included in Table 1.4. A new 5.3 MG ground storage reservoir will be constructed in 2017 at the Sourdough WTP. With the addition of this new reservoir, there will be four storage facilities with a combined capacity of 16.6 MG. Water Facility Plan Update Chapter 1 – Existing System July 2017 P05097-2013-001 Page 7 Water Storage Facility Name Volume (MG) Diameter (ft) Max SWD (ft) Base Elevation (ft) Overflow Elevation (ft) Sourdough Reservoir 4.0 147 31.5 5094.2 5125.7 Hilltop Reservoir 2.0 93 41.1 5084.0 5125.2 Lyman Reservoir 5.3 30.0 5008.3 5038.3 WTP Reservoir 5.3 212 20.0 5201.4 5221.4 Total 16.6 Table 1.4: Distribution Storage Information 1.3.3 Water Main The water distribution system network consists of approximately 271 miles of water main varying in size from four-inches up to 30-inches in diameter, with around 70 percent ranging in size from 6- to 8-inches. The water main in the distribution system consists primarily of ductile iron (DI) pipe. However, there is a substantial amount of cast iron (CI) pipe in the older parts of town. Also, there are approximately ten miles total of polyvinyl chloride (PVC) pipe, asbestos cement (AC) pipe, concrete cylinder pipe (CCP), and steel (STL) pipe within the distribution system. Water main information, including size and material, is included in Table 1.5. Refer to Figure 1-2 and Figure 1-3 for detailed overviews of the existing water distribution by water main sizes and materials, respectively. Note that this study does not include evaluation of private water mains located within the distribution system. Water distribution main that provides water service to Montana State University (MSU) is limited to the City’s GIS database. As a result, some components maintained by MSU might not be captured in this analysis. Water Facility Plan Update Chapter 1 – Existing System July 2017 P05097-2013-001 Page 8 Pipe Size Length of Pipe by Material (ft) Total Pipe Length (ft) Total Pipe Length (mi) (in) AC CCP CI DI PVC STL 4 - - 12,660 2,009 3,227 - 17,897 3.4 6 2,634 - 165,565 182,930 4,906 31 356,066 67.4 8 - - 38,665 617,279 138 42 656,124 124.3 10 - - 23,799 99,469 - - 123,268 23.3 12 - - 17,124 150,248 - - 167,373 31.7 14 - - 15,135 17,184 - 1,510 33,829 6.4 16 - - 3,091 8,447 - - 11,538 2.2 18 - 117 8,744 2,309 - 12,900 24,069 4.6 20 - - - 1,017 - - 1,017 0.2 24 - 7,812 673 12,662 - 6,115 27,262 5.2 30 - 13,346 - 208 - - 13,554 2.6 Total Pipe Length (ft) 2,634 21,274 285,456 1,093,763 8,271 20,598 1,431,996 - Total Pipe Length (mi) 0.5 4.0 54.1 207.2 1.6 3.9 - 271.2 Table 1.5: Water Main Information 1.3.4 Hydrants and Valves Isolation valves enable isolation of small segments of the water distribution system so that repairs and maintenance can be accomplished while minimizing the number of customers affected. Isolation valves in the Bozeman water distribution system are predominantly gate valves with some butterfly valves located on the larger diameter water mains. GIS data provided by the City indicates that there are approximately 5,200 isolation valves in the City’s distribution system. PRV stations are utilized in the City’s distribution system to maintain desired pressures upstream and downstream of the PRVs, by controlling flow into and out of the zones based on each zone’s individual pressure requirements. Figure 1-1 shows the locations of the 22 PRVs in the City’s system. There are approximately 2,448 fire hydrants used for fire protection in the Bozeman water distribution system. Water Facility Plan Update Chapter 2 – Basis of Planning July 2017 P05097-2013-001 Page 11 CHAPTER 2 BASIS OF PLANNING 2.1 Project Objectives and Deliverables The objectives of the Water Facility Plan Update are the following: 1) Provide an updated planning and service area map for the City’s potable water distribution system. 2) Characterize current water use patterns, including water usage by user class and land use classification, 3) Project future water demand by usage class and land use, which includes the potential impacts of the ongoing water conservation program on future water demands. 4) Provide a comprehensive, calibrated, up-to-date water distribution system hydraulic model utilizing InfoWater by Innovyze®. The model will be integrated with the City’s Geographic Information System (GIS), facilitating continuous updates as the distribution system is replaced, improved, and expanded. The model will utilize current and future water demand by user class and land classification, to enable spatial analysis of current and future demand. 5) Provide a thorough fire flow analysis utilizing the calibrated hydraulic model. 6) Identify and describe water system infrastructure improvements required to meet new service and population growth over the planning horizon. The planning horizon for this analysis is threefold: A short-term period to determine water system needs through FY2018-2022 (0-5 years), a near-term period (5-15 years), and a long-term period 15+ years. 7) Evaluate the City’s existing pressure zone configuration and identify any feasible measures (future operational or design changes) necessary to achieve pressure reduction. 8) Provide a recommended capital improvement plan (CIP) packet that includes detailed descriptions of recommended CIP projects, maps of the project, categorization of the project (i.e. replacement or continued repair), and a proposed schedule and cost estimate. 9) Evaluate non-potable irrigation system costs, and develop recommended construction standards and specifications for non-potable irrigation infrastructure. Water Facility Plan Update Chapter 2 – Basis of Planning July 2017 P05097-2013-001 Page 12 2.2 Previous Studies There have been two major water facility plans completed for the City in the past two decades that were utilized in the preparation of this update:  In 1993, a water facility plan was prepared by HKM Associates (currently DOWL) for the City’s water and wastewater system. The plan included the evaluation of both the existing and future service areas along with water supply rights. A computer model of the water system was developed to help identify existing deficiencies within the water system and recommend improvements to meet future system requirements. Results from the study were used in creating the City’s CIP.  In 2005, a water facility plan was prepared by Allied Engineering Services, Inc. in conjunction with Robert Peccia and Associates and BETA Engineering. A primary objective of the 2005 plan was to perform an assessment of the old conventional WTP and evaluate options for its upgrade or replacement. In addition, both the existing and anticipated future water systems were modeled and analyzed. Recommend improvements identified in the analysis along with costs were used to create the City’s CIP. 2.3 Planning Periods The establishment of the planning periods is a critical component in the development of the Water Facility Plan Update. A total of three planning periods were established, including short- term, near-term, and long-term periods. The short-term planning period was established to determine water system needs through FY2018-2022 (0-5 years). A near-term planning period (5-15 years) was identified to complete CIP planning for the 5 to 15 year planning horizon and utilized the 2040 Plan Area established in the City’s 2016 Transportation Master Plan. Finally, a long-term planning period was identified to capture major infrastructure projects necessary to accommodate ultimate build-out of the City. For this report, ultimate build-out (UBO) was assumed as the Future Land Use Map published with the City’s 2009 Community Plan. This map was modified slightly to include a northwest area from the Transportation Master Plan map. Table 2.1 summarizes the three different planning periods defined. Planning Period Timeframe (years) Years Short-Term 0-5 2017 - 2022 Near-Term 5-15 2022 - 2032 Long-Term 15+ 2033 and beyond Table 2.1: Planning Period Summary Water Facility Plan Update Chapter 2 – Basis of Planning July 2017 P05097-2013-001 Page 13 Capital improvement projects determined in this planning effort will be placed into the three different planning periods based on different criteria and discussion with City staff. This is further discussed in Chapter 10. 2.4 Study Service Area For systems that are experiencing significant growth, such as the City of Bozeman, defining the study service area is necessary to provide a framework to: 1) define system capacity milestones, 2) develop appropriate phasing of capital improvements, and 3) strategically integrate improvements with existing infrastructure. The ultimate goal of this approach is to maximize the economic benefit of the improvements. The study area was developed by reviewing current planning documentation, considering recently completed facility plans, evaluating geographical boundaries, and having discussions with City staff. Ultimately, this resulted in using boundaries already established from two recent planning efforts performed for the City, which include the following: 1) Bozeman Community Plan Future Land Use Map – Adopted by the Bozeman City Commission by the City of Bozeman Resolution No. 4163, dated June 1, 2009. 2) Bozeman Transportation Master Plan (TMP) 2016 – Study Area Boundary These boundaries establish the future growth areas and provide consistency between recent planning efforts. The resulting study service area boundary for the Water Facility Plan Update is presented in Figure 2-1. As noted previously, a small area located in the northwest region, identified in the 2040 planning area map of the TMP, was added to the future buildout area (2009 Future Land Use Map) based on recommendations from City staff. This results in a final service area boundary of approximately 44,881 acres, of which 12,803 acres are located within the current municipal boundaries of Bozeman. The Water Facility Plan study area is considered the UBO service area. A more comprehensive review of the history, description, and development of these boundaries can be found in the aforementioned planning documents. Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 15 CHAPTER 3 WATER USE CHARACTERIZATION This section provides a description of effort required to characterize the City’s historic water use trends and define recent water production and demand trends. It also presents the City’s projected future water demand up to the UBO. Water Use Characterization is necessary to assess the capacity of the City’s existing facilities and ensure that the design and functionality of future water system is sufficient. The Water Use Characterization includes the following components:  Historical Water Use  Environmental Conditions  Water Demand Projections Water demands discussed in this chapter were incorporated into the hydraulic model to evaluate both existing and future system performance. Results from the modeling analysis will ultimately guide future water system CIP recommendations. 3.1 Definition of Terms Water demand is described in the following terms:  Average Annual Demand (AAD) - The total volume of water delivered to the system in a full year expressed in gallons.  Average Daily Demand (ADD) - The total volume of water delivered to the system over a year divided by 365 days. The average use in a single day expressed in gallons per day. • Averaged Daily Winter Demand (Winter Demand) - The gallons per day average during the months of December, January, and February when system demands are low. • Average Daily Summer Demand (Summer Demand) - The gallons per day average during the months of June, July, and August when system demands are high.  Maximum Month Demand (MMD) - The gallons per day average during the month with the highest water demand. The highest monthly usage typically occurs during a summer month.  Maximum Day Demand (MDD) - The largest volume of water delivered to the system in a single day expressed in gallons per day. Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 16  Peak Hourly Demand (PHD) - The maximum volume of water delivered to the system in a single hour expressed in gallons per minute. 3.2 Source Data The primary sources of data used to characterize historical water usage, existing demand, and future consumption includes the following items: 1) 2015 parcel information 2) 2009, 2012, and 2014 land use information 3) 2006 through 2015 monthly water meter readings 4) 2006 through 2015 water treatment plant production records 5) 2006 through 2014 census population estimates 6) 2009 Community Plan 7) 2015 Transportation Plan 8) 2015 Wastewater Collection Facilities Plan Update 9) Daily precipitation, temperature, and evapotranspiration (ET) records at Montana State University from Utah State Climate Center 3.2.1 Data Anomalies A comparison between average annual WTP production data and the monthly water meter readings from 2006 through 2015 was completed to determine if there were any anomalies or errors within the data set provided. Figure 3-1 shows the WTP production vs. metered water usage. There are two distinct periods in which metered information did not correlate with WTP production. In 2008, there is a dip in water usage based on the metered information, but no change at the WTP. From 2012 to 2013, the metered data shows a spike in water usage, but no appreciable change in WTP production. These inconsistencies (labeled “Y Values” in the City’s billing system) within the data set were presented to City staff. Staff indicated that there could have been some issues with the metering equipment during these periods, potentially causing errors with how the data was ultimately recorded. The City provided direction to remove the data inconsistencies for both of the identified periods, 2008 and 2012-2013. The removal of these data inconsistencies resulted in closer alignment between meter readings and WTP production data. Figure 3-2 shows the final adjusted metered values used in this analysis. The difference between the water production and metered water, or water consumed, is non-revenue water (NRW). Water production, consumption, and NRW are discussed in the following sections. Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 17 Figure 3-1: Average Annual WTP vs. Metered Data Figure 3-2: Adjusted Average Annual WTP vs. Metered Values 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 MG D Year Average Daily Production/Metered -Data Inconsistencies Plant Production Metered With Y Values Metered Without Y Values Period 1 Period 2 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 MG D Year Average Daily Production/Metered -Adjusted Metered Values Plant Production Adjusted Metered Values Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 18 3.3 Historical Water Use 3.3.1 Water Production The Sourdough WTP and Lyman spring currently provide the City with finished water. Both sites have master meters that are monitored via the City’s SCADA system, which allows the City to accurately track the amount of water supplied to the system. Historical production records from 2006 through 2015 were evaluated to determine system demand and develop water usage parameters (i.e. ADD, MDD). Figure 3-3 shows the ADD, MMD, MDD, and Maximum Day peaking factors observed from 2006 through 2015. Maximum Day peaking factors were calculated as the ratio of MDD to ADD. Figure 3-3: Historical Annual Water Production 2006 – 2015 2.17 2.16 2.17 1.95 2.30 2.10 2.10 2.13 2.10 2.23 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Ma x i m u m D a y P e a k i n g F a c t o r Mi l l i o n s o f G a l l o n s p e r D a y Historical Production Average Day (ADD)Maximum Month (MMD) Maxium Day (MDD)Maximum Day Peaking Factor Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 19 3.3.2 Water Consumption 3.3.2.1 Water Production vs. Metered Water The City tracks water consumption through customer water meters. Historical water meter records from 2006 through 2015 were evaluated to determine overall customer water consumption, water demand by customer class, per capita usage, and seasonal variations in demand. Figure 3-4 shows the City’s annual water production vs. metered water consumption. Figure 3-4: Water Production vs. Metered Over the last ten years, the ADD based on metered data is approximately 4.7 MGD, which is slightly lower than the ADD of 5.2 MGD calculated from water production. The difference between these two values is considered NRW, which is discussed in more detail in Section 3.3.3. 3.3.2.2 Seasonal Variations Noting that water usage varies depending on the season, the average daily water usage per month was evaluated to determine which months had the highest water demand. Figure 3-5 shows the average daily water usage per month from 2006 to 2015. 0.0 1.4 2.7 4.1 5.5 6.8 0.0 0.5 1.0 1.5 2.0 2.5 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Av e r a g e D a y D e m a n d ( M G D ) An n u a l W a t e r D e m a n d (B i l l i o n s o f G a l l o n s ) Water Production vs. Metered Total Production Total Metered Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 20 Figure 3-5: Average Daily Water Usage per Month Average monthly water usage ranged from 3.1 MGD (January 2009) to 10.1 MGD (July 2011). As expected, the City experiences the highest demand during the summer months (June, July, August) when irrigation demand peaks. Demand during the summer months is approximately double to triple compared to winter demand. There does not appear to be an upward trend in overall water usage, which is notable given Bozeman’s growth rate and could be due in part to the City’s efforts to promote water conservation (established 2008). Per capita water usage is analyzed further in Section 3.3.2.3. Seasonal summer and winter demand separated by customer type is shown in Figure 3-6. 0 2 4 6 8 10 12 Av e r a g e D a i l y W a t e r U s a g e ( M G D ) Average Daily Water Usage per Month 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 21 Figure 3-6: Summer (June – August) and Winter (November-March) Water Usage per Month by Customer Type Noteable results of the seasonal water usage analysis are the following:  Summer irrigation demand is heavily driven by single-unit residential;  MSU operates its own non-potable irrigation system;the decline in water usage is attributable to reduced student enrollment during the summer semester;  The data indicates that NRW, as a percent of total water use, decreases during the summer months, which is due to NRW being relatively constant throughout the year and as a result constitutes a higher percentage of the breakdown during periods of lower demand (i.e. winter). The phenomenon of experiencing a relatively constant rate of NRW is rational given the operating pressure of most areas of the distribution system does not increase during peak demand periods. Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 22 3.3.2.3 Per Capita Figure 3-7 and Figure 3-8 show the population growth from 1950 to 20151 and then in finer detail from 2005 to 2015, respectively. Historical population information was used to determine per capita demands. Figure 3-7: City of Bozeman Population Growth from 1950 to 2015 Figure 3-8: City of Bozeman Population Growth from 2005 to 2015 1 U.S. Census Bureau (2016). Cities and Towns Population Total Tables. Retrieved from [https://www.census.gov/data/tables]. 0 10,000 20,000 30,000 40,000 50,000 1940 1950 1960 1970 1980 1990 2000 2010 2020 Po p u l a t i o n Year 30,000 40,000 50,000 2004 2006 2008 2010 2012 2014 2016 Po p u l a t i o n Year Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 23 The total per capita water use for the City between 2006 and 2015 is shown in Figure 3-9. The per capita use rate is not the amount that the average person uses as it takes into account all water uses including residential, commercial, industrial, etc. NRW was not included in the per capita use rate. Figure 3-9: Per Capita Water Use The 10-year annual daily per capita water use in the City ranges from 142 (2006) to 111 (2014) GPCD, with a 10-year average at 123 GPCD. The graph shows that, as City’s population continued to grow, the overall GPCD decreased. This decreasing water usage trend is most likely due to the City’s robust water conservation program; although minor decreases are also probably attributable to the increase in population that is driving multi-family development with reduced summer water demands and newer developments that are constructed with high efficiency fixtures. As will be described in later sections, this Water Facility Plan Update utilizes water demand by land usage classification to estimate future water demand. If the City wishes to utilize per-capita average water demand by population, 123 GPCD is a reasonable estimate. However, 135 GPCD includes NRW and should be used to account for total system production and master planning. Per capita water use by customer class for the City between 2006 and 2015 is shown in Figure 3-10. Single-unit residential, commercial and multi-unit residential represent the bulk of water usage in the City. Further analysis of the City’s per capita water use by customer class shows that single-unit residential accounts for approximately 36 percent of water usage, followed by 30,000 35,000 40,000 45,000 50,000 0 20 40 60 80 100 120 140 160 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Po p u l a t i o n Av e r a g e D a y D e m a n d ( G P C D ) Year Per Capita Water Use Total Population Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 24 commercial at 27 percent, then multi-unit residential at 23 percent. There is very little industrial water usage in Bozeman. Figure 3-10: Average Per Capita Water Use by Customer Class Figure 3-11 presents demand by customer type across summer (June - August) and winter (November - March). This illustrates that the increase in water demand in the summer months is predominately driven by single-unit residential, as usage increases by a factor of 3.8. The next highest increase in summer usage is caused by the commercial sector. Customer class GPCD was calculated by segmenting the City's total GPCD into the different customer classes based on seasonal uses for each class. The data was then averaged from 2006 to 2015. The total average GPCD is approximately 123.4 GPCD. The residential customer classes (i.e. multi-unit and single-unit) account for approximately 60 percent of the total average water use. GPCD values used in the City’s wastewater facility plan, completed in June 2015 by HDR, Inc., are referenced for comparison purposes. The values in the HDR report were used to determine average wastewater flows for the City. Both analyses show similar average GPCD water usage by class 30,000 35,000 40,000 45,000 50,000 0 20 40 60 80 100 120 140 160 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Po p u l a t i o n Av e r a g e D a y D e m a n d ( G P C D ) Year Per Capita Water Use by Customer Class Single-Unit Residential Commercial Multi-Unit Residential MSU Government Industrial Population Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 25 Figure 3-11: Seasonal Per Capita Water Use by Customer Class (2006-2015) 3.3.3 Non-Revenue Water NRW is the difference between the volume of water produced and the volume of water that is consumed or billed to customers. For the purposes of this report, NRW are identified as the following components: real losses, apparent losses, unbilled authorized consumption, and unbilled unauthorized consumption.  Real losses comprise leakage from all parts of the system and overflows at storage reservoirs. Excessive rates of real losses are caused by inadequate operations and Summer Winter Average Waste Water Facility Plan (HDR) Total 203.9 87.9 123.4 Industrial 0.9 0.9 0.9 1.2 Government 8.8 1.2 3.4 2.8 MSU 13.4 12.1 12.6 10.3 Multi-Unit Residential 39.6 23.7 28.4 Commercial 50.3 26.0 33.7 23.9 Single-Unit Residential 90.8 24.1 44.3 45.6 0 50 100 150 200 Av e r a g e D a y D e m a n d ( G P C D ) Seasonal Per Capita Water Demand Breakdown by Class Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 26 maintenance procedures, the lack of active leakage control, and poor quality of underground assets.  Apparent losses are caused by customer meter inaccuracies, data-handling errors, or potential theft of water.  Unbilled authorized consumption includes water used by the utility for operational purposes (e.g., hydrant flushing), water used for firefighting, and water provided free to certain consumer groups (if practiced).  Unbilled unauthorized consumption includes water used by unmetered connections, such as illegal connections, open bypasses around meters, misuse of fire hydrants, and meter tampering. Figure 3-12 shows the yearly percentage of NRW the City has experienced from 2006-2015. Figure 3-12: Non-Revenue Water Volume (% of Total) Over the last ten years, the NRW ranged from 4.5 percent (2015) to 13.7 percent (2008, 2009), with an average of 9 percent. Currently, there is no national standard for NRW, but the guidance given by the U.S. EPA for maximum NRW is typically between 10-15 percent.2 There appears to be a downward trend in NRW for Bozeman. The trend could be attributable to improved customer metering accuracy, improved plant metering accuracy, and recent identification and correction of significant sources of NRW via leak detection. It is recommended that a NRW rate of 9 percent be utilized for future planning purposes. 2 Control and mitigation of drinking water losses in distribution systems. (2010). Washington, D.C.: U.S. Environmental Protection Agency, Office of Water. Page 109 0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0% 14.0% 16.0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Year Non-Revenue Water Volume (% of Total) Non-Revenue 2006-2015 Average Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 27 3.3.4 Existing Water Demand Summary Table 3.1 summarizes water demands for the 2006 - 2015 analysis period utilized for the water demand characterization. The values listed are the demands imposed on the production system, or supply-side demands, and thus account for NRW. For the purpose of analyzing the existing system, the demand values listed in Table 3.1 have been incorporated into the hydraulic model. Demand Day Demand (MGD) Average Day 5.2 Summer Day 8.6 Maximum Day 11.7 Winter Day 3.6 Table 3.1: Existing System Demand Summary 3.4 Environmental/Meteorological Conditions Changes in environmental conditions can greatly influence water supply and demand. This section evaluates historical data and presents the correlations identified between water demand and meteorological parameters (i.e. precipitation and evapotranspiration). 3.4.1 Summer Precipitation and Summer Water Demand Precipitation during the summer months (June, July, and August) was evaluated to determine if water demands significantly decrease during periods of rainfall. Figure 3-13 shows the last 10 years of summertime precipitation vs. metered system water demand . 3.4.2 Evapotranspiration Evapotranspiration is the process by which water is transferred from the land to the atmosphere by evaporation from the soil and transpiration from plants. Evapotranspiration provides a quantifiable measurement of the amount of water that is needed to sustain landscaping. Evapotranspiration fluctuates throughout the year, primarily with changes in temperature and relative humidity. Figure 3-14 shows the Monthly Evapotranspiration vs. metered water demand over the last 10 years (2006-2015), and illustrates how water use trends coincide with ET.3 3 2014-15 City of Bozeman Water Conservation Program Update – Annual Report to the City Commission. Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 28 Figure 3-13: Summer Precipitation vs. Water Demand Figure 3-14: Evapotranspiration vs. Water Demand 0 2 4 6 8 10 12 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t Ju n e Ju l y Au g u s t 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Pr e c i p i t a t i o n ( i n . ) Wa t e r D e m a n d M e t e r e d ( M G D ) Summer Precipitation and Summer Water Demands Precipitation Water Demand 0.0 2.0 4.0 6.0 8.0 10.0 12.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Wa t e r D e m a n d ( M G D ) Monthly Evapotranspiration (inches) Winter Shoulder Summer Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 29 Figure 3-15 displays average summer water usage (metered and produced), maximum day (produced), total summer precipitation, and total ET. Figure 3-15: Summer Precipitation, Evapotranspiration, and Water Demand The results from the analysis of the data presented above indicate the following:  As shown in Figure 3-13, precipitation, or the lack thereof, has a direct impact on the seasonal use of water, whereas the demand for water increases as precipitation levels decrease. Conversely, the demand for water decreases during periods of increased precipitation levels.  There is a general correlation between the seasonal evapotranspiration and Water Demand, in particular higher peak day demands correspond to years with higher evapotranspiration as shown in Figure 3-14.  The trend between evapotranspiration and Water Demand is consistent but varies as shown in Figure 3-14, where some monthly demand and evapotranspiration pairs fall above or below the trend line. The variability is likely due to the intensity and duration of individual precipitation events or the varied impact that evapotranspiration days may have had on behavioral water demands. 0.0 5.0 10.0 15.0 20.0 25.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Pr e c i p i t a t i o n a n d E T ( i n c h e s ) Wa t e r D e m a n d ( M G D ) Summer Precipitation, Evapotranspiration, and Water Demand Average Summer Water Usage (Metered)Average Summer Water Usage (Produced) Peak Day (Produced)Total Summer Precipitation Total Evapotranspiration Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 30  Monitoring evapotranspiration and its corollary relationship with water demand as shown in Figure 3-15 could be used to generally predict seasonal increases or decreases in water demand trends. The ability to predict water demands is of particular value to the City given the need to request changes to the amount of water released from Hyalite Reservoir 48 hours in advance. 3.4.3 Irrigation Potable water used for irrigation is a major focus of the City’s water conservation program. As the City continues to grow, understanding potable irrigation demands specifically by land use can help future conservation efforts and provide guidance for implementing best management practices. To that end, a high-level analysis was performed to determine potable irrigation rates by land use. The information presented in this section is intended to provide a generalization of the City’s potable irrigation usage by land use and does not reflect specific developments, landscaping, site location, elevation, or other key factors that may influence irrigation demand. To determine the potable irrigation demand, the following steps and corresponding assumptions were made:  Irrigation demand was calculated by subtracting the average winter demand in year 2014 from the peak summer month demand in year 2014 for each type of land use. The difference was assumed to be the amount of potable water used for irrigation expressed in units of Gal/Day.  To determine the amount of potable water being directly applied to the landscape, the amount of pervious area per land use was estimated using the City’s impervious GIS layer. Areas outside of the impervious layer per land use class was also estimated and assumed to be 100 percent pervious. The 2014 impervious GIS Data was the most current data available at the time of the analysis.  Irrigation demand per land use was then applied to the pervious land use layer. The new layer represents the amount of potable water used per irrigated acre in (Gal/Acre/Day). The results of the analysis used to identify the amount of potable water used for irrigation by individual land use types is presented in Table 3.2. General observations of the analysis include:  The top irrigators in terms of total water used (gal/day) are residential land uses (single- household, multi-household, duplex/triplex).  The top irrigators in terms of water per acre are also the residential land uses with the addition of hotel/motel, restaurant/bar and some additional commercial land users; Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 31 however, increases in summer water use could be due to increased services provided (increased hotel occupancy, more people eating at establishments, etc.) during the summer in addition to irrigation water use.  The remaining land use categories use less water from both a total and per acre perspective. Land Use Description 2014 Irrigation Usage Gal/Day Gal/Acre/Day SFR Single-Household Residential 3,334,509 2,734 MFR Multi-Household Residential 363,690 1,119 DTR Duplex/Triplex Residential 308,456 1,850 POS Parks or Open Space 271,935 203 CR Commercial Retail Sales, Services, Banks 235,501 1,377 AP Administrative Professional 148,909 1,493 HM Hotel/Motel 146,303 3,009 MIXED Mixed Use 105,853 843 CA Commercial Auto Sales, Rental, Parts, Storage, Gas, Service 104,487 2,021 RB Restaurant/Bar 53,892 4,180 PFP Public Facility 43,241 109 CHURCH Church 30,683 467 MHMP Mobile Home, Mobile Park, Manufactured Housing 27,754 516 SEF School/Educational Facility 23,676 37 LM Light Manufacturing 16,685 61 GOLF Golf Course 2,466 14 ROW Right-of-Way - - UDV Undeveloped - - VACANT Vacant - - Table 3.2: Estimated Irrigation Water Use Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 32 3.5 Water Demand Projections Historical water use data is frequently used to project future usage demands. These future demand projections are crucial in developing capital improvement plans. For this analysis, future water demand projections are based on a combination of the following items:  Historical water usage categorized by land use;  Anticipated future land use characteristics (anticipated land use type, and associated area);  Development of water duty factors (WDFs), which are a measurement of water demands in gallons per day per acre (gpd/ac). Adjustments to the WDFs can be made based on changes in development plans, water conservation, climate change, or any additional factors that affect the amount of water used. An overview of the demand projection methodology is provided in Figure 3-16. Figure 3-16: Overview of Future Water Demand Projection Methodology Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 33 3.5.1 Future Land Use Future land use estimates were developed as follows: 1. The 2009 Bozeman Community Plan was used to identify future land use for the service area outside of the existing municipal City boundary. 2. Areas located within the municipal City boundary that are currently vacant or undeveloped are considered infill. 3. Land use designations for future infill were populated using existing City zoning classifications. 4. Future land use information for this study was provided by the City in a GIS database that contained mapped polygons and attributes. The City’s GIS information was used as a starting point for the development of a new database that incorporated all future land use within the UBO. 5. Communication with City staff confirmed land use designations for future development; the City also provided information with respect to identified known land use changes and the use of outside information that was previously missing from the GIS database provided by the City. This resulted in the addition of Montana State University’s (MSU) long-range growth plan, which includes MSU and MSU West4. In addition, a small area located northwest of existing City limits, which was not included in the 2009 Bozeman Community Plan, was classified as future urban. Figure 3-17 and Figure 3-18 present the proposed land use for the City infill and areas outside the existing municipal City boundary, respectively. The growth areas shown on these figures are summarized in Table 3.3 and Table 3.4, respectively. 4 Montana State University Long Range Campus Development Plan. (2008, December). Retrieved July, 2016, from http://www.montana.edu/lrcdp/documents/LRCDP_merge.pdf Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 36 Zoning District Infill Area (Acres) Neighborhood Business District 47 Community Business District 206 Central Business District 1 Business Park District 141 Northeast Historic Mixed-Use District 2 Light Manufacturing District 210 Manufacturing and Industrial District 149 Public Lands and Institutions District 28 Residential Single-Household Low Density District 437 Residential Two-Household Medium Density District 206 Residential Medium Density District 674 Residential High Density District 190 Residential Mix Use 115 Residential Manufactured Home Community District 54 Residential Office District 596 Residential Suburban District 35 Urban Mixed Use 31 Total 3,120 Table 3.3: Future Infill Area Zoning Summary Land Use Designations Future Service Area (Acres) Residential 5,790 Residential Emphasis Mixed Use 26 Suburban Residential 4,289 Regional Commercial and Services 15 Community Core 0 Community Commercial Mixed Use 259 Business Park Mixed Use (BP) 33 Industrial 50 Public Institutions 104 Parks, Open Space, and Recreational Lands 1,066 Other Public Lands 1,296 Golf Course 315 Future Urban 18,564 MSU 338 MSU West 560 Total 32,704 Table 3.4: Future Service Area Land Use Summary Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 37 The City’s current UBO boundary (2009 Community Plan plus the new northwest section from the TMP) covers approximately 44,881 acres. Approximately 12,803 of these acres are located within the current municipal boundaries of Bozeman. A total of 3,120 acres is within the current boundary, but remain undeveloped. This area was designated as future infill, accounting for approximately seven percent of the future UBO area. Approximately 32,704 acres of the 44,881 UBO acres are outside of the current municipal boundary, which is 71 percent of the total UBO land area. The predominant land use classes for future land use are expected to be future urban, residential, and suburban residential. Together, the undeveloped areas (infill and future development) represent 78 percent of the total area within the UBO area. 3.5.2 Water Duty Factors As presented in Figure 3-16, the demand projection methodology is based on land use and the development of WDFs. A WDF is a unit of measurement of consumption, in gallons per day per acre (gpd/ac). The five-step process used to develop WDFs is summarized below: 1. Analyze water meter consumption data provided by the City. 2. Geographically reference existing land use polygons to water meter locations. 3. Determine the average and maximum day demand for each land use polygon to identify current WDFs for each land use classification. 4. Apply the current WDFs calculated for each land use to future development (including infill) land use designations. 5. Adjust WDFs to reflect future water conservation estimates. 3.5.2.1 Water Duty Demand Factor Development City staff provided customer water consumption data with spatially located water meter records from 2006 through 2015 and City parcel data (in the form of polygons with City land use designation attributes assigned) in GIS format. The water meter consumption data was analyzed to determine water use trends, patterns, and seasonal variation. Water consumption data remained relatively consistent over the 10-year time period. Consumption data from 2009 (a wet year) and 2012 (a dry) were selected and georeferenced to the City’s land use polygon layer. The City’s water consumption data based on metered records were linked to their respective land parcels, which established a direct correlation to the amount of water used with the acreage served. The geographical link provided the means to then Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 38 calculate the water use by area for each land use designation. Figure 3-19 illustrates the methodology used to link the water meter records to the polygon layer. Figure 3-19: Geographically Linked Water Meter Records to Land Use Polygon Illustration The water consumption records linked to the City’s land use polygons were then used to calculate WDFs (gpd/ac) by taking the total annual water demand by land use designation and dividing the resulting value by the associated total polygon acreage. Calculated WDFs are presented in Table 3.5 for existing land use within the municipal City boundary for the 2009 and 2012 data sets. The same process was used to calculate WDFs for infill areas within the City. The calculated WDFs for infill are presented in Table 3.6. Key takeaways from the analysis to calculate the 2009 and 2012 WDFs include the following:  Maximum day water usage increased for residential land uses (Duplex/Triplex Residential, Multi-Household Residential, Mobile Home, and Single Family Residential) during the 2012 dry year.  Average day water usage is similar during wet and dry years.  MDD is 9.8 MGD and 11.4 MGD for 2009 and 2012, respectively. Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 39 2009 Wet Year 2012 Dry Year Land Use Description Maximum Day (gpd/ac) Average Day (gpd/ac) Maximum Day (gpd/ac) Average Day (gpd/ac) AG/OUT Agriculture / Outside City 0 0 0 0 AP Administrative Professional 2,520 1,300 2,230 1,210 CA Commercial Auto Sales, Rental, Parts, Storage, Gas, Service 1,870 1,050 1,860 1,070 CHURCH Church 700 310 680 250 CR Commercial Retail Sales, Services, Banks 1,540 750 1,460 770 DTR Duplex/Triplex Residential 2,890 1,510 3,110 1,500 GOLF Golf Course 40 20 20 10 HM Hotel/Motel 6,560 3,590 4,580 2,790 LM Light Manufacturing 610 400 430 320 MFR Multi-Household Residential 2,310 1,480 2,630 1,730 MHMP Mobile Home, Mobile Park, Manufactured Housing 1,280 910 1,650 1,120 MIXED Mixed Use 1,300 810 1,340 800 PFP Public Facility 250 100 270 120 POS Parks or Open Space 220 80 330 110 RB Restaurant/Bar 4,270 2,630 3,920 2,430 ROW Rights-of-Way 0 0 0 0 SEF School/Educational Facility 810 480 520 310 SFR Single-Household Residential 2,680 1,180 3,440 1,330 UDV Undeveloped 0 0 0 0 VACANT Vacant 0 0 0 0 Table 3.5: Existing Land Use WDFs Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 40 2009 Wet Year 2012 Dry Year Zoning District Description Maximum (gpd/ac) Average Day (gpd/ac) Maximum (gpd/ac) Average Day (gpd/ac) B-1 Neighborhood Business District 1,660 940 1,840 940 B-2 Community Business District 1,420 780 1,100 640 B-3 Central Business District 5,000 2,890 3,300 1,920 BP Business Park District 620 380 580 380 HMU Northeast Historic Mixed-Use District 1,390 830 1,220 630 M-1 Light Manufacturing District 320 140 230 120 M-2 Manufacturing and Industrial District 220 150 60 30 PLI Public Lands and Institutions District 470 250 390 180 R-1 Residential Single-Household Low Density District 1,520 650 1,590 600 R-2 Residential Two-Household Medium Density District 1,700 880 1,720 780 R-3 Residential Medium Density District 1,160 580 1,170 540 R-4 Residential High Density District 960 600 920 540 REMU Residential Emphasis Mixed Use 0 0 0 0 R-MH Residential Manufactured Home Community District 380 270 380 270 R-O Residential-Office District 730 410 680 370 R-S Residential Suburban District 160 70 190 70 UMU Urban Mixed Use 0 0 0 0 Table 3.6: Existing Infill Zoning District WDFs Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 41 3.5.2.2 Infill Water Duty Factors The values calculated for the 2009 and 2012 WDFs were adjusted to match the calculated ADD (5.2 MGD) and MDD (11.7 MGD) as shown in Table 3.1. The adjusted values were then averaged to estimate infill demand and are assumed to represent future infill demand within the City boundary. Table 3.7 shows maximum and average day WDFs used in the hydraulic analysis. Zoning District Description Maximum Day (gpd/ac) Average Day (gpd/ac) Infill Area (Acres) B-1 Neighborhood Business District 1,925 935 47 B-2 Community Business District 1,405 705 206 B-3 Central Business District 4,650 2,400 1 BP Business Park District 665 380 141 HMU Northeast Historic Mixed-Use District 1,450 725 2 M-1 Light Manufacturing District 305 130 210 M-2 Manufacturing and Industrial District 160 95 149 PLI Public Lands and Institutions District 480 220 28 R-1 Residential Single-Household Low Density District 1,720 620 437 R-2 Residential Two-Household Medium Density District 1,885 820 206 R-3 Residential Medium Density District 1,290 555 674 R-4 Residential High Density District 1,040 570 190 REMU Residential Emphasis Mixed Use 1,823 873 115 R-MH Residential Manufactured Home Community District 420 265 54 R-O Residential-Office District 780 385 596 R-S Residential Suburban District 190 70 35 UMU Urban Mixed Use 1,757 751 31 Total 3,120 Table 3.7: Future Infill Zoning District WDFs Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 42 3.5.2.3 Future Land Use Water Duty Factors The values calculated for the 2009 and 2012 WDFs in both Table 3.5 and Table 3.6 were also used to represent future service area demands. Existing demands by land use class were assigned to consistent classes of future land use areas. However, there are discrepancies between current land use classifications in the City’s GIS database and future land use categories identified in the 2009 Bozeman Community Plan. The inconsistencies required some minor adjustments and assumptions for cross-referencing. For example, existing single family residential was included in the future land use residential category. In some cases, multiple land use categories and their associated demands were assigned to a particular future land use, and a weighted average (based on current ratios of these classes to one another) was utilized. The initial data set was presented to the City and modified based on staff comments and reasonable judgment. Table 3.8 shows the recommended WDF values for future land use areas. Land Use Maximum Day (Gal/Acre/Day) Average Day (Gal/Acre/Day) Future Service Area (Acres) Residential 1,757 751 5,790 Residential Emphasis Mixed Use 1,455 805 26 Suburban Residential 419 182 4,289 Regional Commercial and Services 1,740 815 15 Community Core 2,635 1,285 0 Community Commercial Mixed Use 2,635 1,285 259 Business Park Mixed Use (BP) 1,525 780 33 Industrial 580 355 50 Public Institutions 290 110 104 Parks, Open Space, and Recreational Lands 480 90 1,066 Other Public Lands 480 220 1,296 Golf Course 35 15 315 Future Urban 1757 751 18,564 MSU 3,058 2,780 338 MSU West 1,133 1,030 560 Total 32,704 Table 3.8: Future Service Area Land Use WDFs Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 43 3.5.2.4 Future Water Duty Factors with Water Conservation Future land use WDFs developed previously and shown in Table 3.8 do not account for the potential trends related to water conservation. Typically, newer construction incorporates better technologies to decrease water usage, such as high efficiency fixtures. Increased water use efficiency can reduce the overall system demand during peak periods, ideally saving water and delaying the need for expanding infrastructure (i.e. increasing capacity of WTP, adding new sources of supply, etc.). To account for the results of future water conservation objectives established by the City, specific WDFs previously calculated in Table 3.8 were reduced as follows:  MDD was reduced by 10 percent across all land use categories  ADD was reduced by 15 percent for all residential and future urban land uses. The water use reduction targets were derived from estimates provided by Water Research Foundation5 and in coordination with the City’s Water Conservation Division. Table 3.9 shows the future area land use WDFs following the application of the demand reduction factors. Land Use Maximum Day (Gal/Acre/Day) Average Day (Gal/Acre/Day) Future Service Area (Acres) Residential 1,582 638 5,790 Residential Emphasis Mixed Use 1,310 684 26 Suburban Residential 377 155 4,289 Regional Commercial and Services 1,566 815 15 Community Core 2,372 1,285 0 Community Commercial Mixed Use 2,372 1,285 259 Business Park Mixed Use (BP) 1,373 780 33 Industrial 522 355 50 Public Institutions 261 94 104 Parks, Open Space, and Recreational Lands 432 90 1,066 Other Public Lands 432 220 1,296 Golf Course 32 15 315 Future Urban 1,582 638 18,564 MSU 2,752 2,780 338 MSU West 1,020 1,030 560 Total 32,704 Table 3.9: Future Service Area Land Use WDFs with Water Conservation 5 DeOreo, W. B., Mayer, P. W., Dziegielewski, B., & Kiefer, J. (2016). Residential end uses of water, version 2. Denver, CO: Water Research Foundation. Pages (211-233) Water Facility Plan Update Chapter 3 – Water Use Characterization July 2017 P05097-2013-001 Page 44 3.5.3 Future Water Demand Summary The WDFs shown in Table 3.7, Table 3.8, and Table 3.9 were spatially distributed based on their respective land use class within the hydraulic model. Table 3.10 shows the resulting future system demands that represent the total overall system demand for the UBO system. Demand Condition UBO Water Demand (MGD) Average Day Demand 23.8 Average Day Demand with Conservation 21.5 Maximum Day Demand 53.6 Maximum Day Demand with Conservation 49.8 Table 3.10: Future System Demands Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 45 CHAPTER 4 WATER DISTRIBUTION SYSTEM MODEL UPDATE The following section provides an overview of the data sources used to create the hydraulic model of Bozeman’s water distribution system. InfoWater® (Version 10.5) hydraulic modeling software was used for development and calibration of the model. InfoWater® is a fully GIS integrated water distribution modeling and management software application. InfoWater®, which runs on the EPANET hydraulic engine, integrates water network modeling with ArcGIS. 4.1 Existing Model Conversion and Development The following information was provided by the City and incorporated into the hydraulic model:  GIS geodatabase of the water distribution system to develop the pipe network for the hydraulic model. GIS information included water main, valves, and hydrants.  Finished water source locations and flows, booster station system pump curves, water storage reservoir information (volumes and elevations).  Finished water flow rates, pressures, and water storage levels were collected from the supervisory control and data acquisition (SCADA) system in 5-minute increments during the testing periods, including fire flow testing, extended period simulation, and periods used for demand curve development.  A digital elevation model (LiDAR) provided by the City was used to extract elevations for hydrants with unknown elevation. Elevation data was used to determine pressures throughout the distribution system during field testing and calibration. A comprehensive “all-pipes” hydraulic model was developed for the City. As the name suggests, an all pipes model accounts for all water main, hydrants, and hydrant leads within the system. To create the water pipe network for the hydraulic model, Feature Manipulation Engine (FME) data integration software was used to transform existing GIS feature class data into a format that allowed quality auditing and input into the hydraulic model. The FME script created to transform the data is explained in greater detail in Appendix B. Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 46 4.2 Demand Allocation A crucial element of water distribution modeling is determining accurate, representative water demands. Equally important is the spatial distribution of these demands throughout the water distribution system. Water demand allocation is the process of accurately distributing these water demands to the correct points of consumption within the model. 4.2.1 Base Demand Meter billing records from 2015 were analyzed and used to spatially distribute the base demand within the existing water distribution system. The records from 2015 were used because the data spatially represents all current users within the system with the most recent water use information at the time of model calibration. The monthly usage data was converted to an average consumption rate in units of gpm. The consumption rates were spatially distributed using InfoWater Demand Allocator®. This InfoWater module uses GIS technology to assign geocoded consumption data to a designated location within the water distribution system. For each meter record, algorithms in the software were used to distribute the water demands to the closest pipe. The water demands were then allocated proportionally to the nodes at each end of the pipe. For each node within the model, all of the contributing water demands were summed to represent the total demand imposed on that particular node. When comparing the total water usage from the meter billing records with the water production records, there were discrepancies within the data that needed to be resolved. These discrepancies are partially due to NRW loss. As discussed in Section 3.3.3, the NRW for the City of Bozeman ranged from 4.5 to 13.7 percent from 2006 through 2015 with a recommended value of 9 percent for planning purposes. To resolve the inconsistency between water production records and computed customer usage, the NRW factor of 9 percent was globally applied to the water demands. The goal of these analyses is to balance water production and demands within the model and thereby create a mass balance of the water production, storage, and demands within the model of the distribution system. 4.2.2 Diurnal Demand Pattern Water usage for any distribution system is highly variable over the course of a day, due to fluctuations in water demand. In municipal systems, there will typically be a morning and an evening peak in customer water use. The resulting daily demand pattern is referred to as the diurnal demand curve. Diurnal patterns are impacted by seasonal and climatic conditions (winter vs. summer, precipitation events, etc.). Large users such as industrial or commercial businesses also have an impact on diurnal demand patterns. Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 47 The diurnal demand curve for Bozeman’s water distribution system was constructed using the flow balance technique. For a water distribution system, a flow balance simply indicates that the water that enters the distribution system must be equal to the water that exits the distribution system, plus or minus any changes to the volume contained in water storage facilities. The following steps were taken to develop the diurnal demand pattern for Bozeman:  A flow balance was constructed from water meters at the WTP and Lyman reservoir, and water storage reservoir level readings (Sourdough and Hilltop) from the SCADA system collected in five-minute increments.  The data were then averaged into hourly increments to define the diurnal pattern over the entire day for the entire distribution system. o The summer diurnal demand curve was constructed using data from August 20th through August 26th, 2015. o Diurnal demand patterns were also prepared for each day during the fire flow testing period and the extended pressure testing period from October 12th through October 18th, 2015. o An average diurnal demand curve was constructed using the weekday August data. This data was assumed to represent average summer day and maximum day scenarios developed within the model. o An average diurnal demand curve was constructed from the weekday October data and assumed to represent the average day and winter day scenarios developed within the model. Figure 4-1 shows the diurnal demand pattern for summer and maximum day demands. Figure 4-2 shows the diurnal demand pattern for average and winter day demands. An hourly demand factor equal to 1.0 indicates that the system demand for the hour period is equal to the average hourly demand. An hourly demand factor equal to 1.75 indicates that the system demand for the hour period is 1.75 times higher than the average hourly demand. The diurnal demand patterns are applied to system demands to develop diurnal curves used for calibration and modeling. The time step for the diurnal curve used in the model was one hour. Although a smaller time step could be used, it is not recommended because small errors in reservoir water levels on time steps shorter than one hour can lead to large errors in water use calculations. The diurnal demand curves were incorporated into the model and used in conjunction with the field data to assist in the calibration of the hydraulic model. Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 48 Figure 4-1: Typical Summer/Maximum Day Diurnal Demand Pattern Figure 4-2: Typical Average/Winter Day Diurnal Demand Pattern Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 49 4.3 Field Testing & Data Collection The objective of creating a model is to generate a tool for predicting the distribution system network’s behavior within an acceptable range of accuracy. To generate an accurate model, a robust calibration process must be conducted. Field data collected for calibration of the water distribution system model included water storage levels, fire hydrant flow tests, and extended pressure tests. Data was collected by the SCADA system during the period of field testing. Fire hydrant flow tests were conducted at 75 locations throughout the distribution system. Extended pressure tests were performed at 12 key locations within the distribution system to assist in estimating distribution system pipe roughness coefficients (C-factors). The tasks and protocol followed for performing these field tests are described in further detail in the following sections. To verify the calibration of the hydraulic model, pressures generated by the hydraulic model were compared to actual observed system pressures. Once differences were known between actual field data and hydraulic model output, adjustments were made within the hydraulic model to better simulate the existing distribution system performance. The adjustments included modifications to piping roughness coefficients and system demands. The final results were compared with the observed field results to measure the calibration quality achieved. Section 4.3 describes the field testing procedures performed, and Section 4.4 addresses the calibration process performed in the model. 4.3.1 Fire Hydrant Flow Tests Flow tests performed at fire hydrants provide valuable insight into the calibration of pipe roughness and system demands. Fire hydrant flow tests were conducted at 75 locations throughout the City. The hydrant flow testing was performed from September 28th through October 1st, 2015. A map indicating the location of each fire hydrant test is shown in Figure 4-3. Refer to Appendix C for field data sheets showing detailed locations of each fire flow test and data recorded during each test. Two or more hydrants are involved in a fire hydrant flow test. One hydrant is identified as the pressure hydrant where all pressure measurements are taken, and the other hydrant(s) are flow hydrant(s), where water is discharged and flow measurements are taken. The pressure at the hydrants prior to opening any hydrants is the static pressure. When one or more flowed hydrants are open, the pressure at the pressure hydrant is called the residual pressure. If one hydrant does not create a large enough drop in pressure (NFPA 291 recommends a goal of at least a 25 percent drop in pressure), additional hydrants should be opened to generate larger flows and increased pressure drop. Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 50 A Telog® Hydrant Pressure Recorder (HPR) was used to record the static and residual pressures at the pressure hydrant. The flow was recorded at the flowed hydrants using a Pollard hydrant diffuser and a HPR. The hydrant diffuser incorporates a pitot gauge connected to a threaded fitting. A HPR is threaded onto the diffuser to record the pressure head. The pitot gauge converts the velocity head associated with the discharge from the fire hydrant into pressure head that is recorded by the HPR. The HPRs were set to sample and record pressure data at 1-second intervals for the fire hydrant flow tests. The pressure head recorded by the HPR is converted into a hydrant discharge rate through the use of an orifice relationship equation. To properly calibrate the model, the following information was recorded at the time of the fire hydrant flow test: 1. Time and date; 2. Hydrant location; 3. Flow rate of hydrant being flowed; 4. Duration of the hydrant flow test; 5. Static and residual pressures at the corresponding test hydrant location. The results of the fire hydrant flow tests are discussed in Section 4.4; and 6. Simultaneous information from the SCADA system on water storage levels, pump operation, and metered flow rates were also collected and used in the calibration process. 4.3.2 Extended Pressure Testing To assist in the determination of the roughness coefficient of water mains, extended pressure testing was performed at 12 locations throughout Bozeman’s water distribution system. HPRs were installed on fire hydrants for approximately two to three weeks to record changes in pressures within the distribution system. Data from one week (from October 12th through October 18th, 2015) was utilized during calibration. A map indicating the location of each extended pressure test is shown in Figure 4-6. Refer to Appendix D for field data sheets showing detailed locations of each extended pressure test. The field pressures for the EPS tests were sampled at 1 second intervals and the minimum, maximum, and average pressures were recorded at 5 minute intervals to allow for extended data logging. This data was used to fine-tune pipe roughness coefficients of water mains in the distribution system. The results of the extended pressure testing are discussed in Section 4.4.3. Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 52 Figure 4-4 shows the diffuser, HPR, and data collector used during the fire hydrant flow tests. Figure 4-5 shows the operation of a flowed hydrant. Figure 4-4: Diffuser, HPR, and Data Collector Figure 4-5: Operation of a Flowed Hydrant Data Collector Collector Diffuser HPR Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 54 4.4 Model Calibration The guidelines presented below by the authors of Water Distribution Modeling6give some numerical guidelines for calibration accuracy: “The model should accurately predict hydraulic grade line (HGL) to within five to 10 feet at calibration data points during fire flow tests and to the accuracy of the elevation and pressure data during normal demands. It should also reproduce water storage level fluctuations to within three to six feet for EPS runs and match treatment plant/pump station flows to within 10 to 20 percent.” The above guideline is not definitive, but is a good gauge of a model’s accuracy. The more accurate the model, the more confidence there can be in future model simulations. 4.4.1 Calibration Process A robust effort was made to allocate demands by meter location throughout the water distribution system, as described in Section 4.2. Therefore, the primary focus of the calibration effort was on pipe roughness coefficients used in the model. The coefficients were adjusted to more closely match field data collected during the fire hydrant flow tests. The calibration process can be summarized in the following steps:  System operational data such as water storage levels, pump and control valve operation, meter data, and estimated system demands were also entered into the model for each of the flow tests.  After the background data was entered and the fire flow test was simulated, model results were compared with field measurements.  When model results varied from the observed field measurements, the pipe roughness coefficients were adjusted.  Adjustments were made to various pipe diameters and pipe materials until the model results matched the field measurements within an acceptable tolerance. City of Bozeman operations staff were consulted prior to making adjustments, and staff verified general pipe conditions prior to making adjustments (i.e. confirming smooth clean pipe for raising pipe roughness factors and confirming pipe diameter discrepancies where known).  This adjustment process was also performed for the EPS tests 6 Walski, T. M., Chase, D. V., & Savic, D. (2001). Water distribution modeling. Waterbury, CT, U.S.A.: Haestad Press. Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 55 4.4.2 Calibration Results Final simulated results from the hydraulic model were compared to the observed field results to determine the calibration level achieved. The following sections provide an overview of the model calibration results that indicate a high quality calibration was achieved for the Bozeman water distribution model. The results of testing for static and residual pressures during the fire flow tests are presented below and summarized in Table 4.1. 4.4.2.1 Static Pressure Test Calibration Results Static pressures were taken at the pressure hydrant before initiating the fire hydrant flow tests. The observed static pressures along with the simulated pressure from the calibrated hydraulic model are shown in Table 4.2. Comparison of static pressures from field test results with simulated hydraulic model results showed that 73 of the 75 tests (97 percent) were within 5 feet (≈2.2 psi) of the field measurement and all 75 tests (100 percent) were within 10 feet (≈4.3 psi) of the field test measurement. This level of accuracy is acceptable according to established criteria identified in Section 4.4. 4.4.2.2 Residual Pressure Test Calibration Results During each fire hydrant flow test, residual pressures were recorded at a hydrant near the flowing hydrants. The observed residual pressures along with the simulated pressure from the hydraulic model are shown in Table 4.2. Comparison of the observed field pressures and the simulated pressures obtained from the hydraulic model shows that 47 of the 75 tests (63 percent) were within 5 feet (≈2.2 psi) of the observed field measurement and 63 of the 75 test (84 percent) were within 10 feet (≈4.3 psi). Fire Flow Tests Simulated Pressure readings within 10 ft Simulated Pressure readings within 5 ft Static Pressure 100% 97% Residual Pressure 84% 63% Table 4.1: Fire Flow Test Model Calibration Results Summary City staff and hydraulic modelers completed additional database and field investigations in an attempt to identify reasons for the residual pressure model results falling outside the recommended guidelines. City staff investigated the GIS database and system maps for possible missing water main loops or incorrect pipe diameters. The desktop investigation was completed in the vicinity of Test No. 17, 19, 24, 25, 27, 34, 45, 49, 54, and 59. While some Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 56 minor inconsistencies were found and corrected, they did not correct all of the differences between the modeled and measured results. Possible reasons for the reduced accuracy of the residual pressure results include the following: 1. Inaccuracies in model parameters, such as pipe roughness coefficients or nodal demand distribution. 2. Erroneous or inaccuracies in network data (pipe diameter, valve settings). 3. Incorrect network geometries (pipes connected to incorrect nodes). 4. Measurement equipment errors. 5. Demand variation. The diurnal curve created for the calibration days is used to determine demand at each hour for the fire flow tests. However, customer demands change within each hour which may not be recognized within the mass balance of the system resulting in a difference between modeled and actual system demands. 6. Demand variance in different pressure zones. A lack of sufficient distribution system flow meter data for each pressure zone of the system results in the use of a generalized diurnal curve for the entire system. With individual pressure zone diurnal curves, a more accurate demand can be captured as some zones have little to no irrigation demand and others have high irrigation demand. 7. Inaccuracies in elevation data. Elevations used throughout the system for junctions and valves are based on ground elevation from the DEM provided by the City. Elevations for pump stations and the WTP are based on record drawings. Survey data for the elevation of reservoirs was provided by the City. 8. Inaccuracies in pump flow between modeled and actual flow rates. Every complex distribution network model will have some inaccuracy because of the ambiguity in assumed conditions versus actual conditions and available modeling techniques. The majority of the modeling results fall within the recommended calibration guidelines. Therefore, the hydraulic model is considered well calibrated. Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 57 Table 4.2: Fire Flow Test Results Static Pressure (psi) Residual Pressure (psi) 1 109.8 90.2 109.25 86.05 0.5 4.2 1,518 1,484 8 Northwest DI 2 75.7 60.4 76.08 61.08 -0.3 -0.7 1,230 1,167 8 Northwest DI 3 81.9 62.8 80.89 61.08 1.0 1.8 1,235 1,215 12 Northwest DI 4 125.4 106.6 124.68 106.01 0.7 0.6 1,615 1,418 12 Northwest DI 5 90.7 71.7 88.77 70.35 1.9 1.3 1,325 1,169 12 Northwest DI 6 88.4 61.0 87.76 62.02 0.6 -1.0 1,287 1,246 8 Northwest DI 7 61.7 46.0 62.09 47.62 -0.4 -1.6 1,083 1,049 8 Northwest DI 8 67.4 57.7 69.24 59.17 -1.9 -1.5 1,212 1,195 8 Northwest DI 9 112.5 97.7 114.92 94.70 -2.4 3.0 1,569 1,552 12 Northwest DI 10 66.1 60.2 66.59 62.15 -0.5 -2.0 1,201 1,233 8 West DI 11 84.6 72.8 85.21 71.67 -0.6 1.1 1,353 1,250 8 West DI 12 95.3 76.0 95.83 73.35 -0.5 2.6 1,350 1,335 10 West DI 13 90.2 85.1 90.14 84.40 0.1 0.7 1,435 1,340 8 West DI 14 73.7 72.5 75.02 72.19 -1.3 0.3 1,342 1,365 8 West DI 15 137.8 86.1 138.77 81.96 -0.9 4.1 1,441 1,426 8 Northeast DI 16 110.3 94.8 111.56 94.41 -1.2 0.4 1,528 1,524 8 Northeast DI 17 143.8 93.8 144.35 71.28 -0.6 22.5 1,571 1,540 8 Northeast DI 18 124.3 109.2 124.93 107.60 -0.6 1.6 1,674 1,693 12 Northeast DI 19 123.7 81.9 124.50 63.34 -0.8 18.5 1,483 1,448 8 Northeast DI 20 127.4 113.1 128.73 112.40 -1.4 0.7 1,596 1,682 8 Northeast DI 21 123.3 89.1 123.92 86.47 -0.6 2.6 1,508 1,419 12 Northeast DI 22 76.4 65.1 77.31 63.12 -0.9 2.0 1,228 1,250 8 Gallatin DI 23 129.9 119.9 131.73 121.47 -1.8 -1.6 1,720 1,610 8 South DI 24 144.5 130.4 144.31 123.97 0.2 6.5 1,845 1,834 8 South DI 25 128.9 115.7 130.05 110.14 -1.1 5.6 1,725 1,702 8 South DI Test No. Measured Static Pressure (psi) Measured Residual Pressure (psi) Simulated Static Pressure (psi) Simulated Residual Pressure (psi) Pressure Difference Flow (gpm) Watermain Size (in)Material Flow (gpm) Pressure Zone Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 58 Table 4.2 (cont.): Fire Flow Test Results Static Pressure (psi) Residual Pressure (psi) 26 122.2 110.0 121.72 109.34 0.4 0.6 1,681 1,719 10 South DI 27 139.3 104.1 139.96 89.28 -0.7 14.8 1,681 1,619 6 South DI 28 152.6 128.6 153.68 131.31 -1.1 -2.7 1,956 1,739 6 South DI 29 50.5 47.5 50.94 47.57 -0.4 -0.1 1,136 996 8 South DI 30 60.3 58.5 61.60 57.47 -1.3 1.0 1,198 6 South DI 31 52.5 50.2 53.46 50.33 -1.0 -0.1 1,096 8 South DI 32 43.2 40.4 42.65 40.30 0.5 0.1 1,060 12 South DI 33 48.3 41.4 49.08 36.50 -0.8 4.9 944 1,039 6 South CI 34 124.2 60.9 123.42 47.31 0.8 13.6 1,176 1,247 10 South DI 35 142.7 133.8 143.84 134.74 -1.1 -0.9 1,890 1,796 10 South CI 36 127.1 123.6 126.95 123.22 0.1 0.4 1,765 8 South CI 37 132.9 129.1 132.21 127.90 0.6 1.2 1,834 8 South CI 38 150.0 139.3 149.91 138.86 0.1 0.5 1,855 1,404 6 South CI 39 123.9 122.0 124.19 121.05 -0.3 1.0 1,673 10 South CI 40 128.6 126.8 128.85 125.74 -0.3 1.0 1,802 12 South CI 41 139.0 136.8 138.59 134.55 0.4 2.2 1,878 14 South CI 42 107.5 105.3 106.73 104.36 0.7 0.9 1,396 14 South CI 43 151.7 137.8 152.57 133.93 -0.8 3.9 1,989 1,866 8 South DI 44 137.7 112.9 139.10 116.41 -1.4 -3.5 1,601 1,744 6 South CI 45 145.0 128.9 145.38 121.59 -0.4 7.3 1,740 1,593 6 South CI 46 129.9 118.0 131.10 120.93 -1.2 -3.0 1,723 1,615 6 South CI 47 126.5 103.9 126.13 113.47 0.3 -9.6 1,595 6 South CI 48 137.6 126.3 138.66 123.89 -1.0 2.4 1,817 1,661 6 South CI 49 72.6 67.2 73.44 61.10 -0.8 6.1 1,237 6 South CI 50 101.2 87.8 101.32 88.92 -0.1 -1.1 1,358 6 South CI Test No. Measured Static Pressure (psi) Measured Residual Pressure (psi) Simulated Static Pressure (psi) Simulated Residual Pressure (psi) Pressure Difference Flow (gpm) Watermain Size (in)Material Flow (gpm) Pressure Zone Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 59 Table 4.2 (cont.): Fire Flow Test Results Static Pressure (psi) Residual Pressure (psi) 51 125.8 109.6 125.25 110.67 0.5 -1.0 1,578 6 South CI 52 88.4 64.7 87.87 62.66 0.5 2.0 1,206 6 South DI 53 93.9 83.0 93.98 81.96 -0.1 1.1 1,312 6 South CI 54 142.6 131.2 143.90 122.25 -1.3 8.9 1,869 1,822 8 South CI 55 115.2 109.5 114.73 110.54 0.5 -1.0 1,673 8 South DI 56 153.2 140.7 154.76 139.19 -1.6 1.5 1,998 1,725 14 South DI 57 82.4 74.0 82.18 74.83 0.2 -0.8 1,342 1,299 10 South DI 58 123.4 109.8 121.68 109.05 1.7 0.8 1,621 1,531 12 South DI 59 111.3 88.0 110.38 80.25 0.9 7.8 1,491 1,521 12 South DI 60 157.4 153.9 157.84 154.28 -0.4 -0.4 1,803 12 South DI 61 71.1 70.7 72.11 71.02 -1.0 -0.3 1,277 10 South DI 62 83.0 81.4 83.68 81.33 -0.7 0.1 1,362 24 South DI 63 130.6 118.3 129.74 117.79 0.9 0.5 1,689 1,746 10 South DI 64 131.5 128.3 131.90 126.69 -0.4 1.6 1,739 8 South DI 65 142.6 133.7 143.09 131.35 -0.5 2.4 1,964 1,814 10 South DI 66 120.3 116.7 119.80 116.32 0.5 0.4 1,732 8 South DI 67 112.5 109.0 114.15 109.57 -1.7 -0.6 1,660 8 South DI 68 100.8 98.7 102.90 97.50 -2.1 1.2 1,494 8 South DI 69 101.8 92.6 101.50 91.08 0.3 1.6 1,446 1,532 8 South DI 70 100.2 66.6 101.21 71.00 -1.0 -4.4 1,385 1,273 10 South DI 71 69.2 66.7 69.06 65.60 0.2 1.1 1,305 12 South DI 72 140.4 135.6 139.79 135.20 0.6 0.4 1,870 10 South DI 73 36.4 32.8 37.01 33.19 -0.6 -0.3 823 810 12 South DI 74 120.5 118.6 120.71 116.51 -0.2 2.1 1,748 8 South DI 75 61.3 42.1 62.76 42.91 -1.5 -0.8 1,047 1,101 8 Knoll DI Test No. Measured Static Pressure (psi) Measured Residual Pressure (psi) Simulated Static Pressure (psi) Simulated Residual Pressure (psi) Pressure Difference Flow (gpm) Watermain Size (in)Material Flow (gpm) Pressure Zone Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 60 4.4.3 Extended Period Simulation (EPS) Calibration Results The hydraulic model was further refined to match water storage levels and extended pressure testing results with the hydraulic model during extended period simulations. Fine-tuning was accomplished through adjustment of both pipe roughness coefficient factors and global demand adjustments. SCADA information from August 20th through August 26th, 2015 and from October 12th through October 18th, 2015 was used to adjust and calibrate the hydraulic model for extended period simulations. Most EPS calibrations concern the examination of curves of observed versus modeled water storage levels. Comparison of actual water storage levels and extended pressure testing was performed for each of the above-mentioned EPS test days. Comparisons of observed and modeled results for August 20th, 2015 are shown graphically in Figure 4-7 as a typical calibration chart. The storage level curves and detailed calibration results for the calibration period are presented in Appendix E. A comparison of the observed versus simulated model results is presented in Table 4.3. These results indicate that the hydraulic model simulation matches well with the observed water storage levels and pressure readings. The simulated water storage level curves trend closely with the observed data from the SCADA system. The simulated water storage levels were within 6 feet of the observed water storage levels for 100 percent of the time for the fourteen (14) calibration days. In a comparison of simulated levels within 3 feet of the observed storage levels, results show that the model was within the tolerance 100 percent of the time. Differences that were observed within the calibration of storage levels could be caused by changes in demand or operations within the system that could not be identified during the calibration. Based upon the criteria set forth above, these results are within the acceptable level of tolerance for model calibration. During the initial review of EPS field test data (October 12th through the 18th, 2015), it was determined that there was an unaccounted for pressure loss for EPS Test No. 11 and 12:  Test No. 11 was located in the Northwest Zone near large multi-family housing structures and a middle school. Model results for this location differed from field testing data during the morning hours, suggesting that the demand pattern for this area might be different from the rest of the distribution system. A specific diurnal demand pattern for this area cannot be generated without significant field testing including additional flow and pressure monitoring in the Northwest Zone. The model differences for this area are not considered to have a significant impact on the existing system analysis or future planning efforts.  Test No. 12 was located upstream of PRV 14 which feeds the Northwest Zone. Model results for this location differed from field testing data during morning hours through early afternoon. This difference in data for this test suggested that there was Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 61 unaccounted headloss within the transmission main feeding PRV 14. This loss could not be attributed to typical C-factors. City staff exercised numerous system valves to find partially or fully closed valves on the transmission main; however, none were found. Because of the unknown source or magnitude of the headloss factor, the model was constructed without the headloss factor for the pipe upstream of PRV 14. Table 4.3 lists the EPS results. The simulated pressure readings were within 10 feet of the observed pressure readings 99 percent of the time and within 5 feet of the observed readings approximately 95 percent of the time. Based upon the criteria established in Section 4.4, these results indicate an acceptable overall level of tolerance for model calibration. The majority of the outlying data points are located at EPS Test No. 11 and 12, as discussed. Detailed EPS calibration results for each test location are presented in Appendix E. Date Reservoir Levels Extended Pressure Tests* Level readings within 6 ft Level readings within 3 ft Pressure readings within 10 ft Pressure readings within 5 ft August 20, 2015 100% 100% - - August 21, 2015 100% 100% - - August 22, 2015 100% 100% - - August 23, 2015 100% 100% - - August 24, 2015 100% 100% - - August 25, 2015 100% 100% - - August 26, 2015 100% 100% - - October 12, 2015 100% 100% 99% 94% October 13, 2015 100% 100% 99% 97% October 14, 2015 100% 100% 99% 95% October 15, 2015 100% 100% 100% 97% October 16, 2015 100% 100% 100% 95% October 17, 2015 100% 100% 98% 94% October 18, 2015 100% 100% 98% 96% Total 100% 100% 99% 95% *Note: Nearly all data points that do not fall within parameters are at the following locations: -Test No. 11 located within the NW pressure zone -Test No. 12 located upstream of PRV 14 within the NE pressure zone Table 4.3: Observed versus Simulated Model Results for Water Storage Levels and Extended Pressure Tests Water Facility Plan Update Chapter 4 – Water Distribution System Model Update July 2017 P05097-2013-001 Page 62 Figure 4-7: Water Storage Level Comparison – August 20, 2015 Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 63 CHAPTER 5 DESIGN PARAMETERS AND EVALUATION CRITERIA Design parameters identify the features and performance requirements of distribution system infrastructure, and provide the standard against which system performance is assessed. The design parameters and criteria presented within this section were used to evaluate the performance of the existing Bozeman water distribution system, and to conceptualize system improvements (water mains, storage, and pumping facilities) necessary to maintain system reliability and accommodate future growth and development of the system. Design parameters and evaluation criteria are established herein for water system pressures, transmission and distribution piping, fire protection, and distribution system storage and pumping facilities. The criteria were established based on industry standards, Montana Department of Environmental Quality (MDEQ), existing City codes, and engineering judgment. 5.1 Water System Pressure When evaluating the adequacy of a water distribution system, it is paramount to ensure that adequate pressure is supplied throughout the system. Generally, there are three design pressures that should be defined by each utility: 1. Minimum pressure during peak hour; 2. Minimum pressure during a fire flow; and 3. Maximum pressure. Table 5.1 presents the water distribution system pressure criteria used for master planning purposes. Distribution System Pressures Criteria (psi) Maximum Pressure 110 Mountain Zone Maximum Pressure1 150 Minimum Pressure during Peak Hour demand2 50 Minimum Pressure during a Fire Flow 20 Notes: 1. Mountain Zones involve regions within the study area with extreme topographic change such as the Bridger Foothills and Story Hills. 2. Areas near reservoirs and on the edge of pressure zones, a minimum pressure of 35 psi during PHD operations is acceptable. Table 5.1: Hydraulic Criteria Pressure Recommendations Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 64 5.1.1 Maximum Pressure Maximum pressure refers to the maximum pressure that a customer will experience at their residential or business service connection. High pressures within distribution systems can be problematic, resulting in a number of issues such as increased wear on system components, more frequent leaks and breaks, and extreme pressure variations. These issues have been experienced by the City, as operators identified pressure transients and breaks in areas of the system that are known to have high pressure. For example, during a PRV repair on Oak Street, the distribution system experienced water hammer that caused fire sprinkler flow alarms to trigger throughout North 19th Avenue. Furthermore, water main breaks quickly become catastrophic, creating excessive damage to the surrounding area and creating a safety risk for both the community and City operations staff. The City of Bozeman Design Standards and Specifications Policy Document, states the following in Section V: Utility Design Criteria:  Pressure Reducing Valves: Pressure reducing valves shall be installed when the anticipated average day line pressure exceeds 120 psi. A pressure evaluation of other cities in Montana was completed to determine if the City’s current recommended maximum pressure should be adjusted. Table 5.2 presents recommended operating pressures from the MDEQ Circular No.17 and other cities in Montana. The pressure evaluation showed that other cities across the state of Montana have operating pressures that range from 35-150 psi. The establishment of 150 psi was based on engineering judgment of the community’s specification. The City of Helena and City of Great Falls suggest a normal operating range of 50-110 psi. Based on the terrain of Bozeman, existing system pressures, and the operating ranges advised in Table 5.2, the recommended pressure ranges listed in Table 5.3 are suggested to carry forward for master planning purposes. 7 Circular DEQ 1 Standards for Water Works. (August 8, 2014). Helena, MT: Montana Department of Environmental Quality Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 65 Source Recommended Operating Range (psi) Source Notes Montana DEQ8 35-80 “The minimum working pressure in the distribution system should be 35 psi (240 kPa) and the maximum normal working pressure should be approximately 60 to 80 psi (410-550 kPa).” Great Falls9 35-110 “Water pressure varies throughout the city and is affected by the elevation at which the service is supplied and the reservoir or pumps which service your location. Pressure range varies from approximately 35 to 110 psi. Daily and seasonal usage may also cause pressure fluctuations. Pressure requirements for service are based upon average calculated pressures.” Helena10 50-110 “…The normal operating range of pressure allowed for water system design is 50-110 psi or as approved by the Public Works Department without the use of booster or fire pumps.” Billings11 35-150 “…2.2.B.1 Revise Sentence to read: Furnish Special Thickness Class 52 wall thickness meeting AWWA C 151, American National Standard for Ductile Iron Pipe 2.2.C.1 Add to the end of paragraph: Furnish PVC water main pipe meeting AWWA C900 requirements, made to ductile iron O.D.’s for “push-on” joints. Assure pipe joints are bell and spigot having an elastomeric gasket. Use DR 14 Class 200 pipe.” Based on engineering judgment the standard suggests that normal working pressures should be less than 150 psi. Missoula -- Not specified in Standard Specifications Kalispell12 35-150 “Delete Subsections 3.4.A.1 & S of the Standard and Replace it with the following: 1. Perform hydrostatic and leakage testing in accordance with AWWA C600. Once the pipe is laid and backfilled, test for at least two hours, all newly laid pipe, or any valved section, to a hydrostatic pressure of either, 1.5 times the working pressure or 125 psi, whichever is greater.” Based on engineering judgment the standard suggests that normal working pressures should be less than 150 psi. Table 5.2: Montana Pressure Evaluation 8 Montana Department of Environmental Quality (2014 Edition ed., Vol. 1, Circular DEQ). 9 Retrieved February 03, 2016, from http://www.greatfallsmt.net/publicworks/water-pressure-and-flows 10 Engineering and Design Standards. (June 10, 2013). Helena, MT: City of Helena Public Works Department.pg 13 (Water System, Section 2.2) 11 City of Billings Standard Modifications to Montana Public Works Stand Specifications (Sixth Edition). (February 2015). Billings, MT: City of Billings. 12 City of Kalispell Standard Modifications to Montana Public Works Stand Specifications (Sixth Edition). (February 2015). Kalispell, MT: City of Kalispell. Special Provisions Section 02660 Water Distribution Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 66 Distribution System Pressures Current Range Recommended Range (psi) Operating Maximum Pressure Range 70 – 1651 50 – 110 Mountain Maximum Pressure Range1 NA 50-150 Notes: 1. Pressures based on review of PRV vault settings provided by City of Bozeman. 2. Mountain Zones involve regions within the study area with extreme topographic change. Table 5.3: Recommended Maximum Pressures The recommended maximum operating pressure range is 50-110 psi. However, there are regions located within the UBO that have extreme topographic change (e.g. Bridger Foothills and the Story Hills). In order to satisfy the recommended pressure criteria, additional pressure zones and PRV’s would be required. In some cases, a mountain pressure zone would need four separate sub-zones. In an effort to reduce the overall amount of pressure reducing infrastructure in these regions, the maximum pressure range was increased to 150 psi, which is similar to the maximum pressure the existing system experiences. A reduction in system operating pressures to a recommended maximum working pressure of 110 psi could potentially affect existing system hydraulic performance, since the City’s current design standard establishes a maximum operating pressure of 120 psi. System pressure reduction is further evaluated and discussed in Chapter 7. 5.1.2 Minimum Pressure MDEQ recommends that the minimum working pressure in the distribution system should be 35 psi. The Computer Modeling of Water Distribution Systems, AWWA Manual M32 13, recommends that minimum pressures of 40 to 50 psi be maintained during peak hour demand (PHD) to help ensure that there is adequate pressure to the second story fixtures within a property. The AWWA Manual M32 also notes that where residential fire sprinkler systems are required by legislation, the minimum acceptable pressure is 50 psi for the fire sprinklers to operate correctly. Additionally, backflow prevention devices are often required on many office, commercial, and industrial buildings. Currently, the City requires backflow on all new construction and renovations to existing buildings, with a goal to achieve 100-percent backflow prevention for all structures over time. With respect to minimum operating pressures, the pressure drop across backflow devices is often between 5 and 15 psi, which could further increase customer complaints about low water pressure. 13 Computer modeling of water distribution systems (Manual M32). (2012). Denver, CO: American Water Works Association. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 67 The minimum pressure during fire flows, as recommended by the National Fire Protection Association (NFPA), is 20 psi at any point in the distribution system. The value of 20 psi is used to ensure an adequate supply of water to the pumper fire trucks, while overcoming any friction losses within the pipeline branch, hydrant, and fire hoses. Based on these guidelines, the minimum pressure performance criterion that was established for the Bozeman system during PHD is 50 psi. However, the City of Bozeman agreed that in areas in the vicinity of reservoirs and on the edge of pressure zones, a minimum pressure of 35 psi during PHD operations is acceptable. For fire flows, a minimum pressure of 20 psi was used for assessing the performance of the distribution system. Table 5.4 summarizes the recommended minimum pressures for master planning purposes. Distribution System Pressures Recommended (psi) Minimum Pressure during Peak Hour demand* 50* Minimum Pressure during a Fire Flow 20 *Minimum 35 psi acceptable in the vicinity of reservoirs and on the edge of pressure zones. Table 5.4: Recommended Minimum Pressures 5.2 Distribution System Storage Water distribution system storage is provided to ensure reliability of supply, maintain pressure, equalize pumping and treatment rates, reduce the size of transmission mains, and improve operational flexibility and efficiency. Storage facilities should be sized to provide for the following: 1. Operational Storage – Provide storage to meet peak hour demands and pressure equalization; 2. Fire Protection Storage – supply storage for fire flow demands and emergencies (e.g., Treatment works or bulk transmission facilities out-of-service); and 3. Emergency Storage – to provide water reserves for contingencies such as system failures, power outages, emergencies, and operational flexibility/reliability (e.g. flooding, earthquake, ability to remove reservoir for maintenance without adverse consequence to customers etc.). Figure 5-1 depicts storage requirements, inclusive of situations where sufficient capacity exists for winter (low-use) adjustment: Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 68 Figure 5-1: Storage Requirements Overview All recommended storage requirements were verified such that that they satisfy MDEQ Circular No.1, which requires the following sizing criteria:  The minimum allowable storage must be equal to the average day demand plus fire flow demand, as defined below, where fire protection is provided.  Where fire protection is provided, fire flow demand must satisfy the governing fire protection agency recommendation.  Each pressure zone of systems with multiple pressure zones must be analyzed separately and provided with sufficient storage to satisfy the above requirements.  Excessive storage capacity should be avoided to prevent water quality deterioration and potential freezing problems.  Finished water storage designed to facilitate fire flow requirements and meet average daily consumption should be designed to facilitate turnover of water in the finished water storage to minimize stagnation and stored water age.  The variation between high and low levels in storage structures providing pressure to a distribution system should not exceed 30 feet. Table 5.5 presents the water distribution system storage criteria used for master planning purposes. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 69 Storage Capacity Criteria Operational Storage 40 percent of the maximum day demand Fire Storage Fire storage to be provided is based on two fires occurring within a 24-hr period Emergency Storage Emergency storage equal to 2 days average day demand Total Water Storage Capacity1 Storage should be the greater of: 1. The sum of operational storage plus fire flow; or 2. The sum of emergency storage plus operational storage (which is equal to approximately 3 days average day demand) Note 1. If groundwater supplies exist, water rights are obtainable and wells are cost-effective options for the City, well supplies can reduce the amount of above ground storage requirement up to 50 percent of the total requirement for zones within the service area protected by such ground storage Table 5.5: Hydraulic Criteria Storage Recommendations The following subsections discuss the design parameters established for the evaluation of the distribution system storage facilities and provide support for the development of improvement concepts. 5.2.1 Operational Storage Operational storage enables the source, treatment, and pumping facilities to operate at a predetermined rate, depending on the utility’s preference. Additionally, operational storage is generally less expensive than increased capacities of treatment and booster pump stations beyond that required to meet the MDD. Consequently, it is desirable to size the source, treatment, and pumping facilities to serve the water needs up to the MDD and provide operational storage for meeting peak instantaneous water demands. The amount of operational storage required is a function of the WTP and booster pumping capacity, distribution piping capacity, and system demand characteristics. The fraction of water production that must be stored during a maximum day as operational storage depends on the individual utility, system configuration, and operational procedures. An operational storage fraction of 40 percent of the MDD is recommended. This recommendation is based on the following factors:  A relatively high peak hour/avg. day demand exists for Bozeman given its seasonal irrigation demands. The 40 percent factor allows reservoirs to be more fully utilized for peak demands while managing instantaneous pumping demands. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 70  Allows the filling/draining of reservoirs to promote circulation, which will increase the mixing and turnover for maintenance of water quality (particularly during higher demand periods of the year).  Delays the need for treatment capacity upgrades over the long-term.  Provides the City with increased operational flexibility.  Decreases system risk during emergency periods and drought. It is recommended that the operational storage be provided within the upper 50 percent of the storage reservoirs to allow the WTP operators with the ability to establish set points to maintain adequate system pressures and adequate fire and emergency storage within the distribution system. Ideally, storage should be situated to provide water by gravity to avoid the operation of pump systems. 5.2.2 Fire Storage Fire storage volume was determined by multiplying the required maximum fire flow rate by the required duration of time. Section 5.5.3 discusses the development of fire storage volume requirements in greater detail. In addition to fire storage volume requirements, the following criteria are recommended for planning purposes:  Sufficient storage must exist for the worst case fire that could occur within a pressure zone served by gravity storage. If more than one reservoir serves the pressure zone, total storage reserved for fire flow demand among all reservoirs should be sufficient for the worst case fire.  Total storage to be provided is based on two fires occurring within a 24-hr period. However, the fires will not occur in the same pressure zone in a 24-hr period  Where a reservoir serves more than one pressure zone, the reservoir volume reserved for fire flow demand must be adequate for two worst case fires occurring within the pressure zones served by the reservoir. 5.2.3 Emergency Storage Emergency storage provides water for domestic consumption during events such as transmission or distribution main failures, raw water contamination events, extended power outages, failure of raw water transmission facilities, failure of WTP facilities, or a natural disaster. No industry-standard formula exists for determining the amount of emergency storage required by a utility. It is more of a policy decision that is based on an assessment of the perceived Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 71 vulnerability of the utility’s water supply, risk of failures, and the desired degree of system reliability. If a utility has redundant sources and treatment facilities with auxiliary power, or power supplied from multiple sources, the need for emergency storage may be relatively small. However, enough emergency storage should be available to handle a catastrophic pipe break that cannot be isolated easily. If a utility has a single source without auxiliary power and a relatively unreliable distribution system, a significant volume of emergency storage may be prudent. Based on a review of the reliability of the water supply, treatment, distribution system, and past system failures the following storage criteria was recommended for the City.  Emergency storage shall be equal to 2 days of average day demand. Storage equivalent to two days of average day demand is recommended so that sufficient time exists to correct an emergency situation (e.g., bulk transmission facilities are out-of-service or treatment works are unavailable). In addition, given the City’s relatively high design maximum day:average day ratio (minimum 2.3:1), this amount of storage should also be sufficient for a maximum day demand with reserve for fire flow. For emergency situations, it is recommended that Bozeman would implement water use restrictions and rationing, reducing the system per capita demand rate to 100 GPCD, or approximately 25 percent less than the average day per capita demand. 5.2.4 Total Storage The City’s recommended total water storage capacity should be the greater of the following: 1. The sum of operational storage plus fire flow; or 2. The sum of emergency storage plus operational storage, which is equal to approximately three days of the average day demand. The amount of total system storage and system demand capacity required to meet these criteria will change over time as the City continues to grow and water usage increases. The aforementioned criteria assume that all existing and future water supply is from surface water sources (i.e. Sourdough and Lyman); however, if groundwater supplies exist, water rights are obtainable and wells are cost-effective options for the City, well supplies could reduce the amount of above ground storage requirement up to 50 percent of the total requirement for zones within the service area protected by such ground storage. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 72 5.3 Pumping Facility Capacity Appropriate pumping facility capacity should be provided to meet the following conditions within the water system: 1. In pressure zones with storage – The station must have adequate firm capacity to supply maximum day demand (MDD) for the zone service area. 2. In pressure zones without storage - Pump stations supplying constant pressure service must have firm pumping capacity adequate to meet peak hour demand (PHD) for the zone service area while simultaneously supplying the largest fire flow demand in the zone. Pump station capacity guidelines are based on firm capacity, which is defined as the capacity of the system with the largest pump out of service. Pumping facilities identified as critical (provides service to pressure zone(s) without sufficient fire or emergency storage) should be equipped with an on-site, backup power generator. Less critical facilities should be equipped with a receptacle to allow for a connection to a portable generator. 5.4 Transmission and Distribution Main Guidelines for the design of transmission and distribution piping vary from state to state and from utility to utility. Ten States Standards provide design guidance on the minimum and maximum working pressures in a distribution system. The American Water Works Association (AWWA) also provides some guidelines on design parameters such as pipe velocity, head loss, and fire flows. The Insurance Service Organization (ISO) has established fire flow requirements for individual structures within a service area. Other guidelines for design parameters such as minimum and maximum pressures, head loss, and fire flows are established within design handbooks specifically written for water distribution system analyses. Ultimately, the majority of the design criteria used in evaluating transmission and distribution piping remains at the discretion of the water utility and its utility engineer. The following sections discuss the design parameters established for the evaluation of the Bozeman transmission and distribution piping system, and provide the basis for the selection of improvement concepts. 5.4.1 Velocity and Headloss Criteria Pipelines are sized to meet maximum flow conditions, which generally occur during maximum day plus fire flow or peak hour demand conditions. Pipelines are expected to carry water from Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 73 sources, including water towers, reservoirs, and pump stations, to the customer without excessive pressure loss. Piping within the water distribution system was generalized into two categories for this study: 1) transmission pipelines, and 2) distribution pipelines. The transmission pipelines are the larger pipes that carry water longer distances and branch off to feed the distribution pipelines. Distribution pipelines are generally referred to as those pipelines in the street to which fire hydrants and customer service leads are connected. Establishing a maximum permissible velocity in a pipe, however, cannot be evaluated without consideration of headloss, as velocity is only indirectly the limiting factor in evaluating pipe sizes for a distribution system. Essentially, the headloss caused by the velocity, not the velocity itself, controls pipe sizing requirements. Pipeline velocities also have a direct effect on hydraulic surges and water hammer created in pipelines. As a result, criteria for both maximum permissible velocity and headloss were established for evaluating the performance of the Bozeman distribution system. 5.4.1.1 Velocity Criteria Insight into performance guidelines with respect to pipeline velocities was obtained from Advanced Water Distribution Modeling and Management14. Because transmission pipelines carry water over longer distances than the distribution pipelines, the headloss should be kept to a minimum to avoid large pressure fluctuations. The authors acknowledge that in larger pressure zones (several miles across), velocities as low as three feet per second (fps) may cause excessive headloss within the distribution system. The authors also identify that at velocities of ten fps, pressures within the distribution system decline quickly and problems associated with water hammer become more pronounced. AWWA Manual M32 states that a distribution system is considered to have deficient pipe looping or sizing when velocities greater than four to six fps occur under normal operating conditions. The recommended maximum velocity for this study is five fps. Hydraulic surge, or transient pressure, is used to determine required pipe thickness under some pipe manufacturer guidelines. Calculations to determine required pipe thickness are based on internal pressure that includes a 100 psi allowance for surge pressure and a 2:1 safety factor. The surge pressure allowance is based on a 50 psi pressure rise for each foot per second of extinguished velocity, and the fact that most domestic water systems operate at approximately 14 Walski, Thomas M.; Chase, Donald V.; Savic, Dragan A.; Grayman, Walter; Beckwith, Stephen; and Koelle, Edmundo, "Advanced Water Distribution Modeling and Management" (2003). Civil and Environmental Engineering and Engineering Mechanics Faculty Publications. Paper 18 Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 74 two fps. As stated previously, AWWA recommends that maximum velocities for pipelines be five fps or less, and one of the reasons for this limit listed is to minimize hydraulic surge pressures. For small diameter pipe at the maximum recommended velocity of five fps, a pipeline would need to be designed to accommodate a 250 psi pressure surge (five fps x 50 psi/fps), which significantly encroaches on the safety factor for the typical municipal distribution system pipe. Generally speaking, the class of ductile iron pipe used by the City can handle the high operating pressure and pressure surge. High velocities can also scour pipe lining materials of various pipes. For DI pipe with cement- mortar lining, the Ductile Iron Pipe Research Association (DIPRA) recommends a maximum flow velocity of 14 fps to minimize disbonding of the cement-mortar lining from the inside of the pipe. Based on the preceding information, the following design guidelines for acceptable pipeline velocities were established for this evaluation under PHD conditions:  Transmission pipelines (12-inch and larger) = less than three fps  Distribution pipelines (10-inch and smaller) = less than five fps Velocity guidelines will be used in subsequent sections for the analysis of the distribution system for PHD under ADD and MDD conditions. Velocity guidelines assist in the indication of potential problems associated with hydraulic surge pressures. Existing pipelines that exceed these criteria will not necessarily be identified for replacement unless there are known existing problems within the distribution system. However, if new pipelines are planned to replace old deteriorated pipelines, then the new pipelines should be sized appropriately to meet these guidelines. Dedicated transmission pipelines (i.e., pipelines not interconnected with the distribution system), can be designed for higher velocities than 3 fps without impacting distribution system performance. Velocity guidelines for these pipelines should be evaluated on a case-by-case basis. 5.4.1.2 Headloss Criteria Headloss is a more important concern than velocity for determining pipe sizing requirements; therefore, it is desirable to set a limit on the amount of headloss in a pipe. Headloss provides a better indication of the capacity of pipelines in that this performance criterion takes into account the roughness coefficient of the pipeline, also known as the C-factor, and the associated velocities within the pipeline. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 75 When describing headloss, it is most commonly referred to in terms of feet of headloss per 1,000 feet of pipe length (ft/1,000 ft). AWWA recommends that headloss not exceed six feet per 1,000 feet for pipes less than 16-inches in diameter and that headloss not exceed three feet per 1,000 feet for pipes greater than or equal to 16-inches in diameter during normal operation conditions. However, because higher headloss often contributes to inadequate distribution system pressures, performance standards used to evaluate larger diameter transmission pipelines and distribution pipelines are generally substantially lower than the AWWA guideline. According to Modeling, Analysis, and Design of Water Distribution Systems15, the author recommends that transmission pipelines be sized to handle the maximum hour flow. In order to maintain a reasonable headloss within transmission pipelines during maximum hour flow, headloss should be limited to between one and two ft/1,000 ft. According to AWWA?, transmission pipelines should be sized to handle the largest of the following flows: 1) peak hour flow, 2) maximum day flow plus fire flow, or 3) replenishment flow rate. Based on this consideration, the allowable headloss recommended for the Bozeman system should be limited to between two and five ft/1,000 ft. Based on the preceding information, the following design guidelines for acceptable pipeline headloss were established for this evaluation under PHD conditions:  Transmission pipelines (12-inch and larger) = less than two ft/1,000 ft  Distribution pipelines (10-inch and smaller) = less than five ft/1,000 ft Headloss guidelines will be used in subsequent sections for the analysis of the distribution system PHD under ADD and MDD conditions. Headloss guidelines assist in the indication of potential problems associated with the hydraulic capacity of water mains to move water from the pumping facilities to water storage. Existing pipelines that exceed these criteria will not necessarily be identified for replacement unless they are contributing to known existing problems within the distribution system. However, if new pipelines are planned to replace old deteriorated pipelines, then the new pipelines should be sized appropriately to meet these guidelines. As with the velocity 15 Cesario, L. (1995). Modeling, analysis, and design of water distribution systems. Denver, CO: American Water Works Association. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 76 guidelines for dedicated transmission pipelines, the rate of headloss experienced within dedicated transmission pipelines may exceed the guidelines presented herein, but should be evaluated on a case-by-case basis. 5.5 Fire Protection There are no legal requirements that specify a water system must be sized adequately to provide water for fire protection. Fire protection is considered a secondary purpose for a public water system, and is an issue typically addressed at the policy level within each community. The decision to provide water for fire protection requires careful consideration of fire flow requirements when sizing pipelines, pumps, and storage reservoirs because it results in higher capital and operation and maintenance (O&M) costs. Provisions for fire flows also provide a valuable public service, however, by reducing the potential loss of human life and property, and improving fire insurance ratings within the community, which can reduce insurance costs. 5.5.1 Methods for Calculating Fire Flow Requirements for Structures This section summarizes the four commonly used methods of calculating fire flow requirements for structures in the United States. Later sections describe the concepts of needed fire flows (NFF), fire flow duration, and discuss the provisions that were established for evaluating the system. As described in the AWWA Manual M3116, there are three generally accepted methods for calculating fire flow requirements: 1. Iowa State University (ISU); 2. Illinois Institute of Technology Research Institute (IITRI); and 3. Insurance Services Organization (ISO). Although not identified within the AWWA Manual M31, a fourth method of calculating fire flow requirements is the International Fire Code (IFC). Iowa State University Method The ISU method is the oldest of the four methods. It addresses the quantity of water required to extinguish a fire, and considers the effect of a range of application rates. The equation used to calculate the fire flow under this method is relatively simple, equal to the volume of building space in cubic feet divided by 100. The drawback to this method is the fact that for non- 16 Distribution system requirements for fire protection (Manual M31). (2008). Denver, CO: American Water Works Association. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 77 compartmentalized buildings, such as warehouses, the calculated flow would be quite large, as the equation assumes the entire structure is involved in the fire. This method assumes that water is supplied in an ideal manner and that maximum effectiveness is achieved. Illinois Institute of Technology Research Institute (IITRI) Method The IITRI method was developed based on statistics obtained from 134 actual fires of varying magnitude. Water application rates were calculated using the documented length and diameter of fire hose and the nozzle pressures. From this data, formulas for fire flows for residential and nonresidential occupancies were developed through a curve fitting analysis. These equations consider the actual area of the fire and, of the three methods described herein, this method generally projects the highest fire flow requirement. Insurance Services Organization The ISO method is the most commonly used of the three methods described in AWWA Manual M31, and develops or determines the rate of flow considered necessary to control a major fire within a specific structure. This method was derived as a tool for use by the insurance industry in establishing fire insurance rates for individual properties based on the community’s fire defenses. The results calculated using this method are generally consistent with those calculated using the ISU method, although slightly higher due in part to the fact that the ISO method accounts for the need to protect the adjacent buildings as well. The Needed Fire Flow (NFF) is described as the specific amount of water necessary to control a major fire in a specific building. This value is based on the size of the burning structure, construction materials, combustibility of the contents, and the proximity of nearby buildings. The NFF is expressed in units of gpm at a pressure of 20 psi for a range of two to four hours. The minimum NFF for a single building as identified by the ISO is 500 gpm. The City of Bozeman uses the ISO minimum NFF of 1,500 gpm for one and two family dwellings. According to ISO, fires requiring 3,500 gpm or less are referred to as receiving “Public Fire Suppression”, while those requiring greater than 3,500 gpm are classified as receiving “Individual Property Fire Suppression”. Therefore, the public classification applies to properties with a needed fire flow of 3,500 gpm or less. The Fire Suppression Rating Schedule is the manual ISO uses in reviewing the firefighting capabilities of individual communities. The schedule measures the major elements of a community’s fire-suppression system and develops a numerical grading called a Public Protection Classification. ISO assigns a Public Protection Classification (PPC) from 1 to 10. Class 1 represents the best protection, and Class 10 indicates no recognized protection. ISO classification ratings are based on the three following areas: Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 78 • Fire Department - 50 percent of the score looks at your local fire department, including staffing, training, geographic distribution of firehouses and adequacy of the fire equipment. • Water Supply System - 40 percent of the score takes into account the community’s water supply, including the placement and condition of fire hydrants and the amount of water that's available to put out fires • Fire Alarm and Communication System - 10 percent of the score measures the efficiency of emergency communications, such as the 911 system and the number of emergency dispatchers. To determine the rate of flow the water mains provide, ISO observes fire-flow tests at representative locations in the community. The ISO Fire Suppression rating affects insurance costs for properties with NFF of 3,500 gpm or less. The private and public protection at properties with larger NFF is individually evaluated, and may vary from the City classification. International Fire Code The International Fire Code (IFC) is a model code that regulates minimum fire safety requirements for new and existing buildings, facilities, and storage process. As stated in the IFC, the minimum fire flow required for one- and two-family dwellings that do not exceed 3,600 square feet and do not have an automatic sprinkler system is 1,000 gpm. For one- and two-family dwellings exceeding 3,600 square feet, and for all buildings other than one- and two-family dwellings, the minimum fire flow, and flow durations, are presented in Table 5.6. The minimum fire flow for these types of structures ranges from 1,500 gpm to 8,000 gpm, over durations from two to four hours. 5.5.2 City of Bozeman Fire Flow Requirements The City uses ISO to evaluate the structural fire suppression delivery system. Virtually all U.S. insurers of homes and business property use ISO’s Public Protection Classifications in calculating premiums. In general, the price of fire insurance in a community with a good PPC is substantially lower than a community with a poor PPC, assuming all other factors are equal. The City of Bozeman currently has a Class 3 Public Protection Classification rating which affects insurance costs for properties with NFF of 3,500 gpm or less. The City’s most recent ISO full survey was completed in October 2011 with the Class 3 rating applied on December 1, 2011. The private and public protection at properties with larger NFF is individually evaluated, and may vary from the City classification. If a structure is located in the public zoning area and is greater than the planned fire demand for that zone, the structure may be required to have a sprinkler system, or the City may need to review means of providing additional fire flow to the structure through either water main or storage improvements. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 79 Table 5.6: 2017 IFC Minimum Require Fire Flow and Flow Duration for Buildings For structures, the City uses the International Building Code (IBC) and IFC requirements to determine the various fire safety aspects (e.g. fire and smoke protection features, interior finishes, fire protection systems, etc.). The City’s fire department provides inspection and approval of these systems. Following these codes, automatic sprinklers systems are required for one or more of the following reasons: 1. The proposed occupancy or use in the building or fire area represents a high life-safety risk; 2. The occupant load of the building or fire area exceeds code-prescribed limits; 3. The building height or area warrants additional fire protection; and 4. The amount or hazards of materials stored or used inside the building. A reduction of up to 75 percent of NFF is allowed when the building is provided with an approved automatic sprinkler system in accordance with the IBC and IFC requirements. Between the structural delivery system (ISO) and building (IBC and IFC) requirements, the City works towards achieving the NFF requirement. Each building has different NFF requirements and should be evaluated on a case-by-case basis. Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 80 5.5.3 City of Bozeman Fire Flow Availability The evaluation completed for the Water Facility Plan Update determined available fire flows (to assess the distribution system under current and future water demand conditions) by using zoning districts that represent different types of development. Therefore, the fire flow requirements set forth in this Water Facility Plan Update are intended only for general planning purposes, and may not be reflective of actual fire flow requirements required by the size and construction type of a specific development, and will not identify specific non-conforming developments. These guidelines are intended to comply with requirements in the City’s Design Standards and Specifications calling for fire flow demands to be calculated as determined by ISO criteria. Available fire flow is the flow rate of water supply available at the hydrants for firefighting measured at a residual pressure of 20 psi. The residual pressure of 20 psi represents the minimum pressure required to provide normal water pressure to a second story faucet while a nearby fire event is in progress. Table 5.7 presents the recommended fire flow guidelines along with the required fire flow volumes used in the analysis. Figure 5-2 shows fire flow guidelines for existing and future land use. Zoning District Category Flow (gpm) Duration (hrs) No. of Fires Total Demand (gal) Residential Use R-4 Residential High Density 3,000 3 1 540,000 R-3 Residential Medium Density 3,000 3 1 540,000 R-2 Residential, Single-family Medium Density 1,500 2 1 180,000 R-1 Residential, Single-family Low Density 1,500 2 1 120,000 PU Public Lands and Institutions 3,000 3 1 540,000 Commercial Use B-1 Neighborhood Business 3,000 3 1 540,000 B-2 Community Business 3,000 3 1 540,000 B-3 Central Business 4,000 4 1 960,000 Industrial Use M-1 Light Manufacturing 4,000 4 1 960,000 M-2 Manufacturing and Industrial 5,000 4 1 1,200,000 Table 5.7: Fire Flow Availability Guidelines Water Facility Plan Update Chapter 5 – Design Parameters and Evaluation Criteria July 2017 P05097-2013-001 Page 81 5.5.4 Considerations for Fire Suppression Design Engineers and fire system designers use fire flow test data to design a fire protection system. Typically, the data, along with a minimum safety factor (i.e. 10 percent), is used to define the system for the remainder of its useful life, unless different design standards and specifications have been established. Historically the City has allowed existing static pressure to be used for the design of fire suppression systems; however, because of issues associated with high pressure (i.e. increased breaks, transients, etc.), the City has expressed interest in lower existing pressure to reduce risk. Chapter 7 presents the results of an evaluation regarding the potential to reduce existing operating pressures in the City, identifies issues associated with reducing system pressure, and provides recommendations on pressure management. Results from the pressure zone and pressure reduction evaluation show that any significant change to the City’s water distribution system can affect the performance capabilities of existing fire protection systems and that long-term pressure reduction is the best option for the City. Any pressure reduction strategy would require the City to change its current policies and codes for establishing available fire flow and pressure for fire protection systems, particularly in areas that anticipate future pressure reduction. The following should be considered when establishing new fire pressure system design standards:  Areas identified for future pressure reduction would utilize the calibrated hydraulic model to assess future demands as well as estimate available pressure and flows within the system. Engineers and fire system designers would use modeled data instead of actual flow test data.  Areas that meet criteria set forth in this Chapter could use the calibrated model or actual water flow test data.  Safety factors and adjustments should be established for both modeled and actual water flow test data. For example, a 10-percent safety factor is required to account for potential system changes or model errors.  A fire protection professional engineer should review the proposed system modifications and assist with the development of new policies and codes to ensure the City meets all industry standards. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 83 CHAPTER 6 EXISTING SYSTEM EVALUATION This chapter presents the evaluation of the City’s existing water distribution system and its ability to meet recommended water system service and performance criteria under various water demand conditions. The chapter includes evaluations for both system capacity and hydraulic performance. Key sections include the following:  Water System Pressure  Distribution System Storage;  Distribution System Pumping Capacity;  Transmission and Distribution Main Capacity; and  Fire Flow Analysis Evaluations, findings, and recommendations for addressing any deficiencies identified in the City’s existing water distribution system are summarized and included in this chapter. These recommendations are used in the development of the CIP. The recommended CIP is described in further detail in Chapter 10. 6.1 Existing System Demands Different demand scenarios were developed for use within the hydraulic model for evaluation of the existing system. The scenarios utilize different demand data sets that include average, winter, summer, and maximum day demands. Demand development is described in Chapter 3, and the demand allocation process is described in Section 4.2. Demand data sets are described below. 6.1.1 Existing Average Day Demand The Average Day Demand (ADD) Scenario was developed to provide a modeling scenario representative of typical day-to-day operation of the water distribution system. Water consumption data from October 2015 metered data was used to spatially distribute water use within the model. The spatially allocated metered data was adjusted to 5.2 MGD, which is the ADD including NRW as determined by the water use characterization. The October diurnal demand pattern was used to calculate the average day diurnal demand curve, which is presented in Figure 6-1. 6.1.2 Existing Summer Day Demand The Summer Day Scenario was developed to provide a modeling scenario representative of typical operation of during the months of June, July, and August, when demands are high due Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 84 to irrigation. Water consumption data from August 2015 metered data was used to spatially distribute water use within the model. The spatially allocated metered data was adjusted to 8.6 MGD, which is the average metered data for the summer months, including NRW as determined by the water use characterization. The August diurnal demand pattern was used to calculate the summer day diurnal curve, which is presented in Figure 6-1. 6.1.3 Existing Maximum Day Demand The Maximum Day Demand (MDD) Scenario was developed to provide a modeling scenario representative of the operation of the water distribution system during the historic maximum day demand of 11.7 MGD. Water consumption data from August 2015 metered data was used to spatially distribute water use within the model. The spatially allocated metered data was adjusted to 11.7 MGD, which is the historic MDD based on water production records as determined by the water use characterization. The August diurnal demand pattern was used to calculate the maximum day diurnal demand curve and is presented in Figure 6-1. 6.1.4 Existing Winter Day Demand The Winter Day Demand Scenario was developed to provide a modeling scenario representative of typical operation during the months of December, January, and February, when demands are low. Water meter data from January 2015 was used to spatially distribute water use within the model. The spatially allocated metered data was adjusted to 3.6 MGD, which is the average metered data for the winter, including NRW as determined by the water use characterization. The October diurnal demand pattern was used to calculate the winter day diurnal demand curve and is presented in Figure 6-1. 6.1.5 Existing System Demand Summary The demands, including NRW, used within the hydraulic model for the existing system are presented in Table 6.1. These demands can be used to evaluate the existing system because they are representative of previous usage patterns experienced historically. Demand Day Demand (MGD) Average Day 5.2 Summer Day 8.6 Maximum Day 11.7 Winter Day 3.6 Table 6.1: Existing System Demands Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 85 Figure 6-1: Diurnal Demand Curves 6.2 Existing System Modeling Scenarios Demands presented in the previous section were used in four modeling scenarios to evaluate the existing system against the performance criteria documented in Chapter 5. Table 6.2 lists the different modeling scenarios developed and used in the hydraulic analysis and evaluation of the existing system. Modeling Scenario Simulation Type Description Demand Condition Demand (MGD) EXIST_1000 EPS This scenario evaluates the City’s supply facilities and transmission/distribution system capabilities during existing ADD and day-to-day operations. ADD 5.2 EXIST_3000 EPS This scenario evaluates the City’s supply facilities and transmission/distribution system capabilities during the peak demands of the existing MDD. MDD 11.7 EXIST_3000 Steady State This scenario calculates the available fire flow at a residual pressure of 20 psi during MDD conditions. Available flow during MDD 11.7 EXIST_3200 EPS This scenario is used to evaluate the City’s storage facilities and transmission system during an event simulating two simultaneous fires in two separate pressure zones within the system. MDD 11.7 Table 6.2: Existing System Modeling Scenarios Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 86 6.3 Water System Pressure When determining the adequacy of a distribution system, a primary parameter to check is the predicted pressure. The following are the pressure requirements that were established previously in Chapter 5:  Maximum pressure, existing system = 110 psi  Maximum pressure, new growth areas = 110 psi  Minimum pressure during PHD = 50 psi  Minimum pressure during a fire flow = 20 psi 6.3.1 System Pressure during Average Day Demand Minimum system pressures within the existing distribution system during average day demand (ADD) conditions (5.2 MGD) are shown in Figure 6-2 and summarized by pressure zone in Table 6.3. The majority of the system pressures range from 50 to 150 psi throughout the system. There are locations near the reservoirs that experience pressures below 50 psi, and some even below 35 psi. This is because of the minimal elevation difference between these areas and their respective reservoir overflow elevations. The lowest pressures in the South Zone (6 psi) are located at the hydrants immediately adjacent to the Sourdough and Hilltop reservoirs. The other locations that experience low pressures (less than 35 psi) during ADD include the following:  A small area within the vicinity of the Hilltop reservoir and generally includes Kenyon Dr south the reservoir and Oconnell Dr between Kenyon Dr and Highland Blvd.  The area along Blackwood Rd between 19th Ave and 31st Ave.  The area along 3rd Ave between Cambridge Dr and Goldenstein Ln. Low pressures experienced in these areas are the result of a combination of elevation and system headloss. Elevations in this area result in static pressures in the range of 35 to 45 psi. Additional looping within this area or construction of another major transmission main (discussed further Chapter 9) would increase minimum pressures from 5 to 10 psi. A sizeable portion of the distribution system has pressure in excess of 110 psi, which exceeds the established maximum pressure criteria. The area that experiences the highest pressures (greater than 150 psi) are along Oak St between N 25th Ave and N Rouse Ave. Chapter 7 includes a discussion regarding implications for adjusting pressure zones to reduce the maximum system pressures. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 87 Zone Pressures During ADD (psi) Pressures During MDD (psi) Min Max Avg Min Max Avg Gallatin Park 77 82 82 77 85 82 Northwest 62 149 96 59 144 93 West 70 107 90 69 107 89 Northeast (Lyman) 95 152 128 91 148 124 South (Sourdough) 8 165 112 6 161 106 Knolls 52 68 83 52 68 83 Table 6.3: Existing System Pressure during Average Day and Maximum Day Demand 6.3.2 System Pressure during Maximum Day Demand Minimum system pressures within the existing distribution system during maximum day demand (MDD) conditions (11.7 MGD) are shown in Figure 6-3 and summarized by pressure zone in Table 6.3. The system generally experiences similar pressures during MDD and ADD (within 5 psi). The majority of the system’s low and high pressure issues occur during both ADD and MDD conditions. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 90 6.4 Distribution System Storage The existing distribution system storage was evaluated for adequacy with respect to operational storage, fire protection storage, and emergency storage. The total system storage requirements that were established previously in Chapter 5 indicate that the total system storage should be the greater of the following: 1. The sum of operational storage (40 percent MDD) plus fire storage, or 2. The sum of emergency storage plus operational storage,which is equal to approximately 3 days average day demand. Table 6.4 provides an overview of the existing reservoirs in relation to the pressure zones served. Although WTP Reservoir 1 was not completed at the time of this Water Facility Plan Update, it has been included in the storage assessment as it will be brought online in 2017. Zone with Storage Reservoir ID Reservoir Size (MG) Total Storage Within Zone (MG) Additional Comments South (Sourdough) Sourdough 4.0 6.0 Possible to feed Northeast Zone through existing PRV facilities. Hilltop 2.0 Northeast (Lyman) Lyman Reservoir 5.3 5.3 Possible to feed South Zone through Pear Street Booster Station. WTP WTP Reservoir 1 5.3 5.3 Possible to feed South Zone through existing control valve. Total System Storage (Existing) 16.3 Table 6.4: Existing Distribution Reservoir-Pressure Zone Summary Table 6.5 provides an overview of the analysis of distribution storage based on the established storage requirement criteria. A comparison of the existing system to the storage criteria shows that there is sufficient fire storage volume in both zones with storage. Note that the South Zone requires more emergency storage than what is available within the zone. Emergency storage can be met storage from the WTP and Northeast Zones. Emergency storage from the WTP Zone is available through the existing flow control valve at the Sourdough reservoir and emergency storage. Emergency storage from the Northeast Zone must be pumped to the South Zone through the Pear Street Booster Station. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 91 Zone with Storage Zones Served Required Operational Storage1 (MG) Required Fire Storage2 (MG) Required Emergency Storage3 (MG) Criteria 1 Required Total Storage4 (MG) Criteria 2 Required Total Storage5 (MG) Controlling Criteria Storage within Zone (MG) Storage Capacity Surplus (Deficit) (MG) Surplus Storage Available from Other Zones South (Sourdough) South West Northwest Knolls 4.5 2.40 10.0 6.9 14.5 Criteria 2 6.0 (8.5) Use surplus from WTP & NE Zones Northeast (Lyman) Northeast Gallatin Park 0.2 2.40 0.1 2.6 0.3 Criteria 1 5.3 5.0 - WTP WTP - - - - - - 5.3 5.3 - Overall Total Storage Required 14.8 Total Storage (Existing) 16.6 Notes: 1 Based on 40 of MDD 2 Based on zone and sub-zone fire flow requirements 3 Based on 2 x ADD 4 Operational Storage plus Fire Storage 5 Operational Storage plus Emergency Storage (approximately 3 x ADD) Table 6.5: Existing Distribution System Storage Evaluation Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 92 6.4.1 Reservoir Operations Water reservoir levels and volumes were analyzed to determine if the reservoirs could maintain at least 60 percent of their volume throughout the entire day so that the volume of water allocated towards fire protection and emergencies would not be impacted by routine operations. The levels and volumes in the reservoirs were evaluated over a 24-hour period for both ADD and MDD conditions. The City currently operates the reservoir levels at or near full for the majority of the year. This mode of operation is based on the current configuration of the distribution system and supply sources. The primary supply source for the City is from the WTP, which has a single 30-inch transmission pipeline that extends from the WTP to the Sourdough reservoir. The Lyman Reservoir and water source supplements the Sourdough source and primarily feeds the Northeast and Northwest pressures zones. Water from the Lyman reservoir and water source must be pumped into the South Zone to supplement the WTP source. Although the City is not completely reliant upon the WTP, a failure on the 30-inch transmission could cause a major interruption in service. Due to the potential risk and significance of an interruption caused by failure of the Sourdough transmission pipeline, water levels are maintained at a high level year- round. Reservoir levels are normally kept within 6 ft of overflow elevation during the summer demand period, and within 3 ft of overflow elevation during the winter. Graphs of reservoir water level fluctuations (percent full) during existing ADD conditions are shown in Figure 6-4. Figure 6-4: Existing Water Distribution System Reservoir Levels during Average Day Demand (5.2 MGD) Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 93 Reservoir water level fluctuations (representing percent full) during existing MDD conditions are shown in Figure 6-5. The Sourdough and Hilltop reservoirs show an increase in water turnover due to the higher demands. The lowest volume within the Hilltop reservoir is approximately 48 percent full. Water storage within the Sourdough reservoir is maintained above 75 percent throughout the MDD. The Hilltop reservoir HGL operates significantly lower than the Sourdough reservoir during MDD conditions. This is indicative that the system experiences relatively high headloss while transferring water from Sourdough northward into the City and to the Hilltop reservoir during peak demand conditions. The Lyman reservoir does not experience significant turnover even during MDD conditions. The relatively constant level is attributable to the size of the reservoir and the relative constant inflow/outflow due to the discharge of Lyman Spring and utilization of the water by the City. Figure 6-5: Existing Water Distribution System Reservoir Levels during Maximum Day Demand (11.7 MGD) Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 94 6.4.2 Water Quality Considerations Water quality issues associated with storage facilities can be classified as microbiological, chemical or physical. Increased water age can lead to water quality deterioration and can be conducive to microbial growth and chemical changes. Increased water age is generally caused by the following:  Underutilization (e.g. water sits in the reservoir and is not cycled through), or  Poor Mixing (including stratification). Table 6.6 presents a summary of water quality problems associated with potable water storage facilities17. Chemical Issues Biological Issues Physical Issues Taste and Odor Taste and Odor Sediment Disinfectant Decay Nitrification Temperature/Stratification Disinfectant By-product Formation Pathogen Contamination Corrosion Chemical Contaminants Microbial Regrowth Table 6.6: Summary of Typical Water Quality Problems Associated with Potable Storage Facilities A water quality analysis was not performed as part of this Water Facility Plan Update; however, storage reservoir residence time (turnover) was evaluated with the hydraulic model. Additionally, discussions with City staff regarding reservoir operations and any known water quality issues were used to assess reservoir operations. Typical recommended ranges for reservoir level operations include fluctuating levels by 20 to 50 percent, with 33 percent (1/3 total volume) being the recommended goal18. Fluctuating levels by 20 to 50 percent equate to a turnover of 2 to 5 days, assuming complete mixing within the reservoir. Water quality has not been a major concern for the City because of the high quality sources of supply. 17 Finished Water Storage Facilities. Washington, DC: U.S. Environmental Protection Agency (EPA), Office of Ground and Drinking Water, 2002. Print. 18Computer modeling of water distribution systems (Manual M32). (2012). Denver, CO: American Water Works Association Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 95 Reservoir level operations during ADD conditions typically result in 5 percent level fluctuation, which are lower than the recommended 33 percent. Based on this observation the turnover within the reservoir would be about 20 days, assuming complete mixing within the reservoir. Reservoir level operations during MDD conditions typically result in 10 percent level fluctuation within the Sourdough Reservoir, 33 percent level fluctuation within the Hilltop Reservoir, and a near continuous inflow/outflow within the Lyman Reservoir. Based on these observations, the turnover within the Sourdough Reservoir is about 10 days, and about 3 days within the Hilltop Reservoir. The turnover within the Lyman Reservoir is unknown and will depend on the level of mixing as the water passes through the Reservoir. The City is aware of the minimum level fluctuation and long residence times during ADD conditions, but has not observed any water quality issues within the system. However, the City has noted icing issues and damage to the Hilltop Reservoir. Based on the City’s desire to continue with current reservoir level operations (e.g. keeping reservoirs full for emergency services), it is recommended that the City install mixing systems in the reservoirs that have known stratification and icing issues (e.g. Hilltop reservoir) and monitor for the potential occurrence of water quality issues. 6.4.3 Multiple Fire Impact Evaluation A scenario was developed to simulate two simultaneous fires occurring in two separate pressure zones during the MDD. Discussions with City staff led to the simulation of one of the fires located on the campus of MSU (South Zone) and the second fire located in a high density residential area within the Northwest Zone. Graphs of reservoir water level fluctuations (representing percent full) during the two-fire event are shown in Figure 6-6. A summary of the fire event is provided in Table 6.7. The two fires were simulated to start at 7:00 am with a duration of four hours. Following the fire event, the flow control valve at the Sourdough reservoir was set to replenish the storage within the South Zone. The results indicate that the system has sufficient capacity to provide adequate water supply for the simultaneous fire event. The fire event draws the reservoir levels down below typical operation levels, however, adjustment to the flow control valve to draw additional water from the WTP reservoir allows for quick storage level recovery. Additional water is also available within the Lyman reservoir, which can be pumped into the South Zone through the Pear Street Booster Station. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 96 Figure 6-6: Existing Water Distribution System Reservoir Levels during Two-Fire Event Fire Event Flow (gpm) Duration (hrs) Volume (gal) Hydrant ID Location Zone 1 5,000 4 1,200,000 WHY_1309 MSU Campus - Garfield St South (Sourdough) 2 5,000 4 1,200,000 WHY_2220 Fen Way - North of Catamount St Northwest Table 6.7: Summary of Two-Fire Event 6.5 Distribution System Pumping Capacity The existing system model was used to assess the pumping capacity of Pear Street and Knolls booster stations. Pump performance is based on conditions and variables in the distribution system:  Water main capacity  System demands  Water storage levels For this analysis it was assumed that water storage levels in reservoirs influencing pump station hydraulics were near full in order to determine the minimum capacity of the pumps. Pumps typically experience the highest head and lowest flow condition when storage levels are full. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 97 6.5.1 Pear Street Booster Station Pumping The Pear Street Booster Station has three pumps that transfer water from the Northeast Zone to the South Zone. The booster station allows the City to supply the South Zone with water from Lyman reservoir, in order to more fully utilize this high quality, inexpensive water source when flows from the spring exceed the demand from just the Northeast Zone. There is no specific design standard for determining the required capacity of a pump station that serves in a role such as that of the Pear Street Booster Station. Rather the performance is based on the ability of the pumps to operate at their design condition or their ability to transfer water at a rate satisfactory to the City. Table 6.8 provides an overview of the average pump station capacity with a comparison of operating and design conditions. The pump station is not metered and the flow rates are estimated based on field testing, model calibration, and the available pump curve information provided by the City. Model calibration was performed with only one large pump operating to simulate the most critical condition. Under MDD conditions, a single large pump will provide between 1,180 gpm and 1,570 gpm depending on upstream and downstream pressure conditions. Design Pump Capacity (gpm) Modeled Capacity (gpm)* Pump System Total Firm Total Firm Pear Street 1,900 1,100 2,050 1,250 *Note: Analysis includes the two large pumps Table 6.8: Pear Street Booster Station Capacity The City will be replacing at least one of the large pumps in the near future. The model should be utilized to determine the duty points for the pump system to optimize selection of the new pump. Modifications to Pear Street Booster Station The Pear Street Booster Station is currently in need of significant repairs to provide the continued level of service desired. When properly rebuilt or replaced, it will continue provide an source of water supply to the South HGL 5125 zone, and provide a means for gravity flow from the South to the Northeast Zone when needed. In order to realize the full benefit of the Pear Street booster, station it should be set up for bi- directional flow capabilities, with total pumping capacity equal to the maximum amount of water ever needed to be transferred from the Northeast to the South Zone. The pumping capacity requirement is approximately the maximum Lyman Spring production minus the average late spring / summer demand from the Northeast Zone. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 98 A set of PRV’s will also be required at the Pear Street Booster Station location to reduce water pressure approximately 40 psi from the South Zone. The PRVs will provide a redundant feed into the Northeast Zone, allowing required maintenance activities to occur on the Lyman spring system. 6.5.2 Knolls Booster Station Pumping The Knolls booster station serves a small area of higher elevation southeast of downtown Bozeman. The Knolls booster station is fed by the Hilltop reservoir, and boosts the pressure to feed the Knolls Zone. The model simulation indicates that under MDD conditions, the domestic pumps provide between 15 gpm and 32 gpm for low flow and peak hour demand, respectively. The analysis shows there is ample domestic pump capacity. Table 6.9 presents an overview of the Knolls booster station pump capacity. The fire flow capacity for the booster station was evaluated at the pump discharge header and at the hydrants located within the pressure zone. The fire flow capacity analysis completed on the discharge header shows that there is sufficient capacity, and that the pumps supply more flow than the intended design point. The fire flow capacity analysis completed on the hydrants within the pressure zone indicates that the fire flow pumps do not produce the needed flow. The 8-inch distribution network causes significant headloss and only supplies available flow between 2,100 and 2,900 gpm at a residual pressure of 20 psi. The required fire flow is 3,000 gpm based on land use requirements. In order to increase the available flow, the fire pumps would require an additional 60 ft of head. However, this option is not feasible due to pressures exceeding the head of the domestic pumps. Another option to increase the available fire flow would be to increase a portion of the distribution network from 8-inch to 10-inch water main; however, this endeavor is likely cost prohibitive. The size of the pressure zone and layout of existing roads does not allow for cost effective system looping. Pump System Required Pumping Capacity (gpm) Design Pump Capacity (gpm) Modeled Capacity (gpm) Total Firm Total Firm Knolls Domestic1 32 512 384 790 600 Knolls Fire2 (analysis at pump discharge) 3,032 3,300 1,650 3,650 2,325 Knolls Fire3 (analysis at hydrants) 3,032 3,300 1,650 2,100 – 2,900 1,750 – 2,325 Note 1: Analysis based on maintaining a discharge pressure of 60 psi. Note 2: Analysis includes fire flow and peak hour demand and based on a discharge pressure of 30 psi. Note 3: Analysis based on residual pressure of 20 psi at the hydrants within the pressure zone. Table 6.9: Knolls Booster Station Capacity Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 99 6.6 Transmission and Distribution Main Capacity As established in Chapter 5, a distribution system is considered to have deficient water main looping or sizing if the following conditions are experienced during PHD under MDD conditions:  Velocities greater than 5 fps;  Small diameter pipes (10-inch or less) have headlosses greater than 5 ft/1,000 ft; or  Large diameter pipes (12-inch or greater) having headlosses greater than 2 ft/1,000 ft. Although none of these thresholds are definitive, they pose a concern as they can indicate that there is a potentially diminished capacity to convey water or excess wear and tear on pipes. It is not recommended that existing pipelines that do not meet these performance criteria be replaced unless there is a known problem within the water distribution system. However, if these pipes are replaced due to street rehabilitation or other projects, the new pipelines should be sized to meet these maximum velocity and headloss guidelines. Figure 6-7 illustrates the results of headloss analysis (per 1,000 feet) for existing conditions during PHD during MDD. Observations of headloss exceeding the established criteria for MDD conditions included the following:  The 12-inch water main along Garfield St between Black Ave and 4th Ave has maximum headloss between 5 and 7 ft/1000 ft, and between 2 and 5 ft/1000 ft between 4th Ave and 8th Ave.  The 14-inch water main along College St between Black Ave and 3rd Ave has maximum headloss between 5 and 7 ft/1000 ft, and between 2 and 5 ft/1000 ft between 3rd Ave and 12th Ave.  The 14-inch water main along South Black Ave between College St and Story St has maximum headloss between 6 and 8 ft/1000 ft, and between 2 and 5 ft/1000 ft between Story St and Olive St.  The 14-inch water main along 19th Ave between Garfield St and College St has maximum headloss between 2 and 4 ft/1000 ft.  The 12-inch water main along Highland Blvd between Cedar View Dr and Aspen Pointe Dr has a maximum headloss between 2 and 5 ft/1000 ft.  The 12-inch water main on Oak St between Rouse Ave and 7th Ave has maximum headloss between 2 and 5 ft/1000 ft.  The 18-inch and 24-inch transmission main between the Sourdough reservoir and Graf St has maximum headloss between 2 and 2.25 ft/1000 ft. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 100  The 18-inch transmission main between the Lyman reservoir and Boylan Rd has maximum headloss between 2 and 3 ft/1000 ft. This headloss is due to the C-Factor of 100 established during model calibration and a peak flow rate of 2,250 gpm. Over half of the flow (> 1,200 gpm) is due to operation of the Pear Street Booster Station to transfer water from the Lyman reservoir to the South Zone.  The 6-inch water main along Kagy Boulevard between South 3rd Avenue and South 11th Avenue has maximum headloss between 5 and 8 ft/1000 ft under MDD conditions.  The remaining sections of pipe with higher headloss are spatially separated, in short sections, and primarily in areas with 6-inch diameter cast iron pipe. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 102 6.7 Fire Flow Analysis A fire flow analysis was performed on hydrants throughout the entire existing distribution system to analyze the transmission and distribution system piping capacity. The results were calculated using a steady state scenario based on the following system conditions:  Fire Flow availability is based on one hydrant flowing at a time.  Minimum residual pressure of 20 psi.  MDD conditions.  Fire Pumps and Booster Station Pumps were in operation.  Lag PRVs in operation. Lead (small diameter) PRVs were closed to improve model stability and reduce simulation runtime.  Reservoir levels were set at 60 percent full (top 40 percent reserved for operational storage). The fire flow analysis was performed on approximately 2,448 existing fire hydrants throughout the distribution system. A contour map was generated from the fire flow analysis to depict the available fire flows (at 20 psi) throughout the distribution system, and is presented in Figure 6-8. The analysis shows that a vast majority of the system (over 90 percent) achieves an available fire flow of greater than 3,000 gpm. There are only 10 locations within the system that do not meet a fire flow of 1,000 gpm. These locations are generally located in the zone of influence near the Hilltop reservoir and a few locations on South 5th Avenue south of Grant Street at MSU. As part of the fire flow analysis, the hydrant flow data was combined with fire flow availability criteria in Table 5.7 to determine if the available fire flow could meet the needed fire flow requirements of adjacent parcels. Analyses showed that 94 percent of the system meets the fire flow requirements dictated by surrounding land use. Table 6.10 provides a breakdown of the system hydrants and their ability to meet fire flow goal based on land use. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 103 Condition Number of Hydrants Percent of System Hydrants meeting >100% of fire flow goal 2,288 93.5 Hydrants meeting 90-100% of fire flow goal 46 1.9 Hydrants meeting 80-90% of fire flow goal 32 1.3 Hydrants meeting 70-80% of fire flow goal 31 1.3 Hydrants meeting 60-70% of fire flow goal 18 0.7 Hydrants meeting 50-60% of fire flow goal 15 0.6 Hydrants meeting 25-50% of fire flow goal 11 0.4 Hydrants meeting <25% of fire flow goal 7 0.3 Total System Hydrants (Active) 2,448 100 Table 6.10: Available Flow at System Hydrants Figure 6-8 shows the locations of the hydrants that do not meet the fire flow goals of adjacent parcel(s). The hydrants were reviewed with the City’s Water Distribution System Superintendent and Fire Chief and the following areas of concern were identified for future investigation:  Hydrants not meeting fire flow goals located near MSU and generally located between Kagy Blvd and Garfield St and between 3rd Ave and 12th Ave.  Hydrants not meeting fire flow goals located near the hospital on Highland Blvd between Ellis St and Knolls Dr.  Hydrants not meeting fire flow goals located on the I-90 Frontage Rd east of Haggerty Ln.  Hydrants not meeting fire flow goals located in the trailer court located southeast of the intersection of Black Powder Trail and 19th Ave. Note that these hydrants are outside of Bozeman’s City limits, but are included here as an indication of the system’s ability to deliver fire flow to this area. As the City addresses the areas not achieving fire flow goals, the following steps are recommended to determine if a hydrant is deficient: 1. Verify Hydrant Fire Flow: Perform fire flow tests at the hydrant to verify model results before implementing any improvements. 2. Verify Land Use: Evaluate the actual development that has occurred and compare to land use zoning. For example, if the development that actually occurred was different Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 104 than what was analyzed, it may require less NFF (i.e. If a single family residential home was constructed in a multi-family land use zone, then it may require less fire flow than a multifamily structure). 3. Verify Fire Suppression: Evaluate if the surrounding buildings that would utilize the hydrant have fire suppression systems. A reduction of up to 75 percent of NFF is allowed when the building is provided with an approved automatic sprinkler system in accordance with the IBC and IFC requirements. 4. Determine Contributing Hydrants: Evaluate the number of fire hydrants in the area. Additional hydrants can contribute to the NFF. ISO states the following for fire hydrant flow credits. Credit is awarded up to 1,000 gpm from each hydrant within 300 feet of the fire-risk building; 670 gpm from hydrants within 301 to 600 feet of the fire-risk building; and 250 gpm from hydrants within 601 to 1,000 feet of the fire-risk building. If the fire flow goal is still not achieved after following the prescriptive steps listed above, then the following is recommended: 1. Evaluate system expansion: Review the potential for future looping by system growth and expansion, which may show that fire flow can be increased by closing loops. 2. Evaluate water main replacement: Use the model to determine if the deficiencies are large enough to warrant water main replacement with a larger size. In some locations it may be feasible to use multiple adjacent hydrants to obtain the fire flow goal. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 106 6.8 Summary of Existing System Evaluation An understanding of the limitations of the existing water distribution system is critical to the development and expansion of the system for satisfactory system performance, longevity and to accommodate future growth. The following represents a categorized summary of the key findings identified based on the analysis of the existing system. 6.8.1 Pressure Evaluation Summary  System pressures were generally between 50 psi and 150 psi.  The following locations operate under the highest pressures: o The area along Oak St between N 25th Ave and N Rouse Ave within the South Zone experiences pressures greater than 150 psi.  The following locations operate under relatively low water pressures: o The vicinity of Hilltop reservoir with higher elevations experiences pressures less than 35 psi during ADD and MDD conditions. o An area with higher relative elevations in the southwest edge of the City experiences pressures less than 50 psi during ADD conditions and pressures less than 35 psi during MDD conditions. Low pressure in this area can be raised by 5 to 10 psi with additional looping in the area and construction of the west transmission main included in the CIP. o The area along Blackwood Rd between 19th Ave and 31st Ave. o The area along 3rd Ave between Cambridge Dr and Goldenstein Ln. 6.8.2 Storage Evaluation Summary  Operational storage was determined to be adequate for the existing MDD conditions.  Fire storage was determined to be adequate for the existing distribution system.  Emergency storage was determined to be adequate for the existing system.  Current operation of the reservoirs results in minimal water turnover. The City should consider increasing the operation range of reservoir levels or implementing reservoir mixing systems to improve water quality if it is determined that there are water age concerns and declining disinfectant residuals in the system. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 107 6.8.3 Water Main Capacity Evaluation Summary Observations of headloss exceeding the established criteria for PHD during MDD conditions included the following:  The 12-inch water main along Garfield St between Black Ave and 4th Ave has maximum headloss between 5 and 7 ft/1000 ft, and between 2 and 5 ft/1000 ft between 4th Ave and 8th Ave.  The 14-inch water main along College St between Black Ave and 3rd Ave has maximum headloss between 5 and 7 ft/1000 ft, and between 2 and 5 ft/1000 ft between 3rd Ave and 12th Ave.  The 14-inch water main along South Black Ave between College St and Story St has maximum headloss between 6 and 8 ft/1000 ft, and between 2 and 5 ft/1000 ft between Story St and Olive St.  The 14-inch water main along 19th Ave between Garfield St and College St has maximum headloss between 2 and 4 ft/1000 ft.  The 12-inch water main along Highland Blvd between Cedar View Dr and Aspen Pointe Dr has maximum headloss between 2 and 5 ft/1000 ft.  The 12-inch water main on Oak St between Rouse Ave and 7th Ave has maximum headloss between 2 and 5 ft/1000 ft.  The 18-inch and 24-inch transmission main between the Sourdough reservoir and Graf St has maximum headloss between 2 and 2.25 ft/1000 ft.  The 18-inch transmission main between the Lyman reservoir and Boylan Rd has maximum headloss between 2 and 3 ft/1000 ft. This headloss is due to the C-Factor of 100 established during model calibration and a peak flow rate of 2,250 gpm. Over half of the flow (> 1,200 gpm) is due to operation of the Pear Street Booster Station to transfer water from the Lyman reservoir to the South Zone.  The 6-inch water main along Kagy Boulevard between South 3rd Avenue and South 11th Avenue has maximum headloss between 5 and 8 ft/1000 ft under MDD conditions.  The remaining sections of pipe with higher headloss are spatially separated, in short sections, and primarily in areas with 6-inch diameter cast iron pipe. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 108 6.8.4 Fire Flow Evaluation Summary  The analysis shows that a vast majority of the system (over 90 percent) achieves an available fire flow of greater than 3,000 gpm.  There are only 10 locations within the system that do not meet a fire flow of 1,000 gpm. These locations are generally located in the zone of influence near the Hilltop reservoir and a few locations on South 5th Avenue south of Grant Street at MSU.  Analyses showed that 94 percent of the system meets the fire flow requirements dictated by surrounding land use. There are a number of isolated hydrants that do not meet the fire flow goal based on the land use analysis. Along with these areas, four larger areas were identified as the following: o Hydrants located near MSU between Kagy Blvd and Garfield St and between 3rd Ave and 12th Ave. o Hydrants located near the hospital on Highland Blvd between Ellis St and Knolls Dr. o Hydrants located on the I-90 Frontage Rd east of Haggerty Ln. o Hydrants located in the trailer court located southeast of the intersection of Black Powder Trl and 19th Ave.  It is recommended that the City further investigate the hydrants shown as not achieving the fire flow goal based on the recommendations provided in Section 6.7. 6.9 Additional System Considerations and Recommendations The recommendations included in this section augment the capital improvement projects found in Chapter 10. 6.9.1 Pressure Regulating Facilities Pressure regulating facilities (PRV’s) will be required at many new locations as development occurs, both to reduce pressure in new portions of the distribution system and to isolate new zones from high pressure zones in the City’s current system. The City has developed design standards for future PRV stations that utilizes a dual PRV (lead- lag) pressure reducing vault with pressure reducing and downstream pressure relief functionality. Additional functionality should be considered including downstream surge, upstream pressure sustaining and upstream pressure relief to protect the upstream (high pressure) side of the system. These functions provide additional levels of protection for the distribution system: Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 109  Downstream Surge Protection – Provides a stand-alone and quick response to close the PRV when downstream pressure exceeds safe parameters. It also serves as a backup control system to the normal reducing pilot should the closing function not operate as intended.  Upstream Pressure Sustaining – Provides a mechanism to ensure upstream pressures do not fall below safe operating pressure during periods of increased demand downstream or limited supply upstream. This function is typically used where critical customers exist upstream or the piping network has limited capacity. It is important that other water sources exist to meet downstream demands when upstream sustaining requirements take precedence.  Pressure Relief – Provides a means to quickly relieve elevated pressures within the system. This function can be set to monitor and relieve upstream and/or downstream pressures. Ensuring pressure relief in individual pressure zones will remain a critical element of a multi- faceted approach to pressure management. Proper design and location of PRVs will continue to have heightened importance due to continued operation at elevated system pressures. In addition to new PRV facilities, upgrades to the City’s existing PRVs are recommended. The City should consider incorporating the following features at new and existing PRV facilities:  Pressure and flow modes of control;  Valve position monitoring;  Thermostats;  Chlorine residual analyzers;  Means to monitor water levels in the vault (i.e. flood and sump pump runs); and  Means to monitor/verify that good communications exist. The City should survey all existing PRV vault and depth to the PRV to obtain the actual elevation of the PRV. Once true elevations are obtained, the hydraulic profiles should be updated and the operating HGLs reviewed for required updates or required changes in the field. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 110 Additionally, the City should consider enhanced controls and monitoring through:  Variable pilot settings on valves;  Remote selection of flow/pressure modes;  Remotely operated isolation valves; and  Means to remove a PRV from service remotely. For alarms, the City should consider:  High/Low pressures;  High flow;  Pressure relief valves off seat;  Excessive sump pump runs or duration;  Intrusions;  High/low temperatures; and  Water quality parameters. Ideally, the facilities will be retrofitted or designed to allow operators with convenient access and compliance with confined space requirements. Currently, the process of accessing the existing structures is difficult, and in some cases, not safe. 6.9.2 Existing PRV Facilities Abandonment PRV Facility abandonment should be considered as a SCADA program is expanded to remote facilities, and budgets are established to address deficiencies at existing PRV stations. Some existing PRV stations could be abandoned without losing system function or performance. A more in depth modeling effort would be needed to determine hydraulic capacity of each corridor and PRV station. The additional modeling is necessary to determine the level of redundancy needed to minimize risk and comply with the criteria within the Water Facility Plan Update. Accessibility improvements and the installation of SCADA will be costly, but there will be incremental cost savings realized by eliminating redundant PRV stations. Future improvements should be based on a comprehensive cost/benefit analysis. Water Facility Plan Update Chapter 6 – Existing System Evaluation July 2017 P05097-2013-001 Page 111 6.9.3 SCADA for Water Distribution Remote Facilities As the system continues to evolve and additional remote facilities are added, the ability to monitor the entire water system by expanding SCADA to ensure system anomalies are detected, investigated and resolved when they occur will become increasingly important. This is particularly true if the City takes a long-term approach to phasing in lower system operating pressures, while continuing to operate infrastructure that continues to age at relatively high system pressures for the foreseeable future. Future SCADA provisions that should be considered include:  Electrical service and associated minimum clearances;  Appropriately located taps for pressure monitoring devices;  Provisions for flow monitoring;  Valve position indicators;  Sump pumps and intrusion alarms;  Water quality analyzers may also be situated within these facilities allowing for continual system monitoring and data collection once a SCADA system is in place;  SCADA elements will also include a wide-area network that is built upon a reliable infrastructure backbone;  An organizational shift to prioritize technical proficiency and capabilities to maintain a much larger, more widespread SCADA system; and  Tools to incorporate SCADA data into regular operation protocols. 6.9.4 Lead Service Line Connections In the spring of 2016, the City embarked on a 3-year program to remove approximately 170 lead service lines. Each service lined is owned by the City in its entirety. To achieve its 3-year removal goal, a combination of City staff as well as a private contractor will complete the work. As of October 2016, a total of 50 lines have been removed and replaced. The average cost of replacement of a lead service line is around $4,800. The City should continue this effort and make adjustments to the removal timeframe if water quality or regulatory drivers change. Water Facility Plan Update Chapter 7 – Pressure Zone and Pressure Reduction Evaluation July 2017 P05097-2013-001 Page 112 CHAPTER 7 PRESSURE ZONE AND PRESSURE REDUCTION EVALUATION The hydraulic analysis of the existing water distribution system identified areas of the network that exceed the recommended operating pressures outlined in Chapter 5. Operating at high pressures can result in increased water loss, create higher O&M costs due to more frequent failures, present unnecessary risk to City employees, and increase the risk of catastrophic pipe breaks. The goal of pressure management is to minimize unneeded excessive system pressure while maintaining the required level of service to meet the standards of water quality and fire protection. This chapter presents the results of an evaluation of the potential to reduce existing operating pressures, identifies issues associated with reducing system pressure, and provides recommendations on pressure management. 7.1 Existing System Pressure Reduction Concept The pressure reduction concept focuses on bringing the City into a more manageable pressure regime by modifying existing pressure zone boundaries or creating new zones that would allow the City to largely operate its system within the recommended pressure range of 50-110 psi, which would reduce system pressure in the downtown region by approximately 40 psi. Pressure reduction of this magnitude would particularly benefit the downtown business district by reducing the stress on older pipelines that have experienced significant pipe failures over the past decade. A strategy was developed to reduce system pressure and promote long-term operational flexibility to the City, which includes the following system modifications:  Split the existing Northwest Zone into two pressure zones. A total of four new PRV stations would be required. The new northern pressure zone would operate at an HGL of 4840 ft. The new southern zone would operate at an HGL of 4940 ft, which is currently the HGL for the existing Northwest Zone.  Combine the existing South and Northeast Zone and reduce the operating HGL to 5038 ft. A southern portion of the existing South Zone would be split from the new zone. A total of six new PRV stations would be required. This new southern zone would operate at an HGL of 5125 ft, which is currently the HGL of the existing South Zone (downtown area). Figure 7-1 shows the proposed system modifications. The proposed pressure modifications were evaluated using the updated and calibrated hydraulic model to determine the resulting impacts on hydraulic performance, specifically pressure and fire flow. Outside of the hydraulic model, fire suppression systems were investigated to determine external system impacts. Water Facility Plan Update Chapter 7 – Pressure Zone and Pressure Reduction Evaluation July 2017 P05097-2013-001 Page 113 7.2 Pressure Reduction Hydraulic Model Evaluation 7.2.1 Pressure Reduction Modeling Scenarios The pressure reduction analysis included two model scenarios, which used existing system demands described in Chapter 6. Results from the existing system evaluation and hydraulic performance criteria described in Chapter 5 were used to evaluate the model results. Table 7.1 shows the different model scenarios used in the pressure reduction hydraulic analysis. Modeling Scenario Modeling Demand Condition Demand (MGD) RED_PR_3300 Maximum Day 11.7 RED_PR_3310 Available flow calculated during Maximum Day 11.7 Table 7.1: Existing System Modeling Scenarios  RED_PR_3300 is an EPS scenario using the maximum day demand. This scenario simulates the City’s supply facilities and transmission/distribution system capabilities during periods of high demand with pressure reduction.  RED_PR_3310 is a Steady State scenario using maximum day demand, and is used to calculate the available fire flow to determine if both minimum residual system pressure and flow can be maintained in the event of a fire with pressure reduction. 7.2.2 Reduced Pressure Modeling Results System Pressure Figure 7-1 shows the minimum system pressures during MDD with the proposed pressure zone modifications. Notable results stemming from pressure reduction include the following:  By adjusting the new PRV locations to operate the downtown area at HGL 5038 ft, the water pressure within the downtown corridor would be reduced by approximately 40 psi, from 165 psi to 125 psi.  The new northern pressure zone of HGL 4840 would also have an overall pressure reduction of approximately 40 psi, from 150 psi to 110 psi.  A majority of the system would operate in the recommended pressure range of 50-110 psi. Higher pressures in the northeast section of town would remain similar to existing conditions based on the future operational regime of the Lyman reservoir. Operational considerations include the following: Water Facility Plan Update Chapter 7 – Pressure Zone and Pressure Reduction Evaluation July 2017 P05097-2013-001 Page 114 o Operating the downtown region at an HGL of 5038 ft eliminates the need for the Pear Street Booster Station, which would eliminate current pumping and O&M costs and enable City staff to reconsider pump replacement in the near term. o The Lyman spring water could be fed by gravity into the 5038 ft pressure zone. o Although higher pressures in the northeast exceed recommended operating pressures, providing the City with the ability to serve Lyman spring source water to as much of the distribution system as possible would help mitigate potential water shortages due to emergencies (forest fire, landslide, drought, etc.) that could affect the Sourdough and Hyalite sources.  Pressures in the southern portion of the City and the Hilltop area would not experience significant changes in service pressure. Available Fire Flow As part of the fire flow analysis, the hydrant flow data was combined with land use data to determine if the available fire flow under reduced pressures could meet the needed fire flow requirements of adjacent parcels. Figure 7-2 shows the available fire flow based on the proposed reduced pressure zone layout. Analyses showed that 92 percent of the system meets the fire flow goal. This is a slight reduction (from 94 percent) in the percentage of the system that is currently estimated to achieve minimum fire flow goals under existing conditions (see Section 6.7). Table 7.2 provides a breakdown of the system hydrants and their ability to meet required fire flow during reduced pressure conditions based on land use. Table 7.2 provides a breakdown of the system hydrants and their ability to meet required fire flow during reduced pressure conditions based on land use. Condition Number of Hydrants Percent of System (%) Hydrants meeting >100% of fire flow goal 2,257 92.2 Hydrants meeting 90-100% of fire flow goal 49 2.0 Hydrants meeting 80-90% of fire flow goal 35 1.4 Hydrants meeting 70-80% of fire flow goal 24 1.0 Hydrants meeting 60-70% of fire flow goal 27 1.1 Hydrants meeting 50-60% of fire flow goal 21 0.9 Hydrants meeting 25-50% of fire flow goal 28 1.1 Hydrants meeting <25% of fire flow goal 7 0.3 Total System Hydrants (Active) 2,448 100 Table 7.2: Available Flow at System Hydrants with Reduced System Pressure Water Facility Plan Update Chapter 7 – Pressure Zone and Pressure Reduction Evaluation July 2017 P05097-2013-001 Page 115 Fire Suppression Systems/Connections A pressure reduction evaluation for each specific fire suppression system was not completed as part of this hydraulic analysis. Preliminary data provided from the City’s GIS records suggest there are approximately 200 fire suppression systems/connections within the existing service area, the majority of which are located in the downtown and Oak Street areas. Further research revealed that there are well over 700 systems across the City. Any reduction in system pressures can impact a fire suppression system’s performance, and should be evaluated on a case-by-case basis. The potential implications of pressure reduction, specifically in relation to fire suppression systems, is discussed in the following section. 7.3 Fire Suppression Systems The City’s current fire suppression design policy allows building owners to take advantage of the entire available pressure at the connection point to the local main. The vast majority of the existing fire suppression systems in the City have utilized all of the pressure available at the point of connection, in order to minimize costs (by reducing the size of sprinkler system piping and avoiding any fire pumps). Any reduction in pressure could change the performance of the suppression system. To better quantify the number of fire suppression systems located within the proposed pressure reduction areas, Coffman Engineers, Inc. (Coffman) was contacted. Coffman specializes in fire protection engineering and has designed a majority of the fire suppression systems in the City. Coffman provided the following information:  The number of existing structures with sprinkler systems is much larger than what is currently documented in the City’s GIS database (approximately 200). Coffman has provided design and construction assistance on approximately 786 different fire suppression projects in the service area. Some of these projects are likely for the same building, but Coffman is also not the sole design engineer offering technical assistance to building owners/operators. Therefore, this is probably a reasonable estimate of the number of fire suppression systems in Bozeman.  Sprinkler system designs have typically utilized all of the available water pressure available from the distribution system, without any pressure reduction or safety factor, to minimize the expense of sprinkler system components.  A reduction of just 10 psi would likely result in many fire systems failing performance standards. Water Facility Plan Update Chapter 7 – Pressure Zone and Pressure Reduction Evaluation July 2017 P05097-2013-001 Page 116  Fire suppression systems exist in numerous areas around the City, not just a few core areas, including in newly developed commercial areas to the west and northwest of the downtown core area. Installation of an otherwise-isolated, high pressure transmission pipeline to serve these specific systems would be extremely inefficient and cost prohibitive.  In lieu of a dual pipeline network, modifications to individual sprinkler systems would be needed to compensate for lower water pressures. There are essentially two approaches to accomplish the modifications: 1. Install a fire pump in a dedicated fire-rated enclosed room with a redundant power supply for the pump. Fire pumps require regular testing, and installation costs are likely to average approximately $100,000 per building. 2. Upsize sprinkler mains and laterals. A case-by-case evaluation would be required to develop cost estimates for each system, but Coffman’s rough estimate was anywhere from several thousand dollars to as much as $100,000 per building. Coffman also noted that such a program would be extremely unpopular, as businesses would have to shut down for significant periods to complete the work, and many would likely resist. Water Facility Plan Update Chapter 7 – Pressure Zone and Pressure Reduction Evaluation July 2017 P05097-2013-001 Page 119 7.4 Pressure Reduction Options and Recommendation Recognizing the significant impact a broad water pressure reduction effort would have on existing customers with fire suppression systems, three different alternatives were considered. One initial alternative entailed the construction of a high-pressure backbone that would connect to just the existing fire systems; however, this option was not considered feasible based on the geographic spread of the suppression systems and cost. The two most practical options from the pressure reduction analysis are described below, and followed with the recommended approach for the City. 7.4.1 Option 1: Existing System Pressure Reduction Concept Option 1 is referred to as Existing System Pressure Reduction Concept, and entails the short- term creation of proposed pressure reduction zones consistent with that shown in Figure 7-1. The City can employ this approach only if the fire suppression system issue described previously is dealt with simultaneously. This would include the following:  The City would adopt new policies and codes that require new fire suppression systems be designed to meet new pressure standards consistent with Section 5.5.4.  Existing and planned fire suppression systems would need to be modified to meet new City codes and policies (i.e. fire pumps, piping, etc.). 7.4.2 Option 2: Phased Development of Long-Term Pressure Management The City can take a longer-term, phased approach to achieve pressure reduction in the distribution system. This includes the following:  The existing pressure zones would not be altered for the short-term/near-term. This maintains existing pressures needed to satisfy the present fire suppression system design requirements.  As the City continues to expand into the UBO, all new pressure zones identified in the future UBO will be designed to conform to the hydraulic criteria recommended in Chapter 5. Future UBO pressure zones are identified and discussed in Chapter 9.  The City would adopt new policies and codes that require new fire suppression systems be designed to meet new pressure standards as discussed in Section 5.5.4.  Fire suppression systems that have been designed to operate off existing high pressure would be required to conform to new City codes and polices only when substantial building modifications or renovations occur. The transition to lower pressure in the core area would not occur until enough re-development of existing structures with fire Water Facility Plan Update Chapter 7 – Pressure Zone and Pressure Reduction Evaluation July 2017 P05097-2013-001 Page 120 suppression systems has taken place to make retrofit of the remaining systems economical. 7.4.3 Recommended Pressure Reduction Approach for the City Both options reduce system pressure and provide certain advantages to the City, which include:  Lower pressures reduce operating stress on existing pipe infrastructure in key areas of the City.  Lower pressures reduce the likelihood and magnitude of pressure spikes (transients) that can cause catastrophic pipe failures.  Failures that do occur would likely result in less damage.  Lower pressures limit water loss from system leaks.  Reduced system pressures create a better environment for operators when making repairs or conducting routine maintenance. Option 1 could be implemented immediately; however, existing fire suppression systems that would be affected by pressure reduction would need to be modified in conjunction to satisfy pre-pressure reduction design requirements. The cost to upgrade the existing fire suppression systems that have been designed for current system pressure is beyond the scope of this Facility Plan, but is likely on the order of tens of millions of dollars. Option 2 largely follows the same methodology as Option 1; however, the system would be modified over a much longer period of time (decades) to achieve pressure reduction in the existing system. New pressure zones that are identified in the UBO would be required to conform to criteria set forth in Chapter 5, leaving existing pressure zones alone in the near- term timeframe. Option 2 is recommended based on the following reasons:  Satisfies the City’s goal to reduce system pressure;  Provides the City time to develop and implement code and policies changes.  Avoids an extraordinary cost of a one-time upgrade to the vast majority of existing fire suppression systems. Allows the development community time to retrofit existing systems in a more cost-effective manner. Because of the long-term nature associated with fire suppression modification and cost, the UBO analysis in Chapter 9 is predicated on the following assumptions: 1. The existing system pressures shown for UBO are not reduced, to ensure that current fire suppression systems remain within their design criteria. 2. New areas of the system were designed to conform with criteria set forth in Chapter 5. The UBO analysis places PRV stations at strategic locations to isolate the new areas of development from existing areas with high pressure. Once the City ultimately reduces pressure, the pressure zone configuration presented in Chapter 9 (primarily the existing system) would need to be modified to reflect a similar layout shown in Figure 7-1. Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 121 CHAPTER 8 NON-POTABLE IRRIGATION EVALUATION Several states and local municipalities across the U.S. have developed and implemented rules for the use and distribution of non-potable water and the design of these systems (sometimes also referred to as recycled, reuse, or reclaimed water systems). Non-potable use is of particular importance in areas where water sources are scarce and potable supplies are limited, especially during warm, dry months when irrigation accounts for a substantial portion of potable water use. Potential benefits of using non-potable water for residential irrigation include: 1) decreased life cycle cost to utilities and municipalities; 2) preservation of potable quality water for potable use; 3) reduced peak water demands for potable systems (potentially reducing distribution pipe sizes, treatment facilities, and storage reservoirs); and 4) more reliable, local sources of water for irrigation and other non-potable applications. This section of the Water Facility Plan Update provides standard specifications and details that could be adopted by the City to implement non-potable irrigation systems. The section also includes a study of a representative future development within the City and the associated cost and feasibility of implementing a non-potable irrigation system. 8.1 Non-Potable Specifications Currently, the State of Montana does not specifically regulate the design and construction of non-potable water systems. Therefore, a goal of this report is to formulate a draft set of standard specifications for the City to utilize when developing programs and policies to encourage non- potable irrigation system development. 8.1.1 Non-Potable Irrigation Background In principle, the non-potable water systems evaluated herein for the City are very similar to a reclaimed water system; therefore, reclaimed water system design and operation guidelines will be referenced extensively in this report. One of the most comprehensive general guidelines for developing non-potable water systems is the American Water Works Association (AWWA) M24 Manual for the Planning and Distribution of Reclaimed Water. Key elements of reclaimed (non-potable) water systems that are discussed in the AWWA guidelines and are applicable to all non-potable systems include:  Pipeline and valve design  Pipeline identification, testing, and placement  Public notification of non-potable water use  Valve boxes and covers Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 122  Meters and meter boxes  Backflow-prevention assemblies  Cross-connection control  Hose bibs  Irrigation system controls  Runoff control General recommendations for any community planning a non-potable water system also include developing a map of the study area to show the location of the proposed water source, the location of existing and future customers, the location of right-of-ways, general elevations of the study area, and any pertinent boundaries. The identification of specific design criteria such as peaking factors, storage requirements, pump station sizing, minimum and maximum delivered pressure, pipe velocity requirements, and water delivery reliability is critical. 8.1.2 Non-Potable Irrigation System Standard Specifications The non-potable design criteria are provided in Appendix F of this report. The specifications follow the same format as the City of Bozeman Design Standards and Specifications Policy, which also specifies the design criteria for water distribution pipelines, sanitary sewers, and storm sewers. The content for this project was specifically adapted from the AWWA M24 Manual guidelines with consideration of MDEQ regulations, Montana Public Works Standard Specifications (MPWSS), and the City of Bozeman Design Standards. The sample specifications provide guidance on the following factors:  Pipe material and sizing  Main extensions  Service lines  Valves, hydrants, air relief, and pressure reducing valves  Thrust restraint  Pressure and leakage testing  Pipe separation requirements The specifications also detail the requirements for identifying system components as “Non- Potable” and color-coding of pipe and appurtenances. Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 123 8.2 Non-Potable Study The installation of separate distribution systems for delivery of potable and non-potable water to customers is commonly referred to as “dual pipe”, and that terminology will be used herein. Because dual pipe systems require additional infrastructure, the cost and benefits associated with these systems must be carefully evaluated. This section describes the conceptual design of a dual pipe system that would deliver non-potable water for irrigation and potable water for drinking water and fire flow in a representative developing area of Bozeman. The conceptual design was subsequently used to provide the basis for a Class 5 construction estimate. Life cycle cost comparisons are also presented to compare single and dual piped water systems. 8.2.1 Non-Potable Project Location The study area that was selected for this project is located in the Northwest portion of the City of Bozeman’s service area and is shown in Figure 8-1. The site is bounded on the north by Baxter Road, on the south by Durston Road, on the east by Ferguson Street, and on the west by Gooch Hill Road. An existing potable water system already exists in a portion of the study area. It is assumed that the areas with existing piping would not be converted to the dual piped system. The total study area is about 750 acres, not including the areas that are already developed. The topography is generally flat (slopes less than 0.01 foot/foot), with the higher elevations in the south-southeast corner and lower elevations in the north-northwest corner. Multiple creeks run through the area. 8.2.2 Non-Potable System Design The conceptual water supply system for the undeveloped portion of the study area is designed as a dual pipe system providing non-potable surface water for irrigation and potable water for drinking, fire flow, and other uses. The proposed layout of the dual pipe system is shown in Figure 8-1. Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 125 8.2.2.1 Water Demand Calculations Demand calculations for both potable and non-potable water were performed to provide estimates of the volumes and rates that the systems must provide. For the purposes of this study, it is assumed that:  Annual Average Non-Potable (Irrigation) Water Demand Volume is 771 acre feet (ac- ft).  Maximum Day Non-Potable (Irrigation) Demand is 1,808 gallons per minute (gpm).  Annual Average Combined Potable and Non-Potable Water Demand Volume is 1,312 ac-ft. Detailed descriptions of the calculations supporting each of these values is provided below. 8.2.2.1.1 Non-Potable (Irrigation) Water Demand The projected irrigation water demand for non-potable water was calculated in two ways – using metered water use data to estimate outdoor water uses and using AgriMet climate data to estimate unit area turf irrigation water demands. Within the study area, it was estimated that 40 percent of the total area, or 300 acres, is irrigated either as residential lawns or as open spaces and parks. This was based on the Oak Springs and Diamond Estates developments within the City, where the parks and open spaces occupy about 17 percent of the total developed area and other residential irrigation occupies about 23 percent of the total developed area. Non-Potable Demand Estimated with Metered Water Use Data Metered water use data for single-family residential users averaged across the City of Bozeman water service area was used to estimate the outdoor/irrigation demand for single-family homes. The estimated outdoor demand was calculated as the difference between peak month demand and winter month demands in 2012, which resulted in an estimated peak month outdoor demand of 2,120 gallons per acre per day (gal/ac/day) for the evaluated area. However, since parks and open spaces were not included in the metered water use data for single-family residential users, this calculated rate probably significantly underestimates the outdoor demand for a development with 40 percent of the total area under irrigation. Non-Potable Demand Estimated with AgriMet Climate Data Climate data collected from the U.S. Bureau of Reclamation’s Bozeman, MT AgriMet meteorological station was analyzed to provide an estimate of the total irrigation demand within the representative development. The initial calculation assumes that irrigation areas are 100 percent sprinkler irrigated turf with cool season grasses and includes all residential, parks and Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 126 open spaces. Based on the analysis of 10 years of AgriMet climate data, the estimated water demand for irrigation is 2.57 ac-ft/ac annually, with a peak month daily demand of 8,677 gal/ac/day (6.0 gallons per minute per acre [gpm/ac]) for areas that are 100 percent irrigated. 40 percent of the total 750 acre development (300 acres) is projected to be under irrigation. Therefore, the resulting peak month daily irrigation water demand that would have to be delivered across the total development area (750 acres) is 3,471 gal/ac/day. Applying the demands based on AgriMet climate data over just the estimated irrigated area of 300 acres results in:  Peak Month Daily Demand: 2.6 MGD (8,677 gal/ac/day over 300 acres)  Annual Average Irrigation Demand Volume: 771 ac-ft/yr (2.57 ac-ft/ac over 300 acres)  Peak Instantaneous Irrigation Demand: 3,615 gpm (estimated peaking factor of 2) The AgriMet based estimates result in a peak month demand that is about 64 percent higher than demands estimated using the metered water use data for single-family residential users. The AgriMet based estimates likely better represent the demands of the non-potable study area and are used as the design basis for the remainder of this analysis. 8.2.2.1.2 Potable Water Demand For cost comparison purposes, the annual water volume demands for both potable and non- potable water are needed for the study area. The average daily demand for potable water, including all indoor and outdoor (irrigation) use, was calculated assuming the 135 gallons per day per capita water use rate documented in Chapter 3. With an estimated density of 5.5 dwellings per acre, and 2.14 people per dwelling, the average annual demand volume is 1,331 ac-ft/yr. With the outdoor non-potable water demand estimated at 771 ac-ft/yr as presented above, the annual indoor demand for the 750-acre development is estimated at 560 ac-ft for cost comparison purposes. 8.2.2.2 Non-Potable System Infrastructure The non-potable system for this development would generally consist of a surface water diversion structure, a storage pond for equalization storage, an irrigation pump station, and the piped distribution system across the developed area. Individual system components are described below. 8.2.2.2.1 Non-Potable Water Sources For small non-potable systems, it may be possible to utilize small existing exempt wells (limited to 35 gpm and 10 acre-feet per year annual use) in their existing places of use. These wells cannot be tied into an interconnected system and still maintain their exempt status. For larger Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 127 non-potable systems such as the study area evaluated herein, centralized storage and pumping and the use of surface irrigation water rights will be necessary. Within the study area, there are at least two existing surface irrigation water rights that partially cover the planned development. The portions of these water rights inside the study area have a combined irrigated area and diversion rate of 480 acres and 1,572 gpm, respectively. The rate of water application for irrigation purposes from the water rights is equivalent to 3.27 gpm/ac. Additional surface water rights would be needed to feasibly satisfy all irrigation water demands within the study area. For the purposes of this evaluation, it is assumed that a sufficient quantity of surface water rights is available to cover the entire area of use and to satisfy the entire future non-potable system water demand. It is also assumed that the water for the non-potable system will be provided by the developer and diverted at the existing irrigation diversion point shown in Figure 8-1, which is used to deliver water to the existing surface irrigation water right areas. When a new development is proposed within city limits, the City requires cash-in-lieu of water rights, calculated based on the total volume of water required for the development that will be served by the municipal potable water system. However, a development may propose the installation of non-potable water systems for irrigation, which may reduce the payment or amount of transferred water rights. 8.2.2.2.2 Water Storage Water from the irrigation diversion point is assumed to flow via an existing gravity diversion to a new central, non-potable water storage pond. The pond will be used to equalize inflows from the water supplies and outflows to water users and will be sized to hold 24-hours of maximum day water use (1,808 gpm). to provide adequate equalization, the active storage volume of the pond is 8.0 ac-ft, equivalent to about 3.8 days of supply at the annual average irrigation rate. It is assumed that the storage pond would occupy 2 acres of the study area, which would reduce the number of homes by 11 dwellings. 8.2.2.2.3 Pumping and Distribution An irrigation pump station at the storage pond will be required to deliver the non-potable water to users at system pressure. The pump station includes a hydropneumatic tank to regulate system pressure and is sized to deliver peak instantaneous flows (3,615 gpm) to all users with a pressure range of 40 to 55 psi at the delivery points. Multiple pumps will be required at the pump station to cover a range of system flow demands. The non-potable system is assumed to be conveyed through a total of 138,000 feet of 8-inch AWWA C900 (C900) pipe that would be supplied from a pressurized distribution main. The relatively low operating pressures and material costs associated C900 pipe make it a cost effective option as compared to the ductile iron pipe used by the City for its distribution system mains, which operate at considerably higher system pressures. No distribution system modeling Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 128 was performed at this stage of the project, but based on the elevations within the study area, only one pressure zone is required. For costing purposes, it is assumed that 10 feet of horizontal separation will be provided between potable and non-potable pipelines, and the burial depth will be 6.5 feet to the top of the pipe to avoid freezing if the pipe cannot be entirely drained while inactive during the winter months. If suitable provisions are provided to completely drain the system, a shallower depth of bury could be considered to reduce initial construction costs. 8.2.2.2.4 Potable System The potable system is assumed to tie into the existing water mains for the areas that have already been developed. A total of 146,000 feet of 8-inch DIP is required for the development. 8.2.3 Cost-Benefit Comparison 8.2.3.1 Complete Study Area (Residential Irrigation, Parks and Open Spaces) A cost-benefit analysis was developed to compare the dual piped system to a single-piped system. For each of the options, estimated capital costs, life cycle operating costs, life cycle income and other benefits were quantified. The cost estimates are based on the following assumptions:  The system is completed in one construction contract (not phased), and all construction costs are incurred at the beginning of the 30-year life cycle period.  Costs are only included for items that are significant, or that are different between the potable and non-potable systems. For example, the potable pipelines included under the non-potable and potable systems would be identically sized (because fire flows drive pipe sizing), but are a significant cost and so are included in both estimates. The non- potable system does not connect (tap) into the potable distribution system.  A discount rate of 3.375 percent.  Water rights will be provided by the development installing the non-potable system, not by the City of Bozeman.  Water rights are acquired as an upfront cost. The following water rights acquisition costs were assumed:  Non-Potable $600 per acre-ft  Potable $6,000 per acre-ft Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 129  Revenue generated from providing water is the same for both alternatives. However, depending on how the non-potable system is developed and operated, the revenue could be different.  One of the primary benefits of the dual pipe system is the deferment of expansion of the City’s WTP.  The cost of the WTP expansion was estimated at $25 million, and the timing of this investment would be when MDD exceeds 22 million gallons per day.  The expansion was estimated to be necessary in 2040 for the potable only alternative. Implementation of non-potable irrigation for the study area would defer the expansion by approximately 7 years. Table 8.1 provides a summary of the cost-benefit analysis for the dual piped and potable only alternatives. Detailed cost estimates are provided in Appendix F. Dual Piped System and Potable Only System NPV Comparison Option Capital Costs Annual O&M Costs O&M Costs Over Project Life1 Benefits2 Net Costs3 Dual Piped System $34,200,000 $531,323 $9,930,000 ($2,420,000) $41,710,000 Potable Only System $29,650,000 $669,186 $12,500,000 $0 $42,150,000 Notes: 1. 30 year project life, 3.375% discount rate. 2. Deferred water treatment plant expansion. 3. Total Costs – Benefits. Table 8.1: Cost-Benefit Summary System Cost Difference Overview Capital Costs It is approximately $4.6 million more for a dual piped system for this particular development (study area). The capital cost to install a dual pipe system is higher than the cost of a potable water only system. The increased cost is due to engineering and construction of additional infrastructure. The magnitude of the construction cost difference between dual pipe and potable only system is offset by a reduction in water rights acquisition. At the current estimated water right acquisition cost of $6,000/ac-ft, the dual pipe system results in a water rights savings of $4.2 million. Table 8.2 provides a capital-only cost overview. Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 130 Dual Pipe System and Potable Capital Cost Overview Component Potable Only System Dual Piped System Notes Potable Water Distribution Cost $8,906,000 $8,906,000 146,000 ft of 8-inch DIP Non-Potable Distribution Cost $0 $4,606,000 138,000 ft of 8-inch C900 Water Rights Required (Acre-ft) 1,331 Potable 560 Potable 771 Non-Potable $3,360,000 Potable $462,600 Non-Potable Water Rights Acquisition Cost $7,986,000 $3,360,000 Potable $462,600 Non-Potable $6000/ac-ft Potable $600/ac-ft Non-Potable Notes: Appendix F provides detailed cost estimates Table 8.2: Capital Cost Summary Operation and Maintenance Operation and maintenance costs are estimated to be approximately $2.6 million less for the dual pipe system. The typical operation and maintenance costs (e.g., pipe and other infrastructure inspection and repairs, pumping) are higher for the dual pipe infrastructure than for a potable water only system, just due to the additional infrastructure that is included. For this study area, the cost to operate and maintain the dual pipe system is estimated at $347,323 per year. The cost to operate and maintain the potable only infrastructure is estimated at $231,186. However, the reduced cost of water treatment with implementation of dual pipe more than offsets the typical operation and maintenance cost difference between the two systems. 1,331 acre-ft of potable water is required for the potable only compared to 560 ac-ft for the dual piped system. 771 acre-ft of water will not require potable-level treatment for the dual pipe alternative. Based on the City’s current unit treatment costs of $0.00101 cents per gallon, this represents an annual cost savings of $254,000. Approximately $2.5 million would be saved over a 30-year period. A dual-pipe system would not reduce distribution electricity costs, as the City of Bozeman distribution system is predominantly gravity fed, including the entire area included in the study area. WTP Expansion Deferment Deferring future expansion of the WTP is another cost savings provided by large-scale implementation of a dual pipe system. Potable water demands for the current City population is currently 11.7 MGD during MDD conditions. Based on the current MDD and anticipated growth of the City it was estimated that the existing 22 MGD Sourdough WTP will need to be Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 131 expanded by 2040. At that time, an estimated $25 million dollar (in 2017 dollars) expansion of the Sourdough WTP will be required. The monetary value of the delayed WTP expansion benefit depends upon the rate of water demand growth and the rate of non-potable system development to offset demands. The 300 irrigated acres in the proposed development requires a total of 2.6 MGD of peak month daily demand. At an assumed average annual demand growth rate of 2.0%, 2.6 MGD provides approximately 7 years of demand growth. Delaying a $25 million project by 7 years results in an approximately $2.4 million cost savings. 8.2.3.2 Dual Pipe for Parks and Open Spaces Only A dual pipe system for parks and open spaces within the study area (excluding residential irrigation) was evaluated to determine if a more targeted dual pipe system would significantly alter the cost analysis. This alternative would provide non-potable water to parks and open spaces within the study area, but residences would use potable water for all indoor and outdoor applications. This alternative reduces the capital cost of the non-potable system by reducing the size of the distribution system, storage pond and booster station. Parks and open spaces represent approximately 17 percent of the total study area. The estimated net cost for a non-potable system for the parks and open space areas is $39 million, $3.2 million less than the cost of a potable only system. The savings of eliminating residential dual-pipe is offset by the lack of savings in water rights acquisition costs. The deferment to the expansion of the Sourdough WTP would shorten from approximately 7 to 2 years. The results of the non-potable analysis for only parks and open spaces are summarized in Table 8.3. Dual Piped System for All Outdoor Uses, Dual Piped System for Parks and Open Spaces Only, and Potable Only System Option Capital Costs Annual O&M Costs O&M Costs Over Project Life1 Benefits2 Net Costs3 Dual Piped System $34,200,000 $531,323 $9,930,000 ($2,420,000) $41,710,000 Dual Piped System, Parks and Open Spaces $29,250,000 $557,024 $10,410,000 ($750,000) $38,910,000 Potable Only System $29,650,000 $669,186 $12,500,000 $0 $42,150,000 Notes: 1. 30 year project life, 3.375% discount rate. 2. Deferred treatment plant expansion. 3. Total Costs - Benefits. Table 8.3: Overall Cost-Benefit Summary Water Facility Plan Update Chapter 8 – Non-Potable Irrigation Evaluation July 2017 P05097-2013-001 Page 132 8.2.4 Summary The construction of a dual pipe system requires a larger up-front capital investment than the potable only system. These additional costs are due to the installation of a second set of piping and other infrastructure such as a storage pond and booster system. For the study area, the dual pipe system is approximately $4.6 million more than a potable only system. The annual operations and maintenance costs are less for the dual piped system. The lower costs are due to the savings realized in reduced treatment costs when compared to treating irrigation water to potable standards. Over the life of the project, projected savings in operations and maintenance costs for the dual pipe system is estimated at approximately $2.6 million. Delaying the expansion of the Sourdough WTP provides an additional $2.4 million dollars in savings for the dual pipe system. 1,331 acre-ft of potable water is required for the potable only compared to 560 ac-ft for the dual piped system. 771 acre-ft of water will not require potable-level treatment for the dual pipe alternative. At the current estimated water right acquisition cost of $6,000/ac-ft for potable and $600/ac-ft for non-potable, the dual pipe system results in a water rights savings of $4.2 million. After considering all cost and benefit differences, the overall costs of a dual pipe system for the study area is estimated to be about $400,000 dollars less that a potable only system. This difference is insignificant relative to the level of accuracy of conceptual cost estimation. Targeting implementation of non-potable irrigation for parks and open spaces only within the study area improves the comparison in favor of non-potable, but not to a great extent, due to the reduction in savings in water rights acquisition. There are some key drivers of economic viability for dual pipe that may alter the application of this analysis:  Economies of scale – smaller dual pipe systems for entire developments will not fare as well in a cost comparison against potable only systems. The cost to install the additional infrastructure will likely outweigh the benefit of reducing water treatment and water rights acquisition costs.  Water rights acquisition costs – should water rights acquisition costs increase over time, the economics of dual pipe systems will benefit.  Potable water treatment and distribution costs – currently water treatment and distribution costs are low in the City of Bozeman. If this changes with new sources then the economics of dual pipe systems will benefit. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 133 CHAPTER 9 FUTURE SYSTEM EVALUATION This chapter presents the plan for the City’s future water distribution system and the expansions and improvements necessary to meet recommended water system service performance criteria under UBO water demand conditions. The hydraulic model was used to evaluate and identify future distribution system infrastructure needs and address deficiencies identified in the existing system evaluation discussed in Chapter 6. Anticipated growth in the near-term (5-15 year horizon) is expected in the South Zone, the Northwest Zones, and the WTP Zone. The development of the CIP and scheduling of improvements is based on the expected community growth. Growth and development in the Mountain Zones is likely to occur in the long-term planning horizon, or beyond the 15-year horizon of the near-term planning period. The mountain zone areas were evaluated to ascertain UBO infrastructure improvements for transmission main, pumping stations, and reservoirs, such that the short-term and near-term improvements could be coordinated with the long-term vision of the water system. . Additionally, three supplementary hydraulic modeling evaluations were completed to assess specific issues for the City’s future growth. These evaluations include the following:  Moving the Lyman reservoir to a higher HGL in the system;  The addition of a groundwater source and water supply located west of the City; and  The effect of future water conservation on hydraulic capacity. 9.1 Future System Demands Demand data sets were developed within the hydraulic model for use in evaluation of the future system using the methodology described in Section 3.5. A summary of the future system demands used within the hydraulic model are presented in Table 9.1. The current diurnal demand curves (Average Day and Maximum Day) were applied to the future demand data to develop the future diurnal demand curves to conduct extended period simulation model runs. Demand Day Demand (MGD) Demand with Water Conservation (MGD) Average Day 23.8 21.5 Maximum Day 53.6 49.8 Table 9.1: Future System Demands Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 134 Figure 9-1: Typical Future Diurnal Demand Curves The consumption rates in the UBO areas were spatially distributed using InfoWater Demand Allocator®. The InfoWater Demand Allocator® module uses GIS technology to assign land use consumption data (gpd/ac) to a designated node within the water distribution network. For each junction in the UBO area, algorithms in the software determine the area of influence, or area served by each node and adjacent pipe segments. The allocation tool then superimposes the land use polygon and corresponding consumption data over the area of influence to determine the total demand at each node. System demands for the UBO area are summarized by pressure zone in Table 9.2. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 135 Zone HGL (ft) Modeled ADD (GPM) Modeled ADD (MGD) Modeled MDD (GPM) Modeled MDD (MGD) Modeled Fire Flow (gpm) Northwest 3 4725 1,380 2.0 3,233 4.7 3,000 Northwest 2 4850 1,191 1.7 2,793 4.0 3,000 Gallatin Park 4885 34 0.0 94 0.1 4,000 Northwest 1 4975 2,128 3.1 5,419 7.8 3,000 Northeast (Lyman) 5038 435 0.6 1,109 1.6 5,000 South (Sourdough) 5125 6,755 9.7 13,648 19.7 5,000 Knolls 5185 6 0.0 28 0.0 3,000 Water Treatment Plant 5221 1,135 1.6 2,556 3.7 5,000 Southwest 5350 714 1.0 1,783 2.6 3,000 North Mountain (2 sub-zones) 5360 599 0.9 1,434 2.1 3,000 Southeast Mountain (2 sub-zones) 5560 857 1.2 2,108 3.0 3,000 East Mountain (3 sub-zones) 5630 1,327 1.9 3,105 4.5 3,000 Total - 16,561 23.8 37,312 53.6 - Table 9.2: Future System Demands by Pressure Zones 9.2 Future System Modeling Scenarios The existing system was expanded to serve the future growth areas of the UBO in accordance with the projected demands presented in Table 9.2. Modeling scenarios were established to evaluate and address future system requirements. The modeling scenarios also included improvement concepts to address existing system issues highlighted in Chapter 6, which included pressure, storage, transmission, and fire flow goals. In summary, the goals for the future system modeling effort included the following:  Develop and provide conceptual design of future pressure zones;  Establish storage capacity and general locations;  Identify future pumping requirements;  Identity the size and location of distribution mains based on water demand allocation and hydraulics;  Evaluate the potential impacts of water conservation; and  Optimize overall system functionality utilizing performance criteria established in Chapter 5. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 136 Table 9.3 lists the modeling scenarios developed for the hydraulic analysis of the future distribution system. The scenarios used in the base model hydraulic evaluation are designated FUT_1000, 3000 and 3300, which assume that the sources of water system supply comes from both the Lyman reservoir (3 MGD maximum) and the Sourdough WTP (50.6 MGD maximum). The maximum demands are equivalent to the future maximum day demand determined in Chapter 3. The remaining scenarios and system evaluations, which are specific to issues associated with system redundancy, growth, and functionality, are presented and discussed in Section 9.9. 9.3 Future Water Distribution System Pipelines The distribution system model was expanded to serve the UBO by adding water mains to the existing system model. In general, a framework of 16-inch and 12-inch water mains was used to establish the backbone and grid of the future distribution network. The 16-inch transmission mains were generally routed along section lines and in primary transportation corridors identified in the TMP. The 12-inch water mains were generally routed along half-section lines. Where required to meet specific hydraulic performance criteria, the water mains were upsized to handle larger flows, minimize headloss, or to convey water to storage reservoirs and pump stations within the planned distribution system. The resulting layout of transmission pipelines provides the City with the functionality to accommodate future growth in an efficient manner. Figure 9-2 provides an overview of the future distribution system and identifies the proposed system by water main diameter. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 137 Modeling Scenario Simulation Type Description Demand Condition Demand (MGD) Source Allocation in Model (MGD) FUT_1000 EPS This scenario evaluates the City’s supply facilities and transmission/distribution system capabilities during future day-to-day operations during future ADD. ADD 23.8 Lyman (3) Sourdough WTP (20.8) FUT_3000 EPS This scenario evaluates the City’s supply facilities and transmission/distribution system capabilities during the peak demands of the future MDD. MDD 53.6 Lyman (3) Sourdough WTP (50.6) FUT_3300 Steady State This scenario calculates the available fire flow at a residual pressure of 20 psi during MDD conditions. Available flow during MDD 53.6 Lyman (3) Sourdough WTP (50.6 ) FUT_3200 EPS This scenario is set up the same as FUT_3000, however assumes that the Lyman reservoir is raised to meet the HGL of the South Zone. MDD 53.6 Lyman (3) Sourdough WTP (50.6) FUT_5000 EPS This scenario is set up the same as FUT_3000, however assumes that a substantial source of groundwater comes from the west (Four Corners Area) and is supplied into the UBO via a new transmission main. MDD 53.6 Lyman (3) Sourdough WTP (34) Groundwater Wells (16.6) FUT_1100 EPS This scenario is set up the same as FUT_1000, but with Water Conservation. Assumes less water is supplied by the Sourdough WTP. ADD with Conservation 21.5 Lyman (3) Sourdough WTP (18.5) FUT_3100 EPS This scenario is set up the same as Same as FUT_3000, but with Water Conservation. Assumes less water is supplied by the Sourdough WTP. MDD with Conservation 49.8 Lyman (3) Sourdough WTP (46.8) FUT_3110 Steady State This scenario calculates the available fire flow at a residual pressure of 20 psi during MDD conditions with water conservation. Available flow during MDD Conservation 49.8 Lyman (3) Sourdough WTP (46.8) EC_3400 EPS This scenario is set up the same as EXIST_3000 and assumes that the Phase 1 of the West Transmission Main is in Service. MDD 11.7 Existing Conditions EC_3410 EPS This scenario is set up the same as EC_3400 and assumes that the Sourdough transmission main between the WTP and the Sourdough reservoir is offline. MDD 11.7 Existing Conditions Table 9.3: Future System Modeling Scenarios Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 139 9.4 Future Water System Pressure Evaluation The future pressure zones were developed based on criteria established in Chapter 5. Specific pressure requirements are summarized as follows:  Maximum pressure, existing system = 165 psi  Maximum pressure, new growth areas = 110 psi  Minimum pressure during PHD = 50 psi  Minimum pressure during a fire flow = 20 psi  Maximum pressure, mountain zones = 150 psi 9.4.1 Future Pressure Zone Overview Based on the pressure zone evaluation, the future system will require new pressure zones. These future zones are driven either by basic elevation changes across the distribution system, as well as preservation of existing system pressures in the current core areas to continue to provide sufficient pressure to existing fire suppression systems but not carry the high pressures into future developments. The future water distribution system is comprised of zone modification and new zones to serve elevations that range from 4,500 ft in the northwest to approximately 5,600 ft in the southeast and east growth areas. An overview of the future pressure zone layout is provided in Figure 9-3, and an overview of the system pressures by zone is provided in Table 9.4. The pressure zone modifications are identified and described below.  Existing zones unchanged or expanded: South, Knolls, Northeast, and Gallatin Park.  Modified existing zones: The West and Northwest existing zones are combined into a new zone identified as Northwest 1. The West and Northwest Zones can be combined when system expansion and development results in these zones abutting one another. Combining the zones will required a detailed review of PRV system settings and adjustments to bring the two zones under the same HGL 4975 ft. PRV vaults should be surveyed to confirm operating HGL, and the operating parameters should be adjusted accordingly.  New pressure zones: Northwest 1, Northwest 2, Northwest 3, Southwest, Water Treatment Plant, Southeast Mountain, East Mountain, and North Mountain.  New PRV facilities are recommended to have pressure relief, pressure sustaining, and surge protection features as described in Section 6.9.1. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 140  Transmission and major distribution mains were arranged to allow zone feed redundancy with two or more PRVs feeding the zone. However, the pressure zones along the West Transmission Main are primarily fed from the main transmission pipeline with additional connections to adjacent pressure zones serving as emergency or redundant connections.  The City has historically provided redundancy through distribution sized connections as developments were constructed within a pressure zone, which resulted in a relatively large number of PRV facilities feeding the same zone. The City recognizes that a policy is required to control the number of PRV facilities constructed during expansion of existing and future pressure zones. The City should consider developing a policy that provides guidance to developers and establishes requirements on how the City will plan for expansion and UBO infrastructure that involves PRV facilities and the transfer of water between pressure zones. Northwest 3 (HGL 4725) The Northwest 3 Pressure Zone is a large zone and operates at an HGL of 4725 ft. One main PRV facility provides flow to this zone from the Northwest 2 Zone during day-to-day operations. Additional PRV facilities are recommended for installation with a lower pressure setting to provide fire flow and redundant supply from the Northwest 1 and Northwest 2 Zones. There are no water production or storage facilities located within this zone. Northwest 2 (HGL 4850) The Northwest 2 Pressure Zone is a large zone and operates at an HGL of 4850 ft. One main PRV facility provides flow to this zone from the Northwest 1 Zone during day-to-day operations. Additional PRV facilities are recommended for installation with a lower pressure setting to provide fire flow and redundant supply from the Northwest 1 and Northeast Zones. There are no water production or storage facilities located within this zone. Northwest 1 (HGL 4975) The Northwest 1 Pressure Zone is a large zone and operates at an HGL of 4975 ft. This zone will be fed from proposed northwest reservoirs 1 and 2 located on the west side of the City. Existing PRVs can be set at a lower pressure to provide emergency (or fire flow) from the South Zone. Recommended storage for this zone is two (2) reservoirs each sized at 5 MG. Northeast (Lyman) (HGL 5038) The Northeast (Lyman) Pressure Zone is an existing large zone and operates at an HGL of 5038 ft. Due to physical constraints that limit the extent of future development of the Northeast Zone, the UBO of this zone is similar to that of the existing zone with the exception of minor growth to the east of the existing zone. Demand by the North Mountain Zone will be served from the Lyman reservoir. The additional growth within the Northeast Zone and the addition of the North Mountain Zone increases the demand in the Northeast Zone to about 3.8 MGD during MDD. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 141 The increased demand in the future for this zone will exceed Lyman Spring production rates, and that the Pear Street Booster Station will not be utilized under future MDD conditions. Gallatin Park (HGL 4885) The Gallatin Park Pressure Zone is an existing small zone and operates at an HGL of 4885 ft. The expansion of this zone is limited north and eastward from the existing zone, which is bound by the East Gallatin River and the Frontage Rd/railroad. Two existing pressure reducing valves provide water to this zone. There are no water production or storage facilities within this zone. The Gallatin Park Zone operating at an HGL of 4885 ft is similar to the proposed Northwest 2 Zone operating at an HGL of 4850 ft. Lowering the Gallatin Park Zone to an HGL of 4850 ft will reduce pressure in the existing zone by about 15 psi. Further investigation regarding impacts to any existing fire suppression systems should be completed prior to lowering the operating HGL. Combining these two zones eliminates the need for a proposed PRV facility on Manley Rd, which is currently shown to separate these zones. South (Sourdough) (HGL 5125) The South (Sourdough) Pressure Zone is the largest existing zone and operates at an HGL of 5125 ft. The UBO of this zone indicates expansion on the south side of the City in an east-west direction. There are two existing finished water storage facilities within this zone: the Sourdough and Hilltop reservoirs, with volumes of 4 MG and 2 MG, respectively. Additional recommended storage for the UBO condition includes one new reservoir located on the site of the existing Sourdough reservoir sized at 4 MG, and two reservoirs located in the southwest portion of the zone sized at 5 MG each. Knolls (HGL 5185) The Knolls Pressure Zone is an existing small zone and operates at an HGL 5185 ft. The UBO of this zone involves infill only with no expansion in area. The Knolls booster station will continue to provide water and pressure to this zone. The existing pumps in the Knolls booster station are capable of meeting the domestic and fire flow requirements of the UBO system. There are no water production or storage facilities within this zone. Water Treatment Plant (HGL 5221) The Water Treatment Plant Pressure Zone will operate at an HGL of 5221 ft when the WTP reservoir comes on line in 2017 with a storage volume of 5.3 MG. The WTP reservoir will gravity feed this zone, which is roughly comprised of the area between Patterson Rd and Blackwood Dr west of Sourdough Rd. Additional storage for this zone includes two reservoirs, each sized at 5 MG. The total planned UBO storage volume in the WTP Zone is15.3 MG. Southwest Mountain (HGL 5350) A new pump station will be required to serve the new Southwest Mountain Pressure Zone with an HGL of 5350 ft. The zone is generally located south of the existing City and west of Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 142 Sourdough Rd. The preliminary location for the proposed pump station is adjacent to the existing Sourdough WTP. The Southwest Mountain Zone is projected to have a maximum day demand of approximately 1,800 gpm. The proposed pump station would have a capacity of about 1,800 gpm at UBO, with a TDH of approximately 130 feet. The pump station could be located adjacent to a proposed storage reservoir in this area. There is no redundant supply planned to serve the Southwest Mountain zone. Southeast Mountain (HGL 5560) A new pump station will be required to serve the new Southeast Mountain Pressure Zone with an HGL of 5560 ft. The Southeast Mountain Zone is generally located southeast of the City. The preliminary location for the proposed pump station is adjacent to the existing Sourdough WTP. The Southeast Mountain Zone is projected to have a maximum day demand of about 2,100 gpm. The pump station should have a capacity of about 2,100 gpm with a TDH of approximately 345 ft. A new storage reservoir with a volume of 4.0 MG is planned for this zone. There is no redundant supply planned to serve the Southeast Mountain Zone. The Southeast Mountain Zone will require sub-zones to manage system pressures due to the extreme topographic relief across the zone. At a minimum, one sub-zone with a HGL of 5340 ft should be developed to limit pressures to a maximum of 150 psi. Additional sub-zones will be required to reduce pressures below 110 psi. Specific sub-zone pressures and system design should be evaluated as planning for development and buildout progresses for the Southeast Mountain Zone. East Mountain (HGL 5630) A new pump station will be required to serve the new East Mountain Pressure Zone with an HGL of 5630 ft. The East Mountain Zone is located east of the City. The preliminary location for the proposed pump station is along Story Hill Rd north of Kelly Canyon Rd. There are no existing transportation corridors or roadways in this proposed pressure zone; therefore, the layout of the proposed water system in this zone is conceptual. The East Mountain Zone is projected to have a maximum day demand of approximately 2,715 gpm. The new pump station would have a capacity of approximately 2,715 gpm with a TDH of approximately 530 ft. Detailed design of the pump station will depend on the location of a proposed storage reservoir and pipeline configuration in this area. None of the East Mountain Zone is within the 2040 TMP limits. The East Mountain Zone will require additional sub zones to manage system pressures due to the extreme topographic relief across the zone. At a minimum, two sub-zones should be created at an HGL of 5410 ft and an HGL of 5190 ft to limit pressures below 150 psi. Additional sub-zones will be required to reduce system pressures below 110 psi. Specific sub-zone pressures and system design should be evaluated as planning for development and buildout progresses for the East Mountain Zone. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 143 North Mountain Zone (HGL 5360) A new pump station will be required to serve the new North Mountain Pressure Zone with an HGL of 5360 ft. The North Mountain Zone is generally located north of the city and northwest of the Lyman Creek area. The preliminary location for the proposed pump station is near the existing Lyman system reservoir. There are no existing transportation corridors or roadways in the proposed pressure zone; therefore, the layout of the proposed water system in this zone is conceptual. There is no redundant supply planned to serve the North Mountain Zone. The North Mountain Zone is projected to have a maximum day demand of about 1,000 gpm. The new pump station should have a capacity of about 1,450 gpm with a TDH of approximately 325 ft. Detailed design will depend on the location of a proposed storage reservoir and pipeline configuration in this area. None of the North Mountain Zone is within the 2040 TMP limits. The North Mountain Zone may not develop for several decades, but when development occurs, additional sub-zones are necessary due to the extreme topographic relief across the zone. At a minimum, one sub-zone with an HGL of 5125 ft should be created to limit pressures below 150 psi. An additional zone would be required to reduce system pressures below 110 psi. Specific sub-zone pressures and system design should be evaluated as planning for development and buildout progresses for the North Mountain Zone. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 145 9.4.2 Average Demand Conditions Minimum system pressures within the proposed distribution system during future ADD conditions (23.9 MGD) are presented in Figure 9-4 and are summarized by pressure zone in Table 9.4. Pressures generally range from 50 to 150 psi throughout the distribution system. Zone Operating HGL Pressures During ADD (psi) Pressures During MDD (psi) (ft) Min Max Avg Min Max Avg Northwest 3 4725 44 99 73 38 99 71 Northwest 2 4850 56 109 89 54 109 88 Gallatin Park 4885 72 80 77 72 80 77 Northwest 1 4975 43 160 103 41 158 101 Northeast (Lyman) 5038 100 155 131 98 155 131 South (Sourdough) 5125 6 165 110 7 162 107 Knolls 5185 52 68 83 52 68 83 Water Treatment Plant 5221 42 102 69 40 96 65 Southwest Mountain 5350 38 118 79 35 116 78 North Mountain (2 sub-zones) 5360 56 174 110 56 173 110 Southeast Mountain (2 sub-zones) 5560 41 169 106 38 169 106 East Mountain (3 sub-zones) 5630 28 160 103 26 159 102 Table 9.4: Future System Pressure during Average Day and Maximum Day Demand There are locations near the reservoirs that experience pressures below 50 psi, and some even below 35 psi. This is because of the minimal elevation difference between these areas and the respective reservoir overflow elevations. The lowest pressures in the South Zone (6 psi) are located at the hydrants immediately adjacent to the Sourdough and Hilltop reservoirs. The other locations that experience low pressures between 35 and 50 psi during future ADD include the following:  The area along Blackwood Rd between 19th Ave and 31st Ave  The area along 3rd Ave between Cambridge Dr and Goldenstein Ln. These areas currently experience pressures less than 35 psi during present ADD conditions. Low pressures experienced in these areas are the result of a combination of elevation and system headloss challenges. Additional looping within this area and construction of the West Transmission Main Phase 1 are required to raise the existing minimum system pressures above 35 psi. Information regarding the West Transmission Main is presented in Section 9.7.1. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 146 A small area within the vicinity of the Hilltop reservoir will continue to experience pressures less than the established criteria of 35 psi during future ADD conditions. This area generally includes Kenyon Dr south the reservoir and Oconnell Dr between Kenyon Dr and Highland Blvd. Portions of this low pressure area could be connected to the Knolls Zone to increase pressures; however, a detailed analysis should be completed to verify impacts to available fire flow, locations for valve isolation and separation between the Knolls and South Zone, and costs associated with pressure zone adjustment. Rehabilitation and Repair funds allotted in the CIP could be used to mitigate this issue. Some downtown areas will continue to experience pressures exceeding performance criteria to maintain the designed functionality of existing fire suppression systems, as described in Chapter 7. If the City ultimately chooses a reduced pressure zone configuration, additional pressure reducing facilities will be required in the South Zone. New pressure zones on the south, west, and northwest sides of the City are planned to maintain pressures between 50 and 110 psi. The new pressure zones in mountainous areas (Southeast, East, and North) were established to maintain pressures between 50 and 150 psi. The higher pressure areas are permitted under the guideline established in Chapter 5 to minimize the number of pressure zones and PRV facilities. Some connections along pressure zone boundaries may vary slightly from the minimum and maximum pressure guidelines. 9.4.3 Maximum Day Demand Conditions Minimum system pressures within the proposed distribution system during future MDD conditions (52.9 MGD) are shown in Figure 9-5 and are summarized by pressure zone in Table 9.4. Pressures during MDD are generally within 2 to 6 psi of ADD conditions. The majority of the system pressures range from 50 to 150 psi throughout the system. Similar to ADD conditions, there are locations near the reservoirs that experience pressures below 50 psi, and some even below 35 psi during MDD conditions. This is because of the minimal elevation difference between these areas and the respective reservoir overflow elevations. The lowest pressures in the South Zone (6 psi) are located at the hydrants immediately adjacent to the Sourdough and Hilltop reservoirs. The other locations that experience low pressures between 35 and 50 psi during future MDD include the following:  The area along Blackwood Rd between 19th Ave and 31st Ave  The area along 3rd Ave between Cambridge Dr and Goldenstein Ln. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 147 These areas currently experience pressures less than 35 psi during present MDD conditions. Low pressures experienced in these areas are the result of a combination of elevation and system headloss challenges. Additional looping within this area and construction of the West Transmission Main Phase 1 are required to raise the existing minimum system pressures above 35 psi. Information regarding the West Transmission Main is presented in Section 9.7.1. A small area within the vicinity of the Hilltop reservoir will continue to experience pressures less than the established criteria of 35 psi during future MDD conditions. This area generally includes Kenyon Dr south the reservoir and Oconnell Dr between Kenyon Dr and Highland Blvd. Portions of this low pressure area could be connected to the Knolls Zone to increase pressures; however, a detailed analysis should be completed to verify impacts to available fire flow, locations for valve isolation and separation between the Knolls and South Zone, and costs associated with pressure zone adjustment. Rehabilitation and Repair funds allotted in the CIP could be used to mitigate this issue. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 150 9.5 Future Distribution System Storage Evaluation Future system storage was evaluated based on the criteria established in Chapter 5. Based on the criteria developed, storage should be the greater of the following: 1. The sum of operational storage plus fire storage, or 2. The sum of emergency storage plus operational storage, which is equal to approximately 3 days average day demand. Table 9.5 provides an overview of the existing and proposed storage reservoirs in relation to pressure zones. Table 9.6 provides an overview of the distribution storage analysis based on the established criteria. The storage analysis shows that the emergency plus operational storage (Criteria 2) is the controlling criteria for all pressure zones. The future system has an ADD of 23.8 MGD and an MDD of 53.6 MGD. Under Criteria 2, approximately 69.2 MG of overall system storage is required. The calculation for the storage applies when the source of supply is all surface water. If groundwater supplies are incorporated as another source of water, the amount of above ground storage in connected zones served with groundwater could be reduced. The existing system storage includes 4.0 MG in the Sourdough reservoir, 2.0 MG in the Hilltop reservoir, 5.3 MG at the WTP (to be completed in 2017) and the existing Lyman reservoir is 5.3 MG. The South Zone requires approximately 27 MG of storage at UBO; however, only 20 MG is physically located within the South Zone. To satisfy the required storage criteria, surplus storage located in ancillary zones can be used to augment the storage requirement if connections to adjacent pressure zones are provided. The WTP and Northeast Zones both have surplus water storage and can directly feed the South Zone via proposed PRVs, thereby eliminating the need for the incremental storage volume requirement in the South Zone. The same concept is valid for the Northwest 1, 2 and 3 zones, which require nearly 20 MG of storage volume, but only 10 MG is physically proposed to be located in the zones. Ground storage is not feasible within this zone without pumping from the reservoir into the distribution system due to elevation and terrain limitations. Elevated storage was removed from consideration due to the volume of water required and a desire to preserve the unobstructed views of the mountains surrounding the community. Therefore, augmentation of supply from surrounding zones with surplus storage, through existing PRVs, is considered an acceptable way to comply with the storage volume criteria. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 151 Zone with Storage Reservoir ID Overflow Elevation (ft) Status Reservoir Size (MG) Total Storage Within Zone (MG) Additional Comments South (Sourdough) Sourdough 5125.7 Existing 4.0 20.0 Can emergency feed to Northwest and Northeast Zones through existing PRV facilities. Sourdough 2 5125 Proposed 4.0 Hilltop 5125.2 Existing 2.0 West Sourdough Reservoir 1 5125 Proposed 5.0 West Sourdough Reservoir 2 5125 Proposed 5.0 Southwest Mountain Southwest Reservoir 5350 Proposed 4.0 4.0 Can emergency feed to WTP Zone with installation of PRV facilities. WTP WTP Reservoir 1 5221.4 Existing 5.3 15.3 Can emergency feed to South Zone with installation of PRV facilities. WTP Reservoir 2 5221 Proposed 5.0 WPT Reservoir 3 5221 Proposed 5.0 Southeast Mountain Southeast Reservoir 5560 Proposed 4.0 4.0 Can emergency feed to South Zone with installation of PRV facilities. East Mountain East Mountain Reservoir 5630 Proposed 6.0 6.0 Northeast (Lyman) Lyman Reservoir 1 Lyman Reservoir 2 5038 Existing Proposed 5.0 5.0 10.0 Can emergency feed Northwest Zone through PRV facilities and South Zone through Pear Street Booster Station. North Mountain North Mountain Reservoir 5360 Proposed 3.0 3.0 Northwest Northwest Reservoir 1 4975 Proposed 5.0 10.0 Northwest Reservoir 2 4975 Proposed 5.0 Total System Storage (Existing and Proposed) 72.3 Table 9.5: Proposed Distribution Reservoir-Pressure Zone Summary Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 152 Zone with Storage Zones Served Required Operational Storage1 (MG) Required Fire Storage2 (MG) Required Emergency Storage3 (MG) Criteria 1 Required Total Storage4 (MG) Criteria 2 Required Total Storage5 (MG) Controlling Criteria Storage within Zone (MG) Storage Capacity Surplus (Deficit) (MG) Surplus Storage Available from Other Zones South (Sourdough) South Knolls 7.9 2.40 19.5 10.3 27.3 Criteria 2 20.0 (7.3) Use surplus from WTP & NE Zones Southwest Southwest 1.0 0.54 2.1 1.6 3.1 Criteria 2 4.0 0.9 - WTP WTP 1.5 1.74 3.3 3.2 4.7 Criteria 2 15.3 10.6 - Southeast Mountain Southeast 1 Southeast 2 1.2 1.08 2.5 2.3 3.7 Criteria 2 4.0 0.3 - East Mountain East 1 East 2 East 3 1.8 1.08 3.8 2.9 5.6 Criteria 2 6.0 0.4 - Northeast (Lyman) Northeast Gallatin Park 0.7 2.40 1.3 3.1 2.0 Criteria 2 10.0 8.0 - North Mountain North 1 North 2 0.8 1.08 1.7 1.9 2.6 Criteria 2 3.0 0.4 - Northwest Northwest 1 Northwest 2 Northwest 3 6.6 2.40 13.5 9.0 20.1 Criteria 2 10.0 (10.1) Use surplus from WTP & NE Zones Overall Total Storage Required 69.2 Total Storage (Existing and Proposed) 72.4 Notes: 1 Based on 40 percent of MDD 2 Based on zone and sub-zone fire flow requirements 3 Based on 2 x ADD 4 Operational Storage plus Fire Storage 5 Operational Storage plus Emergency Storage (approximately 3 x ADD) Table 9.6: Proposed Distribution System Storage Evaluation Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 153 9.5.1 Reservoir Operations A review of reservoir levels during ADD and MDD conditions is provided in the following discussion. Reservoirs were added to the model in appropriate locations and evaluated to ensure appropriate water levels could be maintained for extended periods during average and maximum day conditions. If necessary, portions of the proposed transmission pipeline network supplying the reservoir were upsized, and/or the reservoir volume was increased to maintain appropriate levels under all conditions. 9.5.1.1 Average Day Demand Graphs of reservoir water level fluctuations, presented as percent full, during future ADD conditions are shown in Figure 9-6. As shown, all proposed reservoirs operate above the 60 percent full mark, which indicates that the reservoirs are being filled at an acceptable rate and have sufficient equalization storage volume. The remaining reservoir volume is available for emergency conditions. Figure 9-6: Proposed Water Distribution System Reservoir Levels during Average Day Demand (23.8 MGD) Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 154 9.5.1.2 Maximum Day Demand Graphs of water reservoir level fluctuations, presented as percent full, during future MDD conditions are shown in Figure 9-7. The graph shows that all proposed reservoirs operate above the 60 percent full mark, which indicates that the reservoirs are filled at an appropriate rate and have sufficient equalization storage volume. The remaining reservoir volume is reserved for emergency storage. Figure 9-7: Proposed Water Distribution System Reservoir Levels during Maximum Day Demand (53.6 MGD) 9.6 Future Distribution System Pumping Capacity The City’s pumping facilities are used to deliver water to pressure zones that cannot maintain adequate system pressure via gravity alone (Knolls booster station), or to transfer water to higher pressure zones (Pear Street Booster Station). The future distribution system pumping capacity was evaluated based on criteria established in Chapter 5. Specific pumping capacity requirements are summarized as follows: 1. In pressure zones with storage – The station must have adequate firm capacity to supply maximum day demand (MDD) for the zone service area. 2. In pressure zones without storage - Pump stations supplying constant pressure service must have firm pumping capacity (largest unit out of service) adequate to meet peak hour demand (PHD) for the zone service area plus the largest fire flow demand in the zone. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 155 Pumping facilities identified as critical, those providing service to pressure zone(s) without sufficient fire or emergency storage, should be equipped with an on-site, backup power generator. Less critical facilities should be equipped with a receptacle to allow for a connection to a portable generator The evaluation of the future pumping facilities and their ability to meet projected water demand conditions at UBO is summarized in Table 9.7. Pump Station MDD (gpm) TDH (ft) Pump Size (gpm) Number of Pumps (2 firm +1) Motor Horsepower (Hp) Installed Horsepower (Hp) Southwest Mountain Zone 1,800 135 900 3 100 300 Southeast Mountain Zone 2,100 345 1,050 3 300 900 East Mountain Zone 3,100 530 1,550 3 700 2,100 North Mountain Zone 1,450 340 725 3 200 600 Table 9.7: Proposed Pump Station Capacity New pump stations are required for the Southwest, Southeast Mountain, East Mountain, and North Mountain Zones. The proposed pumping facilities will convey water to reservoirs located in their respective pressure zones. Existing pumping facilities (Pear Street and Knolls) will continue to operate to support the future system. However, the hydraulic analysis showed that the Pear Street Booster Station is not required during MDD because the demand in the Northeast Zone will eventually consume all of the supply. At that point in time, there will be no need to transfer capacity into the South Zone. The City should review pump operations periodically to assess the impact of any changes in system demand and ensure hydraulic criteria continues to be satisfied. 9.7 Future Transmission and Distribution Main Capacity As discussed in Chapter 5, the distribution system is considered to have deficient water main looping or sizing if the following conditions are experienced:  velocities greater than five fps;  small diameter pipes (10-inch or less) have headlosses greater than five ft/1,000 ft;  large diameter pipes (12-inch or greater) have headlosses greater than two ft/1,000 ft. All new water mains are sized appropriately to meet these guidelines, during PHD under both ADD and MDD conditions. Figure 9-8 provides an overview of system headloss during PHD and MDD conditions. The key results of this analysis are: Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 156  Proposed transmission and distribution mains meet the required velocity and headloss criteria.  The existing system hydraulic analysis showed serval areas that exceeded the headloss criteria outlined previously , as shown in Figure 6-7. These same areas were evaluated under future conditions and showed an overall reduction in headloss. The headloss reduction is accomplished by additional future system looping, and the addition of large transmission mains. The system loops and transmission mains help convey water more efficiently throughout the distribution system, effectively reducing headloss at locations that previously had issues.  A small number of pipe segments within the existing system still exceed the headloss criteria. The pipe segments are identified in Figure 9-8. To mitigate this issue, the pipe segments need to be upsized; however, the cost associated with upsizing existing infrastructure was deemed prohibitive based on the potential hydraulic gains, which would only be during periods of PHD under MDD. The City should monitor these areas and upsize these sections of water main only if a major road project is scheduled and pipeline rehabilitation or replacement is under consideration. 9.7.1 Future Transmission Main Overview The hydraulic analysis of the UBO showed the need for additional transmission infrastructure to properly convey water throughout the distribution network. Figure 10-2 provides a graphical depiction and overview of the following transmission mains that are required to satisfy UBO demand requirements:  Sourdough Transmission Main: The Sourdough Transmission Main consists of two phases. o Phase I: Consists of constructing a 30-inch transmission main, connecting to a new 48-inch from the WTP and extending to the Sourdough reservoir. Phase I will parallel the existing 30-inch main and will provide a redundant connection between the WTP and the Sourdough reservoir. The beneficial redundancy provided by the Phase I Sourdough Transmission Pipeline will addresses the lack of system redundancy between the Sourdough WTP and the distribution system. o Phase II: Consists of constructing a 36-inch parallel transmission main between the Sourdough reservoir and Kagy Blvd. Phase II will supplement the capacity and operate in parallel to the existing 18-inch and 24-inch transmission mains in this area.  Lyman Transmission Main: The Lyman Transmission Main project includes either the repair or replacement of existing 18-inch AC transmission main between the Lyman Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 157 reservoir and the Pear Street Booster Station. The replacement of the AC main will allow for additional conveyance capacity and reduce future O&M costs.  West Transmission Main: The West Transmission Main is a large diameter pipeline originating at the Sourdough WTP, ultimately extending north/northwest. The proposed main helps satisfy UBO demand in the WTP Zone, the South Zone, and the Northwest 1, 2, and 3 zones of the future system. Additionally, Phase 1 of the West Transmission Main, consisting of the southern portion of the segment, serves as a redundant main to the existing 30-inch Sourdough transmission main.  A phased approach was developed for the West Transmission Main to meet system expansion and budgetary needs: o Phase 1: Construct a new 48-inch transmission main from the Sourdough WTP to the southwestern edge of the existing distribution network at the location of S. 19th and Graf St. to serve future anticipated growth and provide water delivery redundancy. The proposed West Sourdough reservoirs will be located in reasonable proximity to the transmission main. Construction of the Phase 1 West Transmission Main addresses the low pressure currently experienced at the upper end of the South Zone in the vicinity of 3rd Ave between Cambridge Dr and Goldenstein Ln. Failure of the Sourdough transmission main would have significant consequences on providing adequate water system capacity to the City; therefore, Phase 1 of the West Transmission Main offers a meaningful near-term benefit. o Phase 2: Extend the 48-inch West Transmission Main – Phase 1 westward and north into the UBO to serve anticipated future growth and provide some redundancy to the South Zone and subsequently the Northwest and Northeast Zones. The proposed Northwest reservoirs will be positioned along this transmission main, which includes the following segments:  Blackwood Dr from 19th Ave to Cottonwood Rd  Cottonwood Dr between Blackwood Rd and Stucky Rd  Stucky Rd between Cottonwood Rd and Gooch Hill Rd  Gooch Hill Rd between Stucky Rd and Baxter Ln o Phase 3: Construct a branch off the West Transmission Main from the intersection of Baxter Ln and Gooch Hill Rd to the northeast with a 36-inch transmission main, to serve anticipated future growth and provide source redundancy to more of the City (extending approximately from Baxter Ln to the intersection of I-90 and Davis Ln). o Phase 4: Extend the West Transmission Main from the intersection of Baxter Ln and Gooch Hill Rd to the north with a 30-inch transmission main to serve Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 158 anticipated future growth and provide redundancy to the Northwest Zones (extending from Baxter Ln to south of Valley Center Rd). o Phase 5: Extend the West Transmission Main to the north, to serve anticipated future growth and provide redundancy to Northwest Zones (extending from south of Valley Center Rd to the north side of I-90).  East Transmission Main: The East Transmission Main project is a 24-inch main on Kagy Blvd from east of Fairway Dr to Fort Ellis Rd and extending it northward, ultimately to a pump station that feeds the East Mountain Zone. The East Transmission Main is required to convey water to the east and southeast parts of the UBO distribution network.  Southeast Mountain Zone Transmission Main: A 24-inch transmission main is required to serve the Southeast Mountain Zone. The transmission main will extend from the new booster station near the WTP to the reservoir storage located within the Southeast Mountain Zone. The main will continue into the zone where it eventually will split into 16-inch mains feeding the eastern and western parts of the pressure zone. The 16-inch transmission mains and proposed PRV facilities between the Southeast Mountain Zone and the South Zone allow for emergency storage in the Southeast Mountain Zone to benefit the South Zone. The PRV pilot settings would close the valve during normal operation and allow water to flow to the South Zone when pressures force the valve to open.  Southwest Transmission Main: A 24-inch transmission main is recommended to serve the Southwest Mountain Zone. The transmission main will extend from the new booster station near the WTP to the reservoir storage within the Southwest Mountain Zone, and continue from the storage location prior to splitting into 16-inch mains feeding westward into the pressure zone. The 16-inch transmission mains and proposed PRV facilities between the Southwest Mountain Zone and the South Zone allow for emergency storage in the Southwest Mountain Zone to benefit the South Zone. The PRV pilot settings would close the valve during normal operation and allow water to flow to the South Zone when pressures force the valve to open.  North Mountain Zone Transmission Main: A 16-inch transmission main is recommended to serve the North Mountain Zone. The transmission main will extend from the new booster station near the Lyman reservoir to the reservoir storage within the zone.  East Mountain Zone Transmission Main: An 18-inch transmission main is recommended to serve the North Mountain Zone. The transmission main will extend from the new booster station to the reservoir storage within the zone. Once past the storage reservoir, the transmission pipeline will be downsized to 16-inch as it extends to the east. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 160 9.8 Future Fire Flow Analysis The water mains in the UBO areas are sized to provide the fire flows identified for the various land use classifications. A fire flow analysis was completed for the proposed distribution system to analyze the transmission and distribution system piping capacity. The UBO model is only a skeletonized network of the ultimate system, but the fire flow analysis can verify that storage and transmission lines are appropriately sized for the intended land uses. A steady state analysis was utilized based on MDD conditions. A contour map was generated from the fire flow analysis to depict the available fire flows (at 20 psi) throughout the distribution system, and is presented in Figure 9-9. The contour map is provided to illustrate the available fire flow throughout the City. As shown in the figure, some areas that currently have less than optimal fire flows, as discussed in Section 6.7 and shown in Figure 6-8, still have lower than optimal fire flow after build-out of the system. The areas of lower fire flow are caused by small diameter distribution mains (generally 6-inch diameter or less), or are local spots of high elevation. The UBO system shows 102 existing hydrants not meeting the fire flow goals compared to 160 hydrants under existing conditions. The improvement is primarily due to the benefits provided by proposed looping and transmission main projects. The recommended protocol for addressing the remaining fire flow goal deficiencies is outlined below: 1. Verify system deficiency: Perform fire flow tests at the hydrants not meeting the fire flow goal to verify model results prior to implementing improvement projects. 2. Evaluate system expansion: Review the potential for future looping by system growth and expansion, which may show that fire flow can be increased by closing loops. 3. Evaluate water main replacement: Use the hydraulic model to determine if the deficiencies are large enough to warrant water main replacement with a larger size. In some locations, the use of multiple adjacent hydrants may be an appropriate strategy to obtain the required fire flow. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 162 9.9 Additional Model Scenarios Evaluations As part of the scope of Water Facility Plan Update, additional scenarios were developed to assess possible changes to the system including: 1) replacement and relocation of the Lyman reservoir; 2) adding wells to the water supply; 3) reduced demand due to increased water conservation; and 4) assessing the initial phase of the West Transmission Main. These scenarios and the key results are summarized below. FUT_3200 (Lyman reservoir with raised HGL during future MDD) The FUT_3200 scenario was simulated during future MDD conditions with the Lyman reservoir relocated to an elevation of 5125 ft to match the HGL of the South Zone. Notes on operation of the system are as follows:  The Pear Street Booster Station was bypassed and the existing 18-inch transmission main was used to transfer water between zones.  System pressures increase in the Northeast Zone by 30 to 35 psi due to the higher HGL. Operating pressures remain the same in the other pressure zones.  The Lyman reservoir requires an alternative approach to control flow from the reservoir to account for the seasonal variability of water capacity captured by Lyman Spring. The higher HGL will increase operating pressures across the Northeast Zone to between 130 and 190 psi. To reduce pressures within the system, the 18-inch transmission main should be isolated as a high pressure transmission main all the way to its connection with the South Zone. This will require installation of PRV facilities on the connections to the Northeast Zone from the 18-inch transmission main. Despite the opportunity to bypass the Pear Street Booster Station and increasing operating pressures, raising the HGL of the Lyman system to 5125 ft was determined to be prohibitively expensive. FUT_5000 (Western Well Field during future MDD) The FUT_5000 scenario was simulated during future MDD conditions with the inclusion of a new groundwater source located west of the City. At the time of this analysis, the most likely location of significant groundwater supply was thought to be several miles west of the City. The model should be modified to evaluate the effect of connecting future sources of groundwater to the distribution system as projects evolve and actual conditions are better known. Notes on operation of the system are as follows: Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 163  Flow assumptions: o Flow from Lyman Creek is limited to 3 MGD; o Flow from Sourdough WTP is limited to 34 MGD; o Remaining flow from the Groundwater Well Fields is 16.6 MGD.  Water from the western area of the City flows through a Groundwater Well Field Transmission Main (GWFTM) to the Northwest reservoirs.  Water not used by the Northwest Zones, which are fed by the Northwest reservoirs, will need to be pumped into the South Zone due to the higher elevations. The capacity of the pump station is based on the desired system redundancy to feed water to the South Zone.  System pressures and reservoir operations are similar to that of the FUT_3000 UBO modeling scenario.  It is possible to reduce the size of the transmission main between the WTP and the West Sourdough reservoirs from 48-inch to 36-inch. Figure 9-10 shows the proposed system with the inclusion of the assumed alignment of the GWFTM and highlights the Sourdough and Northwest transmission mains between the WTP and West reservoirs. FUT_1100 (Future ADD with water conservation) The FUT_1100 scenario was simulated during future ADD conditions with adjustments for water conservation. The scenario was simulated under the following conditions, which are described in Section 3.5.2:  A global demand reduction factor was applied to the system to reduce the UBO ADD of 23.8 MGD to 21.5 MGD.  The maximum source water capacity from Lyman Creek is 3 MGD and 18.5 MGD from the Sourdough WTP. Model results indicate that there is no significant change in comparison to results from the full system demand under the FUT_1000 scenario. The system experiences similar pressures (within 1 psi) and essentially equivalent rates of headloss as compared to the baseline scenario without water conservation. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 165 FUT_3100 (Future MDD with water conservation) The FUT_3100 scenario was simulated during future MDD conditions with water conservation. This scenario was simulated under the following conditions, as described in Section 3.5.2:  A global demand reduction factor was applied to the system to reduce the UBO MDD of 53.6 MGD to 49.8 MGD.  The maximum source water capacity from Lyman Creek is 3 MGD and 46.8 MGD from the Sourdough WTP. Model results indicate that there is no significant change in comparison to the model results for MDD conditions under the FUT_3000 scenario. The following highlights are noted:  The system experiences similar pressures (within 3 psi), with some of the variability due to increased reservoir water surface elevation fluctuations.  The system experiences similar maximum rates of headloss during peak hour conditions.  Since water transmission and distribution mains are sized based on MDD and fire flows, the impact of a 10 percent reduction in MDD attributable to water conservation is not great enough to warrant a change in pipeline diameters associated with proposed improvements. FUT_3110 (AFF during future MDD with water conservation) The FUT_3110 scenario was simulated to determine available fire flow during future MDD with water conservation. The scenario was performed under the operating conditions established for the FUT_3100 scenario. The results of the analysis shows that there is no significant change in available fire flow throughout the system. The average increase in available fire flow is approximately 0.3 percent. The results indicate that the system is sized to meet fire flow and that the magnitude of the MDD conditions with and without water conservation does not have a significant impact on distribution system performance. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 166 EC_3400 (Existing system during MDD with implementation of Phase I of the West Transmission Main The EC_3400 scenario represents an interim analysis of existing MDD conditions with construction of Phase 1 of the West Transmission Main from Nash Rd. to the intersection of 19th and Graf St. The scenario was developed in conjunction with EC_3410 to show how a redundant transmission main between the WTP and the distribution system could potentially benefit the City. Figure 9-11 shows system reservoir operations with the transmission main installed. Figure 9-12 provides information on the extent of proposed transmission main infrastructure utilized under this scenario. The following highlights are noted:  A flow control structure will be required to control flow into the system from the new transmission main.  The existing flow control valve that controls flow into the Sourdough reservoir will continue to operate.  Under normal operating conditions, the existing and proposed flow control valve settings can be adjusted to provide flow from each control point into the distribution system. Figure 9-11: Proposed Water Distribution System Reservoir Levels with Phase 1 of the West Transmission Main Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 168 EC_3410 (Existing system during MDD with implementation of Phase I of the West Transmission Main; and transmission main break. The EC_3410 scenario simulates operation of the new Phase I West Transmission Main, with a transmission main break on the existing RCCP 30-inch main between the WTP and the Sourdough reservoirs. Figure 9-12 provides information regarding the location of the simulated transmission main break. The following highlights of the model results are noted:  The existing 30-inch transmission main between the WTP and the Sourdough reservoir was removed from service.  No major operational issues were identified. The new flow control valve on the proposed transmission main will require adjustment to account for no flow entering the system at the Sourdough reservoir flow control valve.  Figure 9-13 shows reservoir level fluctuation with a transmission main break on the existing 30-inch main. Reservoir levels showed a slight decrease when the existing main was taken out of service; however, the decrease is considered insignificant. Figure 9-13: Proposed Water Distribution System Reservoir Levels with Phase I Transmission Main and shutdown between WTP and Sourdough Reservoir Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 169 Construction of Phase I of the West Transmission Main provides a redundant connection to the source of the vast majority of the City’s water supply. Specifically, the redundant transmission main provides the following benefits:  The West Transmission Main will allow the existing Sourdough Transmission Main to be taken offline for inspection, maintenance and repair, if necessary.  The West Transmission Main provides system redundancy for the existing 18-inch and 24-inch transmission mains between the Sourdough reservoir and Kagy Blvd. Two areas along the existing 18-inch and 24-inch transmission mains were assessed for failure with the new Phase I West Transmission Main installed: o If a failure occurs on either of the existing 18-inch and 24-inch transmission mains between the Sourdough reservoir and Graf St, the model indicates that the water level in the Hilltop Reservoir will likely drop to near empty within 24 hours of shutdown. The Phase I West Transmission Main will allow the City to maintain minimum levels within the Hilltop Reservoir and the Pear Street Booster Station would still be needed to supply water and assist in maintaining pressure in the South Zone. o If a failure occurs on either of the existing 18-inch and 24-inch transmission mains between Graf St and Kagy Blvd, the model indicates that the water level in the Hilltop Reservoir will drop lower than typical operations, but maintain a level of 30 to 60 percent full with the Phase I West Transmission Main installed. Without the Phase West I Transmission Main, the City would need to rely heavily on the Pear Street Booster Station to supply water and maintain pressure in the South Zone. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 170 9.10 Summary of Future System A summary of improvements necessary to serve the UBO water distribution system is provided in Table 9.8. The recommended improvements are further discussed in the following sections. Facility Type Existing Additional Facility Improvements Major Distribution Pipeline (miles) (size 12-inches to 14-inches) 38 106 miles of 12-inch major distribution main Transmission Main (miles) (size 16-inches to 48-inches) 14 94 miles of transmission main ranging from 16-inches to 48-inches in diameter (47 miles included in the CIP) Pressure Zones 6 8 new main pressure zones (2 existing zones are combined to a single new zone) Pressure Reducing Stations 22 25 new Pressure Reducing Stations to serve new zones and to allow emergency flow between zones (does not include mountain sub-zones) Storage Reservoirs (Volume) 4 (16.6 MG) 12 new reservoirs (72 MG total system storage) Table 9.8: Summary of Proposed System Improvements 9.10.1 UBO Water Main Overview A total of 200 miles of distribution and transmission main, ranging from 12-inches to 48-inches in diameter, is recommended to address future projected water demand requirements associated with projected UBO conditions. The proposed distribution layout follows these general concepts:  A framework of 12-inch and 16-inch water main was used to establish the backbone of the future distribution network. o 12-inch water mains were routed along half-section lines. o 16-inch transmission mains were routed along section lines and large transportation corridors identified in the TMP. o .  At certain locations, the water mains were upsized to handle larger flows, minimize headloss, or to convey adequate water to storage reservoirs or pump stations at planned locations within the distribution system. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 171 9.10.2 Transmission Main The proposed system is comprised of approximately 94 miles of new transmission main ranging in size from 16-inches to 48-inches in diameter. Nine key transmission mains are identified to serve the UBO and meet the hydraulic criteria established in Chapter 5. Three key transmission mains identified as near-term projects consist of the following:  Sourdough Transmission Main (3.9 Miles of 30”-36” pipe) o The Sourdough Transmission Main provides system redundancy between the Sourdough WTP and the distribution system.  Lyman Transmission Main (1.6 Miles of 18” pipe) o The Lyman Transmission Main replacing existing AC water main which will allow for additional conveyance capacity for existing anticipated growth areas.  West Transmission Main (20.8 Miles of 16”-48” pipe) o The West Transmission Main serves anticipated growth area on the west side of the planning boundary and reduces head loss across the existing system. There are six key transmission mains identified for implementation as long-term projects to serve the mountain zones and additional areas within the UBO. The long-term transmission main projects consist of the following:  East Transmission Main (3.8 Miles of 24” pipe)  Southeast Mountain Zone Transmission Main (5.6 Miles of 16”-24” pipe)  Southwest Mountain Zone Transmission Main (1.4 Miles of 24”-30” pipe)  North Mountain Zone Transmission Main (2.5 Miles of 16”-24” pipe)  East Mountain Zone Transmission Main (1.6 Miles of 18”-24” pipe)  Groundwater Well Field Transmission Main (5.7 Miles of 36” pipe) 9.10.3 System Pressure The proposed UBO system is comprised of 12 pressure zones with a total of 44 new PRV stations. Twenty-five of the proposed PRV facilities are intended delineate boundaries between pressure zones or allow emergency flows from one zone to another. The remaining 19 PRV facilities are intended to establish sub-zones in the mountain zones.  Pressures zones to serve the UBO are summarized in Table 9.9. o Four existing zones are unchanged or expanded: South, Knolls, Northeast, and Gallatin Park. o The West Zone and the Northwest Zone are combined to create a new zone called Northwest 1 Zone. Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 172 o Eight new pressure zones include: Northwest 1, Northwest 2, Northwest 3, Southwest Mountain, Water Treatment Plant, Southeast Mountain, East Mountain, and North Mountain.  New pressure zones within the UBO are configured to maintain pressures between 50 psi and 110 psi.  Areas with extreme topographic relief (Mountain Zones) are maintained between 50 psi and 150 psi. This larger pressure operating range was permitted in order to minimize the need for additional pressure control systems.  Operating pressures within the South Zone, Northeast Zone, Knolls Zone, and Gallatin Park Zone were unaltered from existing conditions, but the demand for water reflects development of UBO areas. Maintaining existing system pressures is required to satisfy present fire suppression design parameters. With a modification to the City’s code requirements as discussed in Chapter 7, eventual pressure reduction in the South Zone may become a possible strategy for future implementation. Zone HGL (ft) Description Northwest 3 4725 New zone to serve the growth area northwest of the City. Northwest 2 4850 New zone to serve the growth area northwest of the City. Northwest 1 4885 The existing West and Northwest Zones are combined to form the new Northwest 1 Zone. Gallatin Park 4975 Existing Zone that will expand northward. Northeast (Lyman) 5038 Existing Zone that grows to the east. South (Sourdough) 5125 Existing zone that expands to the southwest and east at UBO. Knolls 5185 Existing Zone that fills in at UBO and remains a sub-zone to the South Zone. Water Treatment Plant 5221 Existing Zone that expands to the west to serve user directly from storage at the WTP. Southwest Mountain 5350 New zone to serve an area southwest of the City. North Mountain (2 sub-zones) 5360 New zone to serve the growth area north of the City. Southeast Mountain (2 sub-zones) 5560 New zone to serve the growth area southeast of the City. East Mountain (3 sub-zones) 5630 New zone to serve the growth area east of the City. Table 9.9: Summary of Pressure Zones Water Facility Plan Update Chapter 9 – Future System Evaluation July 2017 P05097-2013-001 Page 173 9.10.4 System Storage A total of 12 new storage reservoirs, with a total storage capacity of approximately 57 MG, is recommended to serve the future UBO projected demands and satisfy established hydraulic criteria. With existing storage, the total system storage for the UBO would be 72.3 MG. New storage locations include the following:  Storage for each new mountain zone: North, East, Southeast, and Southwest;  New storage at the Lyman reservoir;  Additional storage at the WTP;  Additional storage at the existing Sourdough reservoir site and at a location west of the existing site; and  New storage in the southwest area of the City. 9.10.5 Pumping Capacity The proposed mountain pressures zones in the UBO boundary will require new pump stations. Reservoirs are recommended for each of the mountain zones and pump stations are generally sized as follows to meet MDD at UBO for zones with storage. Pump stations required to serve the mountain zones include the following:  Southwest Mountain Zone Pump Station: 1,800 gpm at 135 ft TDH  Southeast Mountain Zone Pump Station: 2,100 gpm at 345 ft TDH  East Mountain Zone Pump Station: 3,100 gpm at 530 ft TDH  North Mountain Zone Pump Station: 1,450 gpm at 340ft TDH Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 174 CHAPTER 10 RECOMMENDED IMPROVEMENTS This chapter presents recommended capital improvement projects identified in the course of assessing the current water system and evaluating near and long-term needs. The recommended water system improvement projects represent the results of: 1) the existing and future system evaluations (Chapter 6 & Chapter 9); 2) the Pressure Zone and Pressure Reduction Evaluation presented in Chapter 7; and 3) multiple workshops and meetings with City staff. A comprehensive list of identified improvement projects was compiled. Cost estimates were provide for each project, and then the projects were prioritized utilizing a ranking process developed in collaboration with City staff. This chapter includes descriptions of the project categories, cost estimates, prioritization ranking, implementation considerations, and of each of the recommended improvements. 10.1 CIP Project Categories Projects within the CIP were dived into eight categories:  Condition Assessment  Growth and Development  Optimization  Rehabilitation and Repair  Storage  Studies  Supply and Transmission The development of these categories provided the conceptual framework of how the system would ideally work at UBO, facilitated CIP prioritization and timeframe progressions, and correlated projects to the City’s present fiscal resources (i.e. what type of project makes the best use of the available capital improvement budget. Each category is described in the following subsections. 10.1.1 Condition Assessment Condition assessment is a process used to identify degradation of a pipeline before failure, or to identify viable life remaining in a segment of pipeline to avoid spending money on unnecessary replacement or rehabilitation. There is a wide range of utility investment in Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 175 condition assessment. The potential advantage of a robust condition assessment program is more efficient use of capital. Currently, the City performs low-resolution inspections on its water mains using acoustic leak detection. Acoustic leak detection is an effective way to proactively identify leaks and attack water loss. Higher resolution acoustic equipment can be used to assess the wall thickness and therefore general condition of a pipe. To date the City has not performed, or contracted for, higher resolution inspection / condition assessment of its water distribution system. The condition assessment projects identified in the Water Facility Plan Update were based on the City of Bozeman’s risk assessment19 of the existing distribution system and the tools and processes presented in Water Research Foundation Project 465620. The research project tools use the estimated consequence of failure, with generalized economies of scale, to identify when different levels of condition assessment are cost-justified, based on the risk cost associated with failure of the pipe. This assessment for the City of Bozeman identified several condition assessment projects, which are cost-justified in order to prevent failure of the pipes. 10.1.2 Growth and Development Areas of growth and development are shown in Figure 10-2. Projects identified for the growth and development category provide the necessary infrastructure to serve both existing and future customers. Growth and development projects meet three needs: 1. Service for future development. 2. Demand for water supply in already developed areas. 3. Infill and redevelopment. These projects primarily consist of “backbone” water mains and PRV facilities to establish proposed pressure zones. The timing of the need for growth and development projects can be difficult to predict. For this reason, the City treats this class as its own separate category, and the prioritization of improvements is evaluated as growth occurs. Therefore, infrastructure projects that are driven by growth and development are not included as specific capital improvement projects nor included in the CIP tables herein. Estimated costs per linear foot of pipeline along with an estimated cost per PRV facility were completed and provided to the City. Appendix G provides the cost sheets for growth and development projects. 19 Water Distribution System Risk Assessment Response Plan. (April 2015). Bozeman, MT. 20 Development of Integrated Master Planning and Condition Assessment: A Road Map for Utilities - 4656 (Tech.). (n.d.). Water Research Foundation. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 176 10.1.3 Optimization Projects identified for the optimization category improve system water quality, promote network water efficiency and movement, help with pressure management, or eliminate facilities to reduce operating cost and improve overall network performance. The projects include SCADA upgrades, PRV improvements, decommissioning of unnecessary assets, information management, and redundant (looped) mains. 10.1.4 Rehabilitation and Repair Rehabilitation and repair projects are generally associated with pipe segments that experience high break rates, water quality issues, are undersized (cannot attain fire flow goal), or require maintenance. A risk assessment process utilizing these factors in a structured and systematic process was used as a means of identifying pipe segments with highest risk, measured through a consequence and likelihood of failure assessment, and then generating projects to mitigate the risk. Depending on the risk scoring, some of the rehabilitation and repair projects would undergo condition assessment first to better refine the scope of the risk mitigation project to be completed. In order to budget for possible replacement of pipes identified by condition assessment as requiring replacement, projects were created for each CIP year as a placeholder for funds to perform the identified improvements. 10.1.5 Storage Projects identified for the storage category were based on the evaluation criteria described in Chapter 5 in conjunction with the existing and future system hydraulic modeling analysis. The projects increase the overall water storage capacity of the system, ensure adequate fire flow, and supplement water supply during periods of planned maintenance or emergencies. All recommended storage projects consist of ground storage reservoirs. 10.1.6 Studies The objective of study projects is to perform additional analysis and develop better information such that the City can make informed decisions regarding future projects. Recommended studies include water supply investigations, water rights evaluations, SCADA master planning, hydrologic evaluations, reservoir siting, and transmission main planning. 10.1.7 Supply Projects identified for the supply category were determined through the hydraulic modeling analysis. The intent of the projects is to increase the overall water supply available to the Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 177 distribution system, which ensures the City maintains its current level of service and can adequately provide water to future customers. Supply projects consist of groundwater well development, enhanced spring production, watershed hydrology evaluations, and expanding the Sourdough WTP. 10.1.8 Transmission Projects identified for the transmission category were determined through the hydraulic modeling analysis. The identified projects consist of large diameter transmission main (16-inch to 48-inch) that originate from sources of supply and convey large volumes of water throughout the entire distribution system. The proposed transmission mains are critical to maintain both the existing and future levels of service. 10.2 Opinion of Probable Project for CIP Development This section describes the methodology used to develop the Opinion of Probable Project Cost (OPPC) for the various types of projects outlined in the WFPU and contains the following information:  Opinion of Probable Project Cost Basis  Estimate Classification  Estimating Exclusions  Total Estimated Project Cost  Total Opinion of Probable Project Cost 10.2.1 Opinion of Probable Project Costs Basis The OPPC values were based on the total capital investment necessary to complete a project from engineering design through construction. All estimates are based on engineering experience and judgment, recent bid tabulations for projects of similar scope, and input from area contractors and material suppliers. All costs are presented in 2016 dollars with respect to cost index factors. Total estimated project costs were categorized into five components, which include the following:  Hard Costs – The actual physical construction of development (i.e. grading, excavation, materials). Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 178  Soft Costs – Fees that are not directly related to labor and building materials (i.e. architecture and engineering fees, permitting/environmental, contract administration, legal).  Property Acquisitions Costs – The cost to obtain property, right-of-way, and easements.  Contingency - Amount added to the estimated cost to cover both identified and unidentified risk events that occur on the project.  Inflation – The application of the cost index anticipated between the time an estimate is prepared and when the project is bid or projected for construction. The sum of these five components is the total OPPC. The OPPC values are based on the preliminary concepts and layouts of the water system components developed as a result of the hydraulic modeling of the system and corresponding recommendations. The estimate is to be an indication of fair market value and is not necessarily a reflection of the lowest bid. Fair market value is assumed to be mid-range tender considering four or more competitive bids. 10.2.2 Estimate Classification The Association for the Advancement of Cost Engineering (AACE) provides guidelines for applying the general principles of estimate classification to project cost estimates (i.e., cost estimates that are used to evaluate, approve, and/or fund projects). The purpose for following a classification process it to align the level of estimating with the use of the information. The estimates provided in the Water Facility Plan Update are classified in accordance with the criteria established by AACE cost estimating classification system referred to as Standard Practice 18R‐97. In accordance with AACE criteria, the OPPC values are representative of Class 4 estimates. A Class 4 estimate is defined as a Study or Feasibility Estimate. Typically, the engineering effort is from 1 to 15 percent complete. Class 4 estimates are used to prepare planning-level effort cost scopes or complete an evaluation of alternative schemes, technical feasibility, and preliminary budget approval or approval to proceed to the next stage of implementation. Expected accuracy for Class 4 estimates typically range from -30 to +50 percent, depending on the technological complexity of the project, appropriate reference information, and the inclusion of an appropriate contingency determination. Ranges could exceed those shown in unusual circumstances. 10.2.3 Estimating Exclusions Unless specifically identified, the following estimating exclusions were assumed in the development of the cost estimates.  Water right acquisition or transfers. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 179  Environmental mitigation of hazardous materials and/or disposal.  O&M costs for the project components. 10.2.4 Total Estimated Project Cost Hard Costs Hard costs, or sometimes referred to as contractor construction costs, represents the actual physical construction of a project. This section was broken down into component unit costs and hard cost markups. Component Unit Costs Component Unit Costs - All estimates are based on engineering experience and judgment, recent bid tabulations for projects of similar scope, and input from area contractors and material suppliers. For specific equipment and materials, proposals were requested from vendors and suppliers. The costs were increased by applying a multiplication factor to include the related costs and expenses (such as labor, connections, and misc. materials) required to complete the installation. Transmission Pipelines The pipe material assumed for new waterlines was DIP Class 51 ranging from 8-inches to 48-inches in pipe diameter. Table 10.1 presents the transmission pipeline construction costs. The cost is based on the following assumptions:  Earthwork o Trench depth of 6.5 ft to 10 ft to the top of pipe o Utility bedding for pipe and conduit o Compaction of bedding in the trench o Structural backfill and compaction  Fittings and valves (additional 20 percent applied to pipeline cost).  Includes surface restoration of unpaved areas and county road impacts. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 180 Pipe Diameter (inch) Ductile Iron Pipe ($/lf) 8 $61 10 $74 12 $87 14 $101 16 $118 18 $136 20 $157 24 $192 30 $294 36 $369 42 $453 48 $632 Table 10.1: Transmission Pipeline Cost per Linear Foot Existing Pipeline Replacement The pipe material assumed for water main replacement was DIP Class 51 for 4-inch to 30-inch diameter pipelines. Table 10.2 presents the transmission pipeline construction costs for water main replacement. The cost is based on the following assumptions:  Review of the 2005 Facility Plan replacement costs  Review of historical bid prices for the City  Indexed 2005 costs to July 2016 dollars  Includes surface restoration (in town road repair and replacement) Pipe Diameter (inch) Ductile Iron Pipe ($/lf) 4 $208 6 $220 8 $233 10 $258 12 $276 14 $315 16 $341 18 $388 20 $444 24 $524 30 $673 Table 10.2: Existing Transmission Pipeline Cost per Linear Foot Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 181 Non-Potable Pipelines The pipe material assumed for new non-potable pipelines is AWWA C900 PVC ranging from 4-inches to 10-inches in pipe diameter. Table 10.3 presents the non-potable pipe construction costs. The cost is based on the following assumptions:  Earthwork o Trench depth of 6.5ft to top of pipe o Utility bedding for pipe and conduit o Compaction of bedding in the trench o Structural backfill and compaction  Fittings and valves (accounts for 20 percent of the pipeline cost)  Includes surface restoration of unpaved areas Pipe Diameter (inch) PVC ($/lf) 4 $16 6 $21 8 $28 10 $37 Table 10.3: Non-Potable Pipeline Cost per Linear Foot Storage Facilities Project costs for proposed water storage facilities were prepared for AWWA D110 – Type I pre-stressed concrete tanks based on recent City construction estimates. The cost is based on the following assumptions:  Circular structure at grade with a height ranging between 20 and 35 feet  Includes major components (i.e. fittings, valves, electrical, and telemetry)  Includes site access and landscaping Project cost estimates for pre-stressed concrete construction were based on a planning level cost of $1per gallon of storage volume provided by the structure. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 182 Pump Station The costs for proposed pump stations are based on recent construction projects of similar scope, vendor quotes, and engineering experience and judgement. The estimated cost reflect the following assumptions:  Includes building, pumps, process piping, meters, valves, gauges, electrical, I&C, HVAC, and telemetry  Site access and landscaping costs are included in ground storage tank cost estimate  Chemical feed systems are not required Hard cost markups Hard costs markups are applied to the hard costs and construction costs to calculate total construction costs. The hard cost markups are reflected in the individual capital improvement project cost estimates. Markups vary depending on the size and type of the project. 1. Mobilization – 0-10 percent Mobilization costs include the administrative costs and expenses to mobilize materials, equipment, and labor to the jobsite. 2. Traffic Control – 0-2 percent Traffic control was assigned to projects that occur in the public right-of-way, primarily transmission projects. 3. Erosion Control – 0-1 percent Erosion control will likely be required for all construction projects to ensure compliance with Storm Water Pollution Prevention Plans. 4. Contractor Indirect Project Costs – 0-15 percent Costs associated with contractor overhead variability including project management, bonding, insurance, subcontractors, etc. Soft Costs To adequately complete the planning, design, and construction of projects listed in this WFPU, there are significant soft costs that will be required. Soft costs are non-construction labor costs consisting of architecture and engineering fees, permitting and environmental compliance, contract administration, legal fees, etc.. Soft costs are applied to the hard costs plus the hard cost markups. A breakdown and summary of the soft costs that were included in the cost estimates are provided below. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 183 1. Engineering – 0-15 percent Costs include preliminary engineering through final design, which involves the development of final project plans and specifications that will be stamped by a professional consulting engineer. Engineering costs include disciplines such as process, civil, electrical, mechanical, architectural, and structural. Costs also include surveying, testing, investigations, and inspection. Examples include surveys of pipeline alignments and facility parcels, security and safety inspections, material and geological testing, and inspection services. 2. Construction Administration and Management – 0-10 percent Costs include services to provide quality control, quality assurance, and construction management during the construction phase and services associated with the initial operational including training of operations, maintenance, and supervisory staff. 3. Legal and Administrative – 0-5 percent Costs associated with the local and State project approval process, and any legal costs. Responsible tasks may include, but not limited to road crossing permits, construction permits, county building permits, Inter-Disciplinary Team Meetings, NEPA compliance, expenses incurred by the City, etc. Property Acquisition Costs Property acquisition costs are associated with purchasing property and acquiring right-of-way or easements for the project. Costs generally consist of payments to landowners. Contingency A contingency is an amount added to the base cost to cover both identified and unidentified risk events that occur on the project. Depending on the project type, the contingency values ranged from 10 to 30 percent. The contingency values were added to the overall project base cost (i.e. hard and soft costs) in anticipation of uncertainties inherent to the planning-level analysis completed for the Water Facility Plan Update. Inflation Projects intended for construction several years in the future include a factor for inflationary impacts to address the general trend of cost indices, which accounts for future labor, material, and equipment cost increases beyond values at the time the estimate is prepared. For this planning-level analysis and the unknown nature of construction/project implementation, costs are reflective of 2016 dollars, and the adjustments for the inflation of construction costs is not considered necessary. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 184 Summary of estimate markups Table 10.4 provides a summary of the suggested hard costs markups, soft costs, and contingency rate percentages. Item Rate Range (%) Hard Cost Markups Mobilization 0-2 Traffic Control 0-2 Erosion Control 0-1 Contractor Overhead and Profit 0-15 Soft Costs Engineering 0-15 Construction Administration and Management 0-10 Legal and Administrative 0-10 Project Unknowns Contingency 10-30 Table 10.4: Total Estimate Project Markup Summary Opinion of Probable Project Cost Sheets Appendix G provides the OPPC cost sheets used to generate estimated cost information for each proposed capital improvement project identified in this chapter. 10.3 CIP Prioritization and Implementation As detailed in Chapter 3, projected future water demands will exceed both the Lyman Spring and existing Sourdough WTP capacity at some point in the future, which will require the City to evaluate a number of different options (e.g. Groundwater Well Field Development, natural storage of Sourdough water, increased production from Lyman Spring). The extent of each of these conceptual projects precludes them from simultaneous implementation. Instead, the City will adjust future capital improvement projects as the feasibility and cost-effectiveness of these projects is revealed, based on studies scheduled for completion in the short-term. The study results may significantly alter the prioritization of these CIP projects, or clarify how much investment in each is warranted. To provide the City with the opportunity to select the most advantageous path forward to meet its future water system needs based on the outcomes of near-term study efforts, a framework was developed to facilitate decision-making at key milestones. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 185 Figure 10-1 illustrates the resulting decision making process and provides a basic overview of the different planning options that would be evaluated. There are four, large competing project pathways that require large capital investments:  Option 1 - If the groundwater wellfield assessment indicates good potential to develop a substantial groundwater supply, the City should implement the work necessary to capitalize on it in the near-term. Simultaneously, the near-term focus of the West Transmission Main should be to optimize delivery of this redundant source of supply to the Sourdough WTP.  Option 2 – If significant groundwater supply development does not appear feasible, but natural storage on Sourdough Creek and/or additional Hyalite water is, then the City should focus on implementation of projects to increase long-term supply through the Sourdough WTP. The implementation of the West Transmission Main would be adjusted (larger transmission main) to convey this additional source water from the Sourdough WTP to the western side of the City.  Option 3 – If groundwater supply, the implementation natural storage in Sourdough and additional source water from Hyalite do not prove viable in the short-term, the City should consider increasing the available storage on the Lyman system. The Lyman system is not capable of providing enough additional water to significantly contribute to the City’s long-term water demands, but if other supplies or redundant sources are not viable, maximization of Lyman supply will be critical for reliability and use during potential emergencies. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 186 Figure 10-1: Future Project Implementation Pathways Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 187 10.3.1 CIP Prioritization Criteria and Process A CIP prioritization methodology to facilitate spending limited capital in the most cost-effective manner possible and to provide a consistent and transparent assessment of each project. The methodology consisted of developing project narratives for each identified project, using the City’s capital planning worksheets. The worksheets are typically used by City staff to further describe a project, present anticipated costs and timeframes, and ultimately establish prioritization for implementation. The project team then developed a prioritization process, using a project scoring methodology with nine prioritization factors. The prioritization factors were modifications of questions that the City uses in internal CIP worksheets. In addition, a few additional, typical CIP factors were added. Table 10.5 lists the final nine prioritization factors used in the matrix to develop the City’s CIP. Table 10.5: Prioritization Factors Each prioritization factor was given an importance factor, so that greater importance could be given to factors most critical to the City. Six scoring levels were developed for each prioritization factor ranging from no impact to extreme impact. The projects were then ranked based on the aggregation of the categories’ weighting factor multiplied by the impact score. The timing of the CIP projects was divided into short-term (0 to 5 year), near-term (5 to 15 year) and long-term (unscheduled) timeframes. The prioritization process resulted in a ranking for every short-term project, with the highest scoring reflecting the highest priority for the City. Appendix H shows the initial short-term project prioritization ranking list. The complete worksheets prepared for the short-term projects are included in Appendix I. Prioritization Factors 1 Are there other affected projects? Coordination, prerequisite, opportunistic, etc. 2 How is capacity affected by this project? 3 Describe the criticality (i.e., importance) of this project to the operation. 4 How is connectivity affected by this project? (Reliability/Redundancy) 5 What safety issues are mitigated with this project? 6 What regulations or standards are attained with this project? 7 Risk Assessment 8 How is efficiency improved by this project? 9 What is the impact of this equipment? Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 188 10.4 Recommended Capital Improvements Draft capital improvement project descriptions, OPPC, and prioritization and planning worksheets were provided to the City in late August 2016 for use in the internal CIP development process. Tables 10.2, 10.3, and 10.4 present the capital improvement projects recommended for initial consideration by the City for the short-term, near-term, and long-term planning periods, respectively. Figure 10-2 provides an overview of the recommended capital improvements. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 189 10.4.1 Short-Term (0-5 year) CIP Projects Capital Improvement Project Category Project Description Project Rank Project ID OPPC Risk-Based CA #5 - Sourdough Transmission Main Condition Assessment Condition Assessment Perform high resolution condition assessment of Sourdough Transmission in accordance with 2015 Condition assessment report 1 WFP_02a $719,785 Sourdough Transmission Main CA Based Rehab Rehabilitation and Repair The project consists of repairs/rehab work on the existing 30-inch bar wrapped concrete Sourdough transmission main, from the Sourdough water treatment plant to the Sourdough reservoir, and the 16-in bar-wrapped concrete pipe from Sourdough Reservoir to Kagy. 2 WFP_02b $1,000,000 Sourdough Water Rights Utilization Study Studies Study to develop recommended project(s) to enable long-term utilization of Sourdough water rights. 3 WFP_04 $400,000 West Transmission Main Planning Study Studies Identify design parameters, right-of-way, route and permitting for the West Transmission Main, so that design and construction can proceed once funds are available. 4 WFP_01a $400,000 Hilltop Reservoir Inspection and Mixing System Optimization Inspect reservoir. Furnish and Install Mixer(s), Power and Control and update Reservoir SCADA to include remote monitoring capability of mixer(s). 5 WFP_05 $239,616 SCADA Master Plan Optimization Evaluate options and develop recommendations for Wide-area network implementation for planned remote water infrastructure. Develop SCADA design, equipment and SCADA tagging and programming standards. Formulate data accessibility and SCADA integration with other City applications (e.g., CMMS) 6 WFP_12 $250,000 Risk Based CA # 4 - Lyman Creek Water Transmission Main Condition Assessment Prepare and evaluate condition assessment plan and execute condition assessment for the high consequence transmission main through the northeast Bozeman corridor to confirm likelihood of failure. 7 WFP_19a $134,670 Groundwater Well Field Development - Phase 1 Supply This project consists of three components: 1) Purchase land for construction and operation of a municipal groundwater well field; 2) Obtaining mitigation water necessary to implement a DNRC-approved mitigation plan; and 3) Water right permitting to obtain a beneficial water use permit, the legal water rights necessary to operate a municipal groundwater well, 4) Well development 8 WFP_10a $8,612,400 Vertical Asset Risk Assessment Phase 1 Studies Expand the use of risk to vertical plant assets including reservoirs, groundwater sources, PRV’s, booster stations, and treatment plants. Create a generalized risk policy for the city that will allow for the comparison of risk across various asset classes on a comparable scale, which then allows for better allocation of CIP funding and effort to the highest risk assets across the entire utility. Develop implementation plan 9 WFP_13 $19,838 Sourdough Reservoir Inspection and Improvements Optimization This project would entail taking the Sourdough Reservoir offline (once the West Transmission Main is online), inspecting it and repairing it as necessary. This project may or may not include reconfiguration of the inlet/outlet configuration to provide flow-through hydraulics. 10 WFP_16 $500,000 Vertical Asset Risk Assessment Phase 2 Studies Expand the use of risk to vertical plant assets including reservoirs, PRV’s, booster stations, and treatment plants. Perform risk assessment per Implementation plan. 11 WFP_14 $85,963 Risk Based R&R Rehabilitation and Repair This bucket of funds could be used for both Risk-based CA and those which are only Fire-flow driven (or opportunistic upgrades) 12 WFP_15 $2,500,000 PRV Upgrades (approximately 16 sites) Optimization Waterproof, Install above-ground weather proof enclosures (for PLC rack, PLC, I/O, Power supply, battery charger, battery, control transformer, switch, network communication, HMI, and related equipment), single phase power source, wide area network communication connection, Electric Unit Heater, Vent fan, sump pump and safety access (Bilco Hatch access) in non-traveled way sites. Install field instrumentation for remote indication of pressure, flow, temperature, and select water quality parameters (as required). Standardize pressure controls, provide remote indication and control functionality, and improve upon confined space entry limitations. 13 WFP_18 $7,637,760 Lyman Transmission Main CA Based Rehab Rehabilitation and Repair This project consists of repair and rehabilitation work on the lower Lyman transmission pipeline, approximately between Lyman Reservoir and Pear Street Pump Station. 14 WFP_19b $500,000 Integrated Water Resources Plan Update Studies Update to the 2013 Integrated Water Resources Plan 15 WFP_11 $150,000 Reservoir 1 - Siting Studies Location and land acquisition of the next major storage facility 16 WFP_09a $350,000 Pear Street Booster Station Upgrade Rehabilitation and Repair Rehabilitate station by adding 2 - 1000 gpm high service pumps, 1 - 400 gpm normal service pump, electrical and control (either VFD and discharge check valve or Soft Starts with discharge control valves); verify condition or install new 5038 Zone PRVs (1 low range, 1 high range) to back feed Zone. Allows interim operation as booster station into South 5125 Zone for South Zone reservoirs, as well as back feed when Lyman Reservoir to be taken out of service. Provide SCADA control logic modifications as required. 17 WFP_38 $486,720 Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 190 SCADA Phase 1 Optimization Install Wide Area Network infrastructure, connect PRV vaults, verify/ install Pressure relief per each pressure zone, central site improvements, update historian, and implement pressure management regimes to improve system pressure protection 18 WFP_24 $2,239,050 Risk Based CA #2 - Downtown Area Condition Assessment Prepare and evaluate condition assessment plan and execute condition assessment for the high consequence distribution and backbone mains through the downtown Bozeman corridor with moderate likelihood of failure to confirm or update likelihood of failure in order to more accurately identify pipes as candidates for R&R. 19 WFP_32 $28,116 West Transmission Main - Phase 1 Design Transmission Design of the first phase of the West Transmission Main, the criteria for which would be developed in the West Transmission Main Planning Study. 20 WFP_01b $2,907,235 Redundant North 5038 Zone Feed Optimization Evaluate, and upgrade as required, 2nd location of redundant feed of 5125 Zone water into North (5038) Zone. This will ensure alternative source of water exists and is sufficient to feed North Mountain Zone in time when Lyman Creek source is unavailable. 21 WFP_26 $59,488 Risk Based CA # 1 - West Bozeman Transmission Condition Assessment Prepare and evaluate condition assessment plan and execute condition assessment for the high consequence transmission main through the southwest Bozeman corridor to confirm likelihood of failure. 22 WFP_34 $47,826 Risk Based CA #3 - Baxter/Oak south of Freeway Condition Assessment Prepare and evaluate condition assessment plan and execute condition assessment for the high consequence distribution and backbone mains through this corridor with moderate likelihood of failure to confirm or update likelihood of failure in order to more accurately identify pipes as candidates for R&R. 23 WFP_35 $23,775 Water Information Management Solutions (WIMS) Optimization Data management and analytical tool development to enhance water system information use 24 WFP_36 $186,300 Notes: NR = Not ranked Total $29,478,542 Table 10.6: Short-term (0-5 Year) Capital Improvement Recommendations Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 191 10.4.2 Near-Term (5-15 year) CIP Projects Capital Improvement Project Category Project Description Project Rank Project ID OPPC Hyalite Watershed and Reservoir Study Studies Analyze long-term water supply provided by the Hyalite watershed and existing reservoir, assess current dam operation and feasibility of implementing control tower improvements and/or raising the dam, and the potential to create a strategic water reserve for reduced drought vulnerability. NR WFP_23 $350,000 Sourdough Canyon Natural Storage and Wetland Enhancement - Planning and Design Studies Evaluate the optimal project that will enable the City to utilize currently unused Sourdough water rights. NR WFP_53 $500,000 Hyalite Reservoir Infrastructure and Control Improvements Studies Armoring of the control tower (to enable some year-over-year storage capacity) and control upgrades to improve winter operation NR WFP_54 $3,858,300 Sourdough Transmission Main – Phase 1 Transmission The project consists of constructing approximately 8,700 feet of 30-inch DIP transmission main, which would parallel the existing older 30-inch concrete main. The proposed transmission main would connect to a new 48-inch DIP coming from the WTP and extend to the Sourdough reservoir. NR WFP_03 $4,241,272 Groundwater Well Field Transmission Main - Phase 1 Transmission The project consists of a constructing a new transmission 24-inch main that would connect the City’s existing distribution system to a potential future groundwater well field system located west of the current City boundary. The precise location of the required main is dependent on groundwater yields and well locations, but will likely convey water from the Four Corners region to the City along Huffine Road. NR WFP_20 $8,974,969 Water Treatment Plant Master Metering Optimization The project consists of installing a master meter (42-inch mag meter) on the finished water pipe from the Sourdough Water Treatment plant. NR WFP_17 $750,000 PRV Abandonments (approximately 6 sites) Optimization Abandon (in place) existing PRV's serving Northwest Zone, at sites to be determined through detailed hydraulic modeling. Install looped mains to maintain connectivity. Project done in conjunction with other transmission main improvements serving Northwest Zones NR WFP_22 $460,512 SCADA Phase 2 Optimization Same as SCADA Phase 1, less central site improvements. Use iHistorian data to enhance operations (e.g., reservoir cycling), maintenance (e.g., SCADA-CMMS integration). Addition of additional remote sites to network and network expansion as required. NR WFP_25 $2,595,840 Remote Water Quality Surveillance System Optimization Establish baseline Water Quality monitoring system using SCADA network. Refine/enhance flushing program, develop enhanced Lyman Creek Reservoir and any water reuse system components surveillance. NR WFP_33 $56,925 5125 West Sourdough Reservoir 1 Storage The project consists of a constructing a new 5 MG gravity fed ground storage reservoir to the south/southwest of the City, which would tie into the West Water Transmission Main – Phase 1 and serve the existing City water distribution system. NR WFP_09b $8,420,875 5560 Southeast Mountain Reservoir and Pump Station Storage The project consists of a constructing a new 4 MG ground storage reservoir, pump station, and transmission main that would serve two new future pressure zones located southeast of the existing City limits. NR WFP_30 $18,542,698 4975 Northwest Reservoir 1 Storage The project consists of a constructing a new 5 MG ground storage reservoir southwest of town, which would tie into the West Transmission Main – Phase 2 and serve the City’s future western and northern water distribution system. NR WFP_31 $8,420,875 Water Facility Plan Update Studies Update the 2016 Water Facility Plan NR WFP_27 $500,000 Drought Management Plan Update Studies Update the 2016 Drought Management Plan NR WFP_28 $20,000 Lyman Creek Water System Improvements Supply This project consists of 1) constructing new reservoirs on the Lyman spring source, located at a higher elevation, 2) replacement of existing 18-inch asbestos concrete transmission pipe between the new reservoirs and the City, 3) installation of Micro Hydro on the Lyman transmission line, 4) relocation of existing chlorine and fluoride chemical feeds, and 5) subsequent decommissioning of the existing Lyman Reservoir and Pear Street Booster Station and 6) installing pressure reducing vaults or micro hydro facilities on the tie-ins of the Lyman source to the Northeast Zone. NR WFP_07 $24,805,440 Groundwater Well Field Development - Phase 2 Supply The project consists of a constructing second transmission 24-inch main that would connect the City’s existing distribution system to a potential future groundwater well field system located west of the current City boundary. The precise location of the required main is dependent on groundwater yields and well locations, but will likely convey water from the Four Corners region to the City along Huffine Road. NR WFP_10b $12,978,600 Lyman Spring Groundwater Well Development Supply Exploratory and test well drilling, and construction of well infrastructure to increase the firm yield of the Lyman Creek water source, within the existing water right. NR WFP_21 $2,500,000 Sourdough Canyon Natural Storage and Wetland Enhancement Supply Construction of Natural Storage and Wetland Enhancement NR WFP_51 $8,000,000 Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 192 Table 10.7: Near-term (5-15 Year) Capital Improvement Recommendations West Transmission Main – Phase 1 Construction Transmission The project consists of a constructing a new transmission main from the Sourdough water treatment plant to the southwestern edge of the existing distribution network (S. 19th and Graf St.) to serve future anticipated growth and provide water delivery redundancy. NR WFP_01c $23,689,082 Sourdough Transmission Main – Phase 2 Transmission The project will consist of constructing either a parallel transmission main or replacing and upsizing the existing transmission main between the existing Sourdough Reservoir and the Hilltop Reservoir. This scope and phasing of this project will depend on a condition assessment of the existing Sourdough transmission main. NR WFP_08 $5,785,788 East Transmission Main Transmission The project consists of a constructing a new transmission main that would ensure adequate water supply capacity for future developments located both east and northeast of the existing distribution system (extending approximately from East Kagy Blvd to Kelly Canyon Rd and Story Hill Rd). NR WFP_29 $6,092,316 West Transmission Main - Phase 2 Transmission The project consists of extending the West Transmission Main – Phase 1 further northwest, to serve anticipated future growth and provide redundancy (extending approximately from South 19th to Baxter Lane). NR WFP_39 $35,891,887 Groundwater Well Field Transmission Main - Phase 2 Transmission NR WFP_52 $8,974,969 Notes: NR = Not ranked Total $186,410,348 Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 193 10.4.3 Long-Term (Unscheduled) CIP Projects Table 10.8: Long-term (15+ Year) Capital Improvement Recommendation Capital Improvement Project Category Project Description Project Rank Project ID OPPC 4975 Northwest Reservoir 2 Storage The project consists of expanding storage at the site of the Phase I reservoir by constructing a second 5 MG ground storage reservoir southwest of town, which would tie into the West Transmission Main and serve the City’s future western and northern water distribution system. NR WFP_40 $8,420,875 5125 West Sourdough Reservoir 2 Storage The project consists of expanding storage at the site of the Phase I reservoir by constructing a second 5 MG ground storage reservoir to the south/southwest of the City, which would tie into the West Water Transmission Main and serve the existing City water distribution system. NR WFP_41 $8,420,875 5350 Southwest Reservoir and Pump Station Storage The project consists of a pump station located near the WTP, a transmission main to transfer water, and a new 4 MG reservoir to serve the new Southwest Mountain Zone. NR WFP_42 $13,795,846 5360 North Mountain Reservoir and Pump Station Storage The project consists of a pump station located near the Lyman reservoir, a transmission main to transfer water, and new 3 MG reservoir to serve the new North Mountain Zone. NR WFP_43 $10,584,320 5630 East Mountain Zone Reservoir and Pump Station Storage The project consists of a pump station located on the east end of the city, a transmission main to transfer water, and a new 6 MG reservoir to serve the new East Mountain Zone. NR WFP_44 $16,589,604 Sourdough Reservoir 2 Storage The project consists of expanding storage at or near the existing Sourdough reservoir with a second 4 MG reservoir. NR WFP_45 $6,506,700 Water Treatment Plant Reservoir 2 Storage The project consists of expanding storage at the WTP with an additional 5 MG of storage. NR WFP_46 $7,779,750 Water Treatment Plant Reservoir 3 Storage The project consists of expanding storage at the WTP with an additional 5 MG of storage. NR WFP_47 $7,779,750 Sourdough Water Treatment Plant Expansion Supply Expand the Sourdough WTP to be able to produce approximately 34 MGD NR WFP_55 $25,000,000 West Transmission Main - Phase 3 Transmission The project consists of extending the West Transmission Main from the intersection of Baxter Ln and Gooch Hill Rd to the northeast, to serve anticipated future growth and provide redundancy (extending approximately from Baxter Ln to the intersection of I-90 and Davis Ln). NR WFP_48 $10,936,342 West Transmission Main - Phase 4 Transmission The project consists of extending the West Transmission Main from the intersection of Baxter Ln and Gooch Hill Rd to the north, to serve anticipated future growth and provide redundancy (extending from Baxter Ln to south of Valley Center Rd). NR WFP_49 $3,755,221 West Transmission Main - Phase 5 Transmission The project consists of extending the West Transmission Main to the north, to serve anticipated future growth and provide redundancy (extending from south of Valley Center Rd to the north side of I-90). NR WFP_50 $2,457,009 Notes: NR = Not ranked Total $122,026,292 Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 195 Page 195 10.5 City of Bozeman Fiscal Years 2018-2022 Capital Improvements Program As noted above, the recommended list of capital improvements presented in the previous section were provided to the City to assist in the internal CIP development process. During the development of the water CIP, City staff reviews it along with the capital improvement projects for each department (e.g. Wastewater, Stormwater, Parks, Transportation, Water, etc.) and make adjustments based on budgets, current overall City needs, and new information. After reviewing the recommend list of capital improvements, City staff decided to move some planning-level projects from the near-term planning period to the short-term planning period:  Sourdough Transmission Main – Phase 1  Sourdough Canyon Natural Storage and Wetland Enhancement – Planning and Design  Hyalite Watershed and Reservoir Study  Hyalite Reservoir Infrastructure and Control Improvements  Groundwater Well Field Transmission Main – Phase 1 The projects were moved into the short-term planning period for the following factors: 1) The primary focus of the short-term capital improvement projects was on transmission, storage, and distribution systems. Raw water supply needs were not weighted as heavily in the initial prioritization process. City staff recognized the need to place more emphasis on bolstering or securing future water supplies, supported by the recently completed Drought Management Plan. a. This emphasis moved the Sourdough and Hyalite watershed and infrastructure studies up in the CIP prioritization. b. Results from the initial groundwater assessment study indicated that developing a groundwater supply for the City is feasible. c. Once these short-term projects are completed the City will know what is the most cost-effective near-term path for water supply investments (as reflected in Figure 10-1. 2) Sourdough Transmission Main - Recently completed design work for storage at the Sourdough WTP identified a hydraulic bottleneck resulting from a local high spot in the profile of the existing Sourdough Transmission Pipeline (near the corner of Sourdough and Nash Rd). The high spot limits future peak capacity of the transmission line and output from the Sourdough WTP. It was decided by the City to include new Sourdough transmission main to the 5.3 MG water storage tank project slated for summer of 2017. Construction of this new transmission section negates the need for two projects that Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 196 Page 196 were previously included in the short-term CIP (Risk-Based CA #5 and Sourdough Transmission Main CA Based Rehab). With this change in plans, Sourdough Transmission Main – Phases 1 and 2, were modified by City staff and split into 3 phases. The brief description of the modified phases is discussed below:  Sourdough Transmission Main – Phase 1 (The project consists of constructing approximately 3,000 feet of 48-inch DIP transmission main, starting at the Sourdough WTP, cutting the corner at Nash and Sourdough, and tying into the existing transmission main).  Sourdough Transmission Main – Phase 2 (The project consists of constructing approximately 8,000 feet of 30-inch DIP transmission main, which will start at the end of the Phase 1 connection point and go to the Sourdough Reservoir).  Sourdough Transmission Main – Phase 3 (The project will consist of constructing either a parallel transmission main or replacing and upsizing the existing transmission main between the existing Sourdough Reservoir and the Hilltop Reservoir). The CIP prioritization was adjusted, and affected projects were revised where modifications to the initial scope, cost, and timeframe were necessary. The final CIP was presented to the City Commission for consideration and approval in December of 2017. The adopted City of Bozeman CIP for fiscal years 2018 - 2022 is provided in Table 10.9. The prioritization planning process created under the Water Facility Plan Update will be revisited annually by City staff and utilized during subsequent CIP planning periods. City staff will be able to reprioritize projects depending on outcomes of short-term studies and the direction of short-term growth and development currently being experienced by the City of Bozeman. Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 197 Page 197Page 197Page 197 10.5.1 City of Bozeman Fiscal Years 2018-2022 Water Capital Improvements Capital Improvement Project Description Year Scheduled OPPC SCADA Master Plan Evaluate options and develop recommendations for Wide-area network implementation for planned remote water infrastructure. Develop SCADA design, equipment and SCADA tagging and programming standards. Formulate data accessibility and SCADA integration with other City applications (e.g., CMMS) FY18 $150,000 Pear Street Booster Station Upgrade Rehabilitate station by adding 2 - 1000 gpm high service pumps, 1 - 400 gpm normal service pump, electrical and control (either VFD and discharge check valve or Soft Starts with discharge control valves); verify condition or install new 5038 Zone PRVs (1 low range, 1 high range) to backfeed Zone. Allows interim operation as booster station into South 5130 Zone for South Zone reservoirs, as well as backfeed when Lyman Reservoir to be taken out of service. Provide SCADA control logic modifications as required. FY18 $547,000 Watershed & Reservoir Optimization Study Hydrologic and operations study of Sourdough, Hyalite and Lyman Creek municipal watersheds to determine water yields of each respective watershed supply source, demonstrate the physical availability of needed water supplies for the City of Bozeman pursuant to the Montana Water Use Act, Optimize operations of hyalite reservoir source and identify improvements needed for year round withdrawals of stored water. Study will also provide for additional data collection needs. FY18 $150,000 Lyman Transmission Main Condition Assessment Prepare and evaluate condition assessment plan and execute condition assessment for the high consequence transmission main through the northeast bozeman corridor to confirm likelihood of failure. FY18 $150,000 Water System Condition Assessment Prepare and evaluate condition assessment plan and execute water main condition assessments in high risk portions of the city. FY18 $100,000 Groundwater Test Well Test well drilling, pumping and monitoring and water quality testing at one or more strategic well field sites identified in the 2016 Groundwater Investigation. Input data into transient hydrogeologic model developed with Groundwater Investigation project. FY18 $400,000 Sourdough Transmission Main – Phase 1 The project consists of constructing approximately 3,000 feet of 48-inch DIP transmission main, starting at the WTP, cutting the corner at Nash and Sourdough, to tie into the existing transmission main. FY18 $3,100,000 5125 West Sourdough Reservoir 1 - Siting Siting study and land acquisition for 5MG ground storage reservoir to serve the South Zone from West Transmission Main FY19 $350,000 Hilltop Tank Inspection and Mixing System Inspect reservoir. Furnish and Install Mixer(s), Power and Control and update Reservoir SCADA to include remote monitoring capability of mixer(s). FY19 $261,120 Sourdough Tank Inspection and Improvements This project would entail taking the Sourdough Tank offline (once the West Transmission Main is online), inspecting it and repairing it as necessary. This project may or may not include reconfiguration of the inlet/outlet configuration to provide flow-through hydraulics. FY19 $500,000 Lyman Tank and Transmission Main Design Design of new Lyman Storage (5MG), new transmission design, chlorination/fluoridation design and CA based repairs design to existing transmission main. FY19 $750,000 PRV Phase 1 - Mechanical and Structural Upgrades Upgrade hatch/entry, valving, piping, pressure settings, sump pumps and provide power FY19 $1,750,000 Groundwater Well Field and Transmission Main Design Design of groundwater well field and transmission main including necessary appurtenances, instrumentation and controls, and DEQ approvals. FY19 $500,000 S 11th 12" water main extension Extension of 12" diameter main per AE2S WFPU in S 11th avenue from current terminus to Graf Street. FY19 $136,010 Sourdough Canyon Natural Storage - Planning and Design Alternatives planning and design for sourdough natural storage enhancement project FY20 $500,000 Redundant North 5038 Zone Feed Evaluate, and upgrade as required, 2nd location of redundant feed of 5130 Zone water into North (5038) Zone. This will ensure alternative source of water exists and is sufficient to feed North Mountain Zone in time when Lyman Creek source is unavailable. FY20 $66,880 Water System Condition Assessment Prepare and evaluate condition assessment plan and execute water main condition assessments in high risk portions of the city. FY20 $100,000 Groundwater Well Field and Transmission Construction Water right permitting and mitigation plan; purchase of mitigation water rights; construction of aquifer recharge or other mitigation infrastructure; acquisition of land for well field site; construction of wells, power, power backup, instrumentation and controls, SCADA, control bldg and site improvements; and transmission main construction to tie GW supply into the existing system. FY20 $8,000,000 Davis 12" Water Main & Valley Center 16" Water Main Extension Extension of 12" water main in Davis Ln from Catamount to Valley Center & Extension of 16" diameter water main in Valley Center from Davis to 27th. 16" main is per AE2S WFPU. 12" main extends existing 12" main in Davis. These mains needed to support development south of East Valley Center between Davis and 27th. FY20 $725,729 Water Facility Plan Update Chapter 10 – Recommended Improvements July 2017 P05097-2013-001 Page 198 Page 198Page 198Page 198 Table 10.9: City of Bozeman Fiscal Years 2018-2022 Capital Improvements Sourdough Transmission Main – Phase 2 The project consists of constructing approximately 8,000 feet of 30-inch DIP transmission main, which will start at the end of the Phase 1 connection point and go to the Sourdough Reservoir. FY20 $4,800,000 Hyalite Dam and Reservoir Optimization Improvements Armoring of the control tower (to enable some year-over-year storage capacity) and control upgrades to improve winter operation FY21 $4,000,000 Lyman Tank and Transmission Main Construction Construct a new 5MG storage tank at Lyman, decommission existing Lyman storage tank, CA-based repairs of the existing Lyman transmission main, new supply main tie in to new storage tank, new transmission main tie in from new storage tank to existing transmission main, new chlorination/fluoridation feed facility. Decommission Pear Street Booster Station if HGL of tank raised to meet Sourdough Tank. FY21 $8,000,000 SCADA Upgrades & Improvements Install Wide Area Network infrastructure, connect PRV vaults, verify/ install pressure relief per each pressure zone, central site improvements, update historian, and implement pressure management regimes to improve system pressure protection FY22 $2,100,000 Water System Condition Assessment Prepare and evaluate condition assessment plan and execute water main condition assessments in high risk portions of the city. FY22 $100,000 PRV Phase 2 - Automation and Instrumentation Upgrades Upgrade pressure instrumentation, automate valve actuation, provide a LAN connection and SCADA programming for real-time monitoring and remote control of PRV settings. FY22 $6,710,000 Total $43,946,739 Water Facility Plan Update Appendices July 2017 Appendix A – Existing System Hydraulic Profiles HG L 4 8 8 5 Z o n e / G a l l a t i n P a r k 82 80 48 6 5 94 92 48 9 3 90 88 48 8 4 86 84 48 7 4 74 70 68 48 3 8 66 64 78 76 48 5 6 60 72 48 4 7 64 48 2 9 74 62 48 0 1 88 86 84 82 80 78 76 48 2 0 58 56 48 1 1 54 52 72 70 68 66 50 48 46 62 60 58 56 54 52 PR V V a u l t # 2 Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) PR V V a u l t # 1 Pr e s s u r e @ FF E l e v + 3 ' PR V # 2 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 8 5 / * * / * * * P S I Hi g h Vo l u m e 8 0 / * * / * * * P S I PR V PR V V a u l t # 2 Le a d P R V 2 " Hi g h V o l u m e P R V 6 " FF E l e v : 4 6 7 7 . 3 0 HG L 50 3 8 FF E l e v + 3 ' 4 6 9 4 . 8 Le a d PR V La g PR V FF E l e v + 3 ' 4 6 8 0 . 3 Le a d PR V La g PR V PRV # 1 Parameters PRV Red. / Surge / Sust. Lead PRV 80 / ** / *** PSI High Volume 75 / ** / *** PSI PRV PRV Vault # 1 Lead PRV 3" High Volume PRV 8" FF Elev: 4691.8 HGL 5038 Ci t y o f B o z e m a n HG L 4 8 8 5 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 Ga l l a t i n P a r k HG L 4 9 8 0 Z o n e / W e s t 66 55 64 49 1 1 53 62 51 60 49 0 2 49 43 41 68 49 2 0 57 70 59 78 67 76 49 3 8 65 80 49 4 8 69 74 63 72 49 2 9 84 49 5 7 73 82 71 61 88 49 6 6 77 86 75 90 79 98 87 96 49 8 5 85 94 83 92 49 7 6 81 79 77 75 10 2 91 10 0 49 9 4 89 83 81 73 71 69 67 65 63 61 59 57 55 53 51 49 47 45 PR V V a u l t # 1 0 Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Lin e ( sta t i c ) PR V # 1 0 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 9 5 / * * * / * * * P S I Hi g h Vo l u m e 9 0 / * * * / * * * P S I PR V FF E l e v : 4 7 6 0 . 2 Le a d PR V FF E l e v + 3 ' 4 7 8 9 . 5 FF E l e v + 3 ' 4 7 6 3 . 2 La g PR V PR V V a u l t # 1 0 Le a d P R V 4 " Hi g h V o l u m e P R V 8 " FF E l e v : 4 7 6 0 . 2 HG L 51 2 5 PR V V a u l t # 1 1 Pr e s s u r e @ FF E l e v + 3 ' PR V V a u l t # 1 1 Le a d P R V 4 " Hi g h V o l u m e P R V 8 " FF E l e v : 4 7 8 6 . 5 HG L 51 2 5 PR V # 1 1 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 8 2 / * * / * * * P S I Hi g h Vo l u m e 7 7 / * * / * * * P S I PR V FF E l e v : 4 7 8 6 . 5 Le a d PR V FF E l e v + 3 ' 4 8 0 6 . 5 PR V V a u l t # 2 1 Pr e s s u r e @ FF E l e v + 3 ' PRV Vault # 21 Lead PRV 2" High Volume PRV 6" Relief PRV 2" FF Elev: 4803.5 HGL 5125 PRV # 21 Parameters PRV Red. / Surge / Sust. Lead PRV 70 / ** / *** PSI High Volume 65 / ** / *** PSI PRV Relief PRV 80 PSI (HGL 4992) FF Elev: 4803.5 La g PR V La g PR V Le a d PR V Ci t y o f B o z e m a n HG L 4 9 8 0 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 We s t Re l i e f PR V HG L 5 1 2 5 Z o n e / S o u t h 13 2 13 0 50 5 2 13 6 13 4 50 6 1 13 4 13 2 14 0 13 8 50 7 0 14 4 14 2 50 7 9 0' 14 8 14 6 50 8 9 15 2 15 0 50 9 8 9' 18 . 2 ' 13 . 6 ' 9' 4. 4 ' 0' 4. 4 ' 17 2 17 4 17 6 18 0 17 8 15 6 15 4 51 0 7 16 0 15 8 51 1 7 36 . 8 ' 32 . 2 ' 27 . 5 ' 27 . 5 ' 22 . 9 ' 18 . 2 ' 22 . 9 ' 13 . 6 ' 16 4 16 2 51 2 6 16 8 16 6 51 3 5 41 . 5 ' 32 . 2 ' 18 16 14 12 10 8 640 38 36 34 32 30 28 26 24 4 2 0 17 0 16 8 16 6 16 4 16 2 16 0 15 8 15 6 15 4 15 2 15 0 14 8 14 6 14 4 14 2 14 0 13 8 13 6 22 20 Pe a r S t r e e t Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) Pe a r S t r e e t B o o s t e r Pa r a m e t e r s Pu m p G P M @ H e a d P r e s s . Le a d P u m p # 1 3 0 0 @ 7 0 ' * * * P S I La g P u m p # 2 8 0 0 @ 9 3 ' * * * P S I La g P u m p # 3 8 0 0 @ 9 3 ' * * * P S I FF E l e v : 4 7 5 2 ' No t e : P u m p s a r e O p e r a t o r c o n t r o l l e d a n d se q u e n c e O n a n d O f f t o m a i n t a i n s y s t e m re s e r v o i r l e v e l s La g Pu m p ( s ) Op e r a t i n g Po i n t FF E l e v : 4 7 5 2 Le a d Pu m p Op e r a t i n g Po i n t Pe a r S t r e e t B o o s t e r Le a d P u m p # 1 La g P u m p # 2 La g P u m p # 3 FF E l e v : 4 7 5 2 ' No t e : P u m p d i s c h a r g e pr e s s u r e s r e f l e c t 5 0 3 0 su c t i o n a t d e s i g n h e a d Ci t y o f B o z e m a n HG L 5 1 2 5 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 So u t h So u r d o u g h 4.0 M G R e s e r v o i r OV E R F L O W 3 1 . 5 ' (H G L 5 1 2 5 . 7 ) WO R K I N G L E V E L 29 . 5 ' (5 1 2 4 ) FF E l e v : 5 0 9 4 . 2 FF E l e v : 5 0 8 4 . 0 Ly m a n C r e e k 5. 3 M G R e s e r v o i r Wo r k i n g L e v e l 28 ' (H G L 5 0 3 6 ) FF E l e v . 5 0 0 8 . 3 ' Hi l l t o p 2. 0 M G R e s e r v o i r OV E R F L O W 4 1 . 2 ' (H G L 5 1 2 5 . 2 ) WO R K I N G L E V E L 39 . 2 ' (5 1 2 3 ) PR V V a u l t # 1 6 4" R e l i e f P R V Se t p o i n t 1 8 0 p s i HG L ( 5 1 5 4 ) FF E l e v 4 7 4 5 FF Elev + 3': 5048 Knolls Booster Supply Pressure @ FF Elev + 3' FF E l e v + 3 ' : 4 7 4 8 PR V # 1 6 R e l i e f 4" R e l i e f P R V Se t p o i n t 1 8 0 p s i PR V V a u l t # 1 6 Pr e s s u r e @ FF E l e v + 3 ' Re l i e f PR V 0' 50 9 4 50 8 5 0' 14 . 6 ' 10 ' 5. 4 ' 42 . 5 ' 37 . 8 ' 33 . 2 ' 28 . 5 ' 23 . 9 ' 19 . 2 ' 22 . 9 ' 18 . 2 ' 13 . 6 ' 9' 4. 4 ' HG L 5 1 8 5 Z o n e / K n o l l s B o o s t e r S t a t i o n 32 . 2 ' 27 51 0 3 25 31 51 1 2 29 35 51 2 1 33 27 . 5 ' 39 51 3 0 37 43 51 3 9 41 4 7 51 4 9 45 51 5 8 49 53 51 55 51 6 7 51 8 6 67 51 9 5 65 51 7 7 57 61 59 63 69 Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) FF E l e v : 5 0 4 5 Kn o l l s B o o s t e r Pr e s s u r e @ FF E l e v So u r d o u g h 4.0 M G R e s e r v o i r OV E R F L O W 3 1 . 5 ' (H G L 5 1 2 5 . 7 ) WO R K I N G L E V E L 29 . 5 ' (5 1 2 4 ) FF E l e v : 5 0 9 4 . 2 FF E l e v : 5 0 8 4 . 0 Hi l l t o p 2. 0 M G R e s e r v o i r OV E R F L O W 4 1 . 2 ' (H G L 5 1 2 5 . 2 ) WO R K I N G L E V E L 39 . 2 ' (5 1 2 3 ) Kn o l l s S t r e e t B o o s t e r Parameters Pu m p G P M @ H e a d P r e s s . Do m e s t i c P u m p # 1 1 4 0 @ 1 3 0 ' * * * P S I Do m e s t i c P u m p # 2 1 4 0 @ 1 3 0 ' * * * P S I Do m e s t i c P u m p # 3 1 4 0 @ 1 3 0 ' * * * P S I Do m e s t i c P u m p # 4 1 4 0 @ 1 3 0 ' * * * P S I H V P u m p # 1 1 6 5 0 @ 7 0 ' * * * P S I H V P u m p # 2 1 6 5 0 @ 7 0 ' * * * P S I FF E l e v : 5 0 4 5 ' No t e : P u m p s s e q u e n c e O n a n d O f f ( C a s c a d e ) t o m a i n t a in sy s t e m d i s c h a r g e p r e s s u r e ( H G L 5 1 8 5 ) Fi r e P u m p St a r t Do m e s t i c Pu m p s Kn o l l s S t r e e t B o o s t e r Pu m p S t a r t / S t o p / Do m e s t i c P u m p # 1 Start: Up to 4 pumps operate Do m e s t i c P u m p # 2 w h e n p r e s s u r e f a l l s below 60 psi Do m e s t i c P u m p # 3 S t o p : p r e s s u r e a b o v e 6 0 p s i o r flow above 800 GPM Do m e s t i c P u m p # 4 Fi r e P u m p # 1 S t a r t : 4 0 p s i o r 8 0 0 g p m d e m a n d Stop: demand below 500 gpm Fi r e P u m p # 2 2" P r e s s u r e R e l i e f V a l v e s e t @ 7 0 p s i / H G L 5 2 0 7 FF E l e v : 5 0 4 5 ' No t e : D o m e s t i c p u m p s ( 1 - 4 ) o p e r a t e 0 - 8 0 0 G P M Hig h V o l u m e P u m p ( 1 ) s t a r t s a b o v e 8 0 0 G P M o r 4 0 p s i Ci t y o f B o z e m a n HG L 5 1 8 5 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 Kn o l l s B o o s t e r S t a t i o n Hil l t o p 2. 0 M G R e s e r v o i r Wo r k i n g L e v e l 39 . 2 ' (H G L 5 1 2 3 ) FF E l e v . 5 0 8 4 . 0 ' Sourdough 4.0 MG Reservoir Working Level 29.5' (HGL 5124) FF Elev. 5094.2' Kn o l l s B o o s t e r R e l i e f 2" R e l i e f P R V Se t p o i n t 7 0 p s i Re l i e f HG L 5 0 3 8 Z o n e / P e a r S t r e e t P R V 13 4 13 2 50 6 1 14 5 14 3 12 8 50 5 1 18.5' 12 4 50 4 2 27.7' 30.0' 13 0 23.1' 12 6 12 2 12 0 50 3 2 11 4 9.2' 11 6 50 2 3 11 8 13.9' 12 5 13 1 11 0 10 8 50 0 4 12 1 11 9 0' 12 3 11 2 50 1 4 4.6' 10 6 10 4 49 9 5 11 7 11 5 10 0 49 8 6 11 3 11 1 94 92 49 6 8 98 96 49 7 7 10 2 13 5 13 3 10 5 10 3 12 9 12 7 14 1 13 9 13 7 10 9 10 7 FF Elev: 5008.3 Pe a r S t r e e t Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) FF E l e v : 4 7 5 2 Le a d PR V Ci t y o f B o z e m a n HG L 5 0 3 8 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 Pe a r S t r e e t P R V Lyman Creek 5.3 MG Reservoir OVERFLOW @ 30' (HGL 5038) WORKING LEVEL 28.0' (5036) Pe a r S t r e e t P R V Le a d P R V 2 " Hig h V o l u m e P R V 8 " Re l i e f P R V 6 " ( H G L 5 0 3 8 ) FF E l e v : 4 7 5 2 HG L 51 2 5 Pe a r S t r e e t P R V P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 1 1 7 / * * * / * * * P S I Hi g h Vo l u m e 1 1 2 / * * * / * * * P S I PR V Re l i e f P R V 1 3 2 p s i / H G L 5 0 6 1 FF E l e v : 4 7 5 2 So u r d o u g h 4. 0 M G R e s e r v o i r Wo r k i n g L e v e l 29 . 5 ' (H G L 5 1 2 4 ) FF E l e v . 5 0 9 4 . 2 Hi l l t o p 2.0 M G R e s e r v o i r Wo r k i n g L e v e l 39 . 2 ' (H G L 5 1 2 3 ) FF E l e v . 5 0 8 4 . 0 ' La g PR V Pe a r S t r e e t R e l i e f 6" R e l i e f P R V Se t p o i n t 1 3 2 p s i FF E l e v + 3 ' 4 7 3 0 . 1 PR V V a u l t # 3 Pr e s s u r e @ FF E l e v + 3 ' Le a d PR V La g PR V PRV Vault # 3 Lead PRV 4" High Volume PRV 8" Return Flow Check Valve (opens at 10 psi differential) HGL 5125 PRV # 3 Parameters PR V R e d . / S u r g e / S u s t . Le a d P R V 1 2 5 / * * / * * * P S I Hi g h Vo l u m e 1 2 0 / * * / * * * P S I PR V FF Elev: 4727.1 5125 Zone (Actual HGL is less than 5015 to allow flow) HG L 4 9 4 0 Z o n e / N o r t h w e s t M a s t e r p a g e 1 41 43 45 49 73 51 53 55 57 61 63 65 67 47 45 43 59 57 55 53 51 49 48 46 68 66 64 62 60 58 83 71 69 67 65 63 61 75 73 69 81 55 67 5 3 77 6 3 44 42 40 59 4 5 57 4 3 55 4 1 65 5 1 63 4 9 61 4 7 56 54 52 50 97 8 3 95 8 1 93 47 82 7 5 90 8 3 8 5 7 1 7 0 71 75 6 1 73 5 9 83 6 9 81 6 7 79 69 48 7 2 60 5 3 62 5 5 48 8 1 64 5 7 66 5 9 48 9 0 68 6 1 70 6 3 48 9 9 72 6 5 74 6 7 49 0 8 76 6 9 78 7 1 59 49 1 8 80 7 3 71 5 7 98 9 1 49 2 7 84 7 7 86 7 9 49 3 6 88 8 1 79 91 7 7 89 7 5 87 7 3 65 78 76 74 72 49 6 4 10 0 9 3 10 2 9 5 49 4 6 92 8 5 94 8 7 49 5 5 96 8 9 85 83 81 79 77 75 82 80 77 79 95 4964 4955 4946 4936 4927 4918 4908 4899 4890 4881 4872 137 135 133 131 129 127 125 123 121 119 117 115 113 111 109 107 105 103 101 99 97 PR V V a u l t # 4 Pr e s s u r e @ FF E l e v + 3 ' FF E l e v + 3 ' 4 7 3 2 . 8 Le a d / PR V FF E l e v + 3 ' 4 7 4 8 . 9 PR V V a u l t # 6 Pr e s s u r e @ FF E l e v + 3 ' Le a d PR V La g PR V Hydraulic Gradient Line ( static ) Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) Ci t y o f B o z e m a n HG L 4 9 4 0 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 No r t h w e s t M a s t e r P a g e 1 PR V V a u l t # 7 Pr e s s u r e @ FF E l e v + 3 ' La g PR V FF E l e v + 3 ' 4 7 4 5 . 1 Le a d PR V FF E l e v + 3 ' 4 7 7 6 . 4 PR V V a u l t # 8 Pr e s s u r e @ FF E l e v + 3 ' Le a d PR V La g PR V PR V V a u l t # 9 Pr e s s u r e @ FF E l e v + 3 ' La g PR V FF E l e v + 3 ' 4 7 7 9 . 7 Le a d PR V FF E l e v + 3 ' 4 7 7 1 . 9 PR V V a u l t # 1 2 Pr e s s u r e @ FF E l e v + 3 ' Le a d PR V La g PR V PR V V a u l t # 1 3 Pr e s s u r e @ FF E l e v + 3 ' La g PR V FF E l e v + 3 ' 4 7 7 5 . 4 Le a d PR V La g PRV Vault # 5 Pressure @ FF Elev + 3' FF Elev+ 3' 4652.6 Relief PRV HG L 4 9 4 0 Z o n e / N o r t h w e s t M a s t e r p a g e 2 48 8 1 90 4 4 4 8 4 7 4 4 6 2 4 6 48 7 2 86 4 0 4 4 4 3 4 0 5 8 4 2 48 92 4 6 5 0 4 9 4 6 6 4 50 44 88 4 2 4 6 4 5 4 2 6 0 48 9 0 94 4 8 5 2 5 1 4 8 6 6 52 96 5 0 5 4 5 3 5 0 6 8 58 48 9 9 98 5 2 5 6 5 5 5 2 7 0 5 4 57 5 4 7 2 49 0 8 10 2 5 6 6 0 5 9 5 6 7 4 66 49 2 7 11 0 6 4 6 8 6 7 6 4 8 2 49 1 8 10 6 6 0 6 4 6 3 6 0 7 8 80 6 4 10 8 6 2 6 6 6 5 6 2 62 84 6 8 11 2 6 6 7 0 6 9 6 6 49 3 6 11 4 6 8 7 2 7 1 6 8 8 6 7 0 72 11 6 7 0 7 4 7 3 7 0 8 8 90 7 4 94 7 8 49 5 5 12 2 7 6 8 0 7 9 7 6 49 4 6 11 8 7 2 7 6 7 5 7 2 12 0 7 4 7 8 7 7 7 4 9 2 7 6 12 4 7 8 8 2 8 1 7 8 9 6 8 0 80 9 8 8 2 49 6 4 12 6 8 0 8 4 8 3 12 8 8 2 8 6 8 5 8 2 1 0 0 8 4 4964 137 135 4955 4946 4936 4927 4918 4908 4899 4890 4881 133 131 129 127 125 123 121 119 117 97 95 115 113 111 109 107 105 103 101 99 4872 60 10 4 5 8 6 2 6 1 5 8 7 6 56 10 0 5 4 5 8 PR V V a u l t # 1 4 Pr e s s u r e @ FF E l e v + 3 ' Le a d / La g PR V FF E l e v + 3 ' 4 6 7 3 . 1 FF E l e v + 3 ' 4 7 7 8 . 2 PR V V a u l t # 1 5 Pr e s s u r e @ FF E l e v + 3 ' Le a d PR V La g PR V Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) Ci t y o f B o z e m a n HG L 4 9 4 0 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 No r t h w e s t M a s t e r P a g e 2 PR V V a u l t # 1 7 Pr e s s u r e @ FF E l e v + 3 ' La g PR V FF E l e v + 3 ' 4 7 6 9 . 0 Le a d PR V FF E l e v + 3 ' 4 7 7 1 . 0 PR V V a u l t # 1 8 Pr e s s u r e @ FF E l e v + 3 ' Le a d PR V La g PR V PR V V a u l t # 1 9 Pr e s s u r e @ FF E l e v + 3 ' La g PR V FF E l e v + 3 ' 4 7 7 9 . 1 Le a d PR V FF E l e v + 3 ' 4 7 3 6 . 8 PR V V a u l t # 2 0 Pr e s s u r e @ FF E l e v + 3 ' Le a d PR V PR V V a u l t # 2 2 Pr e s s u r e @ FF E l e v + 3 ' La g PR V FF E l e v + 3 ' 4 7 7 4 . 0 Le a d PR V Re l i e f Re l i e f PR V Re l i e f PR V La g PR V Hydraulic Gradient Line ( static )PRV Vault # 5 Pressure @ FF Elev + 3' FF Elev+ 3' 4652.6 Relief PRV HG L 4 9 4 0 Z o n e / N o r t h w e s t 45 88 4 2 43 48 7 2 86 4 0 49 92 4 6 47 48 8 1 90 4 4 53 96 5 0 51 48 9 0 94 4 8 57 10 0 5 4 55 48 9 9 98 5 2 61 10 4 5 8 59 49 0 8 10 2 5 6 65 10 8 6 2 63 49 1 8 10 6 6 0 69 11 2 6 6 67 49 2 7 11 0 6 4 73 11 6 7 0 71 49 3 6 11 4 6 8 77 12 0 7 4 75 49 4 6 11 8 7 2 81 12 4 7 8 79 49 5 5 12 2 7 6 85 12 8 8 2 83 49 6 4 12 6 8 0 PR V V a u l t # 1 2 Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) PR V # 1 2 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 6 9 / * * / * * * P S I Hi g h Vo l u m e 6 4 / * * / * * * P S I PR V FF E l e v : 4 7 6 8 . 9 La g PR V FF E l e v + 3 ' 4 6 7 3 . 1 FF E l e v + 3 ' 4 7 7 1 . 9 Le a d PR V PR V V a u l t # 1 2 Le a d P R V 3 " Hi g h V o l u m e P R V 8 " FF E l e v : 4 7 6 8 . 9 HG L 51 2 5 PR V V a u l t # 1 4 Pr e s s u r e @ FF E l e v + 3 ' PR V V a u l t # 1 4 Le a d P R V 3 " Hig h V o l u m e P R V 1 0 " FF E l e v : 4 6 7 0 . 1 HG L 50 3 8 PR V # 1 4 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 1 1 7 / * * * / * * * P S I Hi g h Vo l u m e 1 1 7 / * * * / * * * P S I PR V FF E l e v : 4 6 7 0 . 1 FF E l e v + 3 ' 4 7 7 9 . 1 PR V V a u l t # 1 9 Pr e s s u r e @ FF E l e v + 3 ' PRV Vault # 19 Lead PRV 2" High Volume PRV 6" Relief PRV 2" FF Elev: 4776.1 HGL 5125 Le a d PR V PRV # 19 Parameters PRV Red. / Surge / Sust. Lead PRV 63 / ** / *** PSI High Volume 58 / ** / *** PSI PRV Relief PRV 77 PSI (HGL 4957) FF Elev: 4776.1 Le a d / La g PR V La g PR V Ci t y o f B o z e m a n HG L 4 9 4 0 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 No r t h w e s t PR V V a u l t # 5 4" R e l i e f P R V Se t p o i n t 1 3 0 p s i FF E l e v : 4 6 4 9 . 6 Re l i e f PR V HG L 4 9 4 0 Z o n e / N o r t h w e s t 62 57 4 2 60 48 7 2 55 4 0 66 61 4 6 64 48 8 1 59 4 4 70 65 5 0 68 48 9 0 63 4 8 74 69 5 4 72 48 9 9 67 5 2 78 73 5 8 76 49 0 8 71 5 6 82 77 6 2 80 49 1 8 75 6 0 86 81 6 6 84 49 2 7 79 6 4 90 85 7 0 88 49 3 6 83 6 8 94 89 7 4 92 49 4 6 87 7 2 98 93 7 8 96 49 5 5 91 7 6 10 2 97 8 2 10 0 49 6 4 95 8 0 PR V V a u l t # 4 Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) PR V # 4 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 8 0 / * * / * * * P S I Hi g h Vo l u m e 7 5 / * * / * * * P S I PR V FF E l e v : 4 7 2 9 . 8 FF E l e v + 3 ' 4 7 4 5 . 1 FF E l e v + 3 ' 4 7 3 2 . 8 Le a d / PR V PR V V a u l t # 4 Le a d P R V 4 " Hig h V o l u m e P R V 8 " FF E l e v : 4 7 2 9 . 8 HG L 50 3 8 PR V V a u l t # 7 Pr e s s u r e @ FF E l e v + 3 ' PR V V a u l t # 7 Le a d P R V 4 " Hi g h V o l u m e P R V 8 " FF E l e v : 4 7 4 2 . 1 HG L 51 2 5 PR V # 7 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 7 6 / * * / * * * P S I Hi g h Vo l u m e 7 1 / * * / * * * P S I PR V FF E l e v : 4 7 4 2 . 1 Le a d PR V FF E l e v + 3 ' 4 7 7 9 . 7 PR V V a u l t # 9 Pr e s s u r e @ FF E l e v + 3 ' PRV Vault # 9 Lead PRV 2" High Volume PRV 6" FF Elev: 4776.7 HGL 5125 Le a d PR V PRV # 9 Parameters PRV Red. / Surge / Sust. Lead PRV 65 / ** / *** PSI High Volume 60 / ** / *** PSI PRV FF Elev: 4776.7 La g PR V La g PR V Ci t y o f B o z e m a n HG L 4 9 4 0 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 No r t h w e s t PR V V a u l t # 5 4" R e l i e f P R V Se t p o i n t 1 3 0 p s i FF E l e v : 4 6 4 9 . 6 Re l i e f HG L 4 9 4 0 Z o n e / N o r t h w e s t 95 83 8 3 93 49 6 4 81 8 1 91 79 7 9 89 49 5 5 77 7 7 87 75 7 5 85 49 4 6 73 7 3 83 71 7 1 81 49 3 6 69 6 9 79 67 6 7 77 49 2 7 65 6 5 75 63 6 3 73 49 1 8 61 6 1 71 59 5 9 69 49 0 8 57 5 7 67 55 5 5 65 48 9 9 53 5 3 63 51 5 1 61 48 9 0 49 4 9 59 47 4 7 57 48 8 1 45 4 5 55 43 4 3 53 48 7 2 41 4 1 PR V V a u l t # 6 Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) PR V # 6 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 7 9 / * * / * * * P S I Hi g h Vo l u m e 7 4 / * * / * * * P S I PR V FF E l e v : 4 7 4 5 . 9 La g PR V FF E l e v + 3 ' 4 7 7 6 . 4 FF E l e v + 3 ' 4 7 4 8 . 9 Le a d PR V PR V V a u l t # 6 Le a d P R V 4 " Hi g h V o l u m e P R V 8 " FF E l e v : 4 7 4 5 . 9 HG L 51 2 5 PR V V a u l t # 8 Pr e s s u r e @ FF E l e v + 3 ' PR V V a u l t # 8 Le a d P R V 2 " Hig h V o l u m e P R V 6 " FF E l e v : 4 7 7 3 . 4 HG L 51 2 5 PR V # 8 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 6 7 / * * / * * * P S I Hi g h Vo l u m e 6 2 / * * / * * * P S I PR V FF E l e v : 4 7 7 3 . 4 Le a d PR V FF E l e v + 3 ' 4 7 7 5 . 4 PR V V a u l t # 1 3 Pr e s s u r e @ FF E l e v + 3 ' PRV Vault # 13 Lead PRV 2" High Volume PRV 6" FF Elev: 4772.4 HGL 5125 Le a d PR V PRV # 13 Parameters PRV Red. / Surge / Sust. Lead PRV 65 / ** / *** PSI High Volume 60 / ** / *** PSI PRV FF Elev: 4772.4 La g PR V La g PR V Ci t y o f B o z e m a n HG L 4 9 4 0 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 No r t h w e s t PR V V a u l t # 5 4" R e l i e f P R V Se t p o i n t 1 3 0 p s i FF E l e v : 4 6 4 9 . 6 HG L 4 9 4 0 Z o n e / N o r t h w e s t 82 86 8 5 80 49 6 4 84 8 3 78 82 8 1 76 49 5 5 80 7 9 74 78 7 7 72 49 4 6 76 7 5 70 74 7 3 68 49 3 6 72 7 1 66 70 6 9 64 49 2 7 68 6 7 62 66 6 5 60 49 1 8 64 6 3 58 62 6 1 56 49 0 8 60 5 9 54 58 5 7 52 48 9 9 56 5 5 50 54 5 3 48 48 9 0 52 5 1 46 50 4 9 44 48 8 1 48 4 7 42 46 4 5 40 48 7 2 44 4 3 PR V V a u l t # 1 5 Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) PR V # 1 5 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 6 2 / * * / * * * P S I Hi g h Vo l u m e 5 7 / * * / * * * P S I PR V FF E l e v : 4 7 7 5 . 2 La g PR V FF E l e v + 3 ' 4 7 6 9 . 0 FF E l e v + 3 ' 4 7 7 8 . 2 Le a d PR V PR V V a u l t # 1 5 Le a d P R V 2 " Hig h V o l u m e P R V 6 " FF E l e v : 4 7 7 5 . 2 HG L 51 2 5 PR V V a u l t # 1 7 Pr e s s u r e @ FF E l e v + 3 ' PR V V a u l t # 1 7 Le a d P R V 2 " Hig h V o l u m e P R V 6 " FF E l e v : 4 7 6 6 . 0 HG L 51 2 5 PR V # 1 7 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 6 7 / * * / * * * P S I Hi g h Vo l u m e 6 2 / * * / * * * P S I PR V FF E l e v : 4 7 6 6 . 0 Le a d PR V FF E l e v + 3 ' 4 7 7 1 . 0 PR V V a u l t # 1 8 Pr e s s u r e @ FF E l e v + 3 ' PRV Vault # 18 Lead PRV 2" High Volume PRV 6" FF Elev: 4768.0 HGL 5125 Le a d PR V PRV # 18 Parameters PRV Red. / Surge / Sust. Lead PRV 67 / ** / *** PSI High Volume 62 / ** / *** PSI PRV FF Elev: 4768.0 La g PR V La g PR V Ci t y o f B o z e m a n HG L 4 9 4 0 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 No r t h w e s t PR V V a u l t # 5 4" R e l i e f P R V Se t p o i n t 1 3 0 p s i FF E l e v : 4 6 4 9 . 6 HG L 4 9 4 0 Z o n e / N o r t h w e s t 10 0 84 8 2 98 49 6 4 82 8 0 96 80 7 8 94 49 5 5 78 7 6 92 76 7 4 90 49 4 6 74 7 2 88 72 7 0 86 49 3 6 70 6 8 84 68 6 6 82 49 2 7 66 6 4 80 64 6 2 78 49 1 8 62 6 0 76 60 5 8 74 49 0 8 58 5 6 72 56 5 4 70 48 9 9 54 5 2 68 52 5 0 66 48 9 0 50 4 8 64 48 4 6 62 48 8 1 46 4 4 60 44 4 2 58 48 7 2 42 4 0 PR V V a u l t # 2 0 Pr e s s u r e @ FF E l e v + 3 ' Hy d r a u l i c Gr a d i e n t Li n e ( st a t i c ) PR V # 2 0 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 8 0 / * * / * * * P S I Hi g h Vo l u m e 7 5 / * * / * * * P S I PR V Re l i e f P R V 9 0 P S I ( H G L 4 9 4 5 ) FF E l e v : 4 7 3 3 . 8 FF E l e v + 3 ' 4 7 7 4 . 0 FF E l e v + 3 ' 4 7 3 6 . 8 Le a d / PR V PR V V a u l t # 2 0 Le a d P R V 2 " Hig h V o l u m e P R V 6 " Re l i e f P R V 2 " FF E l e v : 4 7 3 3 . 8 HG L 51 2 5 PR V V a u l t # 2 2 Pr e s s u r e @ FF E l e v + 3 ' PR V V a u l t # 2 2 Le a d P R V 2 " Hi g h V o l u m e P R V 6 " Re l i e f P R V 2 " FF E l e v : 4 7 7 1 . 0 HG L 51 2 5 PR V # 2 2 P a r a m e t e r s PR V R e d . / S u r g e / S u s t . Le a d P R V 6 4 / * * / * * * P S I Hi g h Vo l u m e 5 9 / * * / * * * P S I PR V Re l i e f P R V 7 4 P S I ( H G L 4 9 4 5 ) FF E l e v : 4 7 7 1 . 0 Le a d PR V FF E l e v + 3 ' 4 7 7 8 . 2 PR V V a u l t # 1 5 Pr e s s u r e @ FF E l e v + 3 ' PRV Vault # 15 Lead PRV 2" High Volume PRV 6" FF Elev: 4775.2 HGL 5125 Le a d PR V PRV # 15 Parameters PRV Red. / Surge / Sust. Lead PRV 62 / ** / *** PSI High Volume 57 / ** / *** PSI PRV FF Elev: 4775.2 La g PR V La g PR V Ci t y o f B o z e m a n HG L 4 9 4 0 P r e s s u r e Z o n e / 0 4 / 0 1 / 2 0 1 7 No r t h w e s t PR V V a u l t # 5 4" R e l i e f P R V Se t p o i n t 1 3 0 p s i FF E l e v : 4 6 5 2 . 9 Re l i e f PR V Re l i e f PR V La g PR V Water Facility Plan Update Appendices July 2017 Appendix B – FME Script for GIS export/Model Import B-1 Introduction To create the water pipe network for the hydraulic model, a FME script was developed by StreamlineAM to transform the existing GIS feature classes into a working format to input into the hydraulic model. FME is a software that allows the ability to develop and implement workflows to alter the data into a working format.  Include (abandoned) gravity water main with exception of inactive (abandoned) mains.  Include hydrant leads from the lateral lines that are connected to hydrants.  Include hydrants.  Incorporate junctions and fill in elevations based on City’s DEM.  Fill in roughness coefficients based on corresponding table values for size and material.  Fix connectivity by connecting junctions within an allowable distance.  Fix connectivity by creating breaks and junctions within water main where water main intersect and are of the same pressure zone. Script Development The existing feature classes for water pipe network were evaluated for export and use for updating the water hydraulic model in InfoWater. Because of the complexity of the distribution facility integration, as well as the small number of facilities, the integration is recommended for only the horizontal plant (pipes and junctions). The data was evaluated and inputs were defined for two export feature classes to the hydraulic model: pipes and junctions. Only “Active” pipes were included in the exports. In addition, only hydrants were prepared as junctions with a link to the original GIS features – the remainder of the junctions were created by automated endpoint creation for the pipes that were included. Below is a summary of the inputs, calculated fields and outputs prepared for the model. The scripts are based on “snapshots” of data received from the City of Bozeman. For this export to become a sustainable process, the source datasets should be reconnected to the City of Bozeman enterprise datasets where such datasets exist. In addition, one field change to two feature classes in the enterprise database is recommended. B-2 Instructions to Run The following instructions provide steps to run the FME script. 1. Rename HydraulicModelGISImportAudit.xls to HydraulicModelGISImportAudit_DATE.xls. 2. Copy HydraulicModelGISImportAudit_Template.xls to HydraulicModelGISImportAudit.xls. 3. Run 1_GISAudit_WaterModel.fmw. 4. Address any Audit issues Identified in Step 3. 5. Repeat Steps 1 through 3 until satisfied with Audit. 6. Run 2_GISExport_WaterModel.fmw. 7. Use InfoWater GIS Gateway and provided field maps to import all pipes and Junctions into model. 8. Facilities are maintained in the model. Datasets Included, Excluded and Created GIS Datasets Used:  Wgravity_mains  Wlateral_lines  Whydrants  DEM_Bozeman.gdb (converted to a file geodatabase from tiles) GIS Feature Classes Not Used:  Wcurb_boxes  Wfittings  wSystem_Valves  wControl_Valves  wStations Additional Data Created/Mapped:  AssigningData.gdb (non-spatial tables with FACILITYID)  wGravity_mains_Zone  wlateral_lines_Zone  tbl_Roughness  disconnectedWhy_Audit_Override B-3 Export to “Pipes” and “Junctions” for Water Hydraulic Model There are two scripts that were produced for the export. The first script (1_GISAudit_WaterModel.fmw) should be run first as a data validation for the model. Data issues identified in that script would need to be fixed prior to running the second script (2_GISExport_WaterModel.fmw). The second script creates the two feature classes which are used in the import module of InfoWater. Scripts  1_GISAudit_WaterModel.fmw  2_GISExport_WaterModel.fmw Source Data  Wgravity_mains_20151007 (LIFE = “Active”)  Wlateral_lines_20151007 (Only those with an endpoint coincident with a feature from wHydrants)  WHydrants_20151007  disconnectedWhy_Audit_Override  tbl_Roughness Output Data  HydraulicModelGISImportAudit.xlsx (Worksheet Tabs) o Audit 1: Attribute_Wgravity_mains o Audit 2: Attribute_Wlateral_lines o Audit 3: Attribute_Whydrants o Audit 4: Connectivity_Wgravity_mains o Audit 5: Connectivity_Wlateral_lines o Audit 6: Connectivity_Whydrants  GIS_Output.gdb o WHYD_Junction o WHYD_Pipe B-4 Automated Audit Exports These are lists generated by feature class and issue that will require manual cleanup in GIS prior to running the export/translation from GIS to the format required by the hydraulic model. The audits contain lists that match one of the criteria below and are separated into separate tabs by source feature class and whether it is an attribute issue or a geometry/connectivity issue.  Wgravity main – material “Unk” or “Unknown” or size = “0” or 8” CU  Wlaterals connected to hydrants – material “Unk” or “Unknown” or size = “0” or 8” CU  wHydrants – without a lateral line connecting  wGravity main and wlaterials with junctions on them from other pipes that aren’t at endpoints and for which both are in the same zone. Inputs: wGravity_main, wlateral_lines, wHydrants, DEM  Endpoints of applicable wGravity_mains and wlateral_lines – generated from the geometry information of the segments  wHydrants – if not connected to a wGravity_main or a wLateral_line, flagged as “Reference” for the model)  DEM – the elevation is assigned each feature generated Inputs: WHYD_PIPE  wGravity_Mains (Only Life = “Active”)  wLateral_lines (Only those features with a hydrant as an endpoint and Life = “Active”)  WHYD_JUNCTION B-5 Table G.1: Creation of WHYD_Junction and WHYD_Pipe Source DataSet Data Fields Data Calculations MODEL Data Fields Notes Outputs: WHYD_JUNCTION, WHYD_PIPE wGravity_Mains, wLateral_lines, wHydrants FACILITYID FME: Calculated from Prefix + FacilityID + split number if multiples ID Prefix is "wg_" or "wl_" or “why_” dependent on source feature class; use “wnode_” for generated endpoints. The auto generated numbers for “wnode_” will not be consistent between runs. wGravity_Mains, wLateral_lines wHydrants INSTALL_D ATE Straight data port YR_INST If doesn’t exist, use “0” as default. Should we use B_Year for wHydrants as a possible source? wGravity_Mains, wLateral_lines, wHydrants, wGravity_Mains_Zone, wLateral_lines_Zone ZONE Join on the new zone data to the source feature classes by FACILITYID attribute for the pipes; zone for the junctions are spatially generated ZONE Recommendation is for this field to be added to the core GIS Datasets. If a Junction exists at a section where the Zone Changes, the first Zone is used. wGravity_Mains, wLateral_lines LIFE Straight data port STATUS Hydrants which are not connected are flagged as “Inactive”. “Active” used for all features. FME "PIPES" or “JUNCTIONS” MODEL_TYPE Default values wGravity_Mains, wLateral_lines, wHydrants FACILITYID Straight data port GIS_FACILITYID Is Null for the Auto generated endpoints wGravity_Mains, wLateral_lines None: Source Feature Class Calculated from source feature class SOURCE_GISFC Name of source feature classes where the feature comes from or “FME_Automated_Junction” for the generated endpoints. Outputs: WHYD_JUNCTION WHYD_Junction DEM Adding Elevation data from DEM to points ELEVATION_M WHYD_Junction DEM Adding Elevation data from DEM to points DEM_ELEVATION_M WHYD_Junction DEM Adding Elevation data from DEM to points ELEVATION_FT WHYD_Junction DEM Adding Elevation data from DEM to points DEM_ELEVATION_FT wHydrants HYD Straight data port HYD_ID WHYD_Junction FME Generated from spatial location X Used projection as source feature classes WHYD_Junction FME Generated from spatial location Y Used projection as source feature classes B-6 Outputs: WHYD_PIPE wGravity_Mains, wLateral_lines MATERIAL Straight data port MATERIAL Straight data port for first load; not included in updates to existing features in model (Model Override Field) wGravity_Mains, wLateral_lines MATERIAL Straight data port GIS_MATERIAL wGravity_Mains, wLateral_lines FME Calculated from FME Geometry Info GIS_LENGTH_M Unchanged Length in Meters wGravity_Mains, wLateral_lines FME Calculated from FME Geometry Info GIS_LENGTH_FT Unchanged Length in Feet wGravity_Mains, wLateral_lines DIAMETER Straight data port GIS_DIAMETER wGravity_Mains, wLateral_lines SUBTYPE Straight data port GIS_SUBTYPE FME Calculated from FME Geometry Info for first load. LENGTH_M Length that may be adjusted in model for calibration - may be removed from script for long term maintenance. In meters. FME Calculated from FME Geometry Info for first load. LENGTH_FT Length that may be adjusted in model for calibration - may be removed from script for long term maintenance. In Feet DIAMETER Straight data port for first load; not included in updates to existing features in model (Model Override Field) DIAMETER Diameter that may be adjusted in model for calibration - may be removed from script for long term maintenance WHYD_Junction ID Generated by spatial relationship FROM WHYD_Junction ID Generated by spatial relationship TO wGravity_Mains, wLateral_lines, tbl_Roughness MATERIAL, DIAMETER, Roughness, Source Feature Class From tbl_Roughness by material and material/diameter and source feature class ROUGHNESS Roughness table needs to be maintained Water Facility Plan Update Appendices July 2017 Appendix C – Fire Flow Tests Fi r e F l o w Te s t i n g Fi e l d B o o k No r t h w e s t Pr e s s u r e Zo n e Fl o w  Te s t i n g  Pr o t o c o l No r t h w e s t  Pr e s s u r e  Zo n e • 14  ex i s t i n g  PR V  Va u l t s  (4 ,  6,  7,  8,  9,  12 ,  13 ,  14 ,  15 ,  17 ,  18 ,  19 ,  20 ,  22 )  – R e q u e s t  to  reduce  number  of   PR V  Va u l t s  su p p l y i n g  zo n e  to  6  PR V  Va u l t s  (4 ,  7,  9,  12 ,  14 ,  19 )  by  di s a b l i n g  th e  PR V s  within  8  of  the   PR V  va u l t s  (6 ,  8,  13 ,  15 ,  17 ,  18 ,  20 ,  22 ) . • Op e r at io n  of  th e  se l e c t e d  6  PR V  Va u l t s  wo u l d  be  se t  to  on l y  op e r a t e  th e  la r g e  (l a g )  PRV  to  just  able  to   fl o w  wh e n  de m a n d  re q u i r e s  ba s e d  on  fi r e  fl o w  te s t .  Di s a b l e  th e  le a d  PR V  in  ea c h  of  the  6  selected   PR V  va u l t s .  Se t  th e  la g  PR V  in  ea c h  of  th e  6  se l e c t ed  PR V  v au l t s  to  fl o w  at  ap p r o x i m a t e l y  the  same   hy d r a u l i c  gr a d e  li n e . • Di s a b l e  PR V  3  th a t  fe e d s  fr o m  So u t h  Zo n e  to  No r t h e a s t  (L y m a n )  Zo n e  ne a r  PR V  4  during  the  flow   te s t i n g . • In s t a l l  pr e s s u r e  re c o r d e r  on  a  hy d r a n t  do w n s t r e a m  si d e  at  ea c h  of  th e  6  PR V  Va u l t s  (4, 7, 9, 12, 14,  19 ) . • In s t a ll  pr e s s u r e  re c o r d e r s  on  th e  up s t r e a m  hy d r a n t  of  3  se l e c t e d  PR V  Va u l t s  (4 ,  7,  12). • Pe r f o r m  9  fi r e  fl o w  te s t s  wi t h i n  th e  pr e s s u r e  zo n e . • Re t u r n  PR V s  in  al l  14  PR V  Va u l t s  ba c k  to  or i g i n a l  op e r a t i o n  st a t e  (4 ,  6,  7,  8,  9,  12 ,  13 ,  14, 15, 17, 18,  19 ,  20 ,  22 ) . • Re t u rn  PR V  3  ba c k  to  or i g i n a l  op e r a t i o n  st a t e  or  le a v e  in  th i s  st a t e  ti l l  af t e r  co m p l e t i n g  flow  testing  for   No r t h e a s t  Pr e s s u r e  Zo n e . RED W I N G D R WA T T S L N MAIN ST VA L L E Y D R 21 S T A V E FL A N D E R S M I L L R D TH O M A S D R 18 T H A V E 20 T H A V E 16 T H A V E 15 T H A V E 23 R D A V E SA C C O D R WIL D A L N DA V I S L N VALLE Y C E N T E R R D LILY DR BURKE ST 10 T H A V E CHU R N C R E E K D R LAREDO DR INT E R S T A T E 9 0 H W Y ROSE ST RIATA R D PATRICK ST FALLON ST YE R G E R D R OLD FARM RD H U N T E R S W A Y SW E E T G R A S S A V E COVER ST FE N W A Y ES T E S L N BOGA R T D R ANNIE ST A R A B I A N A V E TE T O N A V E BENEPE ST HA N S O N S T S I M M E N T A L W A Y ALEXANDER ST PERRY ST SU N N Y S I D E T R L DAISY DR HID D E N V A L L E Y R D RAWHIDE RDG BRENDEN ST FO W L E R A V E DAWS DR PO N D E R A A V E GA L E C T 11 T H A V E BRISBIN ST HA R M O N W A Y CA R S O N P L 24 T H A V E CATALYST ST CATKIN LN MI N E R A L A V E SA N D E R S A V E FE R G U S O N A V E FRON T A G E R D W H E A T D R MONIDA ST 9T H A V E V I R G I N I A W A Y DAFFODIL ST FL A T H E A D A V E ST U B B S L N CATTAIL ST JE S S I E W A Y MA X A V E 13 T H A V E 19TH AVE PO N D R O W 14 T H A V E WH I S P E R L N RUTH THIEBAULT WAY TSCHACHE LN M O U N T A I N A S H A V E WINTER PARK ST KEA N D R JOHN DEERE ST QUINN DAVID L N G R E E N W A Y A V E FO X T A I L S T POTOSI ST GALLATIN DR WHEELER DR CH O U T E A U A V E BL A C K B I R D D R PIONEER DR 2 5 T H A V E SP R I N G B R O O K A V E BR I S K C T B U R A V E CARBON ST P I N A V E DONNA AVE CATRON ST BLACK POWDER TRL GIBSON DR MANZANITA DR CHARL O T T E S T ORVILLE WAY PR A I R I E A V E SA N T A A N A C T CAM P B E L L R D BABCOCK ST YE L L O W S T O N E A V E C O M M E R C E W A Y SNAPDRAGON ST FO R B E S A V E OLIVINE ST BOOT HILL CT LA S S O A V E DIAMOND ST OPAL ST FIELD ST CAHILL ST MA T H E S O N W A Y TE M P E S T C T GOLDENROD LN EQUESTRIAN LN BEALL ST LOLO WAY ME A G H E R A V E SH E R I D A N P L SL O U G H C R E E K D R HEDGEROW CT CORWIN ST TRAKKER TRL CRAB TREE ST BL A C K M O R E P L LE E W A R D C T TILTON ST OLIVE ST P I N E C R E E K D R OA K P A R K D R MA R I A S L N WE S T E R N D R PALM ST SU N L I G H T A V E DR O U L L I A R D A V E HARRIS ST BOSAL ST OLIVER ST 27 T H A V E CASE ST PO W D E R R I V E R A V E BEMBRICK ST VILLARD ST CH R I S T O P H E R W A Y PIPESTONE ST RENOVA LN ME G H A N S W A Y ALLISON CT AUTUMN GROVE ST BREEZE LN WESTLAKE RD AS T E R A V E WIL L O W B R O O K 17 T H A V E WESTWIND WAY LADUKE ST MCCAFFERTY ST TOOLE ST ED E L W E I S S D R BEAVERHEAD ST BANNOCK STAGE CT ST E S T E P H E D R KOCH ST RAVALLI ST E A G L E C R E E K D R MOSS BRIDGE RD BELGIAN CT SARTAIN ST SPR I N G H I L L R D 1 2 T H A V E RENEE WAY FJORD CT CAMEAHWAIT ST D U R H A M A V E DOVE CT LILLIAN WAY SAVANNAH ST GALLOWAY ST TERRACE AVE KI M B A L L A V E RE E V E S R D STORY ST TY P H A C T MIC H A E L G R O V E A V E CASCADE ST MAPLEWOOD ST DURSTON RD B R E N T W O O D A V E HO O V E R W A Y E M I L Y D R LA A G E R L O O P WA R B L E R W A Y KIMBERWICKE ST CL I F D E N D R ST I L L W A T E R C R E E K D R CO T T A G E P A R K L N H A N L E Y A V E TANZANITE DR DANUBE LN WO O D L A N D D R SH E R I D A N A V E GR A N I T E A V E NE W H O L L A N D D R R E D T W I G L N ROGERS WAY CA S P I A N A V E CATAMOUNT ST VAQ U E R O P K W Y JUNIPER ST B U C K R A K E A V E SUNSTONE ST MOONSTONE DR TH O R O U G H B R E D L N TROUT M E A D O W S R D 22ND AVE OAK ST BAXTER LN WATERS ST STEVENS ST S T O N E R I D G E D R 11 T H A V E BEALL ST MAIN S T 25TH A V E ME A G H E R A V E TSCHACHE LN HU N T E R S W A Y BABCOCK ST DA V I S L N BAXTER LN FL A N D E R S M I L L R D ANNIE ST 27 T H A V E ROSE ST GR A N I T E A V E 20 T H A V E OAK ST MAIN S T CATTAIL ST 19 T H A V E OAK STOAK ST ST U B B S L N 9T H A V E I N T E R S T A T E 9 0 H W Y 11 T H A V E STORY ST 11 T H A V E 23RD A V E CL I F D E N D R ANNIE ST BU C K R A K E A V E SW E E T G R A S S A V E INTE R S T A T E 9 0 H W Y DA V I S L N 19 T H A V E CATRON ST BAXTER LN DA V I S L N FE R G U S O N A V E DURSTON RD 11 T H A V E 11 T H A V E LILY DR INTER S T A T E 9 0 H W Y ROSE ST 19 T H A V E DA V I S L N 19T H A V E 19 T H A V E 19 T H A V E VALLE Y C E N T E R R D OAK ST BABCOCK ST INTE R S T A T E 9 0 H W Y B L A C K B I R D D R FE R G U S O N A V E 15 T H A V E DURSTON RD 11 T H A V E WARBLER WAY OAK ST 9T H A V E 15 T H A V E FL A T H E A D A V E 27 T H A V E KOCH ST DURSTON RD ANNIE ST OAK ST FO W L E R A V E I N T E R S T A T E 9 0 H W Y HIDDEN VALLEY RD 10 T H A V E HA N L E Y A V E BAXTE R L N 19 T H A V E WILL O W B R O O K 16 T H A V E V A L L E Y C E N T E R R D B O O T H I L L C T CASCADE ST CATRON ST DA V I S L N 15T H A V E DA V I S L N 17 T H A V E YE L L O W S T O N E A V E BABCOCK ST STORY ST 1 9 T H A V E PI N A V E OAK ST MI N E R A L A V E MAIN ST CATRON ST 27 T H A V E FRON T A G E R D 27 T H A V E 12 T H A V E KIMBERWICKE ST TH O M A S D R KOCH ST19 T H A V E DA V I S L N 15 T H A V E OAK ST 9T H A V E 19 T H A V E 25 T H A V E OAK ST OLIVER ST BAXTER LN HID D E N V A L L E Y R D 12 T H A V E FE N W A Y FE N W A Y DURSTON RD FL A N D E R S M I L L R D REE V E S R D D A V I S L N 12 T H A V E 15 T H A V E OAK ST TSCHACHE LN 14 T H A V E CATRON ST 10 T H A V E DA V I S L N TSCHACHE LN 15 T H A V E 19T H A V E SP R I N G H I L L R D 1 7 T H A V E 19 T H A V E 10 T H A V E ANN I E S T BAXTER LN 23 R D A V E KOCH ST HI D D E N V A L L E Y R D LILY DR BABCOCK ST TSCHACHE LN BAXTER LN 9T H A V E BAXTER LN LILY DR OAK ST 19 T H A V E 19T H A V E FRON T A G E R D 25 T H A V E OAK ST OAK ST 27 T H A V E 19 T H A V E MAIN ST GR A N I T E A V E OAK ST FO W L E R A V E 22 N D A V E 15 T H A V E 19 T H A V E CASCADE ST CATTAIL ST 9T H A V E DA V I S L N ROSE ST ANNIE ST OAK ST BABCOCK ST VILLARD ST 19 T H A V E ANNIE ST WE S T E R N D R VA L L E Y D R BAXTER LN OLD F A R M R D CATTAIL S T ROSE ST 27 T H A V E FRON T A G E R D BAXTER L N BABCOCK ST DA V I S L N 17 T H A V E BL A C K B I R D D R ANNIE ST 2 4 T H A V E BEALL ST GALLOWAY ST DURSTON RD INTERS T A T E 9 0 H W Y FRON T A G E R D WEST E R N D R 14 T H A V E LOLO WAY GR A N I T E A V E HA N L E Y A V E PO N D E R A A V E DA V I S L N ME A G H E R A V E MAIN S T CATTAIL S T ANNIE ST EQUESTRIAN LN DURSTON RD 20 T H A V E 1 9 T H A V E TE T O N A V E 19 T H A V E 19 T H A V E SA N D E R S A V E DURSTON RD I N T E R S T A T E 9 0 H W Y WESTLAKE RD BAXTER LN TE T O N A V E DA V I S L N KOCH ST 19 T H A V E 20 T H A V E VALL E Y C E N T E R R D FE R G U S O N A V E 5 7 8 34 6 922 20 1918 17 16 151210 14 4 6 2 3 9 5 7 13 8 1 Water Distribution System G!!Test Hydrant G F Flow Hydrant Fire Flow Test LocationsWithin the Northwest Pressure Zone ¯0 2,0005001,000 1,500 Feet ³Ú Pear St Pump Station ³Ú Knoll Pump Station UT Clearwell UT Hilltop Tank UT Lyman Tank UT Sourdough Tank #I Existing PRVPressure Zones GALLATIN KNOLL NORTHEAST NORTHWEST SOUTH WEST Advanced Engineering and Environmental Services, Inc. PRV OfflineDuring TestingPRV OfflineDuring Testing PRV OfflineDuring TestingPRV OfflineDuring TestingPRV OfflineDuring Testing PRV OfflineDuring TestingPRV OfflineDuring TestingPRV OfflineDuring Testing Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G FGF G F G F G F G F G F G!! G!! G!! G!! G!! G!!G!! G!! G!! #I #I #I (987) (1335)(1247) (1400) (1265) (1444) (1023) (1750)2347 12" DI 8" C I 8" DI 12 " C I 12" DI 8" DI 8" DI 8" D I 12" DI 12" DI 12 " D I 8" CI 12 " D I 12 " D I 12 " D I 8" D I 8" CI 8" CI 8" C I 8" DI 8" D I 11 T H A V E BAXTER L N PATRICK ST INTERSTATE 9 0 H W Y INTERSTAT E 9 0 H W Y PRV 3 PRV 4 PRV 16 PRV Location 4 PRV Setup Prior to Flow Testing Northwest Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 2347 None 4 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G F G F G F G F GF GF G F G F G F G F G F G!! G!! G!! G!! G!! G!!G!! G!! G!! #I (2460) (2491)(2471) (2460) (2411) (2402)(2490) (2471)(2451) (2453) (2301) (2287)(2275) (2263) (2259) (2247) (2235) (1287) (1279) (2431)(2451) (2490)(2480)(2440) (2411) (2420) (2431)(2401) (2402)(2420) (2401) (2491) (2480)(2440)(2402) (1123) (1129) (1203) (1209) (1215) (1225) (1301)(1304) (1218) (1214) (1208) (1204) (1128) (1124) 1023 1267 8" D I 10" DI 8" D I 10" DI 10" DI 8" D I 8" DI 8" D I 8 " D I 8" DI8" DI 8" DI 8" DI 8" D I 10" DI 8" D I 8" DI 8 " D I 8" D I 8" DI 8" DI 10" DI 8" DI 10" DI 8" D I 10" DI OAK ST 25 T H A V E DAWS DR WHEELER DR WO O D L A N D D R PRV 7 PRV Location 7 PRV Setup Prior to Flow Testing Northwest Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1267 1023 7 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G F G F G F GF G!! G!!G!! G!! G!! G!!G!! G!! G!! #I (506) (520) (707) (702) (706) (606) (709) (708) (514) (517) (521)(525) (513) (505) (509) (610) (2934)(2920) (2931)(2917) (2902) (2901) (2906) (2905) 1518 10" DI8" DI 8" PVC 10" DI 8" D I 8" D I 8" D I 8" D I 8" D I 8" D I 8" D I 8" DI 8" DI 8" D I 8" DI 8" DI 10" DI 8" DI DURSTON RD HU N T E R S W A Y OLIVER ST DOVE CT MI C H A E L G R O V E A V E PRV 9 PRV Location 9 PRV Setup Prior to Flow Testing Northwest Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1518 None 9 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G FGF G F GF G F G!! G!!G!! G!! G!! G!!G!! G!! G!! #I (508) (509) (512) (4073) (4058) (4195) (4087)(4061) (4084) (4092)(4086) 1523 1125 10" DI 12" DI 6" D I 8" DI 8" D I 8" D I 10" DI 10 " D I 12" DI 10 " D I 6" D I 12" DI12" DI 10 " D I 6" D I 8" D I DURSTON RD FE R G U S O N A V E CARBON ST MI N E R A L A V E PRV 12 PRV Location 12 PRV Setup Prior to Flow Testing Northwest Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1523 1125 12 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! #I (1425) 1344 1770 12 " D I 12" D I 12" D I 12" D I RED W I N G D R FRON T A G E R D PRV 14 PRV Location 14 PRV Setup Prior to Flow Testing Northwest Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1344 1770 14 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G!! G!!G!! G!! G!! G!!G!! G!! G!! #I#I (675) (506) (511) (515) (512) (508) (3452)(3464) (3477)(3465)(3453) 2335 8" D I 6" DI 10" DI6" DI 8" D I 10" DI6" DI 6" D I 6" D I 6" D I 8" D I 8" D I 6" DI 6" D I 6" D I 8" D I 8" DI 6" D I DURSTON RD HA N S O N S T BEAVERHEAD ST SH E R I D A N A V E SW E E T G R A S S A V E PRV 22 PRV 19 PRV Location 19 PRV Setup Prior to Flow Testing Northwest Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 2335 None 19 Fi r e F l o w Te s t i n g Fi e l d B o o k We s t Pr e s s u r e Zo n e Fl o w  Te s t i n g  Pr o t o c o l We s t  Pr e s s u r e  Zo n e • 3  ex i s t i n g  PR V  Va u l t s  (1 1 ,  12 ,  21 ) • Op e r a t i o n  of  th e  PR V  Va u l t s  wo u l d  be  se t  to  on l y  op e r a t e  th e  la r g e  (l a g )  PR V  to  ju s t  able  to  flow  when   de m a n d  re q u i r e s  ba s e d  on  fi r e  fl o w  te s t .  Di s a b l e  th e  le a d  PR V  in  ea c h  of  th e  3  PR V  vaults. Set  the  lag   PR V  in  ea c h  of  th e  3  PR V  v au l t s  to  fl o w  at  ap p r o x i m a t e l y  th e  sa m e  hy d r a u l i c  gr a d e  line. • In s t a l l  pr e s s u r e  re c o r d e r  on  a  do w n s t r e a m  hy d r a n t  at  ea c h  of  th e  3  PR V  Va u l t s  (1 1 ,  12, 21) • In s t a l l  pr e s s u r e  re c o r d e r s  on  a  up s t r e a m  hy d r a n t  of  ea c h  of  3  of  th e  PR V  Va u l t s  (1 1 ,  12, 21) • Pe rf o r m  5  fi r e  fl o w  te s t s  wi t h i n  th e  pr e s s u r e  zo n e . • Re t u r n  PR V s  in  al l  3  PR V  Va u l t s  ba c k  to  or i g i n a l  op e r a t i o n  st a t e  (1 1 ,  12 ,  21 ) . FL A N D E R S M I L L R D OAK ST FALLON ST COVER ST AU T O M O T I V E A V E CO T T O N W O O D R D CLASSICAL WAY BENEPE ST ALEXANDER ST PERRY ST BRENDEN ST RO S A W A Y HUFFINE LN BRISBIN ST FE R G U S O N A V E SHADOWGLEN DR LO X L E Y D R PO N D L I L Y D R BU L L F R O G D R MAYFLY ST SA X O N W A Y FO R B E S A V E GOLDEN GATE A V E ELMWO O D D R FIELD ST BROOKSIDE LN LO N G B O W L N RE S O R T D R BO A R D W A L K A V E S L O U G H C R E E K D R ST O N E F L Y D R FO R E S T G L E N D R TILTON ST B A X T E R C R E E K W A Y PIN E C R E E K D R BEMBRICK ST GLENWOOD DR BABCOCK ST RAVA L L I S T WATERS ST TOOLE ST TW I N L A K E S A V E JONI ST WI N N O W C I R TE A K W O O D D R MIN E R A L A V E FL A N D E R S C R E E K A V E E A G L E C R E E K D R AD V A N C E D R WE S T G A T E A V E KI M B A L L A V E COMPE T I T I O N D R PALISADE DR CASCADE ST RE D W O O D D R ANNIE ST AU T O P L A Z A D R MONROE ST CL I F D E N D R ST I L L W A T E R C R E E K D R HA N L E Y A V E EN E B O E A V E WA T E R L I L Y D R LAU R E L P K W Y MAY FLY ST VALLEY COMMONS DR ST A F F O R D A V E GLENELLEN DR M I L L C R E E K D R BR O A D W A T E R S T DURSTON RD OAK ST RO S A W A Y BABCOCK ST L A U R E L P K W Y DURSTON RD BABCOCK ST BEMBRICK ST FIELD ST FE R G U S O N A V E ST A F F O R D A V E HUFFINE LN DURSTON RD KIM B A L L A V E ST A F F O R D A V E FO R E S T G L E N D R WA T E R L I L Y D R FE R G U S O N A V E FE R G U S O N A V E CO T T O N W O O D R D SAXON WAY CLI F D E N D R LO X L E Y D R BABCOCK ST FALL O N S T H A N L E Y A V E RE S O R T D R HA N L E Y A V E H A N L E Y A V E L A U R E L P K W Y BABCOCK ST CO T T O N W O O D R D CLI F D E N D R MI N E R A L A V E FALLON ST CO T T O N W O O D R D LA U R E L P K W Y MAY FLY ST FE R G U S O N A V E GLENELLEN DR DURSTON RD GLENWOOD DR SAXON WAY FE R G U S O N A V E FE R G U S O N A V E LA U R E L P K W Y DURSTON RD CO T T O N W O O D R D WA T E R L I L Y D R KIM B A L L A V E ANNIE ST SA X O N W A Y CASCADE ST HUFFINE LN FL A N D E R S M I L L R D FE R G U S O N A V E SAXON WAY RE S O R T D R OAK ST TILTON ST FE R G U S O N A V E FE R G U S O N A V E DURSTON RD DURSTON RD BABCOCK ST KIM B A L L A V E SLO U G H C R E E K D R MIN E R A L A V E CO T T O N W O O D R D CL I F D E N D R FALLON ST CASCADE ST WATERS ST CO T T O N W O O D R D LO N G B O W L N HUFFINE LNHUFFINE LN HUFFINE LN CASCADE ST BABCOCK ST BABCOCK ST RE S O R T D R TW I N L A K E S A V E MONROE ST DURSTON RD LO N G B O W L N ANNIE ST FL A N D E R S M I L L R D LA U R E L P K W Y BABCOCK ST CO T T O N W O O D R D FO R E S T G L E N D R PO N D L I L Y D R KI M B A L L A V E H A N L E Y A V E 21 1210 11 11 13 12 10 14 Water Distribution System G!!Test Hydrant G F Flow Hydrant Fire Flow Test LocationsWithin the West Pressure Zone ¯0 2,0005001,000 1,500 Feet ³Ú Pear St Pump Station ³Ú Knoll Pump Station UT Clearwell UT Hilltop Tank UT Lyman Tank UT Sourdough Tank #I Existing PRVPressure Zones GALLATIN KNOLL NORTHEAST NORTHWEST SOUTH WEST Advanced Engineering and Environmental Services, Inc. Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G FGFGF G F G F G F G F GF GF GF G F G FGF G F G F G!!G!! G!! G!! G!!G!! #I #I #I (518) (407) (445) (509) (417) (481) (854) (374)(371) (388) (496) (482) (467)(464) (451)(450) (444)(439)(426)(419)(418) (468) (452) (438) (420) (383) (701) (409) (508) (504) (505) (319) (413) (501) (405) (416) (412) (408) (420) (404) (421) (417) (318) (326) (509)(512) (323) (500) (4225) (4030)(4074) (4076) (4037)(4045)(4067) (4046)(4088) (4199) (4205)(4217)(4219)(4225) (4204)(4208)(4216)(4226) (4206)(4212)(4218)(4222) (4203)(4209) (4215)(4223) (4227) (4045)(4073) (4058)(4195)(4383) (4087)(4061) (4084) (4092) (4062) (4033)(4049) (4086)(4038) (4046) (4071)(4091) (4310) 1126 112512" DI 8" D I 6" D I 10" DI 8" D I 8" DI 12" DI12" DI 10 " D I 10" DI 8" DI 10" DI 10 " D I 8" DI 10 " D I 8" DI 12" DI 8" DI8" DI 6" D I 8" DI 8" D I 8" D I 8" DI 12" DI 10 " D I 8" D I 8" D I 12" DI 10 " D I 8" D I 8" D I DURSTON RD FE R G U S O N A V E TOOLE ST KI M B A L L A V E MIN E R A L A V E TILTON ST FL A N D E R S M I L L R D FO R B E S A V E CARBON ST DIAMOND ST SUNSTONE ST PRV 10 PRV 12 PRV Location 10 PRV Setup Prior to Flow Testing West Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1126 1125 10 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G F G FGF G F G FGF G F GF G F G!!G!! G!! G!! G!!G!! #I (84) (76) (93) (87) (79) (98) (86) (20) (52) (80) (76) (44) (32) (26) (102) (236) (150) (137)(140) (4717) (4675) (4591)(4617) (4610)(4598) (4605)(4587) 2396 1131 8" DI 12 " D I 12 " D I 12" DI 12" DI 8" DI 12" DI 8" D I 8" D I 8" DI 8" D I 8" D I 12 " D I 8" DI 12" DI 12" DI 8" D I 8" D I 8" DI 8" DI 8" D I 8" D I 8" DI 8" DI 8" DI 8" DI 12" DI 8" D I 12 " D I BABCOCK ST CO T T O N W O O D R D ST A F F O R D A V E AU T O M O T I V E A V E ALEXANDER ST PRV 11 PRV Location 11 PRV Setup Prior to Flow Testing West Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1131 2396 11 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F GF G F G F G F G F G F G F G F G F G F G!!G!!G!!G!! G!!G!!#I (90) (75) (25)(80) (210) (370) (335) (260) (175) (244) (228) (279) (236)(243) (232) (195)(444)(201) (202) (536) (450) (301) 2424 17548" DI 6" DI 12" DI 10 " D I 8" DI 12 " D I 8" DI 8" DI 6" DI 8" D I 8" D I 8" DI 8" D I 6" DI 12" DI 6" DI12 " D I 12 " D I 8 " D I 8" DI 12 " D I 12 " D I 8" D I 12 " D I 12 " D I 8" DI 8" DI 8" D I 12 " D I 8" D I 8" DI 8" DI 8 " D I 8" DI 8" D I 8" D I 12 " D I 8" D I 8" D I 8" D I 12 " D I FALLON ST CO T T O N W O O D R D AU T O M O T I V E A V E AUTO PLAZA DR FIELD ST PRV 21 PRV Location 21 PRV Setup Prior to Flow Testing West Pressure Zone Flow Testing PRV Location: ___________ Hydrant Upstream of PRV: __________ Recorder ID: __________ Hydrant Downstream of PRV: __________ Recorder ID: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 2424 1754 21 Fi r e F l o w Te s t i n g Fi e l d B o o k No r t h e a s t Pr e s s u r e Zo n e Fl o w  Te s t i n g  Pr o t o c o l No r t h e a s t  Pr e s s u r e  Zo n e  an d  Ga l l a t i n  Pr e s s u r e  Zo n e • Re q u e s t  pu m p s  at  th e  Pe a r  St r e e t  Pu m p  St a t i o n  re m a i n  of f l i n e  du r i n g  te s t i n g . • Di s a b l e  By p a s s  fr o m  So u t h  Zo n e  to  No r t h e a s t  Zo n e  wi t h i n  Pe a r  St r e e t  Pu m p  St a t i o n . • Re q u e s t  PR V  Va u l t  3  be  pl a c e d  of f l i n e  du r i n g  te s t i n g  (r e q u e s t  cu r r e n t  PR V  se t t i n g s ) . • Re q u e s t  PR V  Va u l t s  4  an d  14  fe e d i n g  th e  No r t h e a s t  pr e s s u r e  zo n e  be  di s a b l e d  to  li m i t  flow  betw een   th e  No r t h e a s t  Zo n e  an d  No r t h w e s t  Zo n e  du r i n g  fl o w  te s t i n g . • Pe r f o r m  8  fi r e  fl o w  te s t s  wi t h i n  th e  pr e s s u r e  zo n e . • Ve r i f y  se t t i n g s  fo r  PR V  Va u l t  1  an d  PR V  Va u l t  2  an d  pe r f o r m  1  fi r e  fl o w  te s t  wi t h i n  Gallatin  Zone. • Re t u r n  Pe a r  St r e e t  Pu m p  St a t i o n  an d  PR V  Va u l t  3  ba c k  to  or i g i n a l  op e r a ti o n . • Re t u r n  PR V  Va u l t s  4  an d  14  ba c k  to  or i g i n a l  op e r a t i o n a l  st a t e . G FGF G F G F G F G F G F G F G F G F G F G F G FGF G F G F G!! G!! G!! G!! G!! G!! G!! G!! ³Ú UT #I #I #I #I #I #I#I G!! CED A R S T RED W I N G D R FRON T A G E R D BOH A R T L N BAXTER L N 15 T H A V E PE R K I N S P L BEAR P A W T R L BIG GULCH DR E V E R G R E E N D R WHEAT DR HA G G E R T Y L N ST O R Y M I L L R D 10 T H A V E B I R D I E D R VALL E Y R I D G E R D NIKLE S D R PEA R S T BU T T O N W O O D A V E LE A A V E AUG U S T A D R STONEG A T E D R MIDFIELD ST WHITETAIL RD PATRICK ST OLD FARM RD J E A N A L E I C T LIN D L E Y P L IN D U S T R I A L D R DE L L P L PA R C T ST ANDREWS DR BRYANT ST L ST INTERSTATE 9 0 H W Y 11 T H A V E CA R S O N P L G O L F W A Y FARM VIEW LN LONGHORN RD 9T H A V E LOOKFAR WAY JE S S I E W A Y 13 T H A V E 14 T H A V E RUTH THIEBAULT WAY PEACH ST QUINN DAVID L N BOGERT PL PA R A D I S E V I S T A R D GALLATIN PARK DR G O L D A V E 6T H A V E DAVIS ST KOCH ST BRIDGE R C A N Y O N R D MAUS LN HIG H L A N D B L V D CURTISS ST BR A D Y A V E BIRCH ST MA T H E S O N W A Y BOYLAN RD JUNIPER ST MAIDEN SPIRIT ST M C I L H A T T A N R D AVO C A D O S T FRIDLEY ST TR A C Y A V E MAIN ST 8TH AVE ED G E R L E Y L N DEER CREEK D R T W I N P O N D L N CY P R E S S A V E FR O N T S T GR A N D A V E BABCOCK ST OA K P A R K D R ID A A V E WIL L S O N A V E VA L H A L L A C T WA L L A C E A V E IVAN AVE TURNBERRY CT MENDENHALL ST BO N N E R L N TURTLE WAY ORANGE ST4T H A V E GRIFFIN DR OLIVE ST MA I D E N S T A R L N 5T H A V E BL A C K A V E ASPEN ST HEADLANDS DR CADDIE CT 1 2 T H A V E MO N T A N A A V E 7T H A V E STORY ST BOND ST SHORT ST CHU R N C R E E K D R HILLSIDE LN TAMARACK ST VILLARD ST MANDEVILLE LN LAMME ST RO U S E A V E CH U R C H A V E 3R D A V E PINNA C L E S T A R S T MA N L E Y R D DICKERSON ST R E D T W I G L N BRIDGER DR BEALL ST DURSTON RD BO Z E M A N A V E OAK ST ROCKY CREEK R D9T H A V E OAK ST 6T H A V E H I G H L A N D B L V D 7T H A V E BEALL ST CH U R C H A V E MAIN ST 10 T H A V E MAIN ST 8T H A V E STORY ST WI L L S O N A V E 7T H A V E RO U S E A V E S T O R Y M I L L R D BUTTONWOOD AVE BABCOCK ST 8T H A V E 8T H A V E BL A C K A V E 7T H A V E M A I N S T I N T E R S T A T E 9 0 H W Y 8T H A V E FRONTAGE RD BOYLAN RD BOHART L N FRONTAGE RD LAMME ST 7T H A V E 3R D A V E OLIVE ST AUG U S T A D R GR A N D A V E 10 T H A V E TR A C Y A V E 11 T H A V E BABCOCK ST CURTISS ST MA N L E Y R D 12 T H A V E 5T H A V E ASPEN ST 4T H A V E 11 T H A V E STORY ST MAIN ST 14 T H A V E INT E R S T A T E 9 0 H W Y 7T H A V E 11 T H A V E OLIVE ST 7T H A V E 15 T H A V E 7T H A V E WIL L S O N A V E BEALL ST ROCKY C R E E K R D ST O R Y M I L L R D BRIDGER DR BOYLAN RD GR A N D A V E L ST15 T H A V E OLIVE ST 14 T H A V E MENDENHALL ST 6T H A V E GR A N D A V E 11 T H A V E 7T H A V E S T O R Y M I L L R D INTERSTATE 9 0 H W Y VALLEY RIDGE RD KOCH ST BOYLAN RD DAVIS ST OAK ST GRIFFIN DR BIG GULCH DR 4T H A V E PEACH ST EVERGREEN D R FRONTAGE RD ID A A V E LAMME STBEALL ST 9T H A V E INTE R S T A T E 9 0 H W Y GRIFFIN DR BABCOCK ST ROC K Y C R E E K R D DE E R C R E E K D R LAMME ST 7T H A V E MAIN ST BL A C K A V E BEALL ST 7T H A V E MAIN ST 8T H A V E FR O N T S T BEALL ST QUIN N D A V I D L N 15 T H A V E 5T H A V E GRIFFIN DR TR A C Y A V E 9T H A V E 11 T H A V E 7T H A V E MO N T A N A A V E 7T H A V E 3R D A V E 9T H A V E RO U S E A V E JUNIPER ST RO U S E A V E INTERSTATE 9 0 H W Y INTERSTAT E 9 0 H W Y L ST GR A N D A V E 15 T H A V E OAK ST OAK ST PEACH ST BABCOCK ST MAIN ST MAIN ST STORY ST STONEGATE DR BOYLAN R D OAK ST GR A N D A V E BRIDGE R D R LOOKF A R W A Y 14 T H A V E BRIDGER DR OLD FARM RD BRIDGER DR 5T H A V E BAXTER L N SHORT ST GRIFFIN DR DEER CR E E K D R MAIN ST OLD F A R M R D 12 T H A V E LON G H O R N R D DURSTON RD 10 T H A V E 10 T H A V E MAIN ST BO Y L A N R D OLIVE ST MAIN ST OAK ST 11 T H A V E 15 T H A V E MA N L E Y R D 7T H A V E BIG GULCH D R 5T H A V E LOOK F A R W A Y 15 T H A V E RO C K Y C R E E K R D LAMME ST MC I L H A T T A N R D RO U S E A V E L ST L ST OLD FA R M R D L ST 12 T H A V E 5T H A V E 6T H A V E 4T H A V E QUINN DA V I D L N MAIN ST OAK ST KOCH ST15 T H A V E 14 T H A V E LAMME ST MCI L H A T T A N R D MCILHATTA N R D FRO N T S T R O U S E A V E GOLD AVE MA N L E Y R D L ST MCI L H A T T A N R D 12 1 34 20 16 14 18 1615 17 21 19 22 20 Water Distribution System G!!Test Hydrant G F Flow Hydrant Fire Flow Test LocationsWithin the Northeast Pressure Zone ¯0 2,0005001,000 1,500 Feet ³Ú Pear St Pump Station ³Ú Knoll Pump Station UT Clearwell UT Hilltop Tank UT Lyman Tank UT Sourdough Tank #I Existing PRVPressure Zones GALLATIN KNOLL NORTHEAST NORTHWEST SOUTH WEST Advanced Engineering and Environmental Services, Inc. PressureMonitoringLocation Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet GF G F G F G F G F G F G F G F G F G F G!! (1783) (1771) (1798) (1790) (1782) (1778) (1762)(1748)(1736)(1722)(1710) (1700) (1791) (1769) (1735)(1705) (2497) (1589)(1593) (1611) (1691) (1596)(1580) (1674) (1620)(1588)(1566) 2172 18" C I 8" DI 18" D I 8" DI 8" DI 18" DI 18" D I 8" DI 8" DI 8" DI 18" D I 8" DI 18" DI 18" D I 8" DI 18" DIBOYLAN RD NOR T H V I E W S T MEDICIN E W H E E L L N MAIDEN SPIRIT ST 1 Pressure Monitoring Setup Prior to Flow TestingNortheast Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 2172 1 Fi r e F l o w Te s t i n g Fi e l d B o o k So u t h Pr e s s u r e Zo n e Fl o w  Te s t i n g  Pr o t o c o l So u t h  Pr e s s u r e  Zo n e • Re q u e s t  pu m p s  at  th e  Pe a r  St r e e t  Pu m p  St a t i o n  re m a i n  of f l i n e  du r i n g  fl o w  te s t i n g . • In s t a l l  9  pr e s s u r e  re c o r d e r s  at  ke y  lo c a t i o n s  al o n g  tr u n k  wa t e r m a i n ( 1 0 ‐in  an d  la r g e r ) . • Pe r f o r m  52  fi r e  fl o w  te s t s  wi t h i n  th e  pr e s s u r e  zo n e . • Re t u r n  Pe a r  St r e e t  Pu m p  St a t i o n  to  or i g i n a l  op e r a t i o n  st a t e . Kn o l l  Pr e s s u r e  Zo n e • Ve r i f y  op e r a t i o n  of  Kn o l l  Pu m p  St a t i o n  fo r  fi r e  fl o w  te s t i n g . • Pe r f o r m  1  fi r e  fl o w  te s t  wi t h i n  th e  pr e s s u r e  zo n e . G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGFGFGF G FGF G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! ³Ú UT UT UT ³Ú #I #I #I #I#I #I #I #I #I #I #I #I #I #I #I #I #I #I #I #I #I #I FO W L E R L N RED W I N G D R CED A R S T BLACKWOOD RD BOH A R T L N WA T T S L N AR N I C A D R JOHNSON RD RAINBOW RD ABAGAIL RANCH RD PARK VIEW PL RED TAIL RANCH RDDRIFTWOOD DR HORSETAIL RD VA L L E Y D R ELLIS ST 21 S T A V E WILDFLOWER WAY FL A N D E R S M I L L R D TH O M A S D R 18 T H A V E 20TH A V E 16 T H A V E 15 T H A V E HALEY RD HEATHER LN 23 R D A V E SA C C O D R KAGY BLVD HOLLY DR WI L D A L N WINTE R G R E E N L N ASH DR LUCI L L E L N HYALITE VIEW DR B E N N E T T D R DA V I S L N E V E R G R E E N D R WHEAT DR HA G G E R T Y L N ST O R Y M I L L R D FALLON ST M C G E E D R HO F E R L N RIDGE TRL WIL L O W W A Y LILY DR BURKE ST 10 T H A V E B I R D I E D R BLUEBIRD LN 28 T H A V E 30 T H A V E 26 T H A V E MA Y A W A Y HA R P E R P U C K E T T R D PARK PL VA L L E Y R I D G E R D GOLDENSTEIN LN INTE R S T A T E 9 0 H W Y ROSE ST BU T T O N W O O D A V E LE A A V E AU G U S T A D R AR R O W L E A F H I L L S D R MIDFIELD ST SH A D O W C I R RI A T A R D N A S H R A N C H R D TERRENCE LOOP RD PALE T T E C T K N A A B D R E A S T W O O D D R JACK L E G L N YE R G E R D R P A I N T E D H I L L S R D OLD FARM RD H U N T E R S W A Y GREE K W A Y HAYRAKE LN JE A N A L E I C T LEXINGTON DR COVER ST SU N D A N C E D R BO Y D R D P R O F E S S I O N A L D R FE N W A Y VALLE Y C E N T E R R D IN D U S T R I A L D R CHERRY D R SPRUCE DR BOG A R T D R ANNIE ST DE L L P L A R A B I A N A V E TE T O N A V E TRIUMPH ST LANCE DR CO T T O N W O O D R D CLASSICAL WAY COOK CT BENEPE ST KAGY RD URS A S T S O L A R W A Y PA R C T ST ANDREWS DR PATTERSON RD S I M M E N T A L W A Y TA Y A B E S H O C K U P R D ALEXANDER ST PERRY ST BRYANT ST P A R K W A Y A V E L ST GRAF ST DAISY DR LIN D V I G D R RAWHIDE RDG GEBHARDT TRL M Y E R S L N C A N D Y L N FRANKLIN HILLS DR FO W L E R A V E FA R R I E R L N AN N E T T E P A R K D R DAWS DR PO N D E R A A V E TRIPLE TREE RD TA I L N VIR G I N I A D R ERIK DR GA L E C T RO S A W A Y HITCHING POST RD 11 T H A V E HUFFINE LN CA R S O N P L 24 T H A V E G O L F W A Y CATALYST ST RYAN DR CATKIN LN SA N D E R S A V E PEACE PIPE DR FE R G U S O N A V E FARM VIEW LN P O S T D R MONIDA ST 9T H A V E VIR G I N I A W A Y ST U B B S L N AL D E R C O U R T L N CATTAIL ST LL O Y D S T JAMES AVE JE S S I E W A Y MA X A V E 13 T H A V E 19TH AVE BRAJENKA LN WH I S P E R L N S O U T H V I E W R I D G E L N ACCOLA DR TROOP E R T R L TSCHACHE LNWINTER PARK ST MASON ST QUINN DAVID L N ALPINE WAY POTOSI ST DIS C O V E R Y D R HIL L C R E S T D R HID D E N V A L L E Y R D CH O U T E A U A V E BL A C K B I R D D R 25 T H A V E DENNISON LN G O L D A V E B U R A V E SP R I N G M E A D O W S D R D U L O H E R Y L N CATRON ST ST O C K M A N W A Y GIBSON DR 6T H A V E SHO E F E L T T R L SU M M E R V I E W L N DAVIS ST CAYUSE SPUR TRL EN T E R P R I S E B L V D BABCOCK ST CO M M E R C E W A Y HUFFMAN LN CUTTING ST BRIDGER C A N Y O N R D MA U S L N S T A R R I D G E R D LI M E S T O N E R D ST A F F A N S O N R D COBBLE C R E E K R D WILDROSE LN BO O T H I L L C T CAN A R Y L N HI G H L A N D B L V D FIELD ST BOYLAN RD BEALL ST LOLO WAY MCI L H A T T A N R D RE S O R T D R ICE POND RDTR A C Y A V E MAIN ST GA R D N E R P A R K D R FRO N T S T WIL L S O N A V E WA L L A C E A V E SU N L I G H T A V E OLIVER ST HILL ST 27 T H A V E VILLARD ST SA D D L E C R E E K R D 4T H A V E GRIFFIN DR 17 T H A V E SH A D O W D R OLIVE ST STUCKY RD 5T H A V E TW I N L A K E S A V E ROCKY CREE K R D BIG G U L C H D R KOCH ST 29 T H A V E COLLEGE ST 12 T H A V E 7T H A V E REE V E S R D STORY ST BOND ST GRANT ST ARNOLD ST DURSTON RD HILLSIDE LN FRON T A G E R D TAMARACK ST S O U R D O U G H R D MENDENHALL ST RO U S E A V E CH U R C H A V E SH E R I D A N A V E 3R D A V E MA N L E Y R D DICKERSON ST CA S P I A N A V E BRIDGE R D R NASH RD BIG E L O W R D RE D W O O D D R GARFIELD ST BO Z E M A N A V E 22ND AVE OAK ST BAXTER LN FAI R W A Y D R DA V I S L N 11 T H A V E TRIPLE TREE RD JOHNSON RD SH A D O W D R 15 T H A V E CATRON ST KAGY BLVD 19 T H A V E FE R G U S O N A V E 7T H A V E CO T T O N W O O D R D G R A F S T INTERSTATE 9 0 H W Y BAXTER LN IN T E R S T A T E 9 0 H W Y FRO N T S T 6T H A V E DA V I S L N FRON T A G E R D 3R D A V E 7T H A V E 7T H A V E TR I P L E T R E E R D 29 T H A V E BOYLAN RD MA N L E Y R D 19 T H A V E OAK ST NASH RD HIT C H I N G P O S T R D CO T T O N W O O D R D STUCKY RD GOLDENSTEIN LN OAK ST 7T H A V E 9T H A V E HUFFINE LN A B A G A I L R A N C H R D KAGY BLVD 15 T H A V E 5T H A V E L ST JOHNSON RD 19 T H A V E 3R D A V E 3R D A V E CO T T O N W O O D R D 4T H A V E L ST 3R D A V E OAK STOAK ST 19 T H A V E 4T H A V E MC G E E D R 3R D A V E MAIN ST GRAF ST FO W L E R L N G R A F S T 19 T H A V E 5T H A V E SO U R D O U G H R D BRIDGER DR KAGY BLVD 19 T H A V E GRAF ST PATTERSON RD CO T T O N W O O D R D SO U R D O U G H R D 19 T H A V E 27T H A V E 19 T H A V E MA N L E Y R D HAGGERTY LN 5T H A V E BIG GULCH DR 27 T H A V E MAIN ST VA L L E Y D R 6T H A V E BIG GULC H D R FL A N D E R S M I L L R D ST O R Y M I L L R D I N T E R S T A T E 9 0 H W Y J A C K L E G L N LIM E S T O N E R D CO T T O N W O O D R D FO W L E R L N L ST INTERSTATE 9 0 H W Y 3R D A V E 3RD A V E 22 N D A V E OAK ST NASH RD 23 R D A V E 6T H A V E MAIN ST BIG GULCH DR DA V I S L N 19 T H A V E BAXTER LN RO U S E A V E PATTERSON RD OAK ST TA Y A B E S H O C K U P R D BAXTER LN BOY L A N R D SIM M E N T A L W A Y 3R D A V E DA V I S L N TRIPLE TREE RD NASH RD TR A C Y A V E MC G E E D R 11 T H A V E CO T T O N W O O D R D G R A F S T CH U R C H A V E S O U R D O U G H R D TR O O P E R T R L STORY ST GRAF ST NASH RD FO W L E R L N PATTERSON RD ELLIS ST FO W L E R L N PAI N T E D H I L L S R D 19 T H A V E 19 T H A V E MAIN ST FALLON ST 7T H A V E MAIN ST NASH RD L ST 20 T H A V E FO W L E R L N ANNIE ST SO U R D O U G H R D TROO P E R T R L 3R D A V E 5 7 8 2 1 34 6 922 21 20 18 16 1210 11 14 56 67 57 70 40 59 31 62 71 68 58 47 69 41 65 26 42 73 51 34 1917 1513 60 39 75 32 52 25 43 37 36 3854 74 55 66 53 45 48 2364 35 46 44 72 28 63 2724 50 61 30 29 49 33 Water Distribution System G!!Test Hydrant G F Flow Hydrant Fire Flow Test LocationsWithin the South Pressure Zone ¯0 2,0005001,0001,500 Feet ³Ú Pear St Pump Station ³Ú Knoll Pump Station UT Clearwell UT Hilltop Tank UT Lyman Tank UT Sourdough Tank #I Existing PRVPressure Zones GALLATIN KNOLL NORTHEAST NORTHWEST SOUTH WEST Advanced Engineering and Environmental Services, Inc. #I #I #I #I#I #I #I #I #I #I #I #I #I #I #I #I #I #I #I #I #I #I G!! G!! G!! G!! G!! G!! G!! G!! G!! FO W L E R L N RED W I N G D R CED A R S T BLACKWOOD RD BOH A R T L N WA T T S L N AR N I C A D R JOHNSON RD RAINBOW RD ABAGAIL RANCH RD PARK VIEW PL RED TAIL RANCH RDDRIFTWOOD DR HORSETAIL RD VA L L E Y D R ELLIS ST 21 S T A V E WILDFLOWER WAY FL A N D E R S M I L L R D TH O M A S D R 18 T H A V E 20TH A V E 16 T H A V E 15 T H A V E HALEY RD PE R K I N S P L HEATHER LN 23 R D A V E SA C C O D R KAGY BLVD HOLLY DR WI L D A L N WINTE R G R E E N L N ASH DR LUCI L L E L N HYALITE VIEW DR B E N N E T T D R DA V I S L N E V E R G R E E N D R WHEAT DR HA G G E R T Y L N ST O R Y M I L L R D FALLON ST M C G E E D R HO F E R L N RIDGE TRL WIL L O W W A Y LILY DR BURKE ST 10 T H A V E B I R D I E D R BLUEBIRD LN 28 T H A V E 30 T H A V E 26 T H A V E MA Y A W A Y HA R P E R P U C K E T T R D PARK PL VA L L E Y R I D G E R D LAREDO DR GOLDENSTEIN LN PEA R S T OL D H I G H L A N D B L V D INTE R S T A T E 9 0 H W Y ROSE ST BU T T O N W O O D A V E LE A A V E AU G U S T A D R AR R O W L E A F H I L L S D R VICTORY ST MIDFIELD ST SH A D O W C I R RI A T A R D N A S H R A N C H R D CONCORD DR TERRENCE LOOP RD PALE T T E C T K N A A B D R E A S T W O O D D R JACK L E G L N YE R G E R D R P A I N T E D H I L L S R D OLD FARM RD H U N T E R S W A Y GREEK W A Y HAYRAKE LN CIRCLE DR JE A N A L E I C T LEXINGTON DR SW E E T G R A S S A V E COVER ST SU N D A N C E D R BO Y D R D P R O F E S S I O N A L D R FE N W A Y LI N D L E Y P L VALLE Y C E N T E R R D IN D U S T R I A L D R CHERRY D R SPRUCE DR BOG A R T D R ANNIE ST DE L L P L A R A B I A N A V E TE T O N A V E TRIUMPH ST LANCE DR CO T T O N W O O D R D CLASSICAL WAY COOK CT BENEPE ST KAGY RD URS A S T S O L A R W A Y PA R C T ST ANDREWS DR PATTERSON RD S I M M E N T A L W A Y TA Y A B E S H O C K U P R D ALEXANDER ST PERRY ST BRYANT ST P A R K W A Y A V E L ST GRAF ST DAISY DR LIN D V I G D R RAWHIDE RDG GEBHARDT TRL M Y E R S L N C A N D Y L N FRANKLIN HILLS DR FO W L E R A V E FA R R I E R L N SE C O R A V E ANNETTE PARK DR DAWS DR PO N D E R A A V E TRIPLE TREE RD TA I L N VIR G I N I A D R ERIK DR GA L E C T RO S A W A Y HITCHING POST RD 11 T H A V E HUFFINE LN LARIAT L O O P CA R S O N P L 24 T H A V E G O L F W A Y CATALYST ST RYAN DR CATKIN LN SA N D E R S A V E PEACE PIPE DR FE R G U S O N A V E FARM VIEW LN MONIDA ST MA D R O N A L N 9T H A V E VIR G I N I A W A Y ST U B B S L N AL D E R C O U R T L N CATTAIL ST LL O Y D S T JAMES AVE JE S S I E W A Y MA X A V E 13 T H A V E 19TH AVE 14 T H A V E BRAJENKA LN WH I S P E R L N S O U T H V I E W R I D G E L N ACCOLA DR PEACH ST TROOP E R T R L TSCHACHE LNWINTER PARK ST MASON ST QUINN DAVID L N ALPINE WAY POTOSI ST DIS C O V E R Y D R HIL L C R E S T D R HID D E N V A L L E Y R D CH O U T E A U A V E BL A C K B I R D D R 25 T H A V E DENNISON LN G O L D A V E DUDL E Y D R B U R A V E D U L O H E R Y L N CATRON ST ST O C K M A N W A Y GIBSON DR 6T H A V E SHO E F E L T T R L CHARLOT T E S T SU M M E R V I E W L N DAVIS ST CAYUSE SPUR TRL EN T E R P R I S E B L V D BABCOCK ST CO M M E R C E W A Y BRIDGER C A N Y O N R D MA U S L N S T A R R I D G E R D LI M E S T O N E R D ST A F F A N S O N R D COBBLE C R E E K R D WILDROSE LN BO O T H I L L C T CAN A R Y L N HI G H L A N D B L V D BOYLAN RD BEALL ST LOLO WAY MCI L H A T T A N R D RE S O R T D R ICE POND RD TR A C Y A V E MAIN ST8T H A V E GA R D N E R P A R K D R FRO N T S T GR A N D A V E SU N L I G H T A V E OLIVER ST HILL ST 27 T H A V E VILLARD ST KEN Y O N D R SA D D L E C R E E K R D 4T H A V E GRIFFIN DR 17 T H A V E SH A D O W D R OLIVE ST STUCKY RD 5T H A V E TW I N L A K E S A V E LARAMIE DR ROCKY CREE K R D BIG G U L C H D R KOCH ST 29 T H A V E COLLEGE ST LOYAL DR 12 T H A V E MO N T A N A A V E 7T H A V E REE V E S R D STORY ST BOND ST GRANT ST ARNOLD ST DURSTON RD HILLSIDE LN FRON T A G E R D TAMARACK ST H A N L E Y A V E S O U R D O U G H R D MENDENHALL ST HARRISON ST RO U S E A V E CH U R C H A V E W O O D L A N D D R SH E R I D A N A V E 3R D A V E MA N L E Y R D DICKERSON ST CA S P I A N A V E BRIDGE R D R NASH RD BIG E L O W R D RE D W O O D D R GARFIELD ST 22 N D A V E OAK ST BAXTER LN PATTERSON RD 5T H A V E INTERSTATE 9 0 H W Y KOCH ST STUCKY RD 3R D A V E 27 T H A V E CO T T O N W O O D R D MAIN ST MC G E E D R 3R D A V E CO T T O N W O O D R D FL A N D E R S M I L L R D OAK ST TROO P E R T R L BAXTE R L N 3R D A V E ANNIE ST GRAF ST DA V I S L N 9T H A V E 7T H A V E TR O O P E R T R L 3R D A V E BIG GULCH DR 3R D A V E 19 T H A V E 3R D A V E L ST 27T H A V E FALLON ST FO W L E R L N 19 T H A V E MA N L E Y R D 20 T H A V E 3R D A V E NASH RD 29 T H A V E BAXTER LN MAIN ST 5T H A V E 19 T H A V E CO T T O N W O O D R D 15 T H A V E KAGY BLVD BAXTE R L N 7T H A V E FO W L E R L N SO U R D O U G H R D TRIPLE TREE RD NASH RD BOYLAN RD TRIPLE TREE RD 2 4 T H A V E 8T H A V E BRIDGER DRDA V I S L N 7T H A V E FRON T A G E R D 19 T H A V E BAXTER LN 4T H A V E 27 T H A V E CATRON ST HIT C H I N G P O S T R D TR I P L E T R E E R D KOCH ST OAK ST INTE R S T A T E 9 0 H W Y GOLDENSTEIN LN 19 T H A V E 3R D A V E HUFFINE LN 15 T H A V E 7T H A V E VA L L E Y D R 3RD AVE BOHA R T L N LIM E S T O N E R D MA N L E Y R D ELLIS ST FO W L E R L N BAXTER LN PATTERSON RD FO W L E R L N NASH RD L ST 11 T H A V E MCG E E D R M C G E E D R FRONTAGE RD OAK ST FRO N T S T CO T T O N W O O D R D KAGY BLVD SO U R D O U G H R D SH A D O W D R BRIDGER DR 9T H A V E MAIN ST S O U R D O U G H R D GRAF S T DA V I S L N 5T H A V E L ST HAGGERTY LN G R A F S T OAK ST 11 T H A V E L ST 7T H A V E BOY L A N R D OAK ST G R A F S T 19 T H A V E BIG GULC H D R VALLEY RIDGE RD 6T H A V E 19 T H A V E 3R D A V E TA Y A B E S H O C K U P R D GR A F S T NASH RD MAIN ST JOHNSON RD A B A G A I L R A N C H R D 6T H A V E ST O R Y M I L L R D PAI N T E D H I L L S R D CO T T O N W O O D R D CH U R C H A V E 11 T H A V E PATTERSON RD CO T T O N W O O D R D OAK ST TE T O N A V E 19 T H A V E KAGY BLVD BABCOCK ST GRAF ST DA V I S L N FE R G U S O N A V E NASH RD 19 T H A V E TR A C Y A V E J A C K L E G L N BIG GULCH DR 19 T H A V E 19 T H A V E CO T T O N W O O D R D INTERSTATE 9 0 H W Y SIM M E N T A L W A Y OAK ST 15 T H A V E HUFFINE LN TR A C Y A V E 5 1 9 2 7 4 6 8 3 Water Distribution System G!!Pressure Monitoring Location Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing ¯0 5,0001,250 2,500 3,750 Feet ³Ú Pear St Pump Station ³Ú Knoll Pump Station UT Clearwell UT Hilltop Tank UT Lyman Tank UT Sourdough Tank #I Existing PRVPressure Zones GALLATIN KNOLL NORTHEAST NORTHWEST SOUTH WEST Advanced Engineering and Environmental Services, Inc. Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G!!G!!G!!G!!G!!G!!G!! G!! G!! (4330) (4310) 2525 18 " S T L 16" DI 24 " S T L 30" DI 24 " S T L 18" S T L 24 " S T L SO U R D O U G H R D TR O O P E R T R L GOLDENSTEIN LN 1 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 2525 1 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G FGF G F G F G F G F G!!G!!G!!G!!G!! G!! G!! G!! G!! (3494) (3090)(3004)(2964)(2948)(2926)(2918) (6029) (6045)(6061)(6075)(6089)(6101) 2107 12" DI 8" D I 8" DI 8" D I 8" D I 8" DI 8" D I 8" DI MEAH LN 31 S T A V E BLACKWOOD RD 2 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 2107 2 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G F G F G F G FGF G!! G!!G!!G!!G!! G!! G!! G!! G!! (911) (1704) (1630) (1621) (1619) (1640) (1620) (1614) (1602) (1727) (1625) (1721) (1715) (1701) (1716) (1722) (1804) (1810) 564 6" DI 20" DI 12 " D I 8" D I 8" D I 6" D I 20" DI 8" DI 2 0 " D I 12" D I 6 " D I 8" DI 8" D I 8" DI KE N Y O N D R 3 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 564 3 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G FGF G F G F G F G F G F G F G F GF GF G F G F GF G!! G!!G!! G!! G!! G!! G!! G!! G!! (17)(19) (20) (309)(309)(205) (1008) (1207) (1030) (1114) (1220) (1108) (1304) (1228) (1224) (1216) (1210) (1202) (1104) (1201) (1209) (1215) (1221) (1227) (1303)(1304) (1220) (1216) (1212) (1208) (1204) (1114) (1110) (1023) (1107) (1111) (1117) (1201) (1207) (1211) (1215) (1219) (1305)(1308) (1216) (1212) (1208) (1204) (1116) (1100) (1109) (1203) (1215) (1207) (1211)(1219) (1220) (1217) (1221) (1305) (1021) 290 6" C I 24 " C C P 14 " S T L 14" CI 18 " S T L 8" CI 12" CI 6" C I 12" CI 6" C I 6" C I 6" C I 6" C I 6" C I 6" C I 14" CI 14" CI14" CI 18 " S T L 14" CI 24 " C C P 14" CI BL A C K A V E GARFIELD ST BO Z E M A N A V E MO N T A N A A V E TRACY AVE 4 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 290 4 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F GF G F G F G F G F G F G F G F G F G F G F G F G!! G!!G!! G!! G!! G!! G!! G!! G!! 490 10 " D I 8" DI 24 " D I 12" CI 12 " D I 14 " D I 12" CI 8" DI 12 " C I 12 " C I 19 T H A V E GARFIELD ST BR A N E G A N C T PAISLEY CT 5 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 490 5 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G FGF GF G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! (8) (6) (7) (15)(15) (36)(37) (15) (27) (29) (10) (11) (20) (10) (16) (210) (202) (202) (106) (120) (120) (226) (121) (225) (211) (220) (132) (121) (117) (113) (137) (111) (221) (217) (209) (108) (110) (301) (116) (120)(120) (210) (214) (218) (226) (206) (210) (214) (224) (226) (302)(301) (227) (221) (219) (215) (209) (205) (120) (222) (304) (204) (303) 121 8" CI 8" D I 6" CI 12" CI 14 " C I 10" CI 4" C I 8" C I 8" C I 14 " C I 8" C I 8" C I 8" D I 6" C I 8" C I 6" CI6" CI 6" CI 8" D I 6" CI 12" CI 8" C I 8" D I 6" CI 12" CI 6" CI 8" D I 8" C I 14 " C I OLIVE ST BL A C K A V E TR A C Y A V E BABCOCK ST BO Z E M A N A V E CURTISS ST 6 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 121 6 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet GF G F G F G F G F G F GF GF G FGF G FGF G!! G!!G!! G!! G!! G!! G!! G!! G!! #I (210) (244) (228)(228) (232) (444) (450) 1754 12" DI 8" DI 6" DI 12 " D I 12 " D I 8" DI 12 " D I 12" DI 12 " D I 8" DI 8" D I 8" D I 8" D I 12 " D I 12 " D I 8" DI 8" DI 8" DI 12 " D I 12 " D I 8" D I 6" DI FALLON ST CO T T O N W O O D R D FIELD ST AUTO PLAZA DR FIELD ST 7 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1754 7 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet GF G F GF G F G F G F G F G F G F G F G F G F GF G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! #I (1289) (1351) (1281) (2051)(2047) (1459) (1433)(2063) (1281) (1336) (1262)(2104)(2108)(2112) (2109)(2105)(2115) 1025 8" DI 12 " D I 10" DI 14" DI 8 " D I 8" DI 10" DI 8" DI 10" DI 8" D I 14 " D I 8" D I 12 " D I 8 " D I 8" D I 10" DI 14" DI OAK ST 19 T H A V E ST O N E R I D G E D R MAPLEWOOD ST SU N N Y S I D E T R L 19 T H A V E PRV 6 8 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1025 8 Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F GF G!! G!! G!! G!! G!! G!! G!! G!! G!! (411) (415) (1224) (1203) (1227) (1251) (1214) (1104) 1887 16" CI 8" DI 12 " D I 10 " C I 0" C I 6" CI 16 " C I 6" C I 12" DI 12" DI 16" CI 16 " C I 16 " C I RO U S E A V E OAK ST BIRCH STMO N T A N A A V E 9 Pressure Monitoring Setup Prior to Flow TestingSouth Pressure Zone Flow Testing Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: __________ Pressure at Setup: __________ Installed - Date: __________ Time: __________ Removed - Date: __________ Time: __________ Installed/Removed By: _________ 1887 9 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGFGF G F G F G F G F G F G F G F G F G FGF G F G F G F G F G FGF G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! ³Ú UT UT UT ³Ú #I #I #I #I#I #I #I #I #I #I#I #I #I #I #I #I #I#I #I #I #I #I FO W L E R L N RED W I N G D R CED A R S T BLACKWOOD RD BOH A R T L N WA T T S L N LA K E R D AR N I C A D R JAGAR LN JOHNSON RD RAINBOW RD ABAGAIL RANCH RD PARK VIEW PL RED TAIL RANCH RD LAKE D R AR E T E D R DRIFTWOOD DR HORSETAIL RD RO C K Y R D VA L L E Y D R S P R I N G H I L L R D ELLIS ST 21 S T A V E WILDFLOWER WAY FL A N D E R S M I L L R D OVERLOO K L N TH O M A S D R 18 T H A V E 20 T H A V E 16 T H A V E 15 T H A V E HEATHER LN 23 R D A V E BE A R P A W T R L KAGY BLVD HOLLY DR WIL D A L N WINT E R G R E E N L N ASH DR HARPER PUCKETT RD LUCI L L E L N STONEGATE DR B E N N E T T D R DA V I S L N MA R Y R D E V E R G R E E N D R HA G G E R T Y L N S T O R Y M I L L R D FALLON ST M C G E E D R HO F E R L N DO A N E R D RIDGE TRL WIL L O W W A Y LILY DR BURKE ST 10 T H A V E B I R D I E D R BLUEBIRD LN 28 T H A V E 30 T H A V E 26 T H A V E MA Y A W A Y GALLA T I N D R BO R D E R L N PARK PL VA L L E Y R I D G E R D GOLDENSTEIN LN NIKLES D R INTE R S T A T E 9 0 H W Y VA N D Y K E R D BU T T O N W O O D A V E FRON T A G E R D LE A A V E AR R O W L E A F H I L L S D R HID D E N V A L L E Y R D MIDFIELD ST WHITETAIL RD R I A T A R D PALETTE C T K N A A B D R VISTA L N E A S T W O O D D R JACK L E G L N YE R G E R D R PA I N T E D H I L L S R D KERMO D I S T OLD FARM RD H U N T E R S W A Y GRE E K W A Y JE A N A L E I C T COVER ST SU N D A N C E D R BO Y D R D FE N W A Y CL O N I N G E R L N IN D U S T R I A L D R VIR G I N I A D R CHERRY D R SIM M O N S L N NELSON RD BOG A R T D R ANNIE ST DE L L P L A R A B I A N A V E TE T O N A V E TRIUMPH ST LANCE DR CO T T O N W O O D R D BENEPE ST SAN D Y C R E E K L N BIG GULCH DR KAGY RD URS A S T S O L A R W A Y ST ANDREWS DR PATTERSON RD S I M M E N T A L W A Y TA Y A B E S H O C K U P R D BRYANT ST P A R K W A Y A V E L ST GRAF ST DAISY DR G O L D D U S T T R L L A U N F A L L N LIN D V I G D R RAWHIDE RDG CIRQUE D R SYPES CANYON RD M Y E R S L N C A N D Y L N FRANKLIN HILLS DR LITTLE GULLY RUN FO W L E R A V E A N N E T T E P A R K D R CO U L E E D R PO N D E R A A V E TRIPLE TREE RD ERIK DR GA L E C T RO S A W A Y H I T C H I N G P O S T R D 11 T H A V E HUFFINE LN HA R M O N W A Y CA R S O N P L 24 T H A V E G O L F W A Y RED FOX LN CATALYST ST CATKIN LN FE R G U S O N A V E BR I G G S R D FARM VIEW LN LON G H O R N R D MONIDA ST 9T H A V E VIR G I N I A W A Y ST U B B S L N CR E S T D R CATTAIL ST LLO Y D S T JAMES AVE LOOKFA R W A Y 13 T H A V E 1 9 T H A V E SPRINGHILL LN BRAJENKA LN ACCOLA DR TR O O P E R T R L TSCHACHE LNWINTER PARK ST PANORAMA DR QUINN DAVID L N ALPINE WAY BU L L F R O G D R DI S C O V E R Y D R HI L L C R E S T D R CH O U T E A U A V E B U R A V E CATRON ST 6T H A V E DAVIS ST EN T E R P R I S E B L V D CA M P B E L L R D BABCOCK ST SA X O N W A Y S T A R R I D G E R D ST A F F A N S O N R D WILDROSE LN RAI N R O P E R D R B O O T H I L L C T CAN A R Y L N HIG H L A N D B L V D BOYLAN RD BEALL ST LOLO WAY MCI L H A T T A N R D RE S O R T D R ICE POND RDTR A C Y A V E ROBIN LN MAIN ST GA R D N E R P A R K D R FRO N T S T WES T E R N D R HILL ST 27 T H A V E SA D D L E C R E E K R D 4T H A V E GRIFFIN DR OLIVE ST STUCKY RD VALLEY CENTER RD 5T H A V E BL A C K A V E ROCKY CREEK R D RUSTY DUCK LN KOCH ST 29 T H A V E KNOLLS DR 1 2 T H A V E MO N T A N A A V E AAJKER CREEK RD 7T H A V E R E E V E S R D B A X T E R D R RIVERSIDE D R BRIDGER CANYON RD C H U R N C R E E K D R ARNOLD ST HILLSIDE LN SA C A J A W E A P E A K D R S O U R D O U G H R D LA U R E L P K W Y RO U S E A V E CH U R C H A V E DANUBE LN SH E R I D A N A V E 3R D A V E AUTUMN RIDGE RD MA N L E Y R D CA S P I A N A V E BRIDGER DR BIG E L O W R D RE D W O O D D R 22 N D A V E OAK ST BAXTER LN FAI R W A Y D R DURSTON RD RUSTY NAIL RD 19 T H A V E BIG GULCH DR 7T H A V E DA V I S L N INTER S T A T E 9 0 H W Y 10 T H A V E G R A F S T MAIN ST S O U R D O U G H R D R O U S E A V E MC G E E D R FRON T A G E R D INTERSTAT E 9 0 H W Y 3R D A V E 19 T H A V E 27 T H A V E INTERSTATE 9 0 H W Y 23 R D A V E L ST 19 T H A V E MC G E E D R CO T T O N W O O D R D 1 9 T H A V E FRON T A G E R D 20 T H A V E L ST 19 T H A V E KAGY BLVD 15 T H A V E 19 T H A V E G R A F S T CO T T O N W O O D R D NE L S O N R D L ST 7T H A V E 27T H A V E STAR RIDGE RD KAGY BLVD 15 T H A V E ELLIS ST 3R D A V E SP R I N G H I L L R D VALLEY RIDGE RD MA R Y R D N E L S O N R D DA V I S L N OAK ST 19 T H A V E 19 T H A V E A B A G A I L R A N C H R D BLACKWOOD RD L ST GRAF ST SO U R D O U G H R D PATTERSON RD JOHNSON RD 3RD AVE MAIN ST HI D D E N V A L L E Y R D 6T H A V E MCI L H A T T A N R D KAGY BLVD INTER S T A T E 9 0 H W Y TR A C Y A V E ST U B B S L N 19 T H A V E J A C K L E G L N MC I L H A T T A N R D FO W L E R L N IN T E R S T A T E 9 0 H W Y NE L S O N R D STUCKY RD 3R D A V E FO W L E R L N HA R P E R P U C K E T T R D TRIPLE TREE RD OAK ST BLACKWOOD RD HAGGERTY LN NE L S O N R D BOYL A N R D FE R G U S O N A V E 15 T H A V E LA K E D R GOLDENSTEIN LN TA Y A B E S H O C K U P R D MAIN ST BAXTER LN TR I P L E T R E E R D OAK ST 7T H A V E HUFFINE LN MA N L E Y R D 19 T H A V E OAK ST LAKE D R VALL E Y C E N T E R R D 3R D A V E PATTERSON RD DA V I S L N BOYLAN RD FO W L E R L N 15 T H A V E MA N L E Y R D STUCKY RD PATTERSON RD 2 4 T H A V E BAXTER LN HUFFINE LN MAIN ST BAXTER LN FRON T A G E R D CO T T O N W O O D R D STOR Y M I L L R D 19 T H A V E 19 T H A V E CH U R C H A V E 19 T H A V E JOHNSON RD FRON T A G E R D ST O R Y M I L L R D SYPES CAN Y O N R D 3 1 9 5 7 52 18 38 5 5 7 1 11 16 5 6 57 7 0 4039 1 0 59 31 6 2 1312 68 17 19 41 44 26 63 73 34 4 6 2 8 66 54 4267 60 75 14 32 20 15 25 43 58 37 47 36 69 74 53 45 21 22 48 2364 35 46 72 65 28 2724 50 61 30 29 49 51 33 Water Distribution System G!!Test Hydrant G F Flow Hydrant Fire Flow Test LocationsShown with Pressure Zones ¯0 10.25 0.5 0.75 Miles ³Ú Pear St Pump Station ³Ú Knoll Pump Station UT Clearwell UT Hilltop Tank UT Lyman Tank UT Sourdough Tank #I Existing PRVPressure Zones GALLATIN KNOLL NORTHEAST NORTHWEST SOUTH WEST Advanced Engineering and Environmental Services, Inc. Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 1 1897 1896 1898RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 1 G F G F G F G F G FGF G F G F G F G F G F G F G FGF G F G F G FGF G F G F G F G!! G!!G!!1897 (3241) (3225) (3329) (3263) (3366) (3091) (3020) (3191) (3177) (3153) (3131)(3105) (3097)(3085) (3067) (3043)(3025) (3449) (3401) (3412) (3403) (3198) (3117)(3139) (3153)(3175) (3389) (3371) (3365) (3359) (3347) (3331) (3321) (3313) (3388) (3372) (3340) (3332) (3326) (3314) (3303) (3317) (3321) (3337) (3345) (3357) (3383) (3395)(3398) (3376) (3370) (3352) (3336) (3330) (3318) (3306) (3172) (3150)(3138)(3116)(3086)(3062) (3044) (3385) (3361) (3351) (3325) (3263) (3241) (3114) (3150)(3131) (3109)(3095) (3139) (3153) (3171) (3167)(3143) (3129)(3083)(3065)(3037) (3196) (3158) (3124) (3072) (3173) (3141) (3123) (3081) (3182) (3168) (3136) (3076) (3168) (3144) (3126) (3072) 1898 1896 8" D I 12" DI 8" D I 8" DI 8" D I 8" D I 12" DI 8" DI 8" D I 8" D I 8" D I 12" DI 8" DI 8" DI8" DI 8" D I 8" DI 8" D I 8" DI 8" D I 12 " D I 8" D I 8" D I 8" DI8" DI 12 " D I 8" DI FE N W A Y DA V I S L N CATAMOUNT ST BL A C K B I R D D R SO R A W A Y SUNDEW LN CATRON ST FO X T A I L S T CATRON ST BL A C K B I R D D R G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 12:44 PM 12:53 PM JDH 1240 109.8 psi 90.2 psi 1241 1,518 gpm 1,484 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 2 2358 2368 2359RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 2 G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F GF G F G F G F G FGF G F G FGFGF G!! G!! G!!2358 (2912)(2928)(2954)(2976)(2990) (2913)(2925)(2963)(2987) (2988) (2964)(2932)(2908)(1744) (1720) (1704) (1698) (1690) (1664) (3270) (3275) (3120) (1641) (1680) (1662) (1648) (1622) (1604) (1636) (1631) (1553) (1296) (1345) (1425)(1479) (1485) (1473) (1467)(1461)(1449)(1443)(1437) (1431) (1419) (1547) (1455) (1594) (1578) (1552) (1544) (1520) (1482) (1464) (1456) (1438) (1293)(1235)(1234) 2368 2 3 5 9 8" DI 12" DI 10" DI 8 " D I 8 " D I 8" D I 8" D I 8" D I 8" DI 8" D I 12" DI 8" DI 12" DI 8 " D I 10" DI 8 " D I 8" DI 8" D I 8 " D I 12" DI 8" D I 12" DI 8 " D I 8" D I 8" DI 8" DI 8" DI 8" D I 8" D I 8" D I 8" DI 8" D I 8 " D I 8" DI 8" DI 8 " D I 8" D I 8 " D I 8" D I 12" DI OAK ST H U N T E R S W A Y WI N D W A R D A V E BREEZE LN WINTER PARK ST WESTWIND WAY ME D I A N G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 10:52 AM 11:02 AM JDH 1240 75.7 psi 60.4 psi 1241 1,230 gpm 1,167 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 3 2064 2058 2063RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 3 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!!2064 (1760)(1840) (1976) (1880) (1750) (1731) (1805) (1640) (1540) (1620)(1600) 2063 2058 12" DI 10" DI 8" DI 12" DI 12" DI 12 " D I 10" DI 12" DI 10 " D I 8" D I 12" DI 10" DI 10 " D I 8" DI 12 " D I 12 " D I 10 " D I 12 " D I 12" DI 12 " D I 10" DI BAXTER LN SA C C O D R TSCHACHE LN G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 11:14 AM 11:25 AM JDH 1240 81.9 psi 62.8 psi 1241 1,235 gpm 1,215 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 4 1726 1745 1727RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 4 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! 1 7 2 6 (11) (195) (255) (2255) (2245) 1745 1 7 2 7 8" DI 1 2 " D I 6" DI 1 2 " D I 8" D I 8" D I 12" DI 12" DI 12" DI 8" D I 8" DI SP R I N G H I L L R D 19TH AVE BOGA R T D R ES T E S L N CAMPBELL RD MOSS BRIDGE RD FRON T A G E R D VENTU R E W A Y REEVES RD G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 1:23 PM 1:33 PM JDH 1240 125.4 psi 106.6 psi 1241 1,615 gpm 1,418 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 5 1604 1601 1609RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 5 G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G!!G!!G!!1604 (4200) (4102) (2316) (2310) (2162) (3876)(3910)(3930) (3944)(3924) (2224)(2212) (2200) (2180) (2156) (2272)(2250) (2236) (3882) (3810) (2146)(2124) (2331) (2317)(2326)(2321) (2310) (2302) (2311)(2322)(2314)(2308)(2315) (2309) (3943)(3921)(3915)(3813)(3825)(3847)(3885) (2286) (3686) (3900) (3864) (2283) (2257) (2235) (2205) (2175) (2143) (2115)(2122) (2168) (2214) (2246) (2274) (2292)(2287) (2263) (2239) (2215) (4002) (2129) (2286) (2274) (2266) (2252) (2244) (2232) (2214) (2202) (3965) (3971) (3977) (3957)(3945)(3929) (3992) (3984) (3974) (3968) (3962)(3958)(3934) (3876)(3880) (3886)(3892)(3908) (3911)(3897) (3883) (3879) (3896)(3906)(3922)(3938)(3950)(3984)(3988)(3996) (3987)(3959)(3947) (3929)(3921)(3905)(3891) (2282) (4182) (4121)(4173) (4166)(4106)(2281) (2275) (2259) (2247) (2241) (2229) (2211) (2123) (2297) (2167) (2141) 1609 1601 8" D I 10" DI 12" DI 10" DI 12 " D I 8" DI 12" DI 10" DI 10" DI8" DI 8" D I 8" DI 8" D I 8" DI 12" DI 8" D I 12" DI 12 " D I 8" D I 12 " D I 8" DI 8" D I 8" DI 12 " D I 12" DI 12 " D I 8" DI 8" DI 8" D I 8" DI 8" DI 10" DI 8" D I 10" DI 12 " D I 12" DI EQUESTRIAN LN BOSAL ST BAXTER LN LA S S O A V E FE R G U S O N A V E RIATA R D GA L L A T I N G R E E N B L V D BAXTER LN G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 12:05 PM 12:14 PM JDH 1240 90.7 psi 71.7 psi 1241 1,325 gpm 1,169 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 6 2515 2514 2516RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 6 G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!!2515(2447) (2532) (2453) (4693)(4649)(4611)(4601)(4579)(4555)(4527)(4519)(4505) (2538) (2522) (2489) (2483) (2479) (2482) (2472) (2462)(2461) (2445) (2427)(2422) (2407)(2400) (2390) (2360) (2320) (2492) (2480) (2491) (2479) (2470)(2469) (2452)(2451) (2439)(2438) (2418)(2423) (2402) (4365) (2481) (2467) (2455) (2441) (2429) (2415) (2387) (2359) (2329)(4509) (4508) (4525) (4524)(4544) (4545)(4557) (4554)(4576) (4577)(4589) (4590) (4609) (4610) (4615) (4626) (4669) (4665) (4659) (2310) (2284) (2268) (2401) (4624)(4608)(4584)(4570)(4552)(4546)(4526)(4508) (2490) (2488) (2476) (2458) (2444) (2426) (2404) (2497) (2493) (2481) (2463) (2447) (2421) (2405) (2389) (2363) (2319) 2 5 1 6 2514 8" D I 12" DI 8" DI 8" D I 12 " D I 8" D I 8" D I 8 " D I 8" DI 8" DI8" DI 8" D I 8" DI 8" DI 8" DI 8" DI 8 " D I 8 " D I 8" D I 8" D I 8 " D I 8" DI 8" DI 8" D I 8" DI 8" D I 8" D I 8" DI8" DI 8" D I EQUESTRIAN LN KIMBERWICKE ST AN D A L U S I A N A V E HA R P E R P U C K E T T R D F A R R I E R L N TH O R O U G H B R E D L N A R A B I A N A V E DA N U B E L N G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 12:22 PM 12:30 PM JDH 1240 88.4 psi 61.0 psi 1241 1,287 gpm 1,246 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 7 1510 1822 1513RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 7 G FGF G F G F G F G F G F G F G F G FGF G F G FGF G F G F G F G F G F G FGF G F G F G F G F G F G F GF G F G F G!! G!! G!! G!! #I 1 5 1 0 (983) (965) (941) (923) (972) (954) (936) (985) (963) (945) (970) (958) (934) (983) (965) (949) (709) (713) (708) (3198) (1008) (1009)(1014) (1013) (2923) (2936)(3016)(3024)(3032)(3048)(3056)(3074)(3086)(3116)(3102)(3124)(3138)(3154)(3176)(3190)(3260) (3242) (3226) (3263) (3241) (3225) (3250) (3232) (3214) (3186) (3164) (3148) (3138) (3134) (3122) (3114)(3106) (3193) (3173)(3155)(3143) (3127)(3119)(3103)(3097)(3063)(3045)(3021)(3007)(2991)(2959)(2927) (3088)(3072)(3056)(3030)(3018)(2976)(2934)(2912) (2988)(2960)(2942)(2926) (2931)(2953)(2975)(2991) (2996)(3014)(3038)(3056)(3072)(3092) (3011)(3021)(3045)(3067)(3081) (3104)(3116)(3120)(3132)(3146)(3158)(3172)(3194) (3113)(3119)(3125)(3137)(3151)(3163)(3189)(3199) (3202)(3214)(3252) (3209)(3221)(3243) (3108) (3155) (3143) (3251) (3260) (3242)(3226) (3235)(3213) (3190) (3176)(3162) (3150) (3144) (3132)(3124) (3197) (3185)(3169)(3155) (3147)(3139)(3127) (3119) (3098)(3086)(3064)(3040)(3022) (3006) (3093)(3071)(3053)(3037)(3015) (2984) (2987) (3067)(3083)(3131)(3165)(3117) (3107) (1012) (2905) (2903) (2907)(2903) (2906) (2902) (3250)(3228)(3210)(3194)(3182)(3168) (3156)(3144) (3130) (3118) (3108) (3080) (3064) (3046) (3032)(3016)(3000)(2976)(2962)(2948)(2934)(2920) (3253)(3233)(3213)(3191)(3179)(3051)(3035)(3019)(3003)(2973)(2959)(2945)(2931) (1008) (2917) (2908) (2907) (2904) (2901) (2900) (2918) (2910) (2921)(2917)(2913)(2909) (2922) 1822 1513 8" DI 10" DI 6" DI 1 2 " D I 8" D I 8" D I 10" DI 8 " D I 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI10" DI 8" D I 6" DI 8 " D I 8" DI 8" DI 8" DI 8 " D I 8" DI 8" DI 8" D I 8" D I 8 " D I 10" DI 8" D I 8" DI 8" DI 8" DI 8" DI 8" D I 8" DI 10" DI10" DI 8" DI 8" DI 8" DI 8" D I 8" DI 8" DI 8" D I 8" DI 8" DI 8" DI 8" DI 8" DI 8" D I 10" DI LILY DR ROSE ST ANNIE ST OLIVER ST FARMALL ST DURSTON RD NE W H O L L A N D D R SP R I N G B R O O K A V E HA R M O N W A Y PRV 15 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 10:37 AM 10:47 AM JDH 1240 61.7 psi 46.0 psi 1241 1,083 gpm 1,049 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 8 2290 2355 2289RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 8 G F G F G F G F G F G FGF G FGF G F G F G FGF G F G F G F G FGF G FGFGF G F G F G F G F G F G F G F G!!G!!G!!2290 (890) (894) (888) (884) (878) (872) (1160) (4067)(4049)(4039)(4027) (4068)(4050)(4038) (4026) (4065)(4057)(4043)(4025)(4013) (4070)(4052)(4038)(4024)(4016) (4002) (4063)(4055)(4041)(4027)(4013)(4001) (1186) (1158) (1136) (1100) (1090) (1086) (1072) (1030) (1284) (1232) (1188) (1164) (1136) (1108) (1098) (1076) (1032) (4064)(4040) (4020) (4061)(4041)(4019) (4060)(4052)(4038)(4026)(4016) (4018) (3890)(3888)(3874) (3893)(3887)(3879) (3888)(3872) (1146) (1122) (1187) (1175) (1163) (1151) (1133) (1115) (1107) (1101) (3821)(3815)(3811) (3814) (3810) (1110) (3814) (3841) (3837)(3833)(3825) (1298) (1171) 2 3 5 5 2289 8" DI 10 " D I 8" D I 10 " D I 8" D I 8" DI 10 " D I 8" DI8" DI 8" D I 8" DI 10 " D I 8" D I 8" D I 8" DI 8" DI 10 " D I 8" DI 8" D I 10 " D I 8" DI 8" DI 8 " D I 8" DI 8" D I 8" DI 8" DI 8" D I 8" DI 10 " D I 8" DI 8" DI 8" DI 8" D I 10 " D I 8" DI 8" DI OAK ST ANNIE ST RENOVA LN AG A T E A V E FE R G U S O N A V E B U R A V E TANZANITE DR OPAL ST JA R D I N E A V E MOONSTONE DR LADUKE ST FE R G U S O N A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 10:20 AM 10:27 AM JDH 1240 67.4 psi 57.7 psi 1241 1,212 gpm 1,195 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 9 1167 1772 2181RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 9 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!!#I 1167 (5889) (3204) (6195) (2305) (6059) (6139) (2055) (2515) (4500) (2505) 177 2 21 8 1 12" DI 1 0 " D I 8" D I 4" DI 12" DI 8" DI 12" DI 8 " D I 8" DI 1 2 " D I 12 " D I 1 2 " D I 12" D I 8" DI 8" DI 8" DI 12" DI 8" DI 12" DI 8 " D I 8" DI 8" DI 12 " D I 1 2 " D I 12" D I 12 " D I 1 2 " D I 12" DI 12" DI 8" D I 1 2 " D I 12" DI 8 " D I 8" DI 8" DI 12" DI VA L L E Y C E N T E R R D CATRON ST 19T H A V E INT E R S T A T E 9 0 H W Y CATAMOUNT ST FRON T A G E R D INT E R S T A T E 9 0 H W Y PRV 5 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 1:03 PM 1:11 PM JDH 1240 112.5 psi 97.7 psi 1241 1,569 gpm 1,552 gpm 201250 NORTHWEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 10 2411 2410 2412RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 10 G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G FGF G F G F G F G F G F GF GF G!! G!! G!!2411 (48) (395)(390) (383)(382)(374)(375)(368)(361) (357)(350) (349)(342) (335)(326) (321)(318) (309)(302) (288) (242)(243) (209)(200) (175) (158)(153) (142)(145) (130)(133) (114)(111) (106)(105) (176) (289) (271)(270) (286) (276) (244) (204) (170) (148) (136) (128) (110) (102) (287) (285) (269) (247) (205) (246) (210) (180)(177) (159) (152)(147) (140)(135) (118)(113) (104)(101) (393)(381)(377) (369) (355)(347)(333) (325)(303) (350) (230) (235) (203) (181) (163) (151) (143) (120)(115) (107) (5349) (5025)(5057)(5079)(5095)(5119)(5163)(5191)(5350)(5002) (5151) (5151) 2412 2410 8" D I 12" DI 8" DI 8" D I 8" DI8" DI 8" D I 8" DI8" DI 8" DI 8" D I 12" DI 8" DI 8" D I12" DI 8" D I 8" D I 8" DI 8" DI 8" D I 8" DI 8" D I 8" D I 8" D I 8" DI8" DI 12" DI12" DI12" DI 8" DI 8" DI 8" DI 8" DI 8" D I 8" DI 8" D I 8" DI 8" DI 8" D I 8" D I 12" DI WA T E R L I L Y D R MAY FLY ST FALLON ST ST O N E F L Y D R DRAGON FLY ST BABCOCK ST BU L L F R O G D R MAYFLY ST BABCOCK ST G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 4:23 PM 4:32 PM JDH 1240 66.1 psi 60.2 psi 1241 1,201 gpm 1,233 gpm 201250 WEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 11 1701 1700 1703RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 11 G F G F G F G F G F G F G F G F G F G F G F G FGFGF G F G F G F G F G F G F G F G F G FGFGFGF G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 170 1 (815) (789) (836) (692) (867) (659) (677) (637) (774) (646) (870) (763) (825) (835) (877)(859) (852) (712) (756) (711) (738) (725) (623) (769) (883) (843)(856) (872) (836) (824) (885) (861) (847) (823) (787) (765) (743) (727) (719) (776) (758) (734) (718) (706) (747) (818) (726) (618) (611) (4525) (4817) (4721) (4662)(4684) (4563)(4541) (4716) (4841) (4833) (4825) (4809) (4659) (4511) (4657)(4675) (4556)(4532)(4518) (4535)(4529) (4726)(4714)(4688)(4662)(4646)(4634)(4626)(4618)(4612)(4582)(4558) (4727)(4709)(4691)(4633) (4648)(4626) (4615)(4603)(4579)(4555) (4520)(4526) (4523)(4511) (4608)(4582)(4568)(4546) (4534) 1700 1703 8" DI 12" DI10" DI 6" DI 8" D I 8" DI 8" DI8" DI 8" D I 8" D I 8" DI 8" D I 8" DI 12" DI 8" D I 8" DI 8" DI 8 " D I 8" DI8" DI 8 " D I 8" D I 12" DI 8" D I 12" DI 8" DI 12" DI 8" D I 8 " D I 8" D I 8" DI 8" D I 8" D I 8" DI 8" DI 8" D I DURSTON RD GLENWOOD DR LO X L E Y D R LAU R E L P K W Y SHADOWGLEN DR LO N G B O W L N FO R E S T G L E N D R WE S T G A T E A V E ETHAN WAY LAU R E L P K W Y G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 5:16 PM 5:29 PM JDH 1240 84.6 psi 72.8 psi 1241 1,353 gpm 1,250 gpm 201250 WEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 12 1979 1980 1978RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 12 G F G F G F G F G F G F G F G F G F G F G FGFGFGF G F G F G F G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 197 9 (963) (993)(996) (970)(979) (993) (971) (989)(984) (966)(5426)(5438)(5496)(5482) (1193) (5454) (5625) (1037) (1096)(1094) (1112)(1120)(1124) (1141) (1118) (1132) (5673) (1169)(1168) (1098) (5521) (5653) (1191) (1113) (1087) (1188) (1148) (1084) (1026) (1123) (1081) (1017) (1190) (1070) (1038) (1012) (5713)(5739)(5757)(5785)(1235) (1205) (1197) (1167) (1133) (1121) (1093) (1067) (1033) (1009)(1015) (5463)(5435)(5411) (5423)(5447)(5459)(5471) (5485) (5519) 1980 1 9 7 8 8" D I 10" DI 10" DI 8" DI 8" DI 8" DI 8" D I 8 " D I 8" DI 8 " D I 8" DI 8" D I 8" D I 8" D I 8" D I 10" DI 8" DI 8" DI 8" D I 8" DI 8" D I 8" DI 8" D I 8 " D I 8" DI 8" DI 8" DI 8" DI 10" DI OAK ST SAXON WAY GLENELLEN DR FO R E S T G L E N D R LA U R E L P K W Y LO N G B O W L N LA U R E L P K W Y G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 5:38 PM 5:47 PM JDH 1240 95.3 psi 76.0 psi 1241 1,350 gpm 1,335 gpm 201250 WEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 13 2013 2004 2014RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 13 G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 2013 (897) (881) (859) (896) (890)(882) (876)(862) (903) (899) (885) (879) (855) (837) (996)(982)(974)(968)(952)(944)(932)(924)(912) (908) (993)(985) (979) (959)(947)(933)(927)(919)(907) (998)(986) (972)(960) (948)(930) (918)(904) (890) (886) (872) (858) (993)(981)(969) (959)(945) (929)(917)(900) (1067) (1024) (1098)(1090)(1086)(1078)(1066)(1052)(1046) (1018)(1006) (4879)(1107)(4785) (4737) (4865) (1153) (1093)(1089) (1085) (1043)(1025)(1017)(1005) (1268) (1210) (1096)(1080) (1076)(1068)(1052)(1036) (1020)(1008) (1095)(1087) (1079)(1065)(1043) (1027)(1019)(1007) 2 0 0 4 8" D I 12 " D I 10" DI 6" D I 8" DI 8 " D I 8" D I 8" D I 8" DI 8" DI 8" DI 8" DI 12 " D I 8" D I 8" D I 8" D I 10" DI 8" DI 8" DI 8" D I 8" DI 8" DI 10" DI 10" DI 8" DI 10" DI 8" DI 8" D I 12 " D I 8" DI CO T T O N W O O D R D TW I N L A K E S A V E OAK ST ANNIE ST 2014 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 4:58 PM 5:08 PM JDH 1240 90.2 psi 85.1 psi 1241 1,435 gpm 1,340 gpm 201250 WEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 14 2140 2137 2141RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 14 G F G F G F G FGF G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!! 2140 (294) (490) (482) (466)(452) (440) (430) (420)(414)(410) (390) (374) (358) (274) (266) (450) (332) (480) (496) (502) (510) (518) (536) (542) (550) (560) (564) (578) (598)(593) (577) (561) (549) (529) (503) (497) (475) (451) (433)(434) (490) (510) (530)(531) (523) (501) (495) (483) (471) (463) (457) (449) (437) (425) (419) (407) (498) (474) (448) (426) (402) (419) (405) (357) (335) (277) (247) (397) (375) (353) (337) (315) (416) (386) (364) (348) (322) (274) (258) (283) (265) (247) (368) (254) (225) (213) (601)(4415) (4673) (4615) (4635) (4645) (4643) (4659) (4665) (4689)(4418)(4444) (4411) (4421)(4435) (4412)(4422)(4464)(4516)(4562) (4413)(4467)(4521)(4567) (4560)(4518)(4468)(4426)(4414)(4570) (4575) (4559)(4517)(4461)(4423) (4572)(4534) (4486)(4448) (4569)(4547)(4525)(4445)(4421) (4574)(4558)(4534)(4450)(4436) (4579) (4313)(4307) (4651) (4383) 2141 2137 12" DI 8" DI8" CI 8" D I 12" DI 8" D I 8" D I 8" DI 8" DI 8" D I 8" DI 8" D I 8" D I 8" D I 12 " D I 8" DI 12 " D I 8" DI 8" DI 12 " D I 8" DI 8" D I 8" DI 12" DI 1 2 " D I 8" D I 8" DI 8" D I 8" D I 12 " D I 12" DI12" DI 8 " D I 12 " D I 8" D I 8" D I 8" D I 8" DI 8 " D I 8" D I 8" D I 8" D I 8 " D I 8" DI 8" DI 8" D I CLIF D E N D R DURSTON RD CO T T O N W O O D R D ST A F F O R D A V E WATERS ST BEMBRICK ST PERRY ST BRISBIN ST CASCAD E S T EN E B O E A V E CLASSICAL WAY G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/28/2015 4:40 PM 4:48 PM JDH 1240 73.7 psi 72.5 psi 1241 1,342 gpm 1,365 gpm 201250 WEST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 15 1861 1863 1862RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 15 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F GF G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 186 1 (9) (99) (680) (705)(107) (851) (104) (108)(707) (100) (630) (123) (107)(101) (503) (103) (115) (705) (103) (112)(109) (105) (621) (707) (2325) (2413)(2415) (2313) (2417) (2411) (2409) (2407) (2403) (1045) (2317) (2324) (2401) (1054)(1058) (1063)(1059)(1053) (2108) (2405) (1050)(1050)(1050) (1064) (1050)(1050)(1050) (2104) (2124) (1050) (1050)(1050) (1050) (1050) (1055) (1050)(1050) (1050)(1050) (2112) (1056)(1050)(1050) (1050) (2125) (1062) (1057)(1061) (2124) 1863 1862 8" D I 12" DI 6" D I 8" DI 8" DI 12" DI 8" D I 6" D I 8" D I 6" DI 8" D I 12" DI 12" DI 8" DI 6" D I 12" DI 8" DI 8" DI 8 " D I 8" DI 6" DI 8 " D I 8" DI 8" DI 8 " D I 8 " D I 8" DI 8" DI 8 " D I 8" DI 8" DI BRIDGE R D R BI R D I E D R BOYLAN RD RO U S E A V E BR I D G E R C E N T E R D R ED G E R L E Y L N BRIDGER VI E W T R A I L E R C O U R T T R P K G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 9:52 AM 10:08 AM JDH 1240 137.8 psi 86.1 psi 1241 1,441 gpm 1,426 gpm 201250 NORTHEAST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 16 2150 2151 2149RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 16 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G FGFGFGFG!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 2150 (1788) (1780) (1772) (1795) (1789) (1783) (1771) (1763) (1762) (1759) (1758)(1752) (1751)(1743) (1740) (2210) (2106) (1798) (1790) (1782)(1778)(1762) (1791) (1769) (2563) (2525) (2485) (2457) (2449) (2200) (2212) (2226)(2234)(2251) (2277) (2283)(2278) (2262)(2230) (2245) (2271) (2260) 2151 2149 8" DI 8" D I 8" DI 8" DI 8" D I 8" D I 8" DI 8" D I 8" DI 8" DI 8" D I 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" D I 8" DI 8" DI 8" DI 8" DI 8" DI 8" D I 8" DI 8" DI 8 " D I 8" D I 8" D I 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" D I BRIDGER DR HEADLANDS DR MIDF I E L D S T BOYLAN RD BRIDGER CANYON RD G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 10:54 AM 11:08 AM JDH 1240 110.3 psi 94.8 psi 1241 1,528 gpm 1,524 gpm 201250 NORTHEAST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 17 1061 1062 1060RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 17 G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 1061 (998)(938) (902) (578)(556) (523)(557)(579)(645) (903)(939)(973) (972) (611)(485) (522)(644)(610) (3101) (3203) (3201) (3129) (3123) (3107) (3105) (3207) (3223) (3122) (3106) (3131) (3128) (3209) (3111) (3116) (3215) (3210) (3110) (3119) (3213) (3115) (3104) (3219) (3217) (3227) (3124) (3103) (3205) (3114) (3133) (3121) (3117) (3214)(3211) (3221) (3208) (3126) (3125) (3216) (3225) (3118) (3120) (3204) (3212) (3127) (3109) (3133) (3112) 1 0 6 2 106 0 8" D I 8" D I 8" D I 8" D I 8" DI 8" DI 8" D I 8" DI 8" DI 8" D I 8" D I 8" DI 8" DI 8" D I 8" DI 8" DI 8" DI M C I L H A T T A N R D AUG U S T A D R ST ANDREWS DR ST ANDREWS DR G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 10:16 AM 10:27 AM JDH 1240 143.8 psi 93.8 psi 1241 1,571 gpm 1,540 gpm 201250 NORTHEAST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 18 622 2497 624RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 18 G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FG!! G!! G!!622 (507)(505) (404) (416)(400)(418) (408) (509) (605) (610) (700) (516) (412) (604) (701) (517) (516) (414) (411) (602) (701) (1800) (1404) (1190) (1606) (1628) (1401) (1416) (1602) (1612) (1606) (1525)(1520)(1515)(1502) (1408) (1403) (1407) (1413) (1410) 624 24974" C I 8" DI 18" C I 12" DI10" DI 6" DI 4" D I 6" C I 12" DI 6" DI10" DI 18" C I 12 " D I 4" C I 12 " D I 8 " D I 1 2 " D I 8" D I 12" DI 8" DI 8" DI 8" DI 12 " D I 6" DI 18" C I 8" D I 12" DI 12 " D I 18" C I 8" D I RO U S E A V E GOLD AVE BOND ST INTERSTATE 9 0 H W Y BRYANT ST INTERSTATE 9 0 H W Y G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 9:29 AM 9:42 AM JDH 1240 124.3 psi 109.2 psi 1241 1,674 gpm 1,693 gpm 201250 NORTHEAST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 19 645 646 644RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 19 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 645 (133) (811) (421) (467) (443) (619) (737)(725)(319) (100) (805) (2304) (2308) (2304) (2314) (2105) (2239) (2104) (2222) (2201) (2217) (2430)(2430) (2320) (2203) (2777) (2511) (2323) (2311) (2306)(2310) (2308) (2312) (2105) (2107) (2275) (2400) (2360) (2215) 644 646 6" D I 8" D I 12 " D I 8" D I 6" DI6" DI 6" D I 6" DI 8" D I 6" D I 6" D I 8" D I 8" D I 6" D I 8" D I 6" D I 8" D I 8" D I 6" D I 8" D I 6" DI 8" D I 8" D I 6" D I 7T H A V E MA U S L N FL O R A L N OLD BUFFALO TRL R E D W I N G D R F R O N T A G E R D 7T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 9:05 AM 9:18 AM JDH 1240 123.7 psi 81.9 psi 1241 1,483 gpm 1,448 gpm 201250 NORTHEAST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 20 1939 1940 919RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 20 GF G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G FGFGF G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 193 9 (2413) (1625) (2565) (1220) (1353)(1337)(1317) (1374)(1362)(1348)(2494)(1268)(1244)(1226) (1362) (1334)(1318)(1306) (1253)(1225)(1179)(1163)(1145)(1131)(1115)(1107) (2563) (2545) (2527) (2584) (2558) (2526) (2512) (2595) (2571)(2563)(2547)(2535)(2523)(2517)(2505) (2592)(2586) (2574)(2562) (2556)(2542)(2530)(2516) (2512)(2508) (2599) (2579) (2567) (2549) (2537) (2525) (2511) (2503) (2500)(2501) (2404) (2412) (2420) (2403) (1002) (1002) (1002)(1002) (1002) (1002) (1002) (2520)(2519)(2518) (2516) (2517) (2515) (2513) (2507) (2503) (2513) (2511) (2416) (2510) (2407) (2514) (2401) (1075) (2408) (2410) (2506) (2509) (2505) (2411) (1233) (1069) (2506)(2504) (2502) (2514) (2512) (2510) (2508) 9 1 9 1940 8" DI 10 " D I 6" D I 8 " D I 8" D I 8" D I 8" DI 6" D I 8" DI 8" DI 8" DI 8" DI 8" D I 8" D I 8" DI 8" DI 10 " D I 8" DI 6" D I 8" DI 8" DI 8" D I 8" D I 8" DI 8" DI 8 " D I 8" D I 8 " D I 8" DI 8 " D I 8" DI ST O R Y M I L L R D BOYLAN RD PINNACLE STAR ST PA R C T WE E P I N G R O C K L N PU T T E R C T BOYLAN RD G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 10:37 AM 10:48 AM JDH 1240 127.4 psi 113.1 psi 1241 1,596 gpm 1,682 gpm 201250 NORTHEAST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 21 651 650 652RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 21 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 651 (811) (619) (800) (618) (737)(725) (817) (620) (711) (828)(822) (623) (810) (712)(800) (805) (805) (2304) (2308) (2314) (2239) (2104) (2886) (2007) (2201) (2217) (2000) (2320) (1225) (2020) (2010) (2311) (2015)(2020) (2107) (2275) 650 652 646 1 2 " D I 8" D I 6" DI 8" D I 8" D I 8" D I 12" DI 12" DI 12 " D I 12" DI 6" D I 8" DI 12" DI 8" DI 8" DI8" D I 8" D I 12 " D I 8" D I 8" DI 8" D I 12 " D I 6" DI 8" D I 12 " D I 8" D I 8" D I 8" D I 6" D I 7T H A V E WHEAT DR MANDEVILLE LN FL O R A L N INTERSTATE 9 0 H W Y BAXTER L N NIKLES DR OLD BUFFALO TRL MEDIAN 7T H A V E INTERSTATE 9 0 H W Y G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 8:16 AM 8:24 AM JDH 1240 123.3 psi 89.1 psi 1241 1,508 gpm 1,419 gpm 201250 NORTHEAST Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 22 1212 1213 1211RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 22 G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! #I #I 1212 (392)(384) (791) (920) (800) (279) (257)(235)(213)(780) (555) (815) (395)(387)(381)(375)(369)(365)(359) (350) (338) (332) (322) (316) (310) (304) (301) (376)(370) (366) (362) (341) (333) (325) (309) (317) (342) (346) (2485) (2430)(2430) (2430) (2400) 121 1 1213 8" DI 10 " D I 10 " D I 8" DI 8" D I 8" D I 8" D I 8" DI 8" DI 10 " D I 8" DI 8" D I 1 0 " D I 8" D I 8" DI 10 " D I 8" DI 10 " D I MA N L E Y R D F R O N T A G E R D R E D W I N G D R GALLATIN PARK DR 7T H A V E TURTLE WAY PRV 2 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 8:38 AM 8:56 AM JDH 1240 76.4 psi 65.1 psi 1241 1,228 gpm 1,250 gpm 201250 GALLATIN Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 23 216 217 114RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 23 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G!!G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!!G!!G!!G!! G!! G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 216 (5) (8) (21) (16) (23)(22) (16) (18)(15) (19) (22) (213) (209) (606) (611) (628) (216) (211) (801) (200) (108) (220) (209) (122) (920) (612) (620) (109)(109) (901) (710) (119) (613) (120) (901) (821) (718) (821) (616) (213) (707) (904) (119) (107) (911) (701)(711) (703) (203) (216) (719)(717)(715) (122) (116) (110) (719) (611) (610)(614) (613) (612) (118) (622) (621) (810) (809)(805) (205) (209) (213)(214)(210) (823)(815) (816)(122) (116) (102) (116) (112) (120) (817) (815) (208) (811) (915) (105)(101) (105) (115) (119) (214) (208) (204) (109) (116)(115) (119) (205) (904)(910) (909)(901)(203) (211) (207) (908) (101) (105) (109) (115) (119) (123) (151)(123) (115) (115) (107) (920) (921)(917) (916) (924) (116) (120) (126) (207) (201)(201) (915) (914)(204) (208) (123) (212) (113) (902) (819)(815) (812)(818) (114) (120) (126) (204) (212) (910)(914) (907) (901) (908) (209) (205) (201)(816) (809)(123) (119) (113) (109) (103)(808) (811)(807)(803) (824) (209) (205) (203)(202) (206) (210) (615) (619) (209) (113) (123)(715)(126) (122) (116) (720)(716)(622)(618)(612)(608) (101)(708) (922) (210) (206) (919) (918)(120) (116) (112) (921) (714)(202) (206) (210) (603)(607)(617)(619) (113) (703) (720) (712)(708) (119) (702)(620)(612) (125) (1104)(1110) (1007) (1015) (1016) (1016) (1102)(1002) (1120) (1120) (1120) (1006) (1120) (1120) (1120) (1120) 114217 6" C I 4" CI 8" C I 8" D I 4" DI 6" CI 6" C I 8" DI 6" C I 6" C I 6" C I 8" D I 6" C I 4" C I 6" CI 6" C I 6" C I 6" CI 8" D I 6" CI 6" CI 6" CI 6" CI 6" CI 8" DI 6" C I 8" D I 6" CI 6" C I 6" CI 6" CI 8" C I 6" CI 6" C I 8" D I 6" CI 6" C I 6" CI 8" C I 6" CI 8" D I 8" C I 8" C I 6" CI 8" DI 6" C I 6" CI 8" DI 6" CI6" CI 6" C I 4" C I 8" D I 6" C I 6" CI 6" CI MAIN ST 11 T H A V E OLIVE ST BEALL ST LAMME ST BABCOCK ST 9T H A V E 7T H A V E 8T H A V E 10 T H A V E MENDENHALL ST 8T H A V E 8T H A V E 10 T H A V E 9T H A V E 7T H A V E 7T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 7:32 AM 7:47 AM JDH 1240 129.9 psi 119.9 psi 1241 1,720 gpm 1,610 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 24 1242 1249 737RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 24 G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G FGF G FGF G FGF G F G F G F G F G FGF G F G F G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! #I #I #I #I 1242 (880) (876)(870)(866) (860) (856) (518) (407) (445) (509) (417) (481) (368) (850) (769) (755) (743) (731) (810) (822) (772) (760) (742) (738) (719) (721) (739) (757) (763) (771) (789) (811) (821) (740) (374)(371) (388) (496) (482) (464) (450) (444) (426) (418) (383) (837) (853) (861) (840) (868) (365) (726) (640) (668) (774) (798) (816) (701) (834) (325) (511) (315)(316) (320) (510) (409) (507) (414) (406) (508) (504)(506)(505) (514) (324) (319) (502) (413) (317) (415) (503) (425) (501) (400) (515) (418) (424) (401) (321) (314) (407) (419) (405) (416) (412) (408) (420) (404) (421) (417) (507) (315) (321) (407) (411) (415) (507) (511) (515) (315) (407) (411) (415) (505) (507) (511) (515)(514) (510) (506) (504) (416) (410) (406) (404) (314) (402) (314)(315) (407) (411) (415) (503) (511) (515)(514) (510) (506) (502) (414) (410) (406) (402) (314) (503) (318) (326) (509)(512) (323) (500) (4030) (4030)(4074) (4076) (3898)(3890)(3878)(3864)(3838)(3822)(3804) (4022)(4046)(4088) (3889)(3879)(3855)(3821) (3874)(3862) (3865)(3875) (4199) (4204) (4203) (3883) (3857) (3813) (3888)(3874)(3852)(3816) (4045) (4028) (4073) (4058)(4195) (4087)(4061) (4084) (4092) (4062) (4033)(4049) (4086)(4038) (4033) (4046) (4025)(4071)(4091) (3805) (3930) (3935) (3920)(3722)(3910) (3905) (3820) 7371249 8" D I 6" D I 4" D I 10" DI 12" DI 6" D I 6" D I 6" DI 8" DI 8" D I 6" D I 8" DI 6" DI 10 " D I 6" D I 8" D I 12" DI12" DI 10 " D I 8" D I 8" DI 6" DI 10" DI 8" D I 6" D I 6" D I 10 " D I 8" D I 8" DI 8" DI 8" DI 8" DI 8" D I 8" D I 8" DI8" DI8" DI 8" D I 10 " D I 8" D I 6" DI 12" DI 8" D I 8" D I 12" DI 8" D I 8" D I 8" D I 6" DI8" DI 10 " D I 8" D I 8" D I 6" D I TOOLE ST DURSTON RD SA N D E R S A V E FE R G U S O N A V E YE L L O W S T O N E A V E TE T O N A V E KI M B A L L A V E MIN E R A L A V E FL A T H E A D A V E JA R D I N E A V E POTOSI ST CARBON ST DIAMOND ST TILTON ST CORWIN ST SUNSTONE ST PIPESTONE ST PRV 18PRV 12 PRV 13 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 4:00 PM 4:12 PM JDH 1240 144.5 psi 130.4 psi 1251 1,845 gpm 1,834 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 25 1850 2508 1849RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 25 G F G F G F G F G F G F G F G F G FGF G F G FGF G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!!G!!G!!G!! G!! G!!G!!G!!G!!G!! G!! G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 185 0 (8) (5) (21)(25) (35) (41) (43)(56) (46) (25) (55) (87) (29) (19) (46) (24)(24) (30) (47) (31)(30) (46) (261)(258) (225) (357) (311)(282) (251) (240) (216)(275) (253) (262) (224)(215) (321) (308)(301) (347) (451) (407) (389) (360) (397) (339) (332)(332) (312) (284) (246) (210) (369) (323) (303) (251) (205) (272) (308) (236) (204) (317) (265) (223) (209) (423)(413)(403) (387) (354)(343) (475) (433) (462) (438) (386) (176) (214) (246) (266) (207) (233) (275) (322) (194) (156) (118) (101) (125) (169) (4493)(4239) (4204) (4351) (4221)(4209)(4175)(4297)(4283)(4263)(4247) (4277)(4281) (4533)(4517)(4479)(4463)(4447)(4431) (4307)(4301) 25081849 8 " D I 12" DI 12" DI 8" DI 8 " D I 8" D I 8" D I 8" DI 8" D I 8" D I 8" D I 8" D I 12" DI 8" DI 8" D I 8" D I 8" DI 8" DI 8 " D I 8" DI 8" DI 8" DI 8" DI 8" DI 12" DI 8" DI 12" DI 8" D I 12" D I 8 " D I 12" DI 8" D I 8" D I 8" DI 8" DI 8" DI 12" DI12" DI 8" D I 8" D I 8" DI 12" DI 8" DI 12" D I 8" D I 8" D I 8" DI 8" DI 8" DI 8" DI 8" DI 8" DI 8" D I 8" D I 8" D I 12" DI BABCOCK ST RE S O R T D R PALISADE DR RAVA L L I S T FALLON ST H A N L E Y A V E SL O U G H C R E E K D R CL I F D E N D R KI M B A L L A V E HA N L E Y A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 2:42 PM 2:55 PM JDH 1240 128.9 psi 115.7 psi 1251 1,725 gpm 1,702 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 26 704 701 708RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 26 G F GF G F G F GF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F GF G F G F G F G F G F G FGFGF G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!!G!!G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!!G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 704 (209) (305) (211) (213) (625) (670) (662) (650) (605) (208) (204) (212)(217) (205) (601) (213) (205) (209) (513)(514) (413) (415) (305) (503) (515) (411) (409) (205)(204) (302) (520)(524) (302) (304) (306) (402) (410) (504) (508) (512)(516) (505) (413) (407) (403) (307) (303) (219) (215) (205) (210) (302) (304) (306) (402) (406) (502) (506) (510)(509) (505) (501) (409) (405) (309) (305) (303) (210) (304) (306) (404) (406) (410) (502) (411) (512)(514) (407) (516) (403) (602) (513) (307) (511) (305) (509) (303) (606)(604) (507) (505) (503) (501) (303) (307) (315) (311) (403) (406) (402) (314) (310) (306) (302) (407) (302) (306) (310) (314) (400) (404)(405) (401) (313) (309) (305) (301) (304) (308) (312) (402) (406)(407) (405) (403) (401) (311) (309) (303) (301) (406) (300) (3811) (3805)(3805) (3991) (3825) (3985) (4040) (4040) (3501) (3514) (3510) (4040) (3903)(3805) (3825) (4040) (4040) (4040) (4040) (3909) (4040) (3505) (4050) (3505)(3505)(3505) (3705) (4050) (4050) (4050) (3604)(3602)(3608)(3510)(3418)(3416) (3507)(3505)(3501)(3509)(3601)(3603) (3815) (3710) (4005) (3805) (3508)(3504) (3415)(3607) (3506)(3504) (3420) (3417)(3501)(3505)(3509) (3602) (3513)(3601)(3605) (3606)(3608) (3609)(3701) 701 708 6" D I 10 " D I 12" DI 8" D I 6" DI 6" DI 12" DI 12" DI 6" D I 6" D I 6" D I 6" DI 8" D I 6" DI 6" D I 6" D I 6" DI 6" DI 10 " D I 10" DI12" DI 6" DI 6" DI 6" D I 8" DI 6" DI 6" DI 6" D I 6" D I 6" DI 6" DI 6" DI6" DI 6" DI 6 " D I 6" D I 8" DI 6" D I 6" DI 12" DI 6" D I 8" D I 6" D I 8" D I 6" DI 6" DI 12" DI 6" DI 6" DI6" DI 6" DI 10 " D I FALLON ST RAVALLI ST YE L L O W S T O N E A V E GR A N I T E A V E PR A I R I E A V E PO N D E R A A V E LAREDO DR VALLEY COMMONS DR TR E A S U R E A V E GOLDEN VALLEY DR PO N D E R A A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 3:02 PM 3:15 PM JDH 1240 122.2 psi 110.0 psi 1251 1,681 gpm 1,719 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 27 991 992 990RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 27 GF GF GF GF GF G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F GF G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!! #I #I #I #I#I 991 (675) (560) (554)(548)(544)(540) (530) (364) (308) (320) (334) (348) (368) (386) (406) (428) (450) (466) (482) (494) (504) (516) (522) (309) (319) (329) (339) (353) (363) (379) (387) (407) (433) (455) (469) (483) (489) (505) (515) (525) (536) (524) (512) (496) (486) (478) (458) (436) (416) (402) (390) (382) (364) (342) (330) (316) (306) (708) (538) (702) (736)(735) (724)(723) (711) (695) (321) (310) (306) (302) (210) (206) (202) (207) (211) (303) (307) (311) (317) (325) (403) (407) (411) (415) (503) (506) (502) (414) (410) (406) (402) (340) (316) (310) (306) (302) (210) (206) (203) (207) (211) (303) (307) (311) (315) (321) (403) (407) (411) (415) (503) (507) (511) (515)(514) (510) (512) (506) (508) (504) (416) (502) (412) (408) (414) (402) (340) (410) (316) (310) (406) (306) (302) (210) (206) (202) (314) (207) (211) (303) (309) (311) (315) (407) (411) (415) (503) (507) (511) (515) (402) (3180) (3745) (3737) (3740)(3730) (3725) (3696)(3198) (3165) (3270)(3250)(3228)(3210)(3194)(3182)(3168) (3273)(3253)(3233)(3213)(3191)(3179) (3611)(3455)(3427) (3452)(3464) (3471) (3477) (3465)(3453) (3601) 990 992 8" D I 6" D I 4" D I 10" DI6" DI 8" DI 8" D I 6" D I 8" D I 8" D I 6" D I 6" DI 8" D I 8" D I 10" DI 6" DI 6" D I 6" D I 6" DI 10" DI 10" DI 8" DI 8" D I 8" DI 6" DI 8" DI 8" D I 8" D I 6" D I 10" DI 8" DI 6" DI 10" DI 8" D I 8" DI 6" D I 6" D I 6" D I 8" D I 6" D I 6" D I 6" DI 6" DI 6" DI 6" D I 8" D I VA L L E Y D R DURSTON RD ME A G H E R A V E SH E R I D A N A V E FO W L E R A V E SW E E T G R A S S A V E OLIVER ST TOOLE ST HA N S O N S T JENNIFER ST BEAVERHEAD ST PRV 22 PRV 19 PRV 15 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 3:42 PM 3:52 PM JDH 1240 139.3 psi 104.1 psi 1251 1,681 gpm 1,619 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 28 747 748 744RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 28 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! #I #I 747 (962) (988) (928)(929) (917) (923) (918) (912) (902) (926) (920) (2411) (2402) (1924) (1226) (1039) (1087) (1289) (1351) (1281) (1239) (1092) (2051)(2047) (1459) (1433)(2063) (1281) (1043) (2301) (2287)(2275) (2263) (2259) (2247) (2235)(2223) (2219) (1931) (1336) (1262) (1174) (1247) (1143) (1122)(1091) (1014) (2431) (2440) (2411) (2420) (2431)(2401) (2402)(2420) (2401) (2440)(2402) (1103) (1101) (1105) (1109) (1115) (1119) (1123) (1129) (1203) (1209) (1215) (1225) (1301)(1304) (1218) (1214) (1208) (1204) (1128) (1124) (1118) (1114) (1106) (1100) (1024) (1018) (1116) (1115) (1109) (1105) (1101) (1027) (1021) (1015) (1009) (1003) (2104) (2105) (2108)(2112) (2109) (1002) (1008) (1010) (1020) (1026) (1100) (1104) (1108) (1112) (1001) (1006) (1005) (1000)(1009) (1217) (1013) (1001) (1017) (1023) (1013) (1017) (1023) (1029) (1107) (1113) (1121) (1125) (1201) (1205) (1213) (2105)(2205) (2201)(2127)(2121)(2115) (1212) (1206) (2113) (1120) (1116) (1108) (1102) (1030) (1022) (1016) (1012) (1002) (1006) 7 4 4 748 6" DI 8" D I 10" DI 12 " D I 14" DI 8" DI 8" DI 8" DI 8 " D I 12 " D I 8" DI 10" DI 8" D I 8" D I 8" DI 6 " D I 8 " D I 8" D I 8" DI 10" DI 6" D I 10" DI 6" D I 8" D I 8 " D I 8" DI 6" D I 8" DI 8" DI 10" DI 6" DI 10" DI 8 " D I 8 " D I 10" DI 8" D I 8" D I 8" DI 10" DI OAK ST 19 T H A V E WO O D L A N D D R S T O N E R I D G E D R BR E N T W O O D A V E MAPLEWOOD ST DAWS DR STEVENS ST ANNIE ST WHEELER DR 19 T H A V E PRV 7 PRV 6 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 11:20 AM 11:31 AM JDH 1240 152.6 psi 128.6 psi 1241 1,956 gpm 1,739 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 29 1084 1190 1085RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 29 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!!G!!G!!G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! 1084 (115) (125) (144)(156)(202)(180) (140) (103)(127) (120) (132) (135)(115) (128) (168) (108) (105) (4431) (4220) (4143) (4131) (4116) (4107) (4069)(4054) (4038) (4160) (4144) (4112) (4040) (4035)(4020) (4015)(4010) (4510) (4404) (4344) (4332) (4322) (4302) (4345) (4325) (4522) (4502) (4501) (4304) (4122) (4423)(4426)(4512) (4057) (4416) (4140) (4104) (4022)(4045) (4128) (4055) (4233) (4309)(4321) (4336) (4339) (4214) (4314) (4230) (4211) (4408) (4428) (4324) (4333) (4235) (4210) (4119) (4418) 1085 119 0 8" D I 10" DI 8" D I 10" D I 10" DI 8" DI 8" DI 8" DI 8" DI 10" D I 8" D I 8" DI 8" DI 8" DI 10" DI10" DI 8" D I 1 0 " D I 10" DI 8" D I G R A F S T PEACE PIPE DR MOR N I N G S U N D R RA I N R O P E R D R ROCKING BEAR CIR G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 5:06 PM 5:15 PM JDH 1240 50.5 psi 47.5 psi 1241 1,136 gpm 996 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 30 591 590 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 30 G F G F G F G F G F G F G FGF G F G F G F G F G FGF G F G F G F G F G FGFGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! 5 9 1(841)(823)(789)(765)(743)(721) (417) (605) (305)(311)(407)(413)(419)(427)(505)(511)(519)(525)(605) (609) (615) (610)(524)(512)(504)(424)(418)(410)(404)(318)(312)(304) (325)(355)(385)(427) (455)(475)(501)(525)(551)(575)(601)(635) (640)(602)(578)(552)(530)(500)(480)(450)(410)(390)(360)(330) (315)(323)(331)(401)(435)(503) (409) (515)(523)(531)(607)(615) (614)(606)(522)(514)(502)(416)(400)(330)(322)(314) (408)(504)(510) (517)(511)(507)(503)(421)(417)(411)(405) (434)(530) (3042) (3018) (3044) (3036) (3035) (3038) (3021) (3113) (3111) (3205) (3211)(3216) (3124) (3118) (3106) (3129) (3171) (3133) (3159) (3195) (3145) (3138) (3152) (3166) (3184)(3188) (3172) (3156) (3144) (3132) (3120) (3108) (3196) (3202) (3214) (3013) (3022) (3007) (3017)(3016) (3009) (3039)(3040) (3012) (3259) (3115) (3135) (3155) (3175) (3191) (3203) (3215) (3227) (3239) (3251) (3004) (3010) (3016) (3020) (3025)(3021) (3017) (3009) (3001) (3010) (3016) (3020)(3025) (3023) (3017) (3009) (3003) (3010) (3016) (3020) (3019) (3015) (3009) (3002) (3006) (3010) (3016) (3018)(3020) (3019) (3017) (3009) (3005) (3001) (2915)(2916) (2910)(2910)(2909) (2907) (2911) (2915) (3001) (3009) (3017) (3021) (3025)(3024) (3018) (3014) (3010) (3006) (3002) (2916) (2912) (3005) (3014) (3034) (3020)(3023) 590 8" D I 6" DI 10 " D I 24" DI 8" D I 10 " D I 8" DI 6" DI 8" DI 6" D I 8" D I 8" D I 6" DI 6" DI 8" D I 6" DI 6" DI 6" DI 6" D I 6" DI 10 " D I 8" D I 8" D I 24" DI 8" D I 8" D I 8" DI 24" DI 6" D I 6" D I 6" DI 8" DI 6" DI 8" D I 8" D I 6" DI 8" DI 24" DI 8" D I 10" DI 6" DI 8" DI 24" DI 6" D I 6" DI 6" D I 6" DI 6" DI 10 " D I 8" D I 6" D I 6" D I 6" D I 8 " D I 6" D I 8" D I 24" DI GRAF ST 3R D A V E FIELDSTONE DR CONCORD DR LEXINGTON DR WA G O N W H E E L R D STAUDAHER ST SE C O R A V E WE S T R I D G E D R ER W I N A V E GA R D E N B R O O K L N RI T T E R D R LA N G O H R A V E TE S L O W D R BROOKDALE DR 3R D A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 11:16 AM 11:28 AM JDH 1240 60.3 psi 58.5 psi 201250 1,198 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 31 2194 1938 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 31 G F G F G F G F G FGF G F G F G FGF G F G F G F G F G F G F G F G F G F G!! G!!2194 (3250) (1415) (3141) (3139) (3131) (3127) (3123) (3119) (3115) (3109) (3103)(3104) (3110) (3118) (3126) (3132) (3158) (3166) (3172) (3188)(3193) (3187) (3175)(3169)(3165) (3159)(3157) (3153) (3149)(3145) (3196) (3184) (3172) (3166) (3162) (3154) (3150) (3146) (3140) (3134) (3128) (3122) (3114) (3110) (3102) (3141)(3137) (3133) (3129)(3123) (3119)(3115)(3107) (3101) (3198)(3192) (3186)(3172) (3164)(3160)(3156) (3152) (3148) (3146)(3142) (3136)(3132) (3130)(3124)(3120) (3114)(3108) (3106) (1420)(1406)(1374)(1340)(1308)(1220)(1210)(1476)(1488) (1391)(1377)(1355)(1309)(1215)(1205) (3187) (3179) (3171) (3167) (3163) (3157) (3191) (3179) (3167) (3155) (3141) (3133) (3125) (3117) (3111) (3105) (3198) (3186) (3174) (3160) (3146) (3138) (3128) (3120) (3114) (3102) (1137)(1125)(1119)(1107) (1088)(1060) (1048)(1026) (1071)(1057)(1033) (1019) (1132)(1124) (1116)(1108)(1096) (3293) (3273) (3251) (3237) (3229) (3217) (3101) 8" D I 16 " D I 8" DI 8" DI 8" D I 8" DI 8" D I 8" DI 8" DI8" DI 8" D I 8" D I 8" D I 8" DI 8" D I 8" D I 8" D I 8" D I 8" D I 8" D I 8" D I 8" DI 8" DI 8" D I 8" D I 8" D I 8" DI 8" DI 8" D I 8" D I 8" D I 8" DI 11 T H A V E 15 T H A V E BROOKDALE DR ALDER CREEK DR 11 T H A V E 1938 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 10:56 AM 11:08 AM JDH 1240 52.5 psi 50.2 psi 201250 1,096 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 32 2089 2090 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 32 G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G FGF G F G FGF G F G F G F G F G F G FG!! G!!G!!G!!G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! 2089 (2680)(2602) (3381) (3373)(3372) (3368)(3365) (3356)(3359) (3348)(3343) (3334)(3335) (3323)(3320) (3319)(3312) (3311) (3302)(3305) (3362)(3402) (3487)(3487) (3400) (3315) (3301) (3497) (3487) (3473) (3431) (3389) (3361) (3335) (3303) (3496) (3480) (3470) (3432) (3406) (3398) (3386) (3372) (3360) (3322) (3306) (3497) (3481) (3469) (3435) (3405) (3399) (3389) (3373) (3361) (3323) (3311) (3494) (3478)(3466) (3450) (3442) (3422) (3410) (3388) (3376) (3370) (3352) (3348) (3332) (3314) (3306) (2926)(2918)(2906)(2888)(2864)(2836)(2808)(2786)(2762) (6101)(6115)(6157)(6169) (6181)(6193)(6205)(6219)(6237) (3581) (3543) (3511) (3475) (3461) (3435) (3409) (3393) (3381) (3373) (3333) (2690) (2682) (2654) (3370) (3450) (3530) (3589) (3575) (3533) (3495) (3461) (3443) (3429) (3411) (3383) (3365) (3323) (3303) (3596) (3578) (3534) (3502) (3482) (3460) (3442) (3428) (3414) (3390) (3358) (3328) (3308) 2 0 9 0 8" D I 12" DI 8" D I 8" D I 8" DI 8" D I 8" D I 8" D I 12 " D I 8 " D I 12" DI 12 " D I 12 " D I 8" DI 12" DI 8" D I 8" D I 8" DI8" D I 8" D I 12" DI 8" D I 8" DI 8" DI 12" DI 8" DI 27 T H A V E 29 T H A V E BLACKWOOD RD MEAH LN 28 T H A V E PA R K W A Y A V E 26 T H A V E LAST LOOP DR 29 T H A V E MEAH LN 27 T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 10:34 AM 10:42 AM JDH 1240 43.2 psi 40.4 psi 201250 1,060 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 33 602 516 601RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 33 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!!602 (1028) (1905) (1004) (1217) (2015) (2025) (1121) (1203) (1127) (1902) (1736) (1770) (1781) (1773) (1751) (1731) (1715) (1701) (1010) (1908) (2020) (2010) (1409) (1218) (1311) (1208) (1401) (1127) (1910) (1202) (1139) (1007) (1336) (1212) (1103)(1109)(1115)(1121)(1133)(1139) (1145)(1203)(1207)(1211)(1304) (1405) (1410) (1310) (1312) (1320) (1409)(1413) (1410)(1408)(1328) (1332) (1307)(1303)(1218)(1214)(1210)(1206)(1202)(1146)(1140)(1134)(1128)(1124)(1116)(1110)(1104) (1103)(1109)(1115)(1121)(1127)(1133) (1139)(1145)(1203)(1207)(1211) (1214)(1206)(1202)(1146)(1140)(1134)(1128)(1122)(1116)(1110)(1104) (1103)(1109) (1115)(1121)(1127)(1133)(1139)(1145)(1151)(1207)(1211) (1213) (1215) (1212)(1210)(1206)(1202)(1140)(1134)(1128) (1914) (1116) (2030) (1110) (2035) (1915) (1104) (1909) (1901) (1103)(1109) (1115)(1127)(1133)(1139)(1145)(1203) (1207)(1211) (1208)(1206) (1011)(1031) (1146)(1140)(1134)(1128)(1122)(1116)(1110)(1104) (1103)(1109)(1121)(1133)(1139) (1145)(1209)(1211) (1213)(1215) (1017) (1021) (1217) (1219) (1216) (1214) (1210)(1206)(1202)(1146)(1140)(1134)(1128)(1122)(1116)(1110)(1104) (1103)(1109) (1115) (1121)(1127)(1133)(1145)(1207) (1206)(1146)(1140)(1134)(1128)(1122)(1110)(1104) (1103) (1109) (1115)(1121)(1127) (1133) (1139) (1145)(1203) (1209) (1311) (1315) (1319) (1321) (1327) (1331) (1335) (1339) (1405) (1403) (1402) (1402) (1340) (1336) (1332) (1328) (1324) (1320) (1316) (1210) (1024) (1014) (1146) (1116) 516 8" CI 6" CI 12 " D I 12 " C I 8" D I 6" D I 20" DI 6" CI 8" C I 12 " D I 6" CI 6" CI 12 " C I 8" C I 6" CI 6" CI 6" CI 6" CI 8" CI 8" CI 6" D I 6" CI6" DI 6" CI 6" CI 8" D I 6" CI 6" CI 8" CI 12 " C I 8" CI 12 " C I 6" CI 8" CI 6" C I 8" CI 12 " D I 12 " C I 8" CI 8 " C I 6" D I 6" CI 8 " C I 6" CI 8" CI 6" CI 6" DI 6" CI 6" CI 6" CI 6" CI6" CI 8" DI HOLLY DR CHE R R Y D R SPRUCE DR PINECREST DR CEDARVIEW DR CH A M B E R S D R ASH DR MAPLE DR OCO N N E L L D R BERTHOT DR 601 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 4:40 PM 4:50 PM JDH 1240 48.3 psi 41.4 psi 1241 944 gpm 1,039 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 34 851 779 850RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 34 G F G F G F G F G F G F G F G F G F G!! G!! G!! 8 5 1 (32)(30) (28)(26) (22) (10) (30) (22) (32410) (32550) (32408) (32300) (32404) (32550) 779 8 5 0 10" DI 6" D I 8" D I 6" DI 8" DI 6" D I 8" DI 6" DI 10" DI 10" DI 10" DI 10" DI 6" D I 8" DI 6" D I 6" D I 10" DI FRONTAGE RD INTERSTAT E 9 0 H W Y ROCKY CREEK R D INTERSTAT E 9 0 H W Y G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 3:16 PM 3:27 PM JDH 1240 124.2 psi 60.9 psi 1241 1,176 gpm 1,247 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 35 79 80 75RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 35 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G FGF G FGF G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FG!! G!! G!!79 (8)(6) (9)(7) (7) (8) (3) (5) (4) (2) (5) (9) (16)(20) (18) (19) (13) (17) (16) (24) (21) (16) (20) (15) (10) (17) (17) (11) (724) (316) (209) (413) (721) (517) (411) (210) (521) (405) (612) (426) (620) (814) (810) (600) (716) (520) (329) (618) (300) (626) (507) (410) (300) (611) (708) (205) (125) (204) (512) (820) (434) (901) (420) (304) (700) (409) (720) (620) (708)(706) (518)(619) (512) (530)(526) (518)(510)(506) (307) (219) (307)(305)(303) (423) (524) (612) (109) (801) (625) (517)(501)(609)(629) (805) (523) (320) (117) (113) (622) (501) (713) (519) (515) (511) (601) (714) (205) (323) (905) (708) (304) (416) (211) (535)(503) (626) (533) (621) (321) (903) (215) (410)(501) (205) (612) (815) (307) (423) (714) (901)(901) (807)(907) (922) (206) (534) (719) (528)(526) (520)(516) (629) (512) (222) (506) (619) (621) (428) (302) (310) (424) (507) (314) (418) (318) (324)(414)(330)(616)(414)(624) (402)(406)(410)(414)(413) (625) (409) (621)(617) (618) (408) (428) (504)(508)(512)(516)(520)(524) (618)(624) (802) (820) (622) (902) (511) (615) (516) (611)(204)(208) (803) (210)(216) (525)(521) (520) (615) (524) (211)(205)(203)(519) (405)(401)(404)(408)(412)(416)(418) (424) (401) (616) (707)(701)(517) (517)(511) (425) (419) (413)(411) (519) (520)(524)(325)(321)(317)(313) (305)(301) (212) (216) (224)(514) (304)(308)(312)(316)(320)(324) (509)(402) (416) (424) (428)(428)(504)(510)(514) (513)(509) (717) (425) (603)(421) (523) (517) (509) (505)(501) (423)(419)(415) (407)(405) (401) (327) (323)(319)(315)(311)(307)(305)(231)(227) (221)(215)(211) (205)(415)(419) (213) (309)(311)(315) (327) (421)(425) (219) (404)(330) (322) (707) (318) (701) (314) (625) (214) (401) (617)(613)(605)(603) (621) (615) (601) (611)(607) (614) (603) (618) (117) (624) (544)(540) (105) (534) (702) (530) (606) (712)(716) (610) (526) (720) (614) (512) (724) (618) (721) (506) (624) (717) (414) (110) (715) (420) (105) (711) (425)(415) (705)(701) (411) (708)(712) (808)(810) (702) (410) (706) (710) (718) (816) (620) (714) (412) (417) (722) (215) (411) (305) (722) (906) (410) (808)(801) (311) (812) (717) (816) (623) (711) (315) (619) (820) (707) (722) (615) (701) (609) (321) (621) (603) (802) (623) (604) (617) (325) (608) (613)(612) (405) (616) (611) (620)(626) (605) (702) (601) (808) (718) (807) (120) (602)(606) (803) (819)(822) (415) (610) (815) (719) (811) (715) (721) (711) (717) (701) (421) (711) (623) (425) (617) (509) (615) (611)(605) (313) (401)(409) (413) (419)(423) (429)(433) (439) (503) (513) (519) (518) (542)(538) (534)(528)(524)(520) (514)(510) (322) (314) (310)(308) (103) (115) (114) (108) (406) (544) (536) (530)(526) (520)(518)(514) (506) (502) (422)(416) (414) (414) (404) (402) (324) (320)(316) (310) (310) (315) (321) (327) (421) (501)(503)(507) (513)(515)(517)(521)(525)(529) (539) (518)(514) (506)(502) (440)(434) (430)(426) (422)(416)(414) (402) (322) (316) (403)(405) (415) (423) (427) (433) (439) (501)(505)(511)(515) (517)(519)(522) (516)(508) (504) (436)(432)(428) (511) (424) (515) (420) (519)(523)(527) (414) (531) (541) (410) (604) (608) (614) (620)(624) (616)(620)(624)(619) (611) (206) (317)(316) (301) (309)(315)(317) (503) (507) (517)(523) (402) (525)(527)(531) (326) (318) (535) (312) (541)(126) (308)(302) (424) (416) (412) (204)(509)(202)(210) (822) (724) (1010) 80 6" C I 8" CI 4" C I 16 " C I 10 " C I 6" D I 8" DI 10 " D I 14 " C I 6" D I 10" CI 16 " C I 8" CI 10 " C I 8" CI 10" CI 6" C I 4" CI 6" CI 10" CI 6" C I 10" CI 6" CI 8" D I 6" C I 4" C I 6" CI 6" CI 10" CI 10 " C I 6" CI6" C I 8" CI 6" DI 6" C I 4" CI 6" C I BL A C K A V E TAMARACK ST BEALL ST PEACH ST VILLARD ST SHORT ST ASPEN ST JUNIPER ST ASPEN ST 75 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 8:37 AM 8:46 AM JDH 1240 142.7 psi 133.8 psi 1241 1,890 gpm 1,796 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 36 137 144 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 36 GF GF G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGFGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!!137 (7) (5) (8) (9) (6) (7) (5) (42) (23) (21) (24)(15)(33) (15)(18) (14)(19) (36) (36)(11)(37) (25)(20) (26) (17) (15) (22) (26) (27) (32) (13) (15) (16) (10) (11) (20)(10) (16) (210) (202) (401) (111) (100) (214) (202) (106) (408) (314) (310) (412) (120)(207) (415) (120) (113) (226) (121) (316) (210) (309) (205) (134)(122) (412) (110) (225) (208) (211) (417) (324) (216) (220) (439) (123) (319) (311) (307) (301) (215) (209) (201) (131) (132) (120) (210) (216) (511) (501) (419) (409) (401) (302) (310) (314) (320) (402) (410) (414) (420)(115) (117)(121) (419) (413) (409) (405) (401) (333) (331) (327) (323) (321) (121) (117) (113) (137) (511) (503) (417) (401) (319) (311) (307) (301) (219) (213) (209) (201) (121) (114) (122) (202) (218) (222) (302) (320) (404) (408) (412) (420) (504) (111) (509) (505) (501) (423) (419) (415) (407) (405) (221) (217) (209) (108) (110) (301) (116) (120)(120) (210) (212) (402) (408) (412) (418) (424) (214) (218) (226) (308) (312) (316) (320) (326) (402) (206) (210) (214) (224) (226) (302) (306) (308) (320) (328) (428) (330) (502) (510) (317) (315) (307) (301) (227) (221) (219) (215) (209) (205) (120) (304) (308) (310) (318) (328) (404) (408) (412) (416) (420)(424) (430) (436) (418) (422) (430) (434)(113) (210)(204) (433)(429) (425) (421) (415) (411) (407) (315) (401) (327) (319) (311)(307)(307) (303) (219) 144 14 " C I 8" C I 6" C I 8" D I 10 " C I 12" CI 4" DI 4" C I 6" CI 10" CI 8" C I 8" D I 6" CI 8" D I 4" C I 8" CI 6" C I 8" C I 8" C I 10" CI 6" CI 8" C I 12" CI 8" C I 6" CI 6" C I 6" CI 8" C I 8" C I 6" C I 8" CI 14 " C I 6" C I 10 " C I 6" CI 8" C I 6" C I 6" CI 6" CI 10" CI 6" C I 6" CI 6" CI 8" C I 8" DI 12" CI OLIVE ST BL A C K A V E TR A C Y A V E GR A N D A V E BABCOCK ST WI L L S O N A V E BO Z E M A N A V E CURTISS ST KOCH ST STORY ST STORY ST G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 7:59 AM 8:11 AM JDH 1240 127.1 psi 123.6 psi 201250 1,765 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 37 464 249 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 37 GF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G FGF G F G F G F G F G F G F G F G F G F G!! G!! G!! 4 6 4 (24) (16) (308) (206) (115) (305) (110) (111) (408) (120) (119) (217) (119) (311) (175) (316) (304) (407) (309)(311) (318) (406) (402) (322) (318) (316) (310) (306) (219) (307) (313)(315) (317)(319) (321) (403) (120) (114) (108) (102) (220) (214) (208) (202) (402) (322) (314) (310) (307) (311) (315) (319) (323) (403) (303) (307) (311) (315) (321) (325) (403)(404) (326) (322) (318) (314) (402) (310) (322) (318) (303) (308)(305) (310) (307) (304) (315) (323) (405)(402) (322) (320) (314) (310)(304) (302)(301) (309) (319) (323) (403) (1706) (1512) (1911) (1425) (1806) (1716)(1800) (1735) (1518) (1826) (1810) (1605) (1612) (1735)(1625) (1511) (1607) (1919) (1923) (1915) (1503) (1422) (1632) (1800)(1910) (1821) (1702) (1807)(1615) (1624)(1608)(1602) (1605) (1520) (1408) (1531) (1527) (1601) 249 14 " C I 6" C I 8" CI 6" DI 10" DI 8" D I 12" CI 14 " D I 10 " D I 14 " C I 8" C I 8" DI 8" D I 12" CI 10" DI 14 " C I 12" CI 6" C I 6" D I 12" CI 6" C I 6" C I 6" D I 14 " C I 10" DI 6" C I 6" C I 6" C I 10 " D I 12" CI 6" C I 10" DI10" DI 12" CI 10" DI 8" D I 6" C I MAIN ST BEALL ST 19 T H A V E 15 T H A V E 16 T H A V E 17 T H A V E 18 T H A V E 20 T H A V E 19 T H A V E 19 T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 3:56 PM 4:25 PM JDH 1240 132.9 psi 129.1 psi 201250 1,834 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 38 13 537 95RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 38 G F G F G F G F G F G F G F G F G F G FGF G FGF G FGF G F G F G F G FG!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 1 3 (5) (4) (17) (16) (20) (814) (618) (125) (820) (901) (720) (708) (706) (710) (219) (713)(714) (708) (612) (815) (714) (901)(901) (802) (807) (121) (707) (701) (625) (621) (615) (611) (614) (618) (624) (702) (712) (716) (610) (720) (614) (724) (618) (721) (624) (717) (110) (715) (105) (711) (705) (701)(708) (712) (702) (706) (710) (718)(714) (722) (808) (812) (816) (623) (619) (820) (722) (615) (609) (802) (623) (617) (613)(612) (616) (611) (620) (626) (702) (808) (718) (807) (120) (803) (819)(822) (610) (815) (719) (811) (715) (721) (711) (717) (701) (711) (623) (617) (615) (611) (614) (620) (624) (616) (620) (624)(623) (619) (617) (611) (724) 95 537 6" C I 4" C I 8" CI 10" CI 6" DI 6" C I 10 " C I 4" C I 4" C I 10" CI 4" C I 8" CI6" CI 6" C I 6" C I 6" C I 10" CI 4" CI 4" C I 8" CI 4" CI 4" C I 6" C I TAMARACK ST ASPEN ST BL A C K A V E COTTONWOOD ST TR A C Y A V E BO Z E M A N A V E MO N T A N A A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 9:20 AM 9:31 AM JDH 1240 150.0 psi 139.3 psi 1241 1,855 gpm 1,404 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 39 2438 130 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 39 G FGFGFGFGFGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 2438 (5) (16)(18)(15)(22) (815) (411) (903) (606) (209) (400) (122)(901) (613) (416) (401) (913) (507) (302) (119) (911) (102) (116) (120) (208) (212) (216) (419) (306) (310) (314) (404) (412) (418) (510) (514) (123) (115) (107) (921)(917) (916) (924) (116) (120) (126) (507) (501) (421) (417) (411) (407) (403) (321) (317) (315) (309) (305) (301) (221) (217) (907) (922) (211) (207) (901)(316) (201) (319) (921) (311) (919) (916) (305) (303) (922) (909) (414) (221) (213) (502) (508) (201) (915) (914)(204) (208) (123) (212) (216) (921) (113) (915) (902) (918) (819)(815) (509) (812)(818) (505) (114) (501) (120) (423) (126) (204) (212) (415) (214) (220) (304) (310) (910) (411) (914) (318) (403) (907) (910) (817) (814)(816) (410) (422) (901) (817) (504) (507) (503) (423) (419) (415) (409) (401) (321) (317) (311) (307) (806) (807) (217) (209) (205) (201)(816) (221) (809)(123) (119) (113) (109) (103)(808) (811)(807)(803) (824) (715)(709)(703) (309) (305) (704) (221) (213) (209) (205) (203)(202) (206) (210) (214) (218) (222) (618) (306) (310) (314) (322) (710)(502) (508) (503)(616) (510) (516)(522) (214) (218) (224) (612) (308) (312) (602) (316) (615)(320)(321)(517) (317) (404) (313) (309) (408) (303) (412) (221) (416) (422) (615) (502) (619) (217) (510) (215) (209) (113) (123)(715)(126) (122) (116) (720)(716)(622)(618)(612)(608) (101)(522)(516)(708) (515) (714)(202) (206) (210) (214) (220) (714)(302) (306) (310) (721) (513) (515)(521) (519) (523)(527)(603)(607) (114) (617)(619) (113) (703) (720) (119) (125) (1016) (1017) (1016) (1017) (1017) (1020) (1002) (1012) (1011) 1 3 0 6" C I 4" C I 8" D I 10" CI 6" CI 6" C I 6" CI 8" D I 6" C I 6" C I 6" C I 8" D I 4" CI 6" CI 8" D I 6" C I 6" C I 6" C I 6" C I 10" CI 6" C I 10" CI 6" C I 6" CI 6" CI 6" C I 6" CI 6" C I 4" CI 4" CI 8" D I 6" CI 10" CI 8T H A V E 9T H A V E KOCH ST OLIVE ST STORY ST 10 T H A V E 6T H A V E CURTISS ST 7T H A V E BABCOCK ST 8T H A V E 7T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 7:42 AM 7:53 AM JDH 1240 123.9 psi 122.0 psi 201250 1,673 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 40 120 121 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 40 G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F GF G F G F GF G F G F G FGFGF G F G F G F G F G F G F G F G F GF G F G F G F G F G F G F G F G!!G!!120 (7) (7) (3)(3) (9) (5) (9) (7) (5) (8)(6) (7)(1)(9) (1) (2) (8) (9) (6) (7) (5) (42) (21) (15) (15) (20) (15) (31)(33) (18)(26) (27) (36) (28) (34) (11) (16)(12)(12) (37) (17) (25)(20) (24) (15) (23) (23) (15) (27) (32) (15) (16) (10) (11) (20)(10) (16) (18) (32) (321) (210) (202) (401) (133)(101) (104)(312) (316)(400)(234) (202) (106) (408) (314) (310) (132) (315) (314) (406) (113)(133) (120) (424) (120) (239) (226) (402) (121) (430) (133)(411) (309) (232)(238) (134)(136) (439) (224) (235) (437)(431) (233) (412) (303) (120) (316) (222) (225) (223)(215)(441) (211) (216) (220) (307)(443) (132) (405) (401) (333) (331) (327) (323) (321) (121) (117) (113) (137) (111) (407) (405) (221) (217) (213) (211)(209)(208) (208) (207) (212) (216) (218) (226) (302) (108) (306) (316) (110) (301) (116) (322) (326) (120) (330) (120) (210) (213) (402) (219)(223)(227) (301) (214) (303) (218) (307)(123) (226) (308) (312) (316) (320) (326) (402) (206) (210) (214) (224) (226) (302) (306) (308) (320) (328) (330)(329) (323) (317) (309) (305)(301) (225) (221) (217) (412) (421) (211)(201) (317) (315) (307) (301) (227) (221) (219) (215) (209) (205) (120) (222) (304) (308) (310) (318) (328) (404) (408) (412) (414)(110) (116) (403)(409)(415) (218)(210)(314)(202)(204)(201) (411) (407) (315) (401) (327) (319) (311)(307)(307) (303) 121 6" CI 14 " C I 8" D I 8" CI 12" CI 10" CI 1 2 " D I 4" C I 8" D I 12" CI 6" CI 6" CI6" CI 6" CI 4" C I 12" CI 12 " C I 6" CI 8" C I 12" DI 8" C I 8" C I 6" CI 12" CI 8" D I 8" DI 8" D I 12" CI 8" C I 14 " C I 8" D I 8" C I 8" C I 8" DI 8" D I 6" CI 8" C I 6" CI 6" CI 8" D I 12 " D I 10" CI 6" CI6" CI 8" D I 6" C I 8" D I MAIN ST OLIVE ST BL A C K A V E TR A C Y A V E BABCOCK ST BO Z E M A N A V E RO U S E A V E LI N D L E Y P L CURTISS ST KOCH ST KOCH ST G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 8:14 AM 8:26 AM JDH 1240 128.6 psi 126.8 psi 201250 1,802 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 41 251 1773 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 41 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! 251 (630) (408) (718) (710) (714) (710) (702) (680) (668) (636)(655) (649)(621)(613) (311) (406) (723)(715) (703) (691) (675) (653) (639) (611) (806) (316) (304) (621) (705)(704) (618) (220) (303) (307) (311) (315) (321) (325) (403) (407) (411) (415) (421) (501) (505) (511) (517)(518) (514) (510) (518) (506) (512) (506) (502) (422) (416) (418) (412) (414) (408) (404) (326) (322) (410) (318) (314) (402) (310) (322) (318) (303)(305) (310) (307) (315) (323) (405) (411) (415) (419) (501) (505) (509) (517)(514) (510) (506) (502) (418) (414) (412) (406) (402) (322) (320) (314) (310)(304) (302)(301) (309) (319) (323) (403) (409) (411) (415) (421) (503) (507) (511) (515) (519) (508) (502) (418) (414) (410) (706) (502) (1706) (1445)(1437) (1492)(1474)(1450)(1434)(1418) (1412) (1518) (1605) (1604) (1409) (1705)(1621)(1617) (1613) (1519)(1503) (1319) (1306) (1221) (1218)(1214) (1702)(1722) (1406) (1616) (1615) (1624)(1608)(1602) (1605) (1526) (1520) (1412) 1 7 7 3 6" C I 8" D I 10" DI 14 " C I 12" CI 10" CI 8" C I 8" C I 10" CI 6" C I 14 " C I 10" DI 6" C I 14 " C I 6" C I 8 " D I 12" CI 10" CI 8" C I 10" DI 8" D I 8" D I 6" C I 10" DI 6" C I 6" C I 10" DI 8" D I 8" DI 8" DI 14 " C I 10" DI 12" CI 15 T H A V E 1 7 T H A V E DURSTON RD 16 T H A V E BEALL ST RUTH THIEBAULT WAY G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 4:30 PM 4:46 PM JDH 1240 139.0 psi 136.8 psi 201250 1,878 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 42 245 157 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 42 G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G!! G!! 2 4 5 (816) (812) (609) (980) (850) (721)(717) (815) (726)(714) (601) (702) (708) (617) (720) (811) (611) (723) (516) (604) (608) (612) (708) (712) (715) (711) (707) (703) (621) (617) (613) (609) (605) (603) (521) (513) (727) (710) (703) (615) (611) (607) (515)(514) (522) (711) (915) (908) (621) (602) (608) (610) (601) (612) (919) (909) (920) (521) (706) (517) (712) (513) (919)(903) (702)(706) (719)(720) (809) (719) (715) (522) (709) (806) (521) (515) (618) (622) (714) (717) (802) (808) (812) (818) (824)(707) (819) (815) (809) (803) (725) (719) (715) (709) (705) (701) (621) (516) (520) (602) (606) (615) (611) (607) (603) (523) (519) (515)(516) (518) (619) (614) (608) (610) (614) (618) (624) (702) (708) (712) (714) (718) (722) (613) (804) (619)(617) (801) (725) (721) (719) (715) (709) (705) (701) (621) (617) (613) (609) (605) (601) (521) (515) (610) (616) (823) (819) (815) (811) (807) (613) (1101) (1104) (1110) (1009) (1007)(1011) (1015) (1013) (1020) (1013) (1003) (1014) (1107)(1103) 157 6" C I 8" CI 8" D I 14" CI14" DI 6" C I 8" D I 8" CI 6" C I 8" D I 8" D I 14" CI 8" C I 6" C I 14" CI 6" C I 14" CI 6" C I 6" CI8" CI 6" C I 6" C I 6" C I 6" C I 6" CI 8" C I 6" C I 6" C I 14" CI 6" CI 8" CI 6" C I 8" C I 6" C I 7T H A V E 8T H A V E 11 T H A V E COLLEGE ST ALDERSON ST DICKERSON ST HARRISON ST 9T H A V E 10 T H A V E CLEVELAND ST CLEVELAND ST 8T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 9:12 AM 9:25 AM JDH 1240 107.5 psi 105.3 psi 201250 1,396 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 43 1792 1793 1791RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 43 G FGFGF G F G F G F G F GF GF G F G F G F G F GF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F GF G F G F G F G F G F G F G F G F G F G F G!! G!! G!! 179 2 (986) (920)(914) (880) (926)(912) (892)(880) (893) (997) (973) (951)(935)(917)(903) (999)(975) (953) (931) (907) (877) (859)(871)(816) (912) (1303) (1276)(1283) (1175) (1171) (1179) (1173) (1185) (1165) (1188) (1184) (1363) (1028) (1455) (1236) (1288) (1096) (1082) (1078)(1064) (1058) (1036)(1022) (1008) (1097) (1083) (1077)(1065) (1059) (1041) (1019) (1007) (1395)(1387)(1345)(1333)(1305)(1297)(1283)(1251)(1231)(1207) (1386)(1350)(1342)(1310)(1290)(1282)(1248)(1226)(1204) (1375)(1323)(1233)(1271) (1241) (1293) (1189) (1091) (1079)(1057) (1033) (1427)(1471)(1483) (1286) (1095) (1133) (1227)(1232) (1126) (1098) (1086) (1036) (1024) (1016) (1488)(1446)(1406) (1450) (1245) (1193) (1095) (1325) 1 7 9 3 1791 8" DI 14" DI 4" P V C 6" P V C 8" D I 6" PV C 8" D I 8" D I 8" D I 4" PVC 8" D I 8" DI 8" DI 8 " D I 8" D I 14" DI 8" D I 14" DI 4" P V C 8" DI 8" D I 8" D I 8" DI 8" D I 8" D I 8" D I 8" D I 8 " D I 8" D I 8" D I 8" DI 8" DI 6" PVC 8" DI 8" DI 8" D I 8" DI 8" D I 8" D I 14" DI 14" DI 8" D I 8" DI 4" PV C 4 " P V C 8" D I 14" DI 8 " D I 8" DI 14" DI 8 " D I 8" D I 8" D I 14" DI OAK ST 15 T H A V E 14 T H A V E 12 T H A V E JUNIPER ST 17 T H A V E CRABAPPLE DR MANZANITA DR G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 10:05 AM 10:30 AM JDH 1240 151.7 psi 137.8 psi 1241 1,989 gpm 1,866 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 44 92 93 374RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 44 G F G F G F G FGF G F G F G FGF G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G!! G!! G!! G!! G!! 92 (8)(6) (9)(7)(5) (7) (8) (3) (2) (5) (5)(5) (16)(20) (19) (17) (13) (40) (16) (24) (21) (25) (15) (10) (17) (15) (17) (18)(22)(26) (11) (15) (14) (209) (152) (517) (411) (210)(210) (300) (507) (220) (211) (300) (200) (104) (518) (204) (214) (434) (304) (409) (101) (307)(305) (303) (301) (109) (103) (124)(125) (320) (103) (117) (113) (315) (323)(110) (122) (112) (205) (307) (311) (309) (323) (108) (121) (205) (120) (301) (115) (105) (319) (206) (534) (528) (526) (520) (516) (512) (506) (428) (424) (418) (414) (408) (111) (109)(101) (313) (401) (409) (413) (419) (423) (429) (433) (439) (503) (513) (519) (518) (542)(538) (534) (528) (524) (520) (514) (510) (322) (314) (310)(308) (103) (115) (114)(108)(210) (202)(109) (406) (116) (518) (514) (506) (502) (440) (434) (430) (426) (422) (416) (414) (402) (322) (316) (112) (106) (111) (119)(121) (403) (405) (415) (423) (427) (433) (439) (501) (505) (511)(515) (517) (519)(522) (516)(508) (504) (436) (432) (428) (424) (420) (414) (410) (121) (109) (405) (409) (417) (107) (505) (515) (517) (521)(520) (516) (512) (506) (502) (440) (434) (426) (420)(418) (414) (410)(402) (113) (324) (320) (314) (312) (308) (304) (206) (112)(122) (114) (133)(103) (121) (209)(205)(203) (301) (305) (311) (313) (323) (401) (405) (409) (415)(419) (421) (425) (431) (210) (501) (505) (509) (513) (519) (521)(208) (215) (215) (317)(316) (120) (114) (201) (118) (301) (309) (315) (317) (503) (507) (517) (523) (402) (525)(527) (531) (326) (318) (535) (312) (541)(126) (308) (302) (204)(209) (122) (116) 93 374 6" C I 8" D I 10" CI 4" C I 12" CI 8" D I 6" C I 6" C I 10" CI 8" DI 6" C I 8" DI 6" CI 6" C I 6" C I 10" CI 6" C I 6" C I 6" C I 6" C I 8 " D I 6" C I 6" C I 6" C I 6" C I 10" CI 6" C I 6" C I 6" C I 6" C I 6" C I 6" C I 8" D I 8" D I 6" C I 8" DI 6 " C I BEALL ST PEACH ST BL A C K A V E GR A N D A V E VILLARD ST WI L L S O N A V E SHORT ST BO Z E M A N A V E LAMME ST SHORT ST LAMME ST G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 8:15 AM 8:25 AM JDH 1240 137.7 psi 112.9 psi 1241 1,601 gpm 1,744 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 45 9 757 964RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 45 G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G!! G!! G!!9 (724)(721) (515) (612)(620) (600) (716) (626) (611) (528)(420) (700) (620) (518) (705) (512) (530)(526)(522)(518)(514)(510)(506) (423)(419) (524) (801) (720) (517)(501)(609) (629) (805) (612) (540) (511) (615) (725) (723) (502)(421) (704) (412) (601) (800) (504) (410) (426) (422) (919) (318) (428) (503) (621)(610) (410) (326)(710) (323) (703) (416) (421) (415) (424) (411) (711) (407) (514) (403) (329) (702) (325) (706) (319) (707) (317) (717)(713) (707)(705) (710) (720) (712)(719) (630) (627)(619) (626) (316) (630) (320) (507) (326) (431) (809) (318) (414) (324) (425) (330) (712) (413) (616) (716) (411) (624) (407) (628) (405) (724) (401)(402) (406) (410) (513) (414) (717) (632) (413) (720) (409) (417) (709) (428) (504) (508) (512) (516) (520) (524) (618) (624) (802) (820) (516) (803) (405)(401)(404) (408) (412) (416) (418) (424) (707) (701)(517) (517) (511) (425) (419) (413) (411) (519) (520)(524)(327) (325) (321)(317)(320) (324) (509)(402) (416) (424) (428)(428) (504) (510) (514) (513)(509)(704) (408) 757 9 6 4 6" C I 10 " C I 12 " D I 8" CI 4" DI 8" DI 4" C I 6" C I 6" CI 6" CI 6" C I 6" CI 6" CI6" CI 10 " C I 12 " D I 6" CI 6" CI10" CI 6" C I 6" CI 6" CI 6" C I 6" C I 6" C I 6" C I 6" CI 6" CI 6" C I 6" C I 6" CI 6" CI 6" C I 6" C I ID A A V E PLU M A V E WA L L A C E A V E PEACH ST FRO N T S T CH U R C H A V E BR O A D W A Y A V E ASPEN ST FRIDLEY ST BR A D Y A V E AV O C A D O S T FRIDLEY ST ASPEN ST G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 8:56 AM 9:08 AM JDH 1240 145.0 psi 128.9 psi 1241 1,740 gpm 1,593 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 46 73 88 607RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 46 G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G FGF GF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!!G!!G!!73 (8)(6) (9)(7)(5) (7) (3)(3) (9) (5) (9) (7) (5) (8)(6) (7) (3) (1) (5)(5) (9) (1) (2) (8) (9) (6) (16)(20) (42) (19)(17)(13) (26) (21) (30) (15) (15) (20) (15) (31)(33) (38) (32) (14)(34) (40) (39) (26) (30)(34) (27) (36) (28) (34) (16)(12)(12) (37) (19) (25)(20) (24) (25) (23) (35) (15) (23) (27) (32) (10) (20) (25) (10) (16) (18) (32) (209) (321) (210) (202) (405) (109) (133)(101) (321) (232) (104)(312) (316)(400)(234) (202) (109) (106) (132) (315) (204) (314) (406) (442) (113) (101) (133) (120) (424) (120) (124)(125) (224) (302) (239) (402) (303)(235) (302)(314) (121) (430)(438) (117) (113) (240) (238) (133) (218) (411) (440) (232) (122) (112) (238) (134)(136) (439) (205) (224) (108) (235) (437)(431) (233) (214) (303) (120) (316) (121) (222) (201) (223)(215) (121) (438) (205) (120) (106) (114) (441) (326) (115) (216) (205) (415)(419) (307) (219) (101) (225) (401)(409) (422) (443)(437) (111) (109)(101) (114)(108)(210) (202)(109) (310) (112) (106) (111) (119)(121) (206) (132) (121) (117) (113) (137) (111) (211)(209)(208) (208) (207) (212) (108) (110) (116) (120)(120) (210) (213)(219)(223)(227) (301) (303)(307)(123) (206) (210) (205)(412) (421) (107) (211)(201) (221) (120) (114) (201) (118) (204)(209) (122) (116)(214) (209) (205) (120) (414)(110) (116) (403)(409)(415) (218)(210)(314)(202)(204)(201) 88 607 6" CI 8" DI 10" CI 8" C I 12" CI 1 2 " D I 14 " C I 4" C I 8" D I 8" DI 6" CI 6" CI 14 " C I 8" D I 6" C I 6" CI 12" CI 8" D I 8" DI 8" C I 6" CI 8" D I 6" CI 12" CI 6" CI 8" D I 8" DI 8" C I 6" CI 6" CI 8" C I 6" CI 12" CI 8" D I 6" CI 6" CI 12 " C I 6" CI 8" D I 8" D I 4" C I 12 " D I 6" CI 12 " C I 12" CI 12 " C I 8" D I 8" DI 10" CI 8" D I 6" CI 8" D I 8" C I 8" DI 12" DI MAIN ST OLIVE ST BL A C K A V E TR A C Y A V E LAMME ST RO U S E A V E BABCOCK ST BO Z E M A N A V E BEALL ST MENDENHALL ST LIN D L E Y P L G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 7:15 AM 7:25 AM JDH 1240 129.9 psi 118.0 psi 1241 1,723 gpm 1,615 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 47 26 27 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 47 G F G F G F G F G F G FGF G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!!G!!G!!G!! G!! G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 2 6 (23) (25) (33) (12) (19) (31) (25) (16) (35) (22) (26) (13) (17) (15) (121) (313) (314) (411)(313) (111)(111) (109) (103) (606) (100) (611)(129)(101) (200) (203) (414) (207) (103) (113) (105) (612) (103) (210) (220) (311) (419) (613) (108) (205) (406) (120) (218) (517) (122) (520) (616) (507) (110) (314)(318) (104) (201) (302) (202) (131) (208) (212) (216) (222) (304) (310) (114) (125) (133) (138) (211) (103) (403)(407) (322) (321)(303)(215)(421)(417)(407)(403) (404)(408)(416)(420) (411) (421) (507)(601)(607)(611) (317)(309)(605)(601) (511) (502) (503)(609) (621) (123) (309) (303) (217) (221) (213) (220) (307) (301)(214) (215) (209) (201) (136) (131) (120) (210) (216) (422)(418)(426) (428)(502) (506) (509)(505)(503)(429)(425)(421)(417)(411)(405)(401) (404)(412)(416)(422)(204) (212) (216) (423)(419)(415)(411)(407)(401) (404)(410)(414) (418)(420)(302) (308) (314) (209) (201) (302) (310) (516)(522) (214) (218) (224) (308) (312)(309) (303) (221) (217) (215) (209) (612)(608)(101)(522)(516)(510) (515) (307) (301) (219) (213) (209) (201) (121) (209)(237) (311)(315) (323) (309) (305) (301) (513) (221) (219) (215) (209) (205) (201)(510) (515)(521) (519) (523)(527)(603)(607) (114)(113) (119) (620)(612)(606)(522)(520) (125) (516)(512)(508)(504) (219) 27 6" CI 10" CI 4" CI 8" D I 8" CI 6" CI 6" C I 6" CI 6" CI 6" CI 8" D I 6" C I 6" CI 6" C I 6" CI 6" CI 6" C I 6" CI 6" CI 6" CI6" CI6" CI 10" CI 10" CI 4" C I 6" C I 10" CI 4" C I 6" CI 6" CI 6" C I 6" C I 6" CI6" CI6" CI 6" CI 6" C I 6" CI 6" CI 6" C I 10" CI MAIN ST OLIVE ST CURTISS ST GR A N D A V E BABCOCK ST MENDENHALL ST 5T H A V E 3R D A V E 6T H A V E 4T H A V E 3R D A V E 5T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 7:24 AM 7:34 AM JDH 1240 126.5 psi 103.9 psi 201250 1,595 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 48 316 18 210RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 48 G F G F G F G FGF G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!!G!!G!! G!! G!! G!! G!! G!!G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 3 1 6 (213) (420) (304)(505) (209) (825) (216) (211) (805) (200) (108) (220) (620) (109)(109) (783) (710)(506) (903) (120)(821) (311) (517) (717) (904) (213) (317)(316) (511) (502) (431) (323) (316) (518) (107) (415) (703) (203) (216) (719)(717)(715) (122) (116) (110) (719) (211)(522)(608) (303) (321) (601) (411) (417) (423) (427)(424) (414) (408) (515)(401) (407) (415) (419) (423) (511) (605)(601) (511)(503) (512)(516)(520)(602)(606)(610)(614) (613)(607)(603)(521)(517)(513) (510) (506) (438) (428) (426) (420) (416) (404) (517)(302) (612) (310) (609) (810) (809)(805) (205) (209) (213) (303) (307) (303) (311) (715) (713)(403) (411) (431) (509) (425) (813) (809) (811) (526) (520) (514) (508) (502) (442) (438) (432) (426) (420) (414) (408) (801) (807) (808)(820) (318) (302) (214)(210) (823)(815) (816)(122) (116) (112) (817) (811) (440) (434) (428) (422) (416) (410) (105)(101) (105) (115) (312) (302) (119) (214) (208) (204) (109) (116)(115) (119)(904)(910) (909)(901)(203) (211) (207) (303) (309) (317) (908) (303) (409) (421) (427) (433) (439) (503) (509) (515) (521) (526) (520) (514) (508) (502) (420) (414) (408) (919) (916) (316) (101) (105) (109) (315) (415) (319) (115) (119) (123) (407) (411) (419) (425) (431) (437) (441) (503) (509) (515) (521) (906)(526) (520) (514) (508) (502) (442) (432) (426) (509) (507) (501) (308) (922) (210) (206) (919) (918)(120) (116) (112) (921) (1020) (1003)(1015) (1016) (1002) 18 210 6" C I 8" C I 6" D I 8" D I 10" CI 4" C I 4" DI8" DI 6" CI 6" C I 6" C I 6" CI 6" CI 10" CI 10" CI 6" C I 6" CI 6" C I 6" C I 8" D I 6" C I 6" C I 8" DI 6" C I 6" CI 8" D I 6" C I 6" C I 6" CI 10" CI 8" D I 6" C I 6" CI6" CI 6" C I 8" C I 10" CI 6" C I 6" CI 6" CI 8" CI 6" CI 6" C I 8" D I 8" CI 6" CI 10" CI 7T H A V E 9T H A V E BEALL ST 10 T H A V E LAMME ST VILLARD ST 6T H A V E 8T H A V E PEACH ST SHORT ST 7T H A V E 8T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 7:50 AM 8:07 AM JDH 1240 137.6 psi 126.3 psi 1241 1,817 gpm 1,661 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 49 423 299 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 49 G F G F G F G FGF G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F GF G F G FGF GF G F GF G F GF G F G F G F GF G!! G!!G!!G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!!G!!G!!G!! 423 (8) (9) (10) (15)(105) (105) (111) (410) (410) (409)(405) (404)(412) (303) (222)(216)(212)(208)(204) (116)(112) (108) (216) (210) (206)(202)(108) (109)(115)(201) (109) (205) (207) (209) (211) (215) (219) (205)(207) (223) (210) (209)(215) (204) (221) (120) (114) (101)(115)(121)(205)(211)(411) (410) (411) (411)(405) (308)(410) (401) (2212) (2615) (2505) (2525) (2555) (2401) (2605) (2221) (2302) (2475) (2725)(2715) (2705) (2625) (2321)(2319) (2307) (2775) (2805)(2804) (2435) (2415) (2615)(2616) (2610) (2604) (2603) (2516) (2508) (2504) (2409) (2419) (2503) (2507) (2515)(2603)(2607)(2611) (2201) (2205) (2207) (2303) (2311)(2310) (2302)(2303) (2311) (2205) (2207) (2209)(2210) (2206) (2208) (2717) (2602)(2520) (2718) (2516) (2512) (2508) (2504) (2422) (2712) (2412) (2404) (2310) (2708) (2206) (2702) (2118) (2709)(2622)(2618)(2614)(2610)(2606) (2318) (2416) (2410) (2403) (2803) 299 6" C I 8" D I 10 " C I 10 " D I 6" D I 12" DI 6" CI 6" CI 8" D I 10 " D I 10 " D I 6" CI 6" C I 10" DI 6" C I 6" C I 6" CI 6" C I 6" DI 10 " C I 6" CI6" CI 6" C I 6" DI 6" CI 6" C I 6" D I 6" C I 6 " C I 6" CI 6" CI 6" CI 6" C I 6" C I 6" CI 6" CI 10 " C I 6" CI 10 " D I 6" DI 3R D A V E SP R I N G C R E E K D R WESTRIDGE DR LA N G O H R A V E ARNOLD ST CIRCLE DR HIG H L A N D C T FA I R W A Y D R CUTTING ST MORROW ST G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 11:55 AM 12:06 PM JDH 1240 72.6 psi 67.2 psi 201250 1,237 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 50 178 180 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 50 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!! G!! G!! G!!G!! G!!G!! G!! G!!G!! G!! G!!G!!G!!G!! G!! G!! 178 (502) (111) (515) (823)(515) (424) (724) (523) (405) (815)(525) (921) (801) (720) (726)(209)(725) (721) (715) (522) (806) (808) (814) (818) (902)(906) (910) (521) (520) (411)(401) (426) (822)(419)(415) (418)(422)(426) (910) (425)(421)(419) (426) (418) (504) (716) (809) (803)(408)(412)(416)(420) (410) (411) (404)(410) (411) (403) (402)(408)(412) (415)(411)(405) (404)(408) (412) (823) (901) (905) (909) (915) (304) (120) (117) (120) (115)(119) (914) (908) (904) (811) (901) (911) (921) (102) (104) (903) (905) (909) (913) (205) (720) (726)(503) (723) (719)(725)(722) (426) (504) (722) (516) (119) (515)(509)(503) (911) (905)(512) (509) (825) (815) (813) (725) (719) (411)(409)(407)(309) (817) (811) (404)(805) (809) (811) (817)(819) (912) (902) (826) (820) (818) (812) (808) (800) (807) (218) (811) (219) (825) (922) (916) (912) (908) (902) (822) (814) (804) (810) (916) (1206)(1201) (1211) (1010) (1014)(1016) (1022) (1104) (1110) (1116) (1102) (1122) (1113) (1107) (1017) (1015) (1212) (1206) (1118) (1114) (1110) (1106) (1102) (1020) (1014) (1010)(1005) (1015) (1017) (1021) (1103) (1109) (1111) (1115) (1119) (1205) (1211) (1101) (1011) (1019) (1107) (1111) (1119) (1121) (1201) (1209) (1001) (1007) (1011) (1015) (1212) (1206) (1202) (1124) (1120) (1112) (1110) (1106) (1102) (1024) (1022) (1209) (1119) (1106) (1110) (1114) (1120) (1212) (1206) (1122) (1120) (1114) (1110) (1106) (1102) (1020) (1014) (1010) (1002) (1021) (1101) (1121) (1201) (1205) (1211) (1016) (1012) (1008) (1004) (1105) (1109) (1115) (1117) 180 4" C I 6" C I 8" CI 14" CI 12" CI 6" D I 6" C I 6" C I 6" C I 4" CI 12" CI 4" CI 14" CI 12" CI 12" CI 6" C I 6" C I 4" C I 6" C I 6" C I 6" C I 12" CI 14" CI 12" CI 6" C I 6 " C I 6" C I 6 " C I 4" CI 6" C I 6" C I 12" CI 6" C I 6" C I 6" C I 6" C I 14" CI 6" C I 5T H A V E 4T H A V E 3R D A V E COLLEGE ST GR A N D A V E 6T H A V E ARTHUR ST GARFIELD ST WI L L S O N A V E HARRISON ST CLEVELAND ST G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 8:52 AM 9:07 AM JDH 1240 101.2 psi 87.8 psi 201250 1,358 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 51 364 36 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 51 G F G F G FGF G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!!G!!G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 364 (312) (315) (318) (122) (211) (215) (316)(400)(234) (428) (309) (406)(220) (300) (430) (201) (211) (200) (222) (325) (406) (419) (213) (211) (208)(207) (212) (216) (218) (226) (302) (108) (306) (316) (322) (326) (330) (304)(226)(222)(216)(212) (213) (402) (219) (408) (223) (412) (227) (418) (301) (424) (303) (310) (307)(123) (313) (305) (301) (223)(219) (208)(214)(306)(314) (402) (410)(414) (413) (409) (405) (429)(425) (421)(417)(413) (112) (409) (320) (116) (213)(405)(428) (118) (406) (122) (330) (511) (132) (202) (412) (206) (329) (323) (317) (418) (309) (305) (411) (415) (210) (214) (410) (220) (406) (301) (404) (225) (336) (224) (332) (326) (221) (322) (318) (512)(520)(530) (217) (516) (308) (323) (302) (512) (325) (205) (202) (203) (412) (514) (421)(119)(521) (115) (121) (117) (111)(115) (107)(113) (107) (404)(410) (416) (414) (420) (110) (601) (116) (403)(409)(415) (218)(210)(314)(202)(201) 36 6" C I 8" CI 8" D I 10" CI 4" C I 12" CI 6" CI 6" C I 6" CI 12" CI 6" C I 6" CI 4" C I 8" D I 4" CI 6" CI 8" DI 8" D I 12 " C I 6" C I 8" D I 12" CI 6" C I 6" C I 6" CI 8" DI 6" C I 6" C I 6" CI 6" CI 6" C I 6" C I 8" D I 6" C I OLIVE ST CH U R C H A V E STORY ST LI N D L E Y P L WA L L A C E A V E BOGERT PL DE L L P L KOCH ST CURTISS ST BU T T O N W O O D A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 8:32 AM 8:45 AM JDH 1240 125.8 psi 109.6 psi 201250 1,578 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 52 843 658 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 52 G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G!! G!! G!!G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!!G!! G!! G!! 843 (5) (3) (7)(9) (15) (25) (19) (22) (20) (1505) (1125) (1609) (1711) (1110) (1225) (1725) (1501) (1611) 658 6" C I 12" DI 12 " C I 6" D I 8" DI 4" CI 8" DI 6" CI 6" CI 12 " C I 12" CI 6" D I 4" C I 6" D I 12" DI 6" DI 12 " C I 6" DI 6" D I 6" DI 6" D I 6" D I 8" DI 12" CI 8" DI 11 T H A V E KAGY BLVD LINCOLN ST GRANT ST TA I L N BO B C A T C I R G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 9:55 AM 10:07 AM JDH 1240 88.4 psi 64.7 psi 201250 1,206 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 53 206 242 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 53 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!!G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!!G!! G!! G!! 206 (5)(3) (12) (14) (12) (12) (12) (23)(21)(19) (418) (113) (411) (422)(404)(412) (411)(405) (412) (409) (116) (115) (119) (106) (210) (201)(209) (216)(208) (417) (221) (216) (221) (1423) (1433) (1727) (1721) (1719) (1717) (1632) (1423) (1602) (1416) (1415) (1707) (1432) (1430) (1315) (1414)(1411) (1618)(1614) (1610) (1606)(1604) (1602) (1600) (1316) (1404) (1412) (1414) (1424) (1430) (1309) (1303) (1501) (1431) (1221) (1425) (1419) (1407) (1710)(1624) (1620) (1616) (1612) (1548)(1542) (1536) (1530) (1524) (1516) (1510) (1504) (1424) (1420) (1414) (1404) (1322) (1314) (1310) (1302) (1218)(1217) (1221) (1301) (1305) (1309) (1313) (1319) (1321) (1405) (1419) (1505) (1603) (1611) (1615) (1621) (1705) (1711) (1717) (1721) (1221) (1301) (1309) (1317) (1217) (1223) (1303) (1311) (1317) (1405) (1411) (1419) (1222) (1216) (1716) (1429) (1608) (1216) (1222) (1304) (1503) (1513) (1523) (1533) (1545) (1403) (1407) (1431) (1524) (1520) (1504) (1428) (1420) (1512) (1404) (1314) (1310) (1302) (1710) (1704) (1620) (1616) (1610) (1508) (1504) (1430) (1422) (1408) (1402) (1316) (1322) (1312) (1308) (1304) 6" C I 8" CI 6" D I 4" C I 8" DI 6" C I 6" C I 6" D I 6" C I 6" D I 4" C I 6" C I 6" C I 6" DI 6" C I 6" C I 4" C I 6" C I 4" C I 6" C I 6" CI 6" C I 6" CI 6" C I 6" C I 6" CI 6" C I 6" DI6" C I 3R D A V E HAYES ST WI L L S O N A V E GRANT ST 4T H A V E GR A N D A V E TRA C Y A V E MASON ST GREEK W A Y LINCOLN ST 242 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 9:35 AM 9:45 AM JDH 1240 93.9 psi 83.0 psi 201250 1,312 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 54 448 2170 254RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 54 GF G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F GF G F G FG!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 448 (910) (962) (630) (808) (702) (906) (720) (907) (714) (915) (822)(798) (786)(762) (750) (738) (726) (718) (710) (718) (710) (820) (818) (818) (910) (509) (804) (715) (893) (997) (973) (951)(935)(917) (903) (999)(975) (953) (931) (907) (877) (859) (845) (837) (833) (871) (855) (843) (831) (825) (813) (803) (771) (759) (745) (731) (723) (715) (703) (691) (675) (653) (639) (611) (816) (806) (816) (710) (988) (950) (521) (722) (523) (517) (522) (518) (514) (510) (506) (621) (705) (917) (705) (912) (707) (816) (711) (715) (718)(805) (714) (704) (809) (618) (815) (827) (907)(906) (826) (818) (808) (803) (811) (821) (829) (901) (511) (515) (519)(520) (514) (510) (506)(507)(505) (511)(511)(515) (517)(519)(518) (514) (510) (518) (506) (512) (506)(505) (509) (517)(514) (510) (506)(507) (511) (515) (519) (508) (706) (1925) (1924) (1933) (1492) (1779)(1801) (1705) (1412) (1825) (1910)(1928) (1933) (1605) (1604) (1951) (1811) (1705) (1706)(1710) (1621)(1617) (1613) (1519)(1503) (1711) (1826)(1702)(1806)(1722)(1616)(1526) (1412) 254 2 1 7 0 6 " C I 8" C I 8" D I 6" D I 10" CI 14 " C I 4" PVC 10" DI 6" P V C 10" CI 8" DI 10" CI 6" CI 6" CI 8" D I 6" C I 6" C I 8" D I 6" C I 10" CI 8" DI 8" DI 8" DI 8" D I 6" C I 8" D I 8" CI 8" D I 6" C I 6" CI 8" C I 4" PVC 10" CI 6 " C I 8" C I 8" D I 8 " C I 6" C I 8" C I 8" C I 8" D I 6" CI 8" D I 8" DI 8" DI 8" D I 10" CI 15 T H A V E 19 T H A V E 1 7 T H A V E DURSTON RD B L A C K M O R E P L TERRACE AVE 20 T H A V E 18 T H A V E 16 T H A V E 22ND AVE JUNIPER ST NELSON TRAILER COURT TRPK MAE ST NELSON TRAILER COURT TRPK 19 T H A V E NE L S O N T R A I L E R C O U R T T R P K G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 10:40 AM 10:53 AM JDH 1240 142.6 psi 131.2 psi 1241 1,869 gpm 1,822 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 55 676 678 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 55 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!! G!! G!!G!!G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 676 (610)(875) (524) (509) (689) (607) (650) (220) (773) (518) (225) (523) (502) (524)(525) (865) (751) (766) (732) (2651) (2405) (2220) (2630) (2622) (2607) (2621) (2740) (2555) (2707)(2715)(2723) (2724) (2716)(2712) (2731) (2704) (2608) (2400) (2514) (2612) (2711) (2619) (2220) (2320) (2630) (2820) (2707) (2631)(2609) (2421) 678 6" C I 8" D I 6" D I 14" DI 10" DI 4" PVC 8" DI 8" DI 8" D I 8" D I 14" DI14" DI 6" DI 6" D I 8" DI 8" DI 6" D I 6" CI 8" D I 14" DI 6" D I 8" DI 6" D I 8" D I 8" DI 14" DI 4" P V C 14" DI 6" DI 8" D I 1 0 " D I 8" DI 6" C I 8" D I 6" C I 1 0 " D I 6" C I 8" DI 8" DI 8" D I 8" DI 8" D I 14" DI 8" DI8" DI 8" DI 14" DI 8" D I 8" D I 10 " D I MAIN S T 23 R D A V E COLLEGE ST PR O F E S S I O N A L D R WA G O N W H E E L T R A I L E R C O U R T T R P K DIT E M A N W A Y YE R G E R D R WE S T C O L L E G E T R A I L E R P A R K T R P K G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 3:00 PM 3:15 PM JDH 1240 115.2 psi 109.5 psi 201250 1,673 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 56 1026 1027 1028RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 56 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F GF G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!!#I 1026 (1733) (1500) (1226) (1289) (1707) (1351) (1281) (1239) (2051) (1475) (2047) (1553) (1459) (1433)(2063) (2226) (2220) (1281) (1805) (1715) (1336) (1262) (1174) (1247) (1143) (1122)(1091) (1320) (1400) (1460) (1550) (1510) (1116) (1115) (1109) (1105) (1101) (2104)(2108)(2112) (2109) (1100) (1104) (1108) (1112) (2105)(2115) (1212) (1206) (2113) 1027 1028 6" DI 8" D I 6" P V C 14" DI 12 " D I 10" DI 4" PVC 14" DI 14" DI 8" D I 8 " D I 14" DI 6" PV C 6" PV C 6" P V C 6" PVC 8" D I 1 2 " D I 8 " D I 14 " D I 8" D I 8 " D I 8" D I 10" DI 6" PVC 14" DI 4" PV C 8" DI 8" DI 8" D I 4" PV C 4" PV C 8" D I 8" DI 8" DI 12 " D I 8" DI 8" D I 8" D I 12 " D I 8" DI 6" PVC 10" DI 8" D I 8" D I 8" D I 6" PVC 6" P V C 8" D I 8" D I 12 " D I 4" PVC OAK ST 19 T H A V E ST O N E R I D G E D R SU N N Y S I D E T R L BLACK POWDER TRL TWO TRACK WAYMAPLEWOOD ST CA R A V A N W A Y 19 T H A V E PRV 6 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 11:00 AM 11:12 AM JDH 1240 153.2 psi 140.7 psi 1241 1,998 gpm 1,725 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 57 1040 2510 1041RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 57 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! 104 0 (905) (931) (931) 2510 1041 10" DI 12" DI 6" C I 8" DI 6" D I 10" D I 10 " D I 10" D I 10 " D I 12" DI 10" DI 10 " D I 10" D I 10" D I 10" DI 10 " D I 10" DI 10" D I 12" DI ELLIS ST OLD H I G H L A N D B L V D HIGHLAN D B L V D G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 3:58 PM 4:07 PM JDH 1240 82.4 psi 74.0 psi 1241 1,342 gpm 1,299 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 58 1747 1746 1748RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 58 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF GF GF GF G F G F G F G F G F G F G!! G!! G!!1747 (347) (682) (614) (451) (407) (389) (360) (397) (339) (332)(332) (369) (423)(413) (475) (433) (462) (438) (386) (676)(670) (662) (650)(638)(626) (602) (4265) (4255) (4351) (4040) (4040) (4040) (4040) (4181) (4251) (4135)(4055) (4040) (4040) (4040) (4040) (4040) (4040) (4040)(4040)(4040) (4040)(4040) (4020) (4040) (4040) (4150) 1748 174 6 10 " D I 8" D I 6" D I 12" DI 10 " D I 6" DI 8 " D I 12" DI 8" DI 10 " D I 8" DI 6" DI 12" DI 10" DI 12" D I 6" DI 8" DI 12" D I 8" DI 6" DI 8" DI 12" DI 10 " D I 8" DI 8" DI 8" D I 8" D I 12" D I 8" D I 8" DI 8" DI 6" D I 8" D I FALL O N S T HUFFINE LN FE R G U S O N A V E RAVA L L I S T VALLEY COMMONS DR RE D W O O D D R EA S T W O O D D R TE A K W O O D D R G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 2:25 PM 2:37 PM JDH 1240 123.4 psi 109.8 psi 1251 1,621 gpm 1,531 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 59 2208 2209 2207RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 59 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!!2208 (4810) (1385)(4769)(4775)(4797)(4803)(4811)(4837)(4855)(4861)(4883)(4891)(4899) (1197) (1165) (1139) (1123) (1063) (1049) (4897)(4887)(4877)(4857)(4845)(4831)(4813)(4801)(4791)(4783)(4773)(4767) (4752)(4768)(4778)(4786) (4796)(4810)(4830)(4844)(4858)(4878)(4888)(4898) (4895)(4885)(4875)(4853)(4839)(4829) (4803)(4791)(4781)(4777)(4765) (4754)(4760)(4768)(4778)(4786)(4796) (4828)(4830)(4840)(4854)(4876)(4886)(4896) (4894)(4884) (4874)(4868)(4858)(4848)(4838)(4798)(4792)(4788) (4789)(4791)(4837)(4843)(4851) (4859)(4869)(4873)(4883)(4893) (4806)(4816)(4828)(4840)(4850) (4860)(4872) (4871) (4882) (4881)(4891)(1029) (1015) 2209 2207 8" DI 12 " D I 8" DI 8" DI 8" DI 8" DI 8" DI 1 2 " D I 12" DI 1 2 " D I 12 " D I 8" DI 8" DI 12 " D I 8" DI LOYAL DR VINE ST CO T T O N W O O D R D VICTORY ST GO L D E N G A T E A V E TRIUMPH ST ALPHA DR G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 2:04 PM 2:16 PM JDH 1240 111.3 psi 88.0 psi 1251 1,491 gpm 1,521 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 60 961 620 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 60 G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G FGF G FGF G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G!!G!!961 (5) (4) (17) (98) (25) (10) (51)(61) (16) (20) (724) (413) (721) (507) (521) (814) (810) (716) (520) (151) (505) (708) (404)(416) (125) (512) (820) (901) (700) (201) (720) (708) (408) (219) (524) (801) (625) (509)(605) (805) (610) (351) (560) (700) (516) (615) (622) (713)(714) (412) (800) (101) (411) (604) (810)(808) (301) (903) (815) (711) (423) (714) (901) (802) (807) (121) (907) (251)(201)(101) (517) (516)(414) (411) (415) (922) (719) (802) (820) (622) (902) (511) (516)(803) (707) (717) (707)(712)(716)(720)(724)(721)(717) (414)(721) (711) (425)(415) (719) (411) (712)(715) (810) (410) (710) (718) (816)(412) (417) (722) (411) (722) (906) (808)(801) (812) (717) (816) (711)(707) (722) (802) (710)(716) (808) (724)(718) (807) (120) (812) (819)(822) (815) (719) (811) (715)(721) (711) (717) (818) (711) (824)(819)(815)(809) (803) (502)(507) (503)(822) (724) (814) (1224) (1800) (1203) (1404) (1227) (1753) (1190) (1101) (1606) (1811) (1725) (1010) (1750) (1628)(1705) (1803) (1401) (1416) (1602) (1701) (1804) (1715) (1612) (1606) (1623) (1525)(1520)(1515)(1502) (1408) (1403) (1407) (1413)(1410) (1214) (1104) (1010) 620 4" C I 12" DI 8" DI 10 " C I 6" C I 1 0 " D I 8" C I 16" CI 6" D I 18" C I 4" D I 8" DI8" DI 8" D I 6" C I 10" DI 10" CI 10 " D I 8" D I 4" CI 8 " D I 16 " C I 4" C I 8" CI 10" CI 8" CI 12 " D I 18 " C I 8" CI 10" DI 8" DI 4" C I 16 " C I 10 " C I 6" CI 8" DI 10" CI 4" CI 12" DI 12" DI 12 " D I 12" DI 8" DI 6" C I 10" DI 10" DI 10 " C I 16 " C I 12" DI 12" DI 8" D I 10 " C I 8" CI RO U S E A V E OAK ST TAMARACK ST INTERSTAT E 9 0 H W Y L ST GOLD AV E BOND ST EVERGREEN D R PEA R S T ASPEN ST 3R D A V E BIRCH ST INTERSTATE 9 0 H W Y G O L D A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 9:42 AM 9:56 AM JDH 1240 157.4 psi 153.9 psi 201250 1,803 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 61 415 1182 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 61 G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G FGF G F G F G F G F G FGF G F G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! 415(845)(815) (735)(725) (408)(504)(510) (517)(511)(507)(503)(421)(417)(411)(405) (410)(416)(422)(504)(510) (514) (515) (511)(507)(421)(415)(411) (410)(416)(420)(504)(508)(510)(516)(604) (611)(607)(601)(521)(517)(703) (830) (610) (410)(416)(424)(504)(510) (514) (515)(511)(503)(421)(415)(409)(405) (404)(412)(422) (515)(511) (505)(501)(419)(415)(411) (410)(416)(424)(504)(510) (514) (515) (511)(505) (423)(417)(411) (704) (418)(504)(512)(514) (515)(509)(505)(421) (415)(411)(405) (2601) (2701) (3013) (3007) (3015) (3009) (3012) (3009) (3001) (3010) (3016) (3009) (3003) (3010) (3015) (3009) (3002) (3006) (3010)(3017) (3009) (3005) (3001) (2915) (2907) (2811) (2802) (2810) (2814) (2900) (2904) (2910)(2909) (2907) (2903) (2815) (2809) (2805)(2807) (2811) (2817) (2903) (2907) (2911) (2915) (3001) (3009) (3014) (3010) (3006) (3002) (2916) (2912) (2908) (2902) (2818) (2814) (2810) (2514) (2512) (2510) (2508) (2410) (2615) (2603) (2717) (2709) (3005) (3014) (2413) (2501) (2509) (2511) (2515) (2605) (2611) (2703) (2705) (2711) (2612) (2604) (2516) (2512) (2506) (2511) (2517) (2521) (2525)(2526) (2522) (2518) (2803) 118 2 10 " D I 6" DI 8" D I 12" DI 6" CI 6" DI 10" DI 6" DI 10 " D I 6" DI 10 " D I 6" D I 6" D I 8" D I 6" D I 8" D I 8" DI 6" DI 10" DI 8" D I 10 " D I 6" DI 8" DI 8" D I 8" D I 10" DI10" DI 6" DI 6" D I 6" D I 6" D I 6" DI 6" D I 6" DI 6" DI 6" DI 6" DI 6" DI ARNOLD ST WE S T R I D G E D R SE C O R A V E STAUDAHER ST CUTTING ST HENDERSON ST HE A L Y A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 11:38 AM 11:50 AM JDH 1240 71.1 psi 70.7 psi 201250 1,277 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 62 2065 2066 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 62 G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G FGF G F G F G!! G!!2065 (1909) (1735) (1745) (1765) (2233) (1781)(1779) (1777)(1775)(1773)(1771) (1769)(1767)(1765)(1763)(1761)(1759)(1757)(1749)(1747) (1743)(1741)(1739)(1737)(1735)(1733)(1731)(1729)(1727)(1725)(1723)(1721)(1719)(1717)(1715) (1745) (1825) (2101) (1945) (2104)(1815) (2211)(1820)(1751) (1816) (1825) (1818) (1724) (1714) (1706)(1954) (1705) 2066 8" D I 24 " D I 12" DI 6" CI 6" D I 8" CI 8" D I 12" DI 8" D I 8" DI 8" DI 8" DI 24" DI 8" D I 8" DI 8" DI 24 " D I 8" DI 8" DI 8 " D I 8" DI 8" DI 8" D I 24 " D I 12" DI 24 " D I 8" D I 19 T H A V E KAGY BLVD 22 N D A V E REMINGTON WAY ST O C K M A N W A Y AL D E R C O U R T L N G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 10:15 AM 10:30 AM JDH 1240 83.0 psi 81.4 psi 201250 1,362 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 63 986 2018 716RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 63 GF G F G F G F GF G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G FGF GF GF G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G!! G!! G!! G!!986 (5) (6) (2)(2) (4) (1) (4) (8)(9) (7)(6) (10) (10) (10) (10) (10) (10)(50) (30) (10) (25) (45) (27) (51)(50) (26) (28) (52) (76)(77) (53) (29) (27) (51) (50) (26) (12) (52) (32) (10)(11) (11) (31) (51) (104) (418) (131)(204) (108) (104)(104)(104) (108) (110) (208) (210) (102) (303) (302) (301) (300) (303)(300) (120) (100) (302) (105) (125) (142) (122) (102)(103) (127) (151)(150) (126) (102)(103) (127) (151)(150) (126) (102) (101) (121) (3600) (3502) (3424) (3410)(3402) (3719)(3308)(3310) (3314) (3328) (3334)(3410) (3324) (3906) (3316) (3308) (3304) (3316) (3705)(3309)(3401)(3405)(3409)(3413)(3417)(3501)(3505)(3509) (3605) (3424) (3425)(3451) (3464)(3610) (3610) (3610)(3610) (3610)(3610) (3610)(3610)(3610)(3610) (3610)(3610) (3513)(3601)(3605)(3609)(3701) (3681) 708 716 201 8 6" D I 12" DI 10" DI 8" D I 6" C I 6" D I 8" DI 12" D I 6" D I 6" D I 8" DI 6" DI 6" D I 6" DI 6" DI 6" D I 12" DI 6" D I 6" DI 6" DI 10" DI 8" DI 6" DI 6" D I 8" DI 6" D I 6" D I 6" D I 8" D I 6" DI 6" D I 6" DI 6" DI 6" DI 12" DI 6" D I 12" DI 6" D I 10" DI 8" D I 8" D I 6 " D I 6" DI 6" DI 6" DI 8" DI 6" D I 6" DI 6" DI6" DI BABCOCK ST RAVALLI ST YE L L O W S T O N E A V E FO W L E R A V E ME A G H E R A V E SW E E T G R A S S A V E SH E R I D A N A V E CH O U T E A U A V E SH E R I D A N P L VA L L E Y D R G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 3:21 PM 3:34 PM JDH 1240 130.6 psi 118.3 psi 1251 1,689 gpm 1,746 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 64 858 1009 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 64 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!!858 (8) (2)(3) (4)(8)(7) (4) (8) (1) (9) (9) (8) (2) (26) (20) (30)(44) (42) (59) (37) (84) (97) (91) (85) (73) (51) (21) (47) (33) (88)(82)(80)(74)(70)(64)(58)(52)(48)(40)(38) (32) (91) (72) (64) (56) (42) (34) (28) (26)(22) (18)(12)(27)(26) (20) (14) (28) (32) (48)(49) (43) (37) (17) (31) (25) (13) (49)(51)(53)(55)(50) (40) (32) (24) (16) (320) (129) (211) (163) (144) (132) (112)(111) (200)(201) (311)(305) (184) (104) (188) (164)(156)(140)(136) (128) (124)(110) (173) (151) (135) (162) (314) (329) (213) (301) (328) (307) (302) (123) (122) (308) (137) (304) (119) (316) (330) (320) (325) (325) (140)(142)(150) (152) (155)(157) (357) (305)(309) (313) (317) (321) (328)(332)(336) (340)(344)(348) (352) (356) (360) (364) (368) (322)(323) (317) (313) (207) (139) (133) (101)(103)(105)(107) (109)(111)(113)(115) (117)(119)(121)(123) (240) (232)(226) (206)(204)(202)(200)(124)(122)(120)(118)(116) (112)(110)(108)(106)(104) (102) (301) (361) (114) (2813) (3063) (3056) (3040) (3087)(3075) (2700)(3000) (2701) (2962) (3016) (3014) (3014) (3024) (3020) (3020) (3018) (3026) (2727) (3157)(3133) (2722)(2726)(2720) (2715) (2835) (2721) (2820) (2821) 1009 8" D I 6" D I 10" DI 10" DI 10" DI 8" D I 8" DI 8" D I 6" D I 8" D I 8" D I 8" D I 6" DI 8" D I 8" D I 6" DI 6" D I 8" D I 8" DI 8" DI 8" D I 8" D I 8 " D I 8" DI 10" DI 8" D I 8" D I 8" D I 10" DI 10" DI 8" D I 6" D I 8" DI 6" D I 6" D I 6" D I 6" D I 6" D I 8" D I 8" D I 8" D I 6" DI 10" DI 8" D I 6" DI 10" DI 8" D I 10" DI 6" D I 8" DI 8" DI 6" D I 8" DI 6" DI 6" DI 8" DI 10" DI HU N T E R S W A Y SU N L I G H T A V E MENDENHALL ST ME G H A N S W A Y MI C H A E L G R O V E A V E DR O U L L I A R D A V E YORK ST GREENWAY CT ME R I W E T H E R A V E GENA CIR G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 5:25 PM 5:40 PM JDH 1240 131.5 psi 128.3 psi 201250 1,739 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 65 738 739 452RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 65 G F G F G F G F G F G F G FGFGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G FGF G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! 738 (417) (924) (808) (671)(827) (844) (720)(714) (822) (818) (509) (603) (796) (760) (710) (950) (515) (801) (819) (841) (853)(865) (768) (782) (812) (824) (830) (836) (848) (856)(860)(868)(872) (521) (523) (517)(513)(510) (503) (802) (414) (677) (661) (651) (657) (627) (621) (617) (611) (603) (631) (637) (667) (687)(681) (691) (697) (901)(905) (911) (906) (724) (712) (704) (415) (419) (503) (507) (511) (515) (519) (523)(522) (518) (514) (510) (506) (502) (418) (414) (521)(522) (518) (512) (508) (504) (420) (416) (412) (417) (423) (505) (509) (515) (519) (521)(522) (520) (516) (512) (506) (502) (420)(420) (416)(416) (412)(415) (419) (423) (505) (509) (515) (517) (413) (417) (421) (505) (509)(506) (415) (419) (505) (511) (515) (519) (514) (2055) (2011) (1925) (2135) (2305) (2408)(2418)(2430) (2137)(2123) (2115)(2101) (2149) (2137) (1933) (2308) (2075) (2015) (2040) (2400) (2400) (2400) (2400) (2400) (2002) (1910)(1928) (1933) (2412)(2424) (2419)(2427) (2448) (2020) (2400) (2400) (2400) (1951) (2020) (2106)(2104)(2102) (2165) 452 7 3 9 6" C I 6" D I 8" DI 10" C I 10" DI 6" D I 6" DI 8 " D I 10 " D I 6" D I 6" D I 10 " D I 10" DI 6" C I 6 " D I 8" D I 10" D I 10" D I 6" D I 10 " D I 6" D I 8" DI 8" DI10" DI 6" D I 10" DI10" DI 8" DI 6" DI 6" D I 10" CI 6" DI 8" D I 6" D I 6" C I 8 " D I 6" D I 8" DI 8" DI 8" DI 8" DI 10" DI 8" D I 6" D I 8" D I 10" CI10" DI 6" DI 6" D I 8" DI 8" DI 6" DI 19 T H A V E 22 N D A V E DURSTON RD ANNIE ST E M I L Y D R 21 S T A V E 20 T H A V E 23 R D A V E S T O N E R I D G E D R RO G E R S W A Y CHARLOTTE ST WINDSOR ST 19 T H A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 11:40 AM 11:51 AM JDH 1240 142.6 psi 133.7 psi 1241 1,964 gpm 1,814 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 66 1402 357 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 66 G FGFGFGFGF G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F GF GF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!!G!!G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!!1402 (125) (201) (500) (210) (301) (301) (113) (220) (605) (215) (615) (201) (307) (407) (303) (226) (227) (306) (108) (115) (511) (308) (214)(214)(220)(220) (317) (300) (220) (220) (210) (607) (601) (220) (311) (501) (600) (509) (505) (501) (413) (410) (502) (315) (301) (215) (209) (205) (113) (109) (112) (204) (212) (302) (406) (410) (504) (510) (305) (223) (217) (210) (228) (227) (223) (217) (215) (302) (308) (316) (519) (515) (505) (315) (215) (211) (414) (209) (418) (424) (203) (119) (508) (512) (520) (608) (405) (117) (1804) (1420) (1902) (1805)(1807) (1601) (1700) (1612) (1940) (1608) (1907) (1801) (1800) (1800) (1624) (1890) (1712) (1725) (1703) (1516) (1607) (1611) (1711) (1711) (1711) (1703) (1703) (1711) (1611) (1712) (1712)(1712) (1611) (1611) (1725) (1902) (1921) (1920)(1526)(1602)(1608)(1800) (1811)(1807) (1720)(1810)(1810)(1810)(1810) (1810)(1810) (1801)(1801)(1801) (1801)(1801) (1527) (1519) (1520) (1522) (1611)(1607) (1508) (1515) (1420) (1418) (1811) (1916) 3 5 7 10 " D I 6" D I 8" DI 14 " C I 14 " D I 2" C U 4" C I 8" D I 6" DI 6" DI 6" D I 10 " D I 6" DI 6" D I 10 " D I 6" D I 14 " C I 8" DI 6" D I 8" DI 6" DI 8" D I 8" DI 8" DI8" DI 6" DI 8" DI 8" DI 2" CU 8" DI 14 " C I 6" D I 8" DI 14 " C I 14 " C I 14 " C I 6" D I 6" DI 6" D I 6" D I 6" DI 6" D I 6" D I 6" D I 14 " C I KOCH ST 15 T H A V E 19 T H A V E OLIVE ST 16 T H A V E DICKERSON ST 18 T H A V E 17 T H A V E 16TH A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 3:36 PM 3:50 PM JDH 1240 120.3 psi 116.7 psi 201250 1,732 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 67 980 979 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 67 G F G F G F G FGFGF G F G F G F G F G F G F GF G F G F G F G F G F G F G F G F G F G FGFGFGF G F G F G FGF G F G F G F G F G FGF G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!! G!! G!!G!!G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 9 8 0 (875) (888) (985)(993) (867) (873) (870)(868)(862) (895) (670) (2825) (2820) (3275) (3225) (3265) (3245) (3255) (3100) (2817) (2905)(8645) (2901)(2911) 979 12" DI 8" D I 8" CI 8" DI 8" D I 8" DI 8" D I 8" DI 8" DI 8" DI 8" DI 8" CI 8" DI 8" D I 8" DI 8" D I 8" DI 8" D I 8" DI 12" DI 8" DI 8" CI 12" DI 8" D I 8" DI 8" D I 8" DI 8 " D I 8" D I 8" D I 8" DI 8" DI 8" DI 8" D I 8" D I 8" D I 8" DI 8" D I 8" DI 8" DI HUFFINE LN C O L L E G E S T G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 2:45 PM 2:55 PM JDH 1240 112.5 psi 109.0 psi 201250 1,660 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 68 1913 1914 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 68 G F G F G F G F G F G FGFGF G F G F G F G FGF G F G F G F G F G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!! G!! G!! G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!!G!! G!! G!! 191 3 (895) (3220) (3225)(3245) (3240) (1140) (1120) (1060) (1040) (3255) 1914 8" D I 8" DI 8" D I 8" DI 8" DI 8 " D I 8 " D I 8" D I 8" D I 8" D I 8" DI 8" D I 8" DI 8" D I 8" DI 8" DI 8" DI 8" DI 8" D I 8" DI GARFIELD ST F O W L E R A V E HA R M O N S T R E A M B L V D F O W L E R A V E G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 2:28 PM 2:38 PM JDH 1240 100.8 psi 98.7 psi 201250 1,494 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 69 664 1264 663RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 69 G F G F G F G F G F G F G F G F G F G F G F G F G F G F G FGF G F G F G FG!!G!!G!!664 (895) (960) (945) (985) (901) (2155) (1100) (2150) (1111) (1123) (1160) 6 6 3 126 4 8" DI 6" D I 10" D I 6" DI 8" DI 8" DI 1 0 " D I 8" DI 8" DI 8" D I 8" D I 8" DI 8" D I 8" DI 8" DI8" DI 6" DI 8 " D I 6" DI GARFIELD ST 19 T H A V E RES E A R C H D R ANALYSIS DR G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 2:08 PM 2:24 PM JDH 1240 101.8 psi 92.6 psi 201247 1,446 gpm 1,532 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 70 2314 2312 2315RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 70 G F G F G F G F G F G F G F G F G FGF G F G F G F G F G!! G!! G!! 231 4 (760) (784) (776) (710) (707) (699) (705)(701) (820)(819) (790) (780) (770) (740) (730) (789) (777) (750) (1971) (1969) (1967) (1965) (1961) (1996) (1994) (1992) (1976)(1970) (1968)(1964)(1960) (1940) (1930) (8456) 2315 2312 10" DI 8" DI 10" D I 10" DI 8" DI 10" D I 8" D I 8" D I 8" DI 8" DI 8" DI 8" D I 8" DI 8" DI 8" D I 10" D I 8" DI 8" DI8" DI8" DI HAGG E R T Y L N HUFF M A N L N INTERSTATE 9 0 H W Y DUD L E Y D R INTERSTATE 9 0 H W Y G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 3:34 PM 3:44 PM JDH 1240 100.2 psi 66.6 psi 1241 1,385 gpm 1,273 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 71 1920 1921 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 71 G F G F G F G FGF G FGF G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!!G!!G!!G!!G!!G!! 1920 (2011) (2131)(2125) (2159)(2157) (2137)(2123) (2119) (2175) (2111) (2171) (2327)(2308) 1921 8" DI 12" DI 6" C I 8" DI 8" DI 8" DI 8" D I 6" C I 12 " D I 8" DI 8" DI 12 " D I 6" CI 8" DI 8" DI 8" DI 8" DI 8" D I 8" DI 8" D I 8" DI 8" DI 8" DI 8" D I 8" DI 12 " D I 8" D I 12 " D I 11 T H A V E CAMPUS BLVD OPPORTUNITY WAY G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 10/1/2015 12:17 PM 12:28 PM JDH 1240 69.2 psi 66.7 psi 201250 1,305 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 72 944 943 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 72 G F G F G FGF G F G F G F G F G F G F G FGFGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F GF GF G F G F G F G F G F G F G F G F G F GF G F G F G F G F G F G F G FG!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! #I #I 9 4 4 (506) (412) (520) (416) (325) (393)(380) (379)(362) (517)(510) (714) (707) (702) (718) (802) (429) (710) (413) (706) (806) (711) (329) (425) (606) (328) (722) (741) (709) (725) (701) (805) (712) (511) (802) (729) (713) (801) (709) (713) (737) (742) (717) (708) (721) (715) (733) (738) (710) (330) (417) (413) (409) (509)(507) (418)(410) (422) (425)(429)(433) (502)(506)(510) (305)(309) (313) (368) (372) (402)(406) (410) (414) (418) (422) (322) (430) (434) (438) (502) (506) (514)(518) (522) (431) (427) (417) (423) (419) (415) (411)(409) (407) (403) (405)(401) (335) (323) (506) (440) (428) (514) (517)(521)(525) (513) (505) (509) (501) (437) (433) (421)(426) (414) (301) (705) (702) (745) (610)(2495) (2942)(2926) (2904) (2496) (2714) (2948)(2934)(2920) (2945)(2931)(2917) (2812) (2400) (2752) (2908) (2902) (2918) (2910) (2706) (2702) (2704) (2905) (2906) (2701) (2710) (2703) (2708) (2917) (2901) (2706) (2913) (2705) (2707) (2909) (2902) (2901) (2906) (2801) (2614)(2602) (2622) (2510)(2622)(2502) (2510)(2514)(2610) (2611) (2502) (2511) (2618)(2606) (2813) (2507)(2619) (2606) (2602) (2905) (2902) (2515) (2602) (2518) (2503)(2515)(2523)(2603) (2622) (2618)(2610)(2518) (2506) (2623)(2611) (2502) (2619)(2623) (2503)(2511)(2519)(2603) (2514)(2510) (2503)(2507)(2511)(2515)(2519)(2603)(2611) (2618)(2614)(2610)(2502)(2518)(2514) (2806)(2722)(2716) (2510) (2710) (2717)(2723)(2807) (2622) (2710) (2905) (2615) 943 6" C I 6" DI 8" DI 10" DI 8" C I 4" D I 8" D I 8" D I 8" DI 8" DI 6" DI 8 " D I 8" DI 8" D I 8" D I 8" D I 8" D I 6 " D I 8" D I 8" D I 8" D I 8 " D I 6" DI 8" D I 6" DI 8" DI 6" DI 6" DI 8" DI 8" D I 8" D I 8" DI 8" D I 10" DI 8" D I 6" DI 8" DI 8 " D I 6" DI 8 " D I 8" D I 8" D I 8" D I 6" DI 8" D I 8" C I 6" D I 10" DI 8" D I 8" D I 8" DI 10" DI10" DI 10 " D I 10" DI 8" DI 8" DI 8" DI 8" DI 6" DI 6" DI 8" D I 8" D I 8" DI ROSE ST 25 T H A V E VILLARD ST DURSTON RD HU N T E R S W A Y 27 T H A V E WE S T E R N D R SNAPDRAGON ST DAFFODIL ST G R E E N W A Y A V E MI C H A E L G R O V E A V E OLIVER ST DOVE CT GROUSE CT PRV 8 PRV 9 G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 5:04 PM 5:17 PM JDH 1240 140.4 psi 135.6 psi 201250 1,870 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 73 1076 1077 1075RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 73 G F G F G F G F G F G F G F G F G F G F G!! G!! G!!1076 (675) (640) (425) (467) (437) (505) (449) (454) (478) (528)(504) (466) (3736) (3816) (3783) (3780) (3775) (3772) (3760) (3754) (3748)(3727) (3722) (3715) (3800) (4446) (4437) (4434) (4459) (4458) (4422) (4405) (4421) (4470) (4449) 1077 1 0 7 5 10" D I 8" DI 12" D I 12" DI 10" DI 10" DI 10" DI 12 " D I 10" DI 1 0 " D I 8" DI 12 " D I 12 " D I 12 " D I 8" D I 1 0 " D I 10 " D I 3RD AVE GOLDENSTEIN LN PEACE PIPE DR ELLIS V I E W L O O P G O O D M E D I C I N E W A Y G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 5:22 PM 5:33 PM JDH 1240 36.4 psi 32.8 psi 1241 823 gpm 810 gpm 201250 SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 74 478 341 RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 74 G F G F G F G F G F G F G F GF GF G F GF GF G F G F G F G F GF G F G F G F G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G F G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!!G!! G!! G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!!G!! G!! G!! G!! G!! G!!G!!G!! G!! G!! G!! G!!G!! G!! G!!G!!G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!! G!! G!! G!! G!! G!! G!! G!!G!! G!! G!!G!! G!! G!! G!!G!!G!! G!! G!! 4 7 8 (20) (201) (205) (500) (210)(220) (113) (517)(509)(509) (215) (407) (303) (517) (506) (306) (108) (411)(504) (300) (231) (509) (505) (501) (413) (409) (510) (315) (301) (215) (209) (205) (113) (303) (211) (119) (115) (111)(112) (204) (212) (302) (406) (410) (504) (510) (509) (504) (501) (409) (405) (504) (315) (309) (405) (117) (200) (200) (514) (2405) (2220) (1902)(2050) (1940) (1907) (2220) (2222) (2304) (2245) (2245) (2200) (2200) (2200)(2200) (2200)(2200) (2320) (1902) (2275) (2401) (1921) (1920)(2002)(2010) (1916) 341 8" D I 6" D I 6" C I 10 " D I 4" DI 6" D I 8" DI 8" DI 8" DI 6" D I 8 " D I 8" D I 8" D I 6" D I 8" D I 8" D I 6" D I 8" D I 8" D I 8" DI 8" DI 8" DI 6" DI 8" D I 8" DI 8" D I 8" D I 6" D I 6" DI 6" DI 8" D I 6" D I 10" D I 8 " D I 6" CI 8" DI 6" DI 8" DI 8" DI 8" DI 8" DI 8" D I 8" DI 8" D I 8 " D I 6" D I 8" DI 20 T H A V E 23 R D A V E KOCH ST MAIN S T 22 N D A V E DICKERSON ST OLIVE ST ST E S T E P H E D R WA G O N W H E E L T R A I L E R C O U R T T R P K WE S T C O L L E G E T R A I L E R P A R K T R P K G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/30/2015 3:20 PM 3:31 PM JDH 1240 120.5 psi 118.6 psi 201250 1,748 gpm SOUTH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet Test Number: __________ Test Date: ______________ Start Time: ___________ End Time: ___________ Test By: _________ Zone: ___________________ 75 2233 2230 2234RESIDUAL HYDRANT Hydrant No. ______ HPR No. ________ Static: __________ Residual: ________ FLOW HYDRANT #1 Hydrant No. ______ HPR No. ________ Flow: ______________ FLOW HYDRANT #2 Hydrant No. ______ HPR No. ________ Flow: ______________ 75 G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G FGF G F G F G F G F G F G F G F G F G F G F G!! G!!G!!G!!2233 (994)(980)(950)(932)(914)(902) (991) (977)(955)(937)(921)(893) (870) (869)(853) (854)(834) (835) (818) (815) (901) (952) (958) (964) (946)(938)(920)(906)(890)(882) (876) (870) (866) (860) (972) (986) (1704) (1428) (1630) (1431) (1461) (1445) (1028)(1012) (1023)(1001)(1484) (1470) (1456) (1442) (1386) (1372) (1358) (1344) (1332) (1320) (1308) (1375) (1333) (1460) (1446) (1432) (1416) (1489) (1477) (1463) (1449) (1435) (1421) (1407) (1393) (1381) (1369) (1357) (1345) (1331) (1319) (1309) (1412)(1415) (1757) (1575) (1007) (1621) (1619) (1640) (1620) (1614) (1602) (1015) (1625) (1103) (1104) (1103) (1104) (1103) (1104) (1103) (1715) (1701) (1716) (1722) (1017) (1021) (1024) (1014) 22 3 4 223 0 8" DI 12 " C I 20" DI 12" D I 6" D I 6" CI 8" CI 10" DI 1 2 " C I 6" CI 8" D I 12 " C I 8" DI 8" D I 8" DI 12 " C I 8" DI 8" D I 6" D I 12 " C I 20" DI 8" DI 8" D I 12 " C I 20" DI 8" CI 8" D I 8" D I 8" DI 6" DI 8" DI 8" DI 8" D I 8" DI 6" D I 8" D I 8" DI 12 " C I 8" D I KE N Y O N D R HI G H L A N D B L V D PO S T D R KNOLLS DR JOSEPHINE DR ASPEN PO I N T E D R OCO N N E L L D R G!!Flow Hydrants G F Other HydrantsG!!Test Hydrants 9/29/2015 4:16 PM 4:30 PM JDH 1240 61.3 psi 42.1 psi 1241 1,047 gpm 1,101 gpm 201250 KNOLL Water Facility Plan Update Appendices July 2017 Appendix D - Extended Period Simulation (EPS) Tests Fi e l d B o o k Ex t e n d e d Pr e s s u r e Te s t i n g Ex t e n d e d  Pr e s s u r e  Te s t i n g  Pr o t o c o l • In s t a l l  12  hy d r a n t  pr e s s u r e  re c o r d e r s  at  ke y  lo c a t i o n s  th r o u g h o u t  th e  di s t r i b u t i o n  system • Hy d r a n t s  wi l l  re m a i n  li v e  du r i n g  th e  2  we e k  pe r i o d  of  co l l e c t i n g  fl o w  da t a • In  ca s e  of  em e r g e n c y ,  cu t  lo c k  an d  re m o v e  hy d r a n t  pr e s s u r e  re c o r d e r  an d  re t u r n  to  AE2S ³Ú UT UT UT ³Ú #I #I #I #I#I #I #I #I #I #I #I #I #I #I #I #I #I#I #I #I #I #I G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! G!! FO W L E R L N RED W I N G D R CED A R S T BLACKWOOD RD BOH A R T L N WA T T S L N LA K E R D AR N I C A D R JAGAR LN JOHNSON RD RAINBOW RD ABAGAIL RANCH RD PARK VIEW PL RED TAIL RANCH RD LAKE D R AR E T E D R DRIFTWOOD DR HORSETAIL RD RO C K Y R D VA L L E Y D R ELLIS ST 21 S T A V E WILDFLOWER WAY FL A N D E R S M I L L R D VA N D Y K E R D OVERLOO K L N TH O M A S D R 18 T H A V E 20 T H A V E 16 T H A V E 15 T H A V E PE R K I N S P L HEATHER LN 23 R D A V E SA C C O D R BE A R P A W T R L KAGY BLVD HOLLY DR WIL D A L N WINT E R G R E E N L N ASH DR HARPER PUCKETT RD LUCI L L E L N STONEGATE DR B E N N E T T D R DA V I S L N MA R Y R D E V E R G R E E N D R WHEAT DR HA G G E R T Y L N S T O R Y M I L L R D FALLON ST M C G E E D R HO F E R L N RIDGE TRL WIL L O W W A Y LILY DR BURKE ST 10 T H A V E B I R D I E D R BLUEBIRD LN 28 T H A V E 26 T H A V E MA Y A W A Y GALL A T I N D R BO R D E R L N PARK PL VA L L E Y R I D G E R D LAREDO DR GOLDENSTEIN LN OLD H I G H L A N D B L V D INT E R S T A T E 9 0 H W Y ROSE ST BU T T O N W O O D A V E FRON T A G E R D LE A A V E AU G U S T A D R AR R O W L E A F H I L L S D R VICTORY ST HI D D E N V A L L E Y R D MIDFIELD ST WHITETAIL RD SYPES CANYON RD RI A T A R D CONCORD DR PALETTE C T K N A A B D R VISTA L N E A S T W O O D D R JACK L E G L N YE R G E R D R PAI N T E D H I L L S R D BIG GULCH DR KERMO D I S T OLD FARM RD H U N T E R S W A Y GRE E K W A Y SIM M O N S L N CIRCLE DR JE A N A L E I C T COVER ST SU N D A N C E D R BO Y D R D P R O F E S S I O N A L D R FE N W A Y LIN D L E Y P L CL O N I N G E R L N IN D U S T R I A L D R VI R G I N I A D R CHERRY D R BOG A R T D R ANNIE ST TE T O N A V E TRIUMPH ST LANCE DR CO T T O N W O O D R D CLASSICAL WAY BENEPE ST KAGY RD URS A S T SO L A R W A Y PATTERSON RD S I M M E N T A L W A Y TA Y A B E S H O C K U P R D BRYANT ST P A R K W A Y A V E L ST GRAF ST DAISY DR G O L D D U S T T R L L A U N F A L L N LIN D V I G D R RAWHIDE RDG M Y E R S L N C A N D Y L N FRANKLIN HILLS DR LITTLE GULLY RUN FO W L E R A V E FA R R I E R L N SE C O R A V E A N N E T T E P A R K D R PO N D E R A A V E TRIPLE TREE RD TA I L N ERIK DR GA L E C T RO S A W A Y H I T C H I N G P O S T R D 11 T H A V E HUFFINE LN CA R S O N P L 24 T H A V E G O L F W A Y CATALYST ST CATKIN LN SA N D E R S A V E PEACE PIPE DR FE R G U S O N A V E BR I G G S R D FARM VIEW LN LONG H O R N R D MONIDA ST MA D R O N A L N 9T H A V E VIR G I N I A W A Y LO X L E Y D R ST U B B S L N CATTAIL ST LL O Y D S T JAMES AVE LOOKFA R W A Y J E S S I E W A Y 13 T H A V E 19TH AVE SPRINGHILL LN BRAJENKA LN PO N D L I L Y D R ACCOLA DR PEACH ST TR O O P E R T R L TSCHACHE LNWINTER PARK ST PANORAMA DR MASON ST QUINN DAVID L N ALPINE WAY POTOSI ST DIS C O V E R Y D R HI L L C R E S T D R CH O U T E A U A V E BL A C K B I R D D R GOLD AVE DUDL E Y D R B U R A V E CATRON ST 6T H A V E DAVIS ST EN T E R P R I S E B L V D CA M P B E L L R D BABCOCK ST SA X O N W A Y S T A R R I D G E R D ST A F F A N S O N R D WILDROSE LN CAN A R Y L N HI G H L A N D B L V D BOYLAN RD BEALL ST LOLO WAY MCI L H A T T A N R D RE S O R T D R ICE POND RD TR A C Y A V E ROBIN LN MAIN ST 8T H A V E GA R D N E R P A R K D R FRO N T S T WES T E R N D R CA Y U S E T R L HILL ST 27 T H A V E LI M E S T O N E R D SA D D L E C R E E K R D 4T H A V E GRIFFIN DR SP R I N G H I L L R D OLIVE ST STUCKY RD BRIDGER CANYON RD 5T H A V E LARAMIE DR ROCKY CREE K R D RUSTY DUCK LN KOCH ST 29 T H A V E 1 2 T H A V E MO N T A N A A V E AAJKER CREEK RD 7T H A V E REE V E S R D BOND ST B A X T E R D R RIVERSIDE D R C H U R N C R E E K D R ARNOLD ST HILLSIDE LN VALLEY CENTER RD TAMARACK ST S O U R D O U G H R D LA U R E L P K W Y R O U S E A V E CH U R C H A V E W O O D L A N D D R SH E R I D A N A V E 3RD A V E MA N L E Y R D CA S P I A N A V E BRIDGER DR NE L S O N R D NASH RD BIG E L O W R D RE D W O O D D R GARFIELD ST 22 N D A V E OAK ST BAXTER LN DURSTON RD 1 9 T H A V E KAGY BL V D KAGY BLVD NASH RD TR A C Y A V E G R A F S T 7T H A V E 3R D A V E ST O R Y M I L L R D BIG GULCH DR 19 T H A V E TR I P L E T R E E R D STAR RIDGE RD OAK ST 16TH A V E MC G E E D R OAK ST S O U R D O U G H R D I N T E R S T A T E 9 0 H W Y INTER S T A T E 9 0 H W Y HAGGERTY LN 19 T H A V E CO T T O N W O O D R D BAXTER LN GRAF S T 27T H A V E NASH RD DA V I S L N 3RD AVE VALLE Y C E N T E R R D 15 T H A V E STUCKY RD 3R D A V E 11 T H A V E OAK ST 19 T H A V E FRON T A G E R D FRON T A G E R D BLACKWOOD RD PATTERSON RD 20 T H A V E MCI L H A T T A N R D 19 T H A V E FRON T A G E R D 6T H A V E MAIN ST BAXTE R L N 2 4 T H A V E IN T E R S T A T E 9 0 H W Y CO T T O N W O O D R D CO T T O N W O O D R D FRON T A G E R D G R A F S T 19 T H A V E TR A C Y A V E NASH RD OAK ST JOHNSON RD BLACKWOOD RD L ST 19 T H A V E HA R P E R P U C K E T T R D FO W L E R L N BOYL A N R D 7T H A V E NASH RD FO W L E R L N 19 T H A V E SO U R D O U G H R D BAXTER LN INTERSTATE 9 0 H W Y PATTERSON RD KAGY BLVD MCI L H A T T A N R D 11 T H A V E L ST 11 T H A V E M C I L H A T T A N R D LA K E D R HUFFINE LN MA N L E Y R D L ST 27 T H A V E BAXTE R L N DA V I S L N FO W L E R L N STOR Y M I L L R D J A C K L E G L N 15 T H A V E PATTERSON RD BAXTER LN MC G E E D R BAXTER LN 19 T H A V E OAK ST BOYLAN RD FO W L E R L N MAIN ST 19 T H A V E 19 T H A V E 3R D A V E L ST 19 T H A V E ELLIS ST 23 R D A V E BABCOCK ST A B A G A I L R A N C H R D BAXTER LN CH U R C H A V E HID D E N V A L L E Y R D OAK ST NASH RD NASH RD 19 T H A V E HUFFINE LN 7T H A V E 7T H A V E LAKE D R ST U B B S L N MA R Y R D STUCKY RD OLIVE ST 3R D A V E TRIPLE TREE RD OAK ST GRAF ST MA N L E Y R D 19 T H A V E DURSTON RD GOLDENSTEIN LN TA Y A B E S H O C K U P R D NE L S O N R D NASH RD 3 6 1 7 4 5 9 8 2 10 11 12 Water Distribution System G!!Pressure Monitoring Location Extended Pressure MonitoringLocations ¯0 5,0001,250 2,500 3,750 Feet ³Ú Pear St Pump Station ³Ú Knoll Pump Station UT Clearwell UT Hilltop Tank UT Lyman Tank UT Sourdough Tank #I Existing PRV 30" Water Main 24" Water Main 20" Water Main 18" Water Main 16" Water Main 14" Water Main 12" Water Main 10" Water Main 8" Water Main 6" Water Main 4" Water Main Advanced Engineering and Environmental Services, Inc. Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G FGF G F G F G F G FG!! (3494) (3090)(3004)(2964)(2948)(2926)(2918) (6029) (6045)(6061)(6075)(6089)(6101) 2107 12" DI 8" D I 8" DI 8" D I 8" D I 8" DI 8" D I 8" DI MEAH LN 31 S T A V E BLACKWOOD RD 1 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 2107 1 1242 38 psi 10/1/2015 10/20/2015 5:47 PM 2:30 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G F GF G F G F G F G!! (202) (305) (311)(407) (408) (411)(405) (211)(205)(121)(115) (105) (102)(110)(114)(202)(210) (3100) (3004) (3010) (3016) (3020) (3025) (3021) (3017) (3009) (3001) (3010) (3016) (3020) (2916) (2910) (2916) (3002) (2915) 433 24" DI 6" DI 10 " D I 8" D I 24" DI 10 " D I 6" D I 6" DI 10 " D I 6" DI 6" D I 10" DI 6" DI 10 " D I 24" DI 6" DI 10 " D I 8" D I 3R D A V E GRAF ST LA N G O H R A V E STAUDAHER ST FIELDSTONE DR WA G O N W H E E L R D GRAF ST 2 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 433 2 1240 64 psi 10/1/2015 10/20/2015 6:00 PM 2:45 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F GF G F G F G F G F G F G F G F G F G F G F G F G!! 490 10 " D I 8" DI 24 " D I 12" CI 12 " D I 14 " D I 12" CI 8" DI 12 " C I 12 " C I 19 T H A V E GARFIELD ST BR A N E G A N C T PAISLEY CT 3 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 490 3 1251 102 psi 10/1/2015 10/20/2015 5:30 PM 2:15 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G FGF G F G F G F G F G F G F G F GF GF G F G F GF G!! (17)(19) (20) (309)(309)(205) (1008) (1207) (1030) (1114) (1220) (1108) (1304) (1228) (1224) (1216) (1210) (1202) (1104) (1201) (1209) (1215) (1221) (1227) (1303)(1304) (1220) (1216) (1212) (1208) (1204) (1114) (1110) (1023) (1107) (1111) (1117) (1201) (1207) (1211) (1215) (1219) (1305)(1308) (1216) (1212) (1208) (1204) (1116) (1100) (1109) (1203) (1215) (1207) (1211)(1219) (1220) (1217) (1221) (1305) (1021)278 6" C I 24 " C C P 14 " S T L 14" CI 18 " S T L 8" CI 12" CI 6" C I 12" CI 6" C I 6" C I 6" C I 6" C I 6" C I 6" C I 14" CI 14" CI14" CI 18 " S T L 14" CI 24 " C C P 14" CI BL A C K A V E GARFIELD ST BO Z E M A N A V E MO N T A N A A V E TRACY AVE 4 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 278 4 1249 110 psi 10/1/2015 10/20/2015 6:25 PM 2:55 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G FGF GF G F G F G F G F G F G F G!! (8) (6) (7) (15)(15) (36)(37) (15) (27) (29) (10) (11) (20) (10) (16) (210) (202) (202) (106) (120) (120) (226) (121) (225) (211) (220) (132) (121) (117) (113) (137) (111) (221) (217) (209) (108) (110) (301) (116) (120)(120) (210) (214) (218) (226) (206) (210) (214) (224) (226) (302)(301) (227) (221) (219) (215) (209) (205) (120) (222) (304) (204) (303) 121 8" CI 8" D I 6" CI 12" CI 14 " C I 10" CI 4" C I 8" C I 8" C I 14 " C I 8" C I 8" C I 8" D I 6" C I 8" C I 6" CI6" CI 6" CI 8" D I 6" CI 12" CI 8" C I 8" D I 6" CI 12" CI 6" CI 8" D I 8" C I 14 " C I OLIVE ST BL A C K A V E TR A C Y A V E BABCOCK ST BO Z E M A N A V E CURTISS ST 5 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 121 5 341298 128 psi 10/1/2015 10/20/2015 6:40 PM 3:10 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F GF G!!(411) (415) (1224) (1203) (1227) (1251) (1214) (1104) 1887 16" CI 8" DI 12 " D I 10 " C I 0" C I 6" CI 16 " C I 6" C I 12" DI 12" DI 16" CI 16 " C I 16 " C I RO U S E A V E OAK ST BIRCH STMO N T A N A A V E 6 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 1887 6 1245 152 psi 10/1/2015 10/20/2015 6:50 PM 3:25 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet GF G F G F G F G F G F GF GF G FGF G FGF G!!#I (210) (244) (228)(228) (232) (444) (450) 1754 12" DI 8" DI 6" DI 12 " D I 12 " D I 8" DI 12 " D I 12" DI 12 " D I 8" DI 8" D I 8" D I 8" D I 12 " D I 12 " D I 8" DI 8" DI 8" DI 12 " D I 12 " D I 8" D I 6" DI FALLON ST CO T T O N W O O D R D FIELD ST AUTO PLAZA DR FIELD ST 7 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 1754 7 341289 128 psi 10/1/2015 10/20/2015 4:47 PM 1:40 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G F G F G F G F G F G F G F G F G!! #I #I #I (518) (509) (481) (496) (482) (701) (511) (507) (508) (504) (505) (503) (425) (501) (515) (420) (421) (509) (512) (500) (4030) (4076) (4045) (4028) (4073) (4058)(4195) (4087)(4061) (4084)(4088) (4092) (4062) (4086)(4038) (4033) (4046) 1125 8" D I 6" D I 10" DI 12" DI12" DI 10" DI 10 " D I 8" D I 8" D I 12" DI 8" D I 6" D I 8" D I 8" DI 8" D I 8" DI 10 " D I 6" D I 10 " D I 10 " D I 10 " D I 8" D I 12" DI DURSTON RD SA N D E R S A V E FE R G U S O N A V E CARBON ST DIAMOND ST TILTON ST KI M B A L L A V E MI N E R A L A V E PRV 12 PRV 13 8 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 1125 8 201250 143 psi 10/1/2015 10/20/2015 4:35 PM 1:50 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet GF G F GF G F G F G F G F G F G F G F G F G F GF G F G F G F G F G F G F G!! #I (1289) (1351) (1281) (2051)(2047) (1459) (1433)(2063) (1281) (1336) (1262)(2104)(2108)(2112) (2109)(2105)(2115) 1025 8" DI 12 " D I 10" DI 14" DI 8 " D I 8" DI 10" DI 8" DI 10" DI 8" D I 14 " D I 8" D I 12 " D I 8 " D I 8" D I 10" DI 14" DI OAK ST 19 T H A V E ST O N E R I D G E D R MAPLEWOOD ST SU N N Y S I D E T R L 19 T H A V E PRV 6 9 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 1025 9 1243 156 psi 10/1/2015 10/20/2015 5:16 PM 1:05 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G FGFG!! (692) (659) (677) (637) (646) (623) (618) (611)(4716) (4726)(4714)(4688) (4727)(4709) 1725 8" DI 12" DI10" DI 10" DI 8" D I 8" D I 8" D I 8" DI DURSTON RD WE S T G A T E A V E SHADOWGLEN DR 10 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 1725 10 1241 NA NA NA NA NA JDH Note:No data was recorded at this location due to equipment error. Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G F G F G F G!! 2712 8" D I 12 " D I 12" DI 12 " D I 8" DI 12" DI 8" DI 8" DI 8" D I 12 " D I FE R G U S O N A V E 11 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 2712 11 1246 99 psi 10/5/2015 10/20/2015 2:45 PM 1:20 PM JDH Bozeman Water DistributionSystem Model CalibrationField Test Data Sheet G F G F G!! #I 1770 12 " D I 12" D I 12 " D I 12" D I RED W I N G D R FRON T A G E R D PRV 14 12 Extended PressureMonitoring Pressure Monitoring Location: ___________ Hydrant ID: __________ Recorder ID: ____________ Pressure at Setup: __________ Installed - Date: ____________ Time: ____________ Removed - Date: ____________ Time: ____________ Installed/Removed By: _________ 1770 12 1244 138 psi 10/1/2016 10/20/2015 7:00 PM 3:35 PM JDH Water Facility Plan Update Appendices July 2017 Appendix E – EPS Calibration Results 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Th u r s d a y , A u g u s t 2 0 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 8/ 2 0 / 2 0 1 5 0 : 0 0 0 : 0 0 2 7 . 4 0 2 7 . 4 0 0.0 0 20 . 9 7 20 . 9 7 0.0 0 32 . 5 8 32 . 5 5 0.03 8/ 2 0 / 2 0 1 5 1 : 0 0 1 : 0 0 27 . 8 0 28 . 1 3 -0 . 3 3 20 . 8 4 20 . 8 3 0.0 1 33 . 3 3 33 . 5 4 -0 . 2 1 8/ 2 0 / 2 0 1 5 2 : 0 0 2 : 0 0 28 . 7 0 28 . 8 1 -0 . 1 1 20 . 7 2 20 . 6 8 0.0 4 34 . 0 6 34 . 3 6 -0 . 3 0 8/ 2 0 / 2 0 1 5 3 : 0 0 3 : 0 0 29 . 4 0 29 . 3 9 0.0 1 20 . 5 9 20 . 5 3 0.0 6 34 . 6 9 34 . 9 5 -0 . 2 6 8/ 2 0 / 2 0 1 5 4 : 0 0 4 : 0 0 29 . 7 0 29 . 7 9 -0 . 0 9 20 . 4 2 20 . 3 7 0.0 5 35 . 0 2 35 . 0 8 -0 . 0 6 8/ 2 0 / 2 0 1 5 5 : 0 0 5 : 0 0 29 . 7 0 29 . 8 3 -0 . 1 3 20 . 1 7 20 . 1 7 0.0 0 34 . 4 9 34 . 4 0 0.09 8/ 2 0 / 2 0 1 5 6 : 0 0 6 : 0 0 29 . 2 0 29 . 4 3 -0 . 2 3 19 . 8 4 19 . 9 1 -0 . 0 7 33 . 2 3 32 . 9 4 0.29 8/ 2 0 / 2 0 1 5 7 : 0 0 7 : 0 0 28 . 5 0 28 . 7 7 -0 . 2 7 19 . 5 7 19 . 6 9 -0 . 1 2 31 . 7 4 31 . 3 2 0.42 8/ 2 0 / 2 0 1 5 8 : 0 0 8 : 0 0 27 . 8 0 28 . 0 7 -0 . 2 7 19 . 5 7 19 . 7 9 -0 . 2 2 30 . 8 3 30 . 1 4 0.69 8/ 2 0 / 2 0 1 5 9 : 0 0 9 : 0 0 27 . 4 0 27 . 5 8 -0 . 1 8 19 . 6 4 19 . 9 3 -0 . 2 9 30 . 5 9 30 . 2 2 0.37 8/2 0 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 27 . 4 0 27 . 2 5 0.1 5 19 . 7 9 20 . 0 8 -0 . 2 9 30 . 9 3 30 . 4 6 0.47 8/2 0 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 27 . 1 0 27 . 0 2 0.0 8 19 . 9 7 20 . 2 3 -0 . 2 6 31 . 4 0 31 . 0 1 0.39 8/2 0 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 27 . 1 0 26 . 9 4 0.1 6 20 . 1 7 20 . 4 0 -0 . 2 3 31 . 8 9 31 . 6 8 0.21 8/2 0 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 26 . 9 0 26 . 8 5 0.0 5 20 . 3 9 20 . 5 6 -0 . 1 7 32 . 2 5 31 . 9 9 0.26 8/2 0 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 27 . 1 0 26 . 8 4 0.2 6 20 . 5 9 20 . 7 2 -0 . 1 3 32 . 5 7 32 . 2 7 0.30 8/2 0 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 27 . 1 0 26 . 9 5 0.1 5 20 . 8 2 20 . 8 9 -0 . 0 7 32 . 9 4 32 . 7 2 0.22 8/2 0 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 27 . 4 0 27 . 1 0 0.3 0 21 . 0 4 21 . 0 5 -0 . 0 1 33 . 2 4 33 . 0 9 0.15 8/2 0 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 27 . 4 0 27 . 2 4 0.1 6 21 . 2 4 21 . 2 1 0.0 3 33 . 4 1 33 . 3 0 0.11 8/2 0 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 27 . 4 0 27 . 2 9 0.1 1 21 . 4 5 21 . 3 7 0.0 8 33 . 4 6 33 . 4 5 0.01 8/2 0 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 27 . 1 0 27 . 2 8 -0 . 1 8 21 . 6 2 21 . 5 3 0.0 9 33 . 3 3 33 . 4 2 -0 . 0 9 8/2 0 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 27 . 6 0 27 . 4 6 0.1 4 21 . 5 2 21 . 4 0 0.1 2 33 . 7 7 33 . 9 1 -0 . 1 4 8/2 0 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 27 . 6 0 27 . 6 4 -0 . 0 4 21 . 3 7 21 . 2 5 0.1 2 34 . 1 3 34 . 1 9 -0 . 0 6 8/2 0 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 27 . 8 0 27 . 8 8 -0 . 0 8 21 . 2 2 21 . 0 9 0.1 3 34 . 3 9 34 . 3 4 0.05 8/2 0 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 28 . 0 0 28 . 0 7 -0 . 0 7 21 . 0 5 20 . 9 3 0.1 2 34 . 6 6 34 . 4 3 0.23 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Th u r s d a y , A u g u s t 2 0 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 9, 0 0 0 10 , 0 0 0 11 , 0 0 0 12 , 0 0 0 13 , 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Th u r s d a y , A u g u s t 2 0 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 8.34 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Fr i d a y , A u g u s t 2 1 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 8/ 2 1 / 2 0 1 5 0 : 0 0 0 : 0 0 2 8 . 7 0 2 8 . 7 0 0.0 0 20 . 9 2 20 . 9 2 0.0 0 35 . 1 5 35 . 1 5 0.00 8/ 2 1 / 2 0 1 5 1 : 0 0 1 : 0 0 29 . 0 0 28 . 9 3 0.0 7 20 . 7 5 20 . 7 6 -0 . 0 1 35 . 4 7 35 . 3 4 0.13 8/ 2 1 / 2 0 1 5 2 : 0 0 2 : 0 0 29 . 2 0 29 . 2 0 0.0 0 20 . 5 9 20 . 6 1 -0 . 0 2 35 . 5 3 35 . 6 8 -0 . 1 5 8/ 2 1 / 2 0 1 5 3 : 0 0 3 : 0 0 29 . 2 0 29 . 3 3 -0 . 1 3 20 . 4 2 20 . 4 5 -0 . 0 3 35 . 4 1 35 . 6 2 -0 . 2 1 8/ 2 1 / 2 0 1 5 4 : 0 0 4 : 0 0 29 . 0 0 29 . 1 1 -0 . 1 1 20 . 1 4 20 . 2 4 -0 . 1 0 34 . 6 9 34 . 7 2 -0 . 0 3 8/ 2 1 / 2 0 1 5 5 : 0 0 5 : 0 0 27 . 8 0 28 . 3 1 -0 . 5 1 19 . 8 2 19 . 9 8 -0 . 1 6 33 . 0 2 32 . 9 6 0.06 8/ 2 1 / 2 0 1 5 6 : 0 0 6 : 0 0 26 . 4 0 26 . 9 9 -0 . 5 9 19 . 3 7 19 . 6 5 -0 . 2 8 30 . 7 8 30 . 6 3 0.15 8/ 2 1 / 2 0 1 5 7 : 0 0 7 : 0 0 24 . 6 0 25 . 5 4 -0 . 9 4 18 . 9 7 19 . 3 8 -0 . 4 1 28 . 6 3 28 . 3 2 0.31 8/ 2 1 / 2 0 1 5 8 : 0 0 8 : 0 0 23 . 9 0 24 . 5 1 -0 . 6 1 18 . 8 7 19 . 4 6 -0 . 5 9 27 . 2 5 26 . 6 0 0.65 8/ 2 1 / 2 0 1 5 9 : 0 0 9 : 0 0 23 . 7 0 24 . 0 6 -0 . 3 6 18 . 8 7 19 . 5 7 -0 . 7 0 26 . 8 2 26 . 2 5 0.57 8/2 1 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 23 . 4 0 23 . 8 0 -0 . 4 0 18 . 9 7 19 . 7 1 -0 . 7 4 27 . 0 4 26 . 5 5 0.49 8/2 1 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 23 . 4 0 23 . 7 4 -0 . 3 4 19 . 1 2 19 . 8 6 -0 . 7 4 27 . 3 4 27 . 1 4 0.20 8/2 1 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 23 . 7 0 23 . 7 5 -0 . 0 5 19 . 3 2 20 . 0 1 -0 . 6 9 27 . 7 5 27 . 6 2 0.13 8/2 1 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 23 . 7 0 23 . 9 0 -0 . 2 0 19 . 5 2 20 . 1 6 -0 . 6 4 28 . 1 8 28 . 0 8 0.10 8/2 1 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 23 . 9 0 24 . 1 7 -0 . 2 7 19 . 7 5 20 . 3 2 -0 . 5 7 28 . 7 1 28 . 6 4 0.07 8/2 1 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 24 . 4 0 24 . 4 8 -0 . 0 8 19 . 9 7 20 . 4 7 -0 . 5 0 29 . 2 8 29 . 1 7 0.11 8/2 1 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 24 . 8 0 24 . 9 3 -0 . 1 3 20 . 2 0 20 . 6 3 -0 . 4 3 29 . 8 6 29 . 8 5 0.01 8/2 1 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 25 . 5 0 25 . 5 5 -0 . 0 5 20 . 4 0 20 . 8 0 -0 . 4 0 30 . 3 6 30 . 6 0 -0 . 2 4 8/2 1 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 26 . 0 0 26 . 1 5 -0 . 1 5 20 . 6 0 20 . 9 6 -0 . 3 6 30 . 7 9 31 . 1 7 -0 . 3 8 8/2 1 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 26 . 2 0 26 . 6 5 -0 . 4 5 20 . 8 0 21 . 1 1 -0 . 3 1 31 . 1 9 31 . 5 2 -0 . 3 3 8/2 1 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 26 . 7 0 27 . 0 1 -0 . 3 1 20 . 9 7 21 . 2 4 -0 . 2 7 31 . 6 2 31 . 5 8 0.04 8/2 1 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 27 . 6 0 27 . 5 7 0.0 3 20 . 8 7 21 . 1 0 -0 . 2 3 32 . 5 1 32 . 3 0 0.21 8/2 1 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 28 . 0 0 28 . 0 4 -0 . 0 4 20 . 6 8 20 . 9 4 -0 . 2 6 33 . 1 7 33 . 0 8 0.09 8/2 1 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 28 . 7 0 28 . 4 1 0.2 9 20 . 5 0 20 . 7 6 -0 . 2 6 33 . 7 5 33 . 6 0 0.15 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Fr i d a y , A u g u s t 2 1 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 9, 0 0 0 10 , 0 0 0 11 , 0 0 0 12 , 0 0 0 13 , 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Fr i d a y , A u g u s t 2 1 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 9.26 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Sa t u r d a y , A u g u s t 2 2 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 8/ 2 2 / 2 0 1 5 0 : 0 0 0 : 0 0 2 9 . 2 0 2 9 . 2 0 0.0 0 20 . 3 5 20 . 3 5 0.0 0 34 . 3 0 34 . 3 0 0.00 8/ 2 2 / 2 0 1 5 1 : 0 0 1 : 0 0 29 . 7 0 29 . 6 7 0.0 3 20 . 2 0 20 . 2 0 0.0 0 34 . 7 9 35 . 0 9 -0 . 3 0 8/ 2 2 / 2 0 1 5 2 : 0 0 2 : 0 0 29 . 0 0 29 . 6 7 -0 . 6 7 20 . 0 7 20 . 0 4 0.0 3 35 . 0 8 35 . 3 0 -0 . 2 2 8/ 2 2 / 2 0 1 5 3 : 0 0 3 : 0 0 28 . 7 0 28 . 8 6 -0 . 1 6 19 . 8 9 19 . 8 9 0.0 0 35 . 0 7 35 . 7 3 -0 . 6 6 8/ 2 2 / 2 0 1 5 4 : 0 0 4 : 0 0 28 . 7 0 28 . 8 6 -0 . 1 6 19 . 6 7 19 . 6 9 -0 . 0 2 34 . 8 4 34 . 7 2 0.12 8/ 2 2 / 2 0 1 5 5 : 0 0 5 : 0 0 28 . 5 0 28 . 4 0 0.1 0 19 . 3 9 19 . 4 3 -0 . 0 4 34 . 0 0 33 . 2 0 0.80 8/ 2 2 / 2 0 1 5 6 : 0 0 6 : 0 0 27 . 8 0 27 . 7 1 0.0 9 19 . 0 7 19 . 1 6 -0 . 0 9 32 . 6 6 31 . 6 1 1.05 8/ 2 2 / 2 0 1 5 7 : 0 0 7 : 0 0 27 . 4 0 27 . 4 2 -0 . 0 2 18 . 7 2 18 . 9 4 -0 . 2 2 31 . 7 8 31 . 4 5 0.33 8/ 2 2 / 2 0 1 5 8 : 0 0 8 : 0 0 27 . 4 0 27 . 1 4 0.2 6 18 . 7 2 19 . 0 2 -0 . 3 0 31 . 4 6 31 . 2 0 0.26 8/ 2 2 / 2 0 1 5 9 : 0 0 9 : 0 0 26 . 9 0 27 . 0 8 -0 . 1 8 18 . 8 2 19 . 1 7 -0 . 3 5 31 . 4 2 31 . 5 2 -0 . 1 0 8/2 2 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 27 . 1 0 27 . 0 8 0.0 2 18 . 9 6 19 . 3 3 -0 . 3 7 31 . 6 2 31 . 8 0 -0 . 1 8 8/2 2 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 27 . 1 0 27 . 2 0 -0 . 1 0 19 . 1 2 19 . 4 9 -0 . 3 7 31 . 9 2 32 . 2 7 -0 . 3 5 8/2 2 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 26 . 9 0 27 . 2 6 -0 . 3 6 19 . 3 2 19 . 6 4 -0 . 3 2 32 . 3 5 32 . 3 7 -0 . 0 2 8/2 2 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 27 . 4 0 27 . 4 7 -0 . 0 7 19 . 5 4 19 . 8 2 -0 . 2 8 32 . 7 8 32 . 8 6 -0 . 0 8 8/2 2 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 27 . 6 0 27 . 6 3 -0 . 0 3 19 . 7 4 19 . 9 9 -0 . 2 5 33 . 1 8 33 . 0 6 0.12 8/2 2 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 28 . 0 0 27 . 8 8 0.1 2 19 . 9 6 20 . 1 6 -0 . 2 0 33 . 6 1 33 . 5 0 0.11 8/2 2 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 28 . 3 0 28 . 2 0 0.1 0 20 . 2 2 20 . 3 4 -0 . 1 2 34 . 0 3 33 . 9 8 0.05 8/2 2 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 28 . 5 0 28 . 5 0 0.0 0 20 . 4 4 20 . 5 1 -0 . 0 7 34 . 3 5 34 . 3 6 -0 . 0 1 8/2 2 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 28 . 5 0 28 . 7 1 -0 . 2 1 20 . 6 7 20 . 6 8 -0 . 0 1 34 . 6 2 34 . 5 2 0.10 8/2 2 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 29 . 0 0 28 . 8 9 0.1 1 20 . 9 0 20 . 8 5 0.0 5 34 . 8 4 34 . 7 5 0.09 8/2 2 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 29 . 2 0 29 . 1 4 0.0 6 21 . 1 2 21 . 0 2 0.1 0 35 . 0 5 35 . 1 5 -0 . 1 0 8/2 2 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 29 . 4 0 29 . 3 2 0.0 8 21 . 0 4 20 . 9 0 0.1 4 35 . 7 1 35 . 3 4 0.37 8/2 2 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 29 . 9 0 29 . 4 9 0.4 1 20 . 8 9 20 . 7 5 0.1 4 36 . 2 2 35 . 4 8 0.74 8/2 2 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 29 . 2 0 29 . 6 5 -0 . 4 5 20 . 7 7 20 . 6 0 0.1 7 36 . 5 8 35 . 5 9 0.99 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Sa t u r d a y , A u g u s t 2 2 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 9, 0 0 0 10 , 0 0 0 11 , 0 0 0 12 , 0 0 0 13 , 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Sa t u r d a y , A u g u s t 2 2 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 8.14 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Su n d a y , A u g u s t 2 3 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 8/ 2 3 / 2 0 1 5 0 : 0 0 0 : 0 0 2 8 . 5 0 2 8 . 5 0 0.0 0 20 . 6 4 20 . 6 4 0.0 0 36 . 5 4 36 . 5 4 0.00 8/ 2 3 / 2 0 1 5 1 : 0 0 1 : 0 0 29 . 0 0 28 . 8 3 0.1 7 20 . 5 2 20 . 5 0 0.0 2 36 . 4 5 36 . 3 2 0.13 8/ 2 3 / 2 0 1 5 2 : 0 0 2 : 0 0 29 . 0 0 29 . 0 8 -0 . 0 8 20 . 4 0 20 . 3 7 0.0 3 36 . 2 7 36 . 2 7 0.00 8/ 2 3 / 2 0 1 5 3 : 0 0 3 : 0 0 29 . 2 0 29 . 1 7 0.0 3 20 . 2 5 20 . 2 2 0.0 3 36 . 0 5 36 . 0 0 0.05 8/ 2 3 / 2 0 1 5 4 : 0 0 4 : 0 0 29 . 2 0 28 . 8 8 0.3 2 20 . 0 4 20 . 0 4 0.0 0 35 . 5 9 34 . 9 6 0.63 8/ 2 3 / 2 0 1 5 5 : 0 0 5 : 0 0 28 . 5 0 28 . 1 1 0.3 9 19 . 7 7 19 . 7 9 -0 . 0 2 34 . 2 6 33 . 3 3 0.93 8/ 2 3 / 2 0 1 5 6 : 0 0 6 : 0 0 27 . 4 0 27 . 0 8 0.3 2 19 . 4 2 19 . 5 2 -0 . 1 0 32 . 5 3 31 . 5 1 1.02 8/ 2 3 / 2 0 1 5 7 : 0 0 7 : 0 0 26 . 4 0 26 . 3 9 0.0 1 19 . 0 4 19 . 2 9 -0 . 2 5 31 . 2 6 30 . 7 1 0.55 8/ 2 3 / 2 0 1 5 8 : 0 0 8 : 0 0 25 . 5 0 25 . 6 7 -0 . 1 7 18 . 9 9 19 . 3 8 -0 . 3 9 30 . 6 2 30 . 2 5 0.37 8/ 2 3 / 2 0 1 5 9 : 0 0 9 : 0 0 24 . 8 0 25 . 1 4 -0 . 3 4 19 . 0 6 19 . 5 4 -0 . 4 8 30 . 2 5 30 . 2 3 0.02 8/2 3 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 24 . 6 0 24 . 9 3 -0 . 3 3 19 . 2 1 19 . 7 2 -0 . 5 1 30 . 0 7 30 . 3 9 -0 . 3 2 8/2 3 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 24 . 4 0 24 . 6 6 -0 . 2 6 19 . 3 7 19 . 8 7 -0 . 5 0 29 . 9 6 29 . 9 6 0.00 8/2 3 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 23 . 9 0 24 . 4 5 -0 . 5 5 19 . 5 6 20 . 0 3 -0 . 4 7 29 . 9 5 29 . 8 6 0.09 8/2 3 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 23 . 9 0 24 . 3 3 -0 . 4 3 19 . 7 9 20 . 2 0 -0 . 4 1 29 . 9 1 29 . 8 3 0.08 8/2 3 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 23 . 9 0 24 . 2 3 -0 . 3 3 19 . 9 9 20 . 3 5 -0 . 3 6 29 . 9 7 29 . 5 4 0.43 8/2 3 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 22 . 7 0 23 . 3 8 -0 . 6 8 20 . 2 2 20 . 5 3 -0 . 3 1 29 . 8 7 30 . 1 4 -0 . 2 7 8/2 3 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 23 . 7 0 23 . 7 1 -0 . 0 1 20 . 4 2 20 . 7 0 -0 . 2 8 29 . 7 3 29 . 8 4 -0 . 1 1 8/2 3 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 24 . 1 0 24 . 4 3 -0 . 3 3 20 . 6 4 20 . 8 6 -0 . 2 2 29 . 7 5 29 . 9 9 -0 . 2 4 8/2 3 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 24 . 6 0 24 . 9 0 -0 . 3 0 20 . 8 4 21 . 0 2 -0 . 1 8 29 . 7 9 29 . 8 0 -0 . 0 1 8/2 3 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 25 . 0 0 25 . 3 6 -0 . 3 6 21 . 0 4 21 . 1 7 -0 . 1 3 29 . 6 9 29 . 8 2 -0 . 1 3 8/2 3 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 25 . 3 0 25 . 5 7 -0 . 2 7 21 . 2 2 21 . 3 1 -0 . 0 9 29 . 7 9 29 . 5 4 0.25 8/2 3 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 26 . 0 0 25 . 9 7 0.0 3 21 . 0 9 21 . 1 6 -0 . 0 7 30 . 3 7 30 . 1 1 0.26 8/2 3 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 26 . 2 0 26 . 5 3 -0 . 3 3 20 . 9 2 21 . 0 0 -0 . 0 8 30 . 9 8 30 . 9 5 0.03 8/2 3 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 27 . 1 0 27 . 3 9 -0 . 2 9 20 . 7 7 20 . 8 6 -0 . 0 9 31 . 7 2 32 . 1 4 -0 . 4 2 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Su n d a y , A u g u s t 2 3 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 9, 0 0 0 10 , 0 0 0 11 , 0 0 0 12 , 0 0 0 13 , 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Su n d a y , A u g u s t 2 3 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 8.90 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Mo n d a y , A u g u s t 2 4 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 8/ 2 4 / 2 0 1 5 0 : 0 0 0 : 0 0 2 7 . 8 0 2 7 . 8 0 0.0 0 20 . 6 5 20 . 6 5 0.0 0 32 . 6 9 32 . 6 9 0.00 8/ 2 4 / 2 0 1 5 1 : 0 0 1 : 0 0 28 . 5 0 28 . 4 6 0.0 4 20 . 5 2 20 . 5 1 0.0 1 33 . 4 7 33 . 6 6 -0 . 1 9 8/ 2 4 / 2 0 1 5 2 : 0 0 2 : 0 0 29 . 2 0 28 . 9 9 0.2 1 20 . 4 0 20 . 3 7 0.0 3 33 . 9 6 34 . 3 2 -0 . 3 6 8/ 2 4 / 2 0 1 5 3 : 0 0 3 : 0 0 29 . 4 0 29 . 4 2 -0 . 0 2 20 . 2 2 20 . 2 2 0.0 0 34 . 3 3 34 . 6 9 -0 . 3 6 8/ 2 4 / 2 0 1 5 4 : 0 0 4 : 0 0 29 . 4 0 29 . 5 2 -0 . 1 2 19 . 9 9 20 . 0 3 -0 . 0 4 34 . 1 6 34 . 2 3 -0 . 0 7 8/ 2 4 / 2 0 1 5 5 : 0 0 5 : 0 0 29 . 0 0 29 . 1 2 -0 . 1 2 19 . 6 9 19 . 7 8 -0 . 0 9 32 . 7 4 32 . 7 5 -0 . 0 1 8/ 2 4 / 2 0 1 5 6 : 0 0 6 : 0 0 27 . 6 0 28 . 2 3 -0 . 6 3 19 . 2 7 19 . 4 7 -0 . 2 0 30 . 7 2 30 . 7 0 0.02 8/ 2 4 / 2 0 1 5 7 : 0 0 7 : 0 0 26 . 4 0 27 . 1 2 -0 . 7 2 18 . 8 4 19 . 1 5 -0 . 3 1 28 . 7 4 28 . 5 7 0.17 8/ 2 4 / 2 0 1 5 8 : 0 0 8 : 0 0 25 . 3 0 26 . 0 6 -0 . 7 6 18 . 7 9 19 . 1 7 -0 . 3 8 27 . 3 4 26 . 7 9 0.55 8/ 2 4 / 2 0 1 5 9 : 0 0 9 : 0 0 25 . 0 0 25 . 3 6 -0 . 3 6 18 . 8 2 19 . 2 9 -0 . 4 7 26 . 8 8 26 . 2 6 0.61 8/2 4 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 24 . 6 0 25 . 0 4 -0 . 4 4 18 . 9 6 19 . 4 3 -0 . 4 7 27 . 1 0 26 . 7 1 0.39 8/2 4 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 24 . 8 0 24 . 9 9 -0 . 1 9 19 . 1 4 19 . 6 0 -0 . 4 6 27 . 5 8 27 . 5 0 0.08 8/2 4 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 24 . 8 0 25 . 1 2 -0 . 3 2 19 . 3 7 19 . 7 7 -0 . 4 0 28 . 0 9 28 . 3 6 -0 . 2 7 8/2 4 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 25 . 0 0 25 . 2 8 -0 . 2 8 19 . 5 9 19 . 9 4 -0 . 3 5 28 . 5 5 29 . 0 1 -0 . 4 6 8/2 4 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 25 . 0 0 25 . 4 4 -0 . 4 4 19 . 7 9 20 . 1 0 -0 . 3 1 29 . 0 4 29 . 4 3 -0 . 3 9 8/2 4 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 25 . 5 0 25 . 7 3 -0 . 2 3 20 . 0 4 20 . 2 7 -0 . 2 3 29 . 7 0 29 . 9 8 -0 . 2 8 8/2 4 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 25 . 7 0 26 . 0 8 -0 . 3 8 20 . 2 7 20 . 4 4 -0 . 1 7 30 . 3 2 30 . 5 3 -0 . 2 1 8/2 4 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 26 . 0 0 26 . 3 3 -0 . 3 3 20 . 5 0 20 . 6 0 -0 . 1 0 30 . 8 0 31 . 0 0 -0 . 2 0 8/2 4 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 26 . 2 0 26 . 4 7 -0 . 2 7 20 . 7 0 20 . 7 6 -0 . 0 6 31 . 0 8 31 . 2 1 -0 . 1 3 8/2 4 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 26 . 2 0 26 . 5 7 -0 . 3 7 20 . 9 0 20 . 9 2 -0 . 0 2 31 . 1 4 31 . 2 9 -0 . 1 5 8/2 4 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 26 . 4 0 26 . 6 7 -0 . 2 7 21 . 0 8 21 . 0 7 0.0 1 30 . 9 8 31 . 1 4 -0 . 1 6 8/2 4 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 26 . 7 0 26 . 8 5 -0 . 1 5 20 . 9 5 20 . 9 2 0.0 3 31 . 4 2 31 . 3 2 0.10 8/2 4 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 26 . 9 0 27 . 0 8 -0 . 1 8 20 . 7 5 20 . 7 4 0.0 1 31 . 8 7 31 . 6 6 0.21 8/2 4 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 27 . 4 0 27 . 5 0 -0 . 1 0 20 . 5 7 20 . 5 8 -0 . 0 1 32 . 4 3 32 . 3 7 0.06 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Mo n d a y , A u g u s t 2 4 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 9, 0 0 0 10 , 0 0 0 11 , 0 0 0 12 , 0 0 0 13 , 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Mo n d a y , A u g u s t 2 4 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 9.54 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Tu e s d a y , A u g u s t 2 5 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 8/ 2 5 / 2 0 1 5 0 : 0 0 0 : 0 0 2 8 . 0 0 2 8 . 0 0 0.0 0 20 . 4 5 20 . 4 5 0.0 0 33 . 1 3 33 . 1 3 0.00 8/ 2 5 / 2 0 1 5 1 : 0 0 1 : 0 0 28 . 7 0 28 . 5 1 0.1 9 20 . 3 3 20 . 3 1 0.0 2 33 . 8 3 33 . 8 5 -0 . 0 2 8/ 2 5 / 2 0 1 5 2 : 0 0 2 : 0 0 29 . 2 0 29 . 0 2 0.1 8 20 . 2 2 20 . 1 6 0.0 6 34 . 3 6 34 . 3 9 -0 . 0 3 8/ 2 5 / 2 0 1 5 3 : 0 0 3 : 0 0 29 . 7 0 29 . 4 1 0.2 9 20 . 1 0 20 . 0 1 0.0 9 34 . 8 8 34 . 6 2 0.26 8/ 2 5 / 2 0 1 5 4 : 0 0 4 : 0 0 28 . 5 0 27 . 8 0 0.7 0 19 . 9 3 19 . 8 3 0.1 0 35 . 0 0 34 . 3 0 0.70 8/ 2 5 / 2 0 1 5 5 : 0 0 5 : 0 0 28 . 5 0 27 . 9 8 0.5 2 19 . 6 7 19 . 6 3 0.0 4 34 . 1 3 33 . 3 4 0.79 8/ 2 5 / 2 0 1 5 6 : 0 0 6 : 0 0 27 . 8 0 27 . 6 4 0.1 6 19 . 3 2 19 . 3 8 -0 . 0 6 32 . 5 4 31 . 8 3 0.71 8/ 2 5 / 2 0 1 5 7 : 0 0 7 : 0 0 26 . 9 0 26 . 9 3 -0 . 0 3 19 . 2 2 19 . 4 2 -0 . 2 0 30 . 5 0 29 . 9 8 0.52 8/ 2 5 / 2 0 1 5 8 : 0 0 8 : 0 0 26 . 2 0 26 . 3 1 -0 . 1 1 19 . 2 2 19 . 5 2 -0 . 3 0 29 . 2 5 28 . 5 6 0.69 8/ 2 5 / 2 0 1 5 9 : 0 0 9 : 0 0 26 . 2 0 25 . 8 3 0.3 7 19 . 2 9 19 . 6 5 -0 . 3 6 28 . 7 0 27 . 9 5 0.75 8/2 5 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 26 . 0 0 25 . 5 7 0.4 3 19 . 4 7 19 . 7 9 -0 . 3 2 28 . 9 2 28 . 0 0 0.92 8/2 5 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 26 . 2 0 25 . 4 8 0.7 2 19 . 6 4 19 . 9 4 -0 . 3 0 29 . 2 7 28 . 3 7 0.90 8/2 5 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 26 . 0 0 25 . 5 6 0.4 4 19 . 8 4 20 . 0 8 -0 . 2 4 29 . 7 5 28 . 9 9 0.76 8/2 5 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 26 . 4 0 25 . 8 7 0.5 3 20 . 0 7 20 . 2 3 -0 . 1 6 30 . 3 5 29 . 8 5 0.50 8/2 5 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 26 . 7 0 26 . 2 5 0.4 5 20 . 2 7 20 . 3 7 -0 . 1 0 31 . 0 1 30 . 6 5 0.36 8/2 5 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 27 . 1 0 26 . 6 4 0.4 6 20 . 4 7 20 . 5 2 -0 . 0 5 31 . 6 2 31 . 3 2 0.30 8/2 5 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 27 . 6 0 27 . 0 7 0.5 3 20 . 7 0 20 . 6 7 0.0 3 32 . 2 0 32 . 0 3 0.17 8/2 5 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 27 . 6 0 27 . 3 8 0.2 2 20 . 9 0 20 . 8 2 0.0 8 32 . 6 2 32 . 5 4 0.08 8/2 5 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 27 . 6 0 27 . 4 5 0.1 5 21 . 1 0 20 . 9 6 0.1 4 32 . 8 7 32 . 8 7 0.00 8/2 5 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 27 . 4 0 27 . 2 7 0.1 3 21 . 2 7 21 . 1 0 0.1 7 32 . 8 2 32 . 9 0 -0 . 0 8 8/2 5 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 27 . 1 0 27 . 0 5 0.0 5 21 . 4 3 21 . 2 3 0.2 0 32 . 5 4 32 . 6 8 -0 . 1 4 8/2 5 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 27 . 1 0 27 . 3 2 -0 . 2 2 21 . 2 7 21 . 0 8 0.1 9 32 . 8 6 33 . 1 2 -0 . 2 6 8/2 5 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 27 . 4 0 27 . 6 6 -0 . 2 6 21 . 1 0 20 . 9 0 0.2 0 33 . 1 9 33 . 6 0 -0 . 4 1 8/2 5 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 28 . 0 0 28 . 0 4 -0 . 0 4 20 . 9 0 20 . 7 3 0.1 7 33 . 5 9 34 . 0 9 -0 . 5 0 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Tu e s d a y , A u g u s t 2 5 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 9, 0 0 0 10 , 0 0 0 11 , 0 0 0 12 , 0 0 0 13 , 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Tu e s d a y , A u g u s t 2 5 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 8.99 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y We d n e s d a y , A u g u s t 2 6 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 8/ 2 6 / 2 0 1 5 0 : 0 0 0 : 0 0 2 8 . 3 0 2 8 . 3 0 0.0 0 20 . 7 5 20 . 7 5 0.0 0 34 . 2 4 34 . 2 4 0.00 8/ 2 6 / 2 0 1 5 1 : 0 0 1 : 0 0 28 . 7 0 28 . 5 8 0.1 2 20 . 5 7 20 . 5 8 -0 . 0 1 34 . 6 7 34 . 5 5 0.12 8/ 2 6 / 2 0 1 5 2 : 0 0 2 : 0 0 29 . 0 0 28 . 8 2 0.1 8 20 . 4 0 20 . 4 0 0.0 0 34 . 9 1 34 . 7 1 0.20 8/ 2 6 / 2 0 1 5 3 : 0 0 3 : 0 0 29 . 2 0 28 . 9 3 0.2 7 20 . 2 3 20 . 2 1 0.0 2 34 . 8 9 34 . 6 1 0.28 8/ 2 6 / 2 0 1 5 4 : 0 0 4 : 0 0 29 . 0 0 28 . 7 9 0.2 1 19 . 9 5 20 . 0 0 -0 . 0 5 34 . 3 9 33 . 9 1 0.48 8/ 2 6 / 2 0 1 5 5 : 0 0 5 : 0 0 28 . 0 0 28 . 0 9 -0 . 0 9 19 . 6 1 19 . 7 1 -0 . 1 0 32 . 8 2 32 . 2 3 0.59 8/ 2 6 / 2 0 1 5 6 : 0 0 6 : 0 0 26 . 7 0 26 . 8 7 -0 . 1 7 19 . 1 8 19 . 3 7 -0 . 1 9 30 . 6 6 29 . 9 6 0.70 8/ 2 6 / 2 0 1 5 7 : 0 0 7 : 0 0 24 . 8 0 25 . 3 3 -0 . 5 3 18 . 9 7 19 . 3 4 -0 . 3 7 28 . 1 9 27 . 4 3 0.76 8/ 2 6 / 2 0 1 5 8 : 0 0 8 : 0 0 24 . 1 0 24 . 2 0 -0 . 1 0 18 . 8 9 19 . 4 1 -0 . 5 2 26 . 7 7 25 . 8 1 0.96 8/ 2 6 / 2 0 1 5 9 : 0 0 9 : 0 0 23 . 2 0 23 . 5 1 -0 . 3 1 18 . 8 9 19 . 5 2 -0 . 6 3 26 . 0 9 25 . 4 9 0.60 8/2 6 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 23 . 2 0 23 . 2 9 -0 . 0 9 19 . 0 2 19 . 6 4 -0 . 6 2 26 . 1 4 25 . 7 6 0.38 8/2 6 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 23 . 0 0 23 . 1 7 -0 . 1 7 19 . 1 7 19 . 7 7 -0 . 6 0 26 . 4 1 26 . 0 8 0.33 8/2 6 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 22 . 7 0 23 . 2 3 -0 . 5 3 19 . 3 8 19 . 9 1 -0 . 5 3 26 . 6 5 26 . 4 4 0.21 8/2 6 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 23 . 4 0 23 . 5 9 -0 . 1 9 19 . 5 7 20 . 0 5 -0 . 4 8 27 . 2 2 27 . 2 2 0.00 8/2 6 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 23 . 7 0 24 . 0 8 -0 . 3 8 19 . 8 0 20 . 2 0 -0 . 4 0 27 . 8 4 28 . 0 8 -0 . 2 4 8/2 6 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 24 . 4 0 24 . 4 8 -0 . 0 8 20 . 0 0 20 . 3 4 -0 . 3 4 28 . 5 9 28 . 6 2 -0 . 0 3 8/2 6 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 24 . 8 0 24 . 9 7 -0 . 1 7 20 . 2 2 20 . 4 9 -0 . 2 7 29 . 3 8 29 . 3 0 0.08 8/2 6 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 25 . 3 0 25 . 4 6 -0 . 1 6 20 . 4 2 20 . 6 4 -0 . 2 2 29 . 8 6 29 . 9 0 -0 . 0 4 8/2 6 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 25 . 7 0 25 . 8 2 -0 . 1 2 20 . 6 2 20 . 7 7 -0 . 1 5 30 . 3 1 30 . 1 3 0.18 8/2 6 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 26 . 2 0 26 . 0 8 0.1 2 20 . 8 0 20 . 9 0 -0 . 1 0 30 . 5 4 30 . 1 3 0.41 8/2 6 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 26 . 4 0 26 . 3 0 0.1 0 20 . 9 7 21 . 0 3 -0 . 0 6 30 . 6 8 30 . 1 9 0.49 8/2 6 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 26 . 7 0 26 . 8 0 -0 . 1 0 20 . 8 2 20 . 8 7 -0 . 0 5 31 . 3 7 30 . 9 9 0.38 8/2 6 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 27 . 6 0 27 . 3 4 0.2 6 20 . 6 5 20 . 6 8 -0 . 0 3 32 . 0 1 31 . 8 0 0.21 8/2 6 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 27 . 8 0 27 . 8 8 -0 . 0 8 20 . 4 5 20 . 4 9 -0 . 0 4 32 . 6 3 32 . 4 7 0.16 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r We d n e s d a y , A u g u s t 2 6 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 9, 0 0 0 10 , 0 0 0 11 , 0 0 0 12 , 0 0 0 13 , 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) We d n e s d a y , A u g u s t 2 6 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 9.55 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Mo n d a y , O c t o b e r 1 2 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 10 / 1 2 / 2 0 1 5 0 : 0 0 0 : 0 0 2 7 . 8 0 2 7 . 8 0 0 . 0 0 2 3 . 3 7 2 3 . 3 7 0 . 0 0 3 6 . 6 2 3 6 . 6 2 0.00 10 / 1 2 / 2 0 1 5 1 : 0 0 1 : 0 0 28 . 0 0 27 . 9 3 0.0 7 23 . 5 2 23 . 4 7 0.0 5 36 . 9 7 36 . 8 5 0.12 10 / 1 2 / 2 0 1 5 2 : 0 0 2 : 0 0 28 . 3 0 28 . 1 2 0.1 8 23 . 6 6 23 . 5 9 0.0 7 37 . 3 5 37 . 1 4 0.21 10 / 1 2 / 2 0 1 5 3 : 0 0 3 : 0 0 28 . 7 0 28 . 3 8 0.3 2 23 . 8 1 23 . 7 2 0.0 9 37 . 7 6 37 . 4 7 0.29 10 / 1 2 / 2 0 1 5 4 : 0 0 4 : 0 0 29 . 0 0 28 . 6 1 0.3 9 23 . 9 6 23 . 8 5 0.1 1 38 . 0 6 37 . 7 2 0.34 10 / 1 2 / 2 0 1 5 5 : 0 0 5 : 0 0 29 . 2 0 28 . 8 1 0.3 9 24 . 0 6 23 . 9 6 0.1 0 38 . 2 4 37 . 8 7 0.37 10 / 1 2 / 2 0 1 5 6 : 0 0 6 : 0 0 29 . 4 0 28 . 9 5 0.4 5 24 . 1 4 24 . 0 5 0.0 9 38 . 2 4 37 . 9 4 0.30 10 / 1 2 / 2 0 1 5 7 : 0 0 7 : 0 0 29 . 2 0 28 . 9 8 0.2 2 24 . 1 5 24 . 1 3 0.0 2 37 . 7 5 37 . 8 1 -0 . 0 6 10 / 1 2 / 2 0 1 5 8 : 0 0 8 : 0 0 28 . 7 0 28 . 7 0 0.0 0 24 . 1 3 24 . 1 8 -0 . 0 5 37 . 0 8 37 . 1 0 -0 . 0 2 10 / 1 2 / 2 0 1 5 9 : 0 0 9 : 0 0 28 . 5 0 28 . 2 9 0.2 1 24 . 1 6 24 . 2 3 -0 . 0 7 36 . 6 0 36 . 3 7 0.23 10 / 1 2 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 28 . 3 0 28 . 2 0 0.1 0 23 . 9 3 24 . 0 2 -0 . 0 9 36 . 7 6 36 . 6 9 0.07 10 / 1 2 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 28 . 3 0 28 . 2 2 0.0 8 23 . 7 2 23 . 7 9 -0 . 0 7 36 . 9 1 36 . 9 7 -0 . 0 6 10 / 1 2 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 28 . 3 0 28 . 3 1 -0 . 0 1 23 . 5 1 23 . 5 7 -0 . 0 6 37 . 1 2 37 . 1 9 -0 . 0 7 10 / 1 2 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 28 . 5 0 28 . 4 2 0.0 8 23 . 2 9 23 . 3 4 -0 . 0 5 37 . 2 6 37 . 3 9 -0 . 1 3 10 / 1 2 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 28 . 5 0 28 . 5 6 -0 . 0 6 23 . 0 9 23 . 1 2 -0 . 0 3 37 . 4 5 37 . 5 8 -0 . 1 3 10 / 1 2 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 28 . 7 0 28 . 7 3 -0 . 0 3 22 . 9 1 22 . 9 0 0.0 1 37 . 6 9 37 . 7 8 -0 . 0 9 10 / 1 2 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 29 . 0 0 28 . 9 4 0.0 6 22 . 7 2 22 . 6 8 0.0 4 37 . 9 1 38 . 0 5 -0 . 1 4 10 / 1 2 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 28 . 7 0 28 . 8 9 -0 . 1 9 22 . 7 4 22 . 7 1 0.0 3 37 . 5 7 37 . 6 8 -0 . 1 1 10 / 1 2 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 28 . 7 0 28 . 6 6 0.0 4 22 . 8 1 22 . 7 6 0.0 5 37 . 1 6 37 . 2 4 -0 . 0 8 10 / 1 2 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 28 . 3 0 28 . 3 9 -0 . 0 9 22 . 8 6 22 . 8 2 0.0 4 36 . 7 4 36 . 8 8 -0 . 1 4 10 / 1 2 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 28 . 0 0 28 . 1 0 -0 . 1 0 22 . 9 2 22 . 8 7 0.0 5 36 . 3 9 36 . 5 5 -0 . 1 6 10 / 1 2 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 27 . 6 0 27 . 8 5 -0 . 2 5 23 . 0 0 22 . 9 2 0.0 8 36 . 2 0 36 . 3 5 -0 . 1 5 10 / 1 2 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 27 . 6 0 27 . 6 3 -0 . 0 3 23 . 0 4 22 . 9 8 0.0 6 36 . 0 6 36 . 2 0 -0 . 1 4 10 / 1 2 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 27 . 4 0 27 . 4 7 -0 . 0 7 23 . 1 4 23 . 0 4 0.1 0 36 . 0 5 36 . 1 2 -0 . 0 7 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Mo n d a y , O c t o b e r 1 2 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Mo n d a y , O c t o b e r 1 2 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 4.91 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) No d e = Hy d r a n t # 2 1 0 7 No d e = Hy d r a n t # 4 3 3 El e v a t i o n = 50 2 4 . 7 4 El e v a t i o n = 49 6 9 . 5 2 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 10 / 1 2 / 2 0 1 5 0 : 0 0 5 , 1 2 0 . 5 2 5, 1 2 0 . 6 1 (0 . 0 9 ) 5, 1 2 0 . 4 7 5, 1 2 1 . 2 6 (0.79) 10 / 1 2 / 2 0 1 5 1 : 0 0 5 , 1 2 0 . 9 8 5, 1 2 0 . 9 6 0. 0 2 5, 1 2 0 . 8 1 5, 1 2 1 . 5 0 (0.69) 10 / 1 2 / 2 0 1 5 2 : 0 0 5 , 1 2 1 . 4 3 5, 1 2 1 . 3 2 0. 1 1 5, 1 2 1 . 2 6 5, 1 2 1 . 7 8 (0.52) 10 / 1 2 / 2 0 1 5 3 : 0 0 5 , 1 2 1 . 9 9 5, 1 2 1 . 5 2 0. 4 7 5, 1 2 1 . 6 0 5, 1 2 2 . 0 2 (0.42) 10 / 1 2 / 2 0 1 5 4 : 0 0 5 , 1 2 1 . 8 8 5, 1 2 1 . 6 3 0. 2 5 5, 1 2 1 . 8 3 5, 1 2 2 . 2 0 (0.37) 10 / 1 2 / 2 0 1 5 5 : 0 0 5 , 1 2 1 . 7 7 5, 1 2 1 . 6 5 0. 1 2 5, 1 2 1 . 8 3 5, 1 2 2 . 3 2 (0.49) 10 / 1 2 / 2 0 1 5 6 : 0 0 5 , 1 2 0 . 7 5 5, 1 2 1 . 3 8 (0 . 6 3 ) 5, 1 2 1 . 6 0 5, 1 2 2 . 2 9 (0.69) 10 / 1 2 / 2 0 1 5 7 : 0 0 5 , 1 1 8 . 9 5 5, 1 1 9 . 8 9 (0 . 9 4 ) 5, 1 2 0 . 8 1 5, 1 2 1 . 7 4 (0.93) 10 / 1 2 / 2 0 1 5 8 : 0 0 5 , 1 1 7 . 9 3 5, 1 1 8 . 9 6 (1 . 0 3 ) 5, 1 2 0 . 2 5 5, 1 2 1 . 1 5 (0.90) 10 / 1 2 / 2 0 1 5 9 : 0 0 5 , 1 1 8 . 6 1 5, 1 1 9 . 1 5 (0 . 5 4 ) 5, 1 2 0 . 1 4 5, 1 2 0 . 8 7 (0.73) 10 / 1 2 / 2 0 1 5 1 0 : 0 0 5 , 1 1 8 . 9 5 5, 1 2 0 . 5 0 (1 . 5 5 ) 5, 1 2 0 . 3 6 5, 1 2 1 . 4 5 (1.09) 10 / 1 2 / 2 0 1 5 1 1 : 0 0 5 , 1 1 8 . 9 5 5, 1 2 0 . 7 1 (1 . 7 6 ) 5, 1 2 0 . 5 9 5, 1 2 1 . 5 9 (1.00) 10 / 1 2 / 2 0 1 5 1 2 : 0 0 5 , 1 1 8 . 2 7 5, 1 2 0 . 9 1 (2 . 6 4 ) 5, 1 2 0 . 7 0 5, 1 2 1 . 7 4 (1.04) 10 / 1 2 / 2 0 1 5 1 3 : 0 0 5 , 1 1 8 . 3 8 5, 1 2 1 . 1 1 (2 . 7 3 ) 5, 1 2 0 . 9 3 5, 1 2 1 . 9 1 (0.98) 10 / 1 2 / 2 0 1 5 1 4 : 0 0 5 , 1 1 8 . 1 6 5, 1 2 1 . 3 3 (3 . 1 7 ) 5, 1 2 1 . 0 4 5, 1 2 2 . 0 8 (1.04) 10 / 1 2 / 2 0 1 5 1 5 : 0 0 5 , 1 1 8 . 1 6 5, 1 2 1 . 6 7 (3 . 5 1 ) 5, 1 2 1 . 3 8 5, 1 2 2 . 3 2 (0.94) 10 / 1 2 / 2 0 1 5 1 6 : 0 0 5 , 1 1 8 . 1 6 5, 1 2 1 . 8 8 (3 . 7 2 ) 5, 1 2 1 . 6 0 5, 1 2 2 . 5 4 (0.94) 10 / 1 2 / 2 0 1 5 1 7 : 0 0 5 , 1 1 6 . 8 0 5, 1 2 0 . 5 1 (3 . 7 1 ) 5, 1 2 1 . 0 4 5, 1 2 1 . 9 1 (0.87) 10 / 1 2 / 2 0 1 5 1 8 : 0 0 5 , 1 1 6 . 3 5 5, 1 2 0 . 1 5 (3 . 8 0 ) 5, 1 2 0 . 5 9 5, 1 2 1 . 5 8 (0.99) 10 / 1 2 / 2 0 1 5 1 9 : 0 0 5 , 1 1 6 . 4 6 5, 1 1 9 . 8 1 (3 . 3 5 ) 5, 1 2 0 . 2 5 5, 1 2 1 . 2 6 (1.01) 10 / 1 2 / 2 0 1 5 2 0 : 0 0 5 , 1 1 6 . 5 8 5, 1 1 9 . 7 2 (3 . 1 4 ) 5, 1 1 9 . 8 0 5, 1 2 1 . 0 3 (1.23) 10 / 1 2 / 2 0 1 5 2 1 : 0 0 5 , 1 1 7 . 3 7 5, 1 1 9 . 6 4 (2 . 2 7 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 8 5 (1.17) 10 / 1 2 / 2 0 1 5 2 2 : 0 0 5 , 1 1 7 . 5 9 5, 1 1 9 . 6 3 (2 . 0 4 ) 5, 1 1 9 . 5 7 5, 1 2 0 . 7 3 (1.16) 10 / 1 2 / 2 0 1 5 2 3 : 0 0 5 , 1 1 8 . 3 8 5, 1 1 9 . 9 6 (1 . 5 8 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 7 7 (1.09) Da t e / T i m e Re c o r d e r # 1 2 4 2 Te s t N o . 1 Te s t N o . 2 Re c o r d e r # 1 2 4 0 Page 1 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 2 / 2 0 1 5 0 : 0 0 10 / 1 2 / 2 0 1 5 1 : 0 0 10 / 1 2 / 2 0 1 5 2 : 0 0 10 / 1 2 / 2 0 1 5 3 : 0 0 10 / 1 2 / 2 0 1 5 4 : 0 0 10 / 1 2 / 2 0 1 5 5 : 0 0 10 / 1 2 / 2 0 1 5 6 : 0 0 10 / 1 2 / 2 0 1 5 7 : 0 0 10 / 1 2 / 2 0 1 5 8 : 0 0 10 / 1 2 / 2 0 1 5 9 : 0 0 10 / 1 2 / 2 0 1 5 1 0 : 0 0 10 / 1 2 / 2 0 1 5 1 1 : 0 0 10 / 1 2 / 2 0 1 5 1 2 : 0 0 10 / 1 2 / 2 0 1 5 1 3 : 0 0 10 / 1 2 / 2 0 1 5 1 4 : 0 0 10 / 1 2 / 2 0 1 5 1 5 : 0 0 10 / 1 2 / 2 0 1 5 1 6 : 0 0 10 / 1 2 / 2 0 1 5 1 7 : 0 0 10 / 1 2 / 2 0 1 5 1 8 : 0 0 10 / 1 2 / 2 0 1 5 1 9 : 0 0 10 / 1 2 / 2 0 1 5 2 0 : 0 0 10 / 1 2 / 2 0 1 5 2 1 : 0 0 10 / 1 2 / 2 0 1 5 2 2 : 0 0 10 / 1 2 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 4 9 0 No d e = Hy d r a n t # 2 7 8 El e v a t i o n = 48 8 0 . 2 5 El e v a t i o n = 48 6 1 . 1 9 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 9 . 3 2 5, 1 2 0 . 3 3 (1 . 0 1 ) 5, 1 2 1 . 1 3 5, 1 2 0 . 8 3 0.30 5, 1 1 9 . 7 7 5, 1 2 0 . 7 3 (0 . 9 6 ) 5, 1 2 1 . 3 5 5, 1 2 1 . 1 2 0.23 5, 1 2 0 . 2 2 5, 1 2 1 . 1 3 (0 . 9 1 ) 5, 1 2 1 . 8 1 5, 1 2 1 . 4 4 0.37 5, 1 2 0 . 6 7 5, 1 2 1 . 3 1 (0 . 6 4 ) 5, 1 2 2 . 2 6 5, 1 2 1 . 6 8 0.58 5, 1 2 0 . 5 6 5, 1 2 1 . 3 8 (0 . 8 2 ) 5, 1 2 2 . 4 8 5, 1 2 1 . 8 5 0.63 5, 1 2 0 . 2 2 5, 1 2 1 . 3 7 (1 . 1 5 ) 5, 1 2 2 . 4 8 5, 1 2 1 . 9 4 0.54 5, 1 1 8 . 9 8 5, 1 2 1 . 0 0 (2 . 0 2 ) 5, 1 2 2 . 0 3 5, 1 2 1 . 8 3 0.20 5, 1 1 6 . 8 3 5, 1 1 9 . 1 1 (2 . 2 8 ) 5, 1 2 1 . 0 2 5, 1 2 0 . 9 9 0.03 5, 1 1 5 . 7 1 5, 1 1 8 . 0 4 (2 . 3 3 ) 5, 1 2 0 . 3 4 5, 1 2 0 . 2 4 0.10 5, 1 1 6 . 8 3 5, 1 1 8 . 4 1 (1 . 5 8 ) 5, 1 2 0 . 6 8 5, 1 2 0 . 0 4 0.64 5, 1 1 7 . 8 5 5, 1 2 0 . 1 4 (2 . 2 9 ) 5, 1 2 0 . 7 9 5, 1 2 1 . 0 1 (0.22) 5, 1 1 8 . 5 3 5, 1 2 0 . 3 9 (1 . 8 6 ) 5, 1 2 0 . 7 9 5, 1 2 1 . 2 1 (0.42) 5, 1 1 8 . 4 1 5, 1 2 0 . 6 1 (2 . 2 0 ) 5, 1 2 0 . 6 8 5, 1 2 1 . 4 0 (0.72) 5, 1 1 8 . 8 7 5, 1 2 0 . 8 3 (1 . 9 6 ) 5, 1 2 1 . 1 3 5, 1 2 1 . 5 8 (0.45) 5, 1 1 9 . 2 0 5, 1 2 1 . 0 5 (1 . 8 5 ) 5, 1 2 1 . 2 4 5, 1 2 1 . 7 8 (0.54) 5, 1 1 9 . 5 4 5, 1 2 1 . 4 3 (1 . 8 9 ) 5, 1 2 1 . 8 1 5, 1 2 2 . 0 4 (0.23) 5, 1 1 9 . 5 4 5, 1 2 1 . 6 4 (2 . 1 0 ) 5, 1 2 2 . 3 7 5, 1 2 2 . 2 7 0.10 5, 1 1 7 . 8 5 5, 1 1 9 . 9 3 (2 . 0 8 ) 5, 1 2 1 . 6 9 5, 1 2 1 . 2 9 0.40 5, 1 1 6 . 9 5 5, 1 1 9 . 5 4 (2 . 5 9 ) 5, 1 2 1 . 2 4 5, 1 2 0 . 9 2 0.32 5, 1 1 6 . 2 7 5, 1 1 9 . 2 0 (2 . 9 3 ) 5, 1 2 0 . 7 9 5, 1 2 0 . 5 8 0.21 5, 1 1 6 . 1 6 5, 1 1 9 . 1 7 (3 . 0 1 ) 5, 1 2 0 . 6 8 5, 1 2 0 . 3 7 0.31 5, 1 1 6 . 8 3 5, 1 1 9 . 1 2 (2 . 2 9 ) 5, 1 2 0 . 4 5 5, 1 2 0 . 2 3 0.22 5, 1 1 6 . 7 2 5, 1 1 9 . 1 7 (2 . 4 5 ) 5, 1 2 0 . 2 3 5, 1 2 0 . 1 5 0.08 5, 1 1 7 . 7 4 5, 1 1 9 . 6 1 (1 . 8 7 ) 5, 1 2 0 . 4 5 5, 1 2 0 . 2 7 0.18 Te s t N o . 3 Re c o r d e r # 1 2 5 1 Te s t N o . 4 Re c o r d e r # 1 2 4 9 Page 2 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 2 / 2 0 1 5 0 : 0 0 10 / 1 2 / 2 0 1 5 1 : 0 0 10 / 1 2 / 2 0 1 5 2 : 0 0 10 / 1 2 / 2 0 1 5 3 : 0 0 10 / 1 2 / 2 0 1 5 4 : 0 0 10 / 1 2 / 2 0 1 5 5 : 0 0 10 / 1 2 / 2 0 1 5 6 : 0 0 10 / 1 2 / 2 0 1 5 7 : 0 0 10 / 1 2 / 2 0 1 5 8 : 0 0 10 / 1 2 / 2 0 1 5 9 : 0 0 10 / 1 2 / 2 0 1 5 1 0 : 0 0 10 / 1 2 / 2 0 1 5 1 1 : 0 0 10 / 1 2 / 2 0 1 5 1 2 : 0 0 10 / 1 2 / 2 0 1 5 1 3 : 0 0 10 / 1 2 / 2 0 1 5 1 4 : 0 0 10 / 1 2 / 2 0 1 5 1 5 : 0 0 10 / 1 2 / 2 0 1 5 1 6 : 0 0 10 / 1 2 / 2 0 1 5 1 7 : 0 0 10 / 1 2 / 2 0 1 5 1 8 : 0 0 10 / 1 2 / 2 0 1 5 1 9 : 0 0 10 / 1 2 / 2 0 1 5 2 0 : 0 0 10 / 1 2 / 2 0 1 5 2 1 : 0 0 10 / 1 2 / 2 0 1 5 2 2 : 0 0 10 / 1 2 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 2 1 No d e = Hy d r a n t # 1 8 8 7 El e v a t i o n = 48 1 7 . 6 1 El e v a t i o n = 47 5 4 . 5 3 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 9 . 5 2 5, 1 2 0 . 4 4 (0 . 9 2 ) 5, 1 1 8 . 7 1 5, 1 2 0 . 3 1 (1.60) 5, 1 2 0 . 1 2 5, 1 2 0 . 8 0 (0 . 6 8 ) 5, 1 1 9 . 1 7 5, 1 2 0 . 7 0 (1.53) 5, 1 2 0 . 4 9 5, 1 2 1 . 1 9 (0 . 7 0 ) 5, 1 1 9 . 7 3 5, 1 2 1 . 1 0 (1.37) 5, 1 2 1 . 0 9 5, 1 2 1 . 3 8 (0 . 2 9 ) 5, 1 2 0 . 4 1 5, 1 2 1 . 2 9 (0.88) 5, 1 2 0 . 9 7 5, 1 2 1 . 4 8 (0 . 5 1 ) 5, 1 2 0 . 1 8 5, 1 2 1 . 3 6 (1.18) 5, 1 2 0 . 7 3 5, 1 2 1 . 4 9 (0 . 7 6 ) 5, 1 1 9 . 8 4 5, 1 2 1 . 3 5 (1.51) 5, 1 1 9 . 6 4 5, 1 2 1 . 1 9 (1 . 5 5 ) 5, 1 1 8 . 7 1 5, 1 2 0 . 9 8 (2.27) 5, 1 1 7 . 8 2 5, 1 1 9 . 5 7 (1 . 7 5 ) 5, 1 1 6 . 4 6 5, 1 1 9 . 1 2 (2.66) 5, 1 1 6 . 8 5 5, 1 1 8 . 5 8 (1 . 7 3 ) 5, 1 1 5 . 4 4 5, 1 1 8 . 0 5 (2.61) 5, 1 1 7 . 9 4 5, 1 1 8 . 8 0 (0 . 8 6 ) 5, 1 1 6 . 9 1 5, 1 1 8 . 4 0 (1.49) 5, 1 1 9 . 2 8 5, 1 2 0 . 8 7 (1 . 5 9 ) 5, 1 1 8 . 7 1 5, 1 2 1 . 4 4 (2.73) 5, 1 1 9 . 6 4 5, 1 2 1 . 0 9 (1 . 4 5 ) 5, 1 1 8 . 2 6 5, 1 2 1 . 6 6 (3.40) 5, 1 1 9 . 6 4 5, 1 2 1 . 2 9 (1 . 6 5 ) 5, 1 1 8 . 0 4 5, 1 2 1 . 8 5 (3.81) 5, 1 1 9 . 8 8 5, 1 2 1 . 4 8 (1 . 6 0 ) 5, 1 1 8 . 2 6 5, 1 2 2 . 0 4 (3.78) 5, 1 2 0 . 0 0 5, 1 2 1 . 6 9 (1 . 6 9 ) 5, 1 1 8 . 2 6 5, 1 2 2 . 2 4 (3.98) 5, 1 2 0 . 3 7 5, 1 2 1 . 9 9 (1 . 6 2 ) 5, 1 1 8 . 2 6 5, 1 2 2 . 5 6 (4.30) 5, 1 2 0 . 3 7 5, 1 2 2 . 2 1 (1 . 8 4 ) 5, 1 1 7 . 9 2 5, 1 2 2 . 7 6 (4.84) 5, 1 1 8 . 1 8 5, 1 2 0 . 2 6 (2 . 0 8 ) 5, 1 1 4 . 7 7 5, 1 1 9 . 9 3 (5.16) 5, 1 1 7 . 4 6 5, 1 1 9 . 8 7 (2 . 4 1 ) 5, 1 1 4 . 4 3 5, 1 1 9 . 5 4 (5.11) 5, 1 1 6 . 6 1 5, 1 1 9 . 5 2 (2 . 9 1 ) 5, 1 1 4 . 0 9 5, 1 1 9 . 1 9 (5.10) 5, 1 1 6 . 7 3 5, 1 1 9 . 4 5 (2 . 7 2 ) 5, 1 1 4 . 3 1 5, 1 1 9 . 1 5 (4.84) 5, 1 1 7 . 3 3 5, 1 1 9 . 3 8 (2 . 0 5 ) 5, 1 1 5 . 1 0 5, 1 1 9 . 1 1 (4.01) 5, 1 1 7 . 2 1 5, 1 1 9 . 3 9 (2 . 1 8 ) 5, 1 1 5 . 3 3 5, 1 1 9 . 1 6 (3.83) 5, 1 1 8 . 0 6 5, 1 1 9 . 7 5 (1 . 6 9 ) 5, 1 1 6 . 5 7 5, 1 1 9 . 5 9 (3.02) Te s t N o . 6 Re c o r d e r # 1 2 4 5 Te s t N o . 5 Re c o r d e r # 3 4 1 2 9 8 Page 3 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 2 / 2 0 1 5 0 : 0 0 10 / 1 2 / 2 0 1 5 1 : 0 0 10 / 1 2 / 2 0 1 5 2 : 0 0 10 / 1 2 / 2 0 1 5 3 : 0 0 10 / 1 2 / 2 0 1 5 4 : 0 0 10 / 1 2 / 2 0 1 5 5 : 0 0 10 / 1 2 / 2 0 1 5 6 : 0 0 10 / 1 2 / 2 0 1 5 7 : 0 0 10 / 1 2 / 2 0 1 5 8 : 0 0 10 / 1 2 / 2 0 1 5 9 : 0 0 10 / 1 2 / 2 0 1 5 1 0 : 0 0 10 / 1 2 / 2 0 1 5 1 1 : 0 0 10 / 1 2 / 2 0 1 5 1 2 : 0 0 10 / 1 2 / 2 0 1 5 1 3 : 0 0 10 / 1 2 / 2 0 1 5 1 4 : 0 0 10 / 1 2 / 2 0 1 5 1 5 : 0 0 10 / 1 2 / 2 0 1 5 1 6 : 0 0 10 / 1 2 / 2 0 1 5 1 7 : 0 0 10 / 1 2 / 2 0 1 5 1 8 : 0 0 10 / 1 2 / 2 0 1 5 1 9 : 0 0 10 / 1 2 / 2 0 1 5 2 0 : 0 0 10 / 1 2 / 2 0 1 5 2 1 : 0 0 10 / 1 2 / 2 0 1 5 2 2 : 0 0 10 / 1 2 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 7 5 4 No d e = Hy d r a n t # 1 1 2 5 El e v a t i o n = 48 2 0 . 1 1 El e v a t i o n = 47 7 9 . 5 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 9 . 1 1 5, 1 2 0 . 0 3 (0 . 9 2 ) 5, 1 2 0 . 4 4 5, 1 2 0 . 0 3 0.41 5, 1 1 9 . 7 1 5, 1 2 0 . 4 8 (0 . 7 7 ) 5, 1 2 1 . 0 1 5, 1 2 0 . 4 9 0.52 5, 1 1 9 . 9 6 5, 1 2 0 . 9 2 (0 . 9 6 ) 5, 1 2 1 . 4 6 5, 1 2 0 . 9 2 0.54 5, 1 2 0 . 4 4 5, 1 2 1 . 0 8 (0 . 6 4 ) 5, 1 2 2 . 0 2 5, 1 2 1 . 0 8 0.94 5, 1 2 0 . 2 0 5, 1 2 1 . 1 0 (0 . 9 0 ) 5, 1 2 1 . 5 7 5, 1 2 1 . 1 1 0.46 5, 1 1 9 . 4 7 5, 1 2 1 . 0 4 (1 . 5 7 ) 5, 1 2 1 . 1 2 5, 1 2 1 . 0 4 0.08 5, 1 1 8 . 0 2 5, 1 2 0 . 5 3 (2 . 5 1 ) 5, 1 1 9 . 4 3 5, 1 2 0 . 5 4 (1.11) 5, 1 1 5 . 2 3 5, 1 1 8 . 0 1 (2 . 7 8 ) 5, 1 1 6 . 6 1 5, 1 1 8 . 0 2 (1.41) 5, 1 1 4 . 3 8 5, 1 1 6 . 7 4 (2 . 3 6 ) 5, 1 1 5 . 8 2 5, 1 1 6 . 7 4 (0.92) 5, 1 1 5 . 8 3 5, 1 1 7 . 4 4 (1 . 6 1 ) 5, 1 1 7 . 2 8 5, 1 1 7 . 4 4 (0.16) 5, 1 1 7 . 0 5 5, 1 1 9 . 4 1 (2 . 3 6 ) 5, 1 1 7 . 9 6 5, 1 1 9 . 4 2 (1.46) 5, 1 1 7 . 4 1 5, 1 1 9 . 7 1 (2 . 3 0 ) 5, 1 1 8 . 1 9 5, 1 1 9 . 7 2 (1.53) 5, 1 1 7 . 5 3 5, 1 1 9 . 9 5 (2 . 4 2 ) 5, 1 1 8 . 0 7 5, 1 1 9 . 9 6 (1.89) 5, 1 1 7 . 7 7 5, 1 2 0 . 2 0 (2 . 4 3 ) 5, 1 1 8 . 3 0 5, 1 2 0 . 2 1 (1.91) 5, 1 1 8 . 1 4 5, 1 2 0 . 4 6 (2 . 3 2 ) 5, 1 1 8 . 1 9 5, 1 2 0 . 4 6 (2.27) 5, 1 1 8 . 2 6 5, 1 2 0 . 9 1 (2 . 6 5 ) 5, 1 1 8 . 1 9 5, 1 2 0 . 9 2 (2.73) 5, 1 1 8 . 1 4 5, 1 2 1 . 1 1 (2 . 9 7 ) 5, 1 1 7 . 7 4 5, 1 2 1 . 1 1 (3.37) 5, 1 1 6 . 2 0 5, 1 1 9 . 1 3 (2 . 9 3 ) 5, 1 1 5 . 8 2 5, 1 1 9 . 1 4 (3.32) 5, 1 1 5 . 1 0 5, 1 1 8 . 7 4 (3 . 6 4 ) 5, 1 1 4 . 6 9 5, 1 1 8 . 7 4 (4.05) 5, 1 1 4 . 6 2 5, 1 1 8 . 3 8 (3 . 7 6 ) 5, 1 1 4 . 4 6 5, 1 1 8 . 3 9 (3.93) 5, 1 1 4 . 6 2 5, 1 1 8 . 4 4 (3 . 8 2 ) 5, 1 1 4 . 8 0 5, 1 1 8 . 4 5 (3.65) 5, 1 1 5 . 7 1 5, 1 1 8 . 4 6 (2 . 7 5 ) 5, 1 1 5 . 9 3 5, 1 1 8 . 4 7 (2.54) 5, 1 1 5 . 8 3 5, 1 1 8 . 5 8 (2 . 7 5 ) 5, 1 1 6 . 2 7 5, 1 1 8 . 5 9 (2.32) 5, 1 1 6 . 9 2 5, 1 1 9 . 2 2 (2 . 3 0 ) 5, 1 1 7 . 5 1 5, 1 1 9 . 2 3 (1.72) Te s t N o . 7 Te s t N o . 8 Re c o r d e r # 3 4 1 2 8 9 Re c o r d e r # 2 0 1 2 5 0 Page 4 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 2 / 2 0 1 5 0 : 0 0 10 / 1 2 / 2 0 1 5 1 : 0 0 10 / 1 2 / 2 0 1 5 2 : 0 0 10 / 1 2 / 2 0 1 5 3 : 0 0 10 / 1 2 / 2 0 1 5 4 : 0 0 10 / 1 2 / 2 0 1 5 5 : 0 0 10 / 1 2 / 2 0 1 5 6 : 0 0 10 / 1 2 / 2 0 1 5 7 : 0 0 10 / 1 2 / 2 0 1 5 8 : 0 0 10 / 1 2 / 2 0 1 5 9 : 0 0 10 / 1 2 / 2 0 1 5 1 0 : 0 0 10 / 1 2 / 2 0 1 5 1 1 : 0 0 10 / 1 2 / 2 0 1 5 1 2 : 0 0 10 / 1 2 / 2 0 1 5 1 3 : 0 0 10 / 1 2 / 2 0 1 5 1 4 : 0 0 10 / 1 2 / 2 0 1 5 1 5 : 0 0 10 / 1 2 / 2 0 1 5 1 6 : 0 0 10 / 1 2 / 2 0 1 5 1 7 : 0 0 10 / 1 2 / 2 0 1 5 1 8 : 0 0 10 / 1 2 / 2 0 1 5 1 9 : 0 0 10 / 1 2 / 2 0 1 5 2 0 : 0 0 10 / 1 2 / 2 0 1 5 2 1 : 0 0 10 / 1 2 / 2 0 1 5 2 2 : 0 0 10 / 1 2 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 0 2 5 No d e = Hy d r a n t # El e v a t i o n = 47 5 5 . 6 7 El e v a t i o n = 0. 0 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 2 0 . 1 9 5, 1 2 0 . 1 8 0. 0 1 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 7 6 5, 1 2 0 . 6 0 0. 1 6 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 1 0 5, 1 2 1 . 0 2 0. 0 8 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 5 5 5, 1 2 1 . 1 9 0. 3 6 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 4 3 5, 1 2 1 . 2 4 0. 1 9 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 9 8 5, 1 2 1 . 2 0 (0 . 2 2 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 7 4 5, 1 2 0 . 7 7 (1 . 0 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 1 5 5, 1 1 8 . 5 6 (1 . 4 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 2 4 5, 1 1 7 . 3 8 (1 . 1 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 3 7 5, 1 1 7 . 9 2 (0 . 5 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 3 9 5, 1 2 0 . 0 2 (1 . 6 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 7 3 5, 1 2 0 . 2 9 (1 . 5 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 6 1 5, 1 2 0 . 5 2 (1 . 9 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 8 4 5, 1 2 0 . 7 5 (1 . 9 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 8 4 5, 1 2 0 . 9 9 (2 . 1 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 8 4 5, 1 2 1 . 4 1 (2 . 5 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 5 0 5, 1 2 1 . 6 1 (3 . 1 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 4 7 5, 1 1 9 . 5 5 (3 . 0 8 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 6 8 5, 1 1 9 . 1 5 (3 . 4 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 4 5 5, 1 1 8 . 8 0 (3 . 3 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 6 8 5, 1 1 8 . 8 2 (3 . 1 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 4 7 5, 1 1 8 . 8 2 (2 . 3 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 8 1 5, 1 1 8 . 9 0 (2 . 0 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 7 1 5, 1 1 9 . 4 2 (1 . 7 1 ) 0. 0 0 0. 0 0 0.00 Re c o r d e r # 1 2 4 3 Re c o r d e r # 1 2 4 1 Te s t N o . 9 Te s t N o . 1 0 Page 5 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 2 / 2 0 1 5 0 : 0 0 10 / 1 2 / 2 0 1 5 1 : 0 0 10 / 1 2 / 2 0 1 5 2 : 0 0 10 / 1 2 / 2 0 1 5 3 : 0 0 10 / 1 2 / 2 0 1 5 4 : 0 0 10 / 1 2 / 2 0 1 5 5 : 0 0 10 / 1 2 / 2 0 1 5 6 : 0 0 10 / 1 2 / 2 0 1 5 7 : 0 0 10 / 1 2 / 2 0 1 5 8 : 0 0 10 / 1 2 / 2 0 1 5 9 : 0 0 10 / 1 2 / 2 0 1 5 1 0 : 0 0 10 / 1 2 / 2 0 1 5 1 1 : 0 0 10 / 1 2 / 2 0 1 5 1 2 : 0 0 10 / 1 2 / 2 0 1 5 1 3 : 0 0 10 / 1 2 / 2 0 1 5 1 4 : 0 0 10 / 1 2 / 2 0 1 5 1 5 : 0 0 10 / 1 2 / 2 0 1 5 1 6 : 0 0 10 / 1 2 / 2 0 1 5 1 7 : 0 0 10 / 1 2 / 2 0 1 5 1 8 : 0 0 10 / 1 2 / 2 0 1 5 1 9 : 0 0 10 / 1 2 / 2 0 1 5 2 0 : 0 0 10 / 1 2 / 2 0 1 5 2 1 : 0 0 10 / 1 2 / 2 0 1 5 2 2 : 0 0 10 / 1 2 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 2 7 1 2 No d e = Hy d r a n t # 1 7 7 0 El e v a t i o n = 46 9 2 . 6 4 El e v a t i o n = 46 7 9 . 9 1 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 4, 9 2 4 . 9 4 4, 9 2 5 . 0 6 (0 . 1 2 ) 5, 0 2 7 . 8 5 5, 0 2 8 . 2 1 (0.36) 4, 9 2 5 . 2 8 4, 9 2 6 . 1 9 (0 . 9 1 ) 5, 0 2 8 . 1 9 5, 0 2 9 . 0 0 (0.81) 4, 9 2 6 . 5 2 4, 9 2 6 . 9 6 (0 . 4 4 ) 5, 0 2 9 . 2 0 5, 0 2 9 . 6 0 (0.40) 4, 9 2 7 . 0 8 4, 9 2 6 . 4 6 0. 6 2 5, 0 2 9 . 3 2 5, 0 2 9 . 4 1 (0.09) 4, 9 2 5 . 0 5 4, 9 2 5 . 5 0 (0 . 4 5 ) 5, 0 2 7 . 8 5 5, 0 2 8 . 9 5 (1.10) 4, 9 2 2 . 3 4 4, 9 2 4 . 4 7 (2 . 1 3 ) 5, 0 2 5 . 9 3 5, 0 2 8 . 4 1 (2.48) 4, 9 1 8 . 2 8 4, 9 2 1 . 7 9 (3 . 5 1 ) 5, 0 2 1 . 5 3 5, 0 2 6 . 8 4 (5.31) 4, 9 1 2 . 0 8 4, 9 2 1 . 5 7 (9 . 4 9 ) 5, 0 1 5 . 6 6 5, 0 2 6 . 3 6 (10.70) 4, 9 1 4 . 4 5 4, 9 2 1 . 5 1 (7 . 0 6 ) 5, 0 1 8 . 1 5 5, 0 2 6 . 2 7 (8.12) 4, 9 1 7 . 6 0 4, 9 2 1 . 6 1 (4 . 0 1 ) 5, 0 1 1 . 3 8 5, 0 2 6 . 5 7 (15.19) 4, 9 1 6 . 1 4 4, 9 2 1 . 6 3 (5 . 4 9 ) 5, 0 0 9 . 5 7 5, 0 1 8 . 4 7 (8.90) 4, 9 2 1 . 5 5 4, 9 2 1 . 6 4 (0 . 0 9 ) 5, 0 0 9 . 3 5 5, 0 1 8 . 4 0 (9.05) 4, 9 2 0 . 4 2 4, 9 2 1 . 6 5 (1 . 2 3 ) 5, 0 1 1 . 9 4 5, 0 1 8 . 3 0 (6.36) 4, 9 2 1 . 7 8 4, 9 2 1 . 6 6 0. 1 2 5, 0 1 1 . 3 8 5, 0 1 8 . 2 1 (6.83) 4, 9 2 2 . 4 6 4, 9 2 1 . 6 6 0. 8 0 5, 0 1 2 . 7 3 5, 0 1 8 . 1 2 (5.39) 4, 9 2 1 . 7 8 4, 9 2 1 . 6 8 0. 1 0 5, 0 1 3 . 1 8 5, 0 1 8 . 1 2 (4.94) 4, 9 2 1 . 2 1 4, 9 2 1 . 6 8 (0 . 4 7 ) 5, 0 1 5 . 8 9 5, 0 1 7 . 9 8 (2.09) 4, 9 2 1 . 6 7 4, 9 2 1 . 6 5 0. 0 2 5, 0 2 0 . 9 7 5, 0 2 5 . 1 9 (4.22) 4, 9 2 1 . 2 1 4, 9 2 1 . 6 5 (0 . 4 4 ) 5, 0 2 1 . 4 2 5, 0 2 5 . 2 3 (3.81) 4, 9 1 9 . 5 2 4, 9 2 1 . 6 5 (2 . 1 3 ) 5, 0 2 0 . 9 7 5, 0 2 5 . 2 8 (4.31) 4, 9 1 6 . 9 3 4, 9 2 1 . 6 7 (4 . 7 4 ) 5, 0 2 0 . 7 4 5, 0 2 5 . 4 1 (4.67) 4, 9 2 0 . 2 0 4, 9 2 1 . 6 8 (1 . 4 8 ) 5, 0 2 2 . 6 6 5, 0 2 5 . 5 2 (2.86) 4, 9 2 2 . 0 0 4, 9 2 1 . 7 2 0. 2 8 5, 0 2 3 . 9 0 5, 0 2 5 . 6 5 (1.75) 4, 9 2 5 . 0 5 4, 9 2 3 . 3 6 1. 6 9 5, 0 2 7 . 6 2 5, 0 2 6 . 7 9 0.83 Re c o r d e r # 1 2 4 6 Re c o r d e r # 1 2 4 4 Te s t N o . 1 1 Te s t N o . 1 2 Page 6 of 6 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Tu e s d a y , O c t o b e r 1 3 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 10 / 1 3 / 2 0 1 5 0 : 0 0 0 : 0 0 2 7 . 4 0 2 7 . 4 0 0 . 0 0 2 3 . 2 9 2 3 . 2 9 0 . 0 0 3 6 . 2 8 3 6 . 2 8 0.00 10 / 1 3 / 2 0 1 5 1 : 0 0 1 : 0 0 27 . 6 0 27 . 4 6 0.1 4 23 . 4 4 23 . 3 9 0.0 5 36 . 5 7 36 . 4 8 0.09 10 / 1 3 / 2 0 1 5 2 : 0 0 2 : 0 0 27 . 6 0 27 . 5 9 0.0 1 23 . 5 9 23 . 5 0 0.0 9 36 . 8 8 36 . 7 2 0.16 10 / 1 3 / 2 0 1 5 3 : 0 0 3 : 0 0 27 . 8 0 27 . 7 8 0.0 2 23 . 7 4 23 . 6 2 0.1 2 37 . 1 9 37 . 0 0 0.19 10 / 1 3 / 2 0 1 5 4 : 0 0 4 : 0 0 28 . 3 0 27 . 9 5 0.3 5 23 . 8 7 23 . 7 4 0.1 3 37 . 4 9 37 . 1 8 0.31 10 / 1 3 / 2 0 1 5 5 : 0 0 5 : 0 0 28 . 5 0 28 . 0 9 0.4 1 23 . 9 7 23 . 8 4 0.1 3 37 . 7 1 37 . 2 7 0.44 10 / 1 3 / 2 0 1 5 6 : 0 0 6 : 0 0 28 . 5 0 28 . 1 7 0.3 3 24 . 0 6 23 . 9 4 0.1 2 37 . 7 2 37 . 2 8 0.44 10 / 1 3 / 2 0 1 5 7 : 0 0 7 : 0 0 28 . 3 0 28 . 1 4 0.1 6 24 . 0 4 24 . 0 0 0.0 4 37 . 1 7 37 . 1 0 0.07 10 / 1 3 / 2 0 1 5 8 : 0 0 8 : 0 0 27 . 8 0 27 . 8 1 -0 . 0 1 24 . 0 4 24 . 0 5 -0 . 0 1 36 . 4 3 36 . 3 7 0.06 10 / 1 3 / 2 0 1 5 9 : 0 0 9 : 0 0 27 . 8 0 27 . 5 9 0.2 1 23 . 8 1 23 . 8 4 -0 . 0 3 36 . 4 7 36 . 2 4 0.23 10 / 1 3 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 27 . 8 0 27 . 5 4 0.2 6 23 . 5 9 23 . 6 1 -0 . 0 2 36 . 6 0 36 . 4 0 0.20 10 / 1 3 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 27 . 6 0 27 . 5 4 0.0 6 23 . 3 9 23 . 3 8 0.0 1 36 . 6 8 36 . 5 4 0.14 10 / 1 3 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 27 . 8 0 27 . 5 9 0.2 1 23 . 1 9 23 . 1 6 0.0 3 36 . 8 0 36 . 6 7 0.13 10 / 1 3 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 27 . 8 0 27 . 6 7 0.1 3 22 . 9 9 22 . 9 4 0.0 5 36 . 8 9 36 . 7 9 0.10 10 / 1 3 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 28 . 0 0 27 . 7 7 0.2 3 22 . 7 9 22 . 7 1 0.0 8 37 . 0 4 36 . 9 2 0.12 10 / 1 3 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 28 . 0 0 27 . 8 8 0.1 2 22 . 6 2 22 . 4 9 0.1 3 37 . 1 8 37 . 0 7 0.11 10 / 1 3 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 27 . 8 0 27 . 8 1 -0 . 0 1 22 . 6 7 22 . 5 3 0.1 4 36 . 8 7 36 . 7 0 0.17 10 / 1 3 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 27 . 8 0 27 . 6 5 0.1 5 22 . 7 4 22 . 5 9 0.1 5 36 . 5 3 36 . 3 9 0.14 10 / 1 3 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 27 . 6 0 27 . 4 2 0.1 8 22 . 8 2 22 . 6 5 0.1 7 36 . 1 9 36 . 0 1 0.18 10 / 1 3 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 27 . 4 0 27 . 1 5 0.2 5 22 . 8 7 22 . 7 1 0.1 6 35 . 8 0 35 . 6 7 0.13 10 / 1 3 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 26 . 9 0 26 . 8 7 0.0 3 22 . 9 2 22 . 7 7 0.1 5 35 . 4 7 35 . 3 6 0.11 10 / 1 3 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 26 . 7 0 26 . 6 3 0.0 7 23 . 0 0 22 . 8 3 0.1 7 35 . 3 0 35 . 1 7 0.13 10 / 1 3 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 26 . 4 0 26 . 4 2 -0 . 0 2 23 . 0 4 22 . 8 9 0.1 5 35 . 1 8 35 . 0 3 0.15 10 / 1 3 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 26 . 2 0 26 . 2 7 -0 . 0 7 23 . 1 4 22 . 9 5 0.1 9 35 . 2 2 34 . 9 6 0.26 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Tu e s d a y , O c t o b e r 1 3 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Tu e s d a y , O c t o b e r 1 3 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 4.69 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) No d e = Hy d r a n t # 2 1 0 7 No d e = Hy d r a n t # 4 3 3 El e v a t i o n = 50 2 4 . 7 4 El e v a t i o n = 49 6 9 . 5 2 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 10 / 1 3 / 2 0 1 5 0 : 0 0 5 , 1 1 9 . 0 6 5, 1 2 0 . 2 6 (1 . 2 0 ) 5, 1 1 9 . 9 1 5, 1 2 0 . 8 9 (0.98) 10 / 1 3 / 2 0 1 5 1 : 0 0 5 , 1 1 9 . 6 2 5, 1 2 0 . 5 5 (0 . 9 3 ) 5, 1 2 0 . 2 5 5, 1 2 1 . 0 6 (0.81) 10 / 1 3 / 2 0 1 5 2 : 0 0 5 , 1 2 0 . 3 0 5, 1 2 0 . 8 5 (0 . 5 5 ) 5, 1 2 0 . 5 9 5, 1 2 1 . 2 8 (0.69) 10 / 1 3 / 2 0 1 5 3 : 0 0 5 , 1 2 0 . 5 2 5, 1 2 0 . 9 9 (0 . 4 7 ) 5, 1 2 0 . 9 3 5, 1 2 1 . 4 7 (0.54) 10 / 1 3 / 2 0 1 5 4 : 0 0 5 , 1 2 0 . 6 4 5, 1 2 1 . 0 4 (0 . 4 0 ) 5, 1 2 1 . 1 5 5, 1 2 1 . 6 0 (0.45) 10 / 1 3 / 2 0 1 5 5 : 0 0 5 , 1 2 0 . 8 6 5, 1 2 1 . 0 1 (0 . 1 5 ) 5, 1 2 1 . 2 6 5, 1 2 1 . 6 6 (0.40) 10 / 1 3 / 2 0 1 5 6 : 0 0 5 , 1 2 0 . 3 0 5, 1 2 0 . 7 0 (0 . 4 0 ) 5, 1 2 1 . 0 4 5, 1 2 1 . 5 8 (0.54) 10 / 1 3 / 2 0 1 5 7 : 0 0 5 , 1 1 7 . 9 3 5, 1 1 9 . 1 9 (1 . 2 6 ) 5, 1 2 0 . 0 2 5, 1 2 0 . 9 8 (0.96) 10 / 1 3 / 2 0 1 5 8 : 0 0 5 , 1 1 7 . 8 2 5, 1 1 8 . 2 3 (0 . 4 1 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 3 4 (0.66) 10 / 1 3 / 2 0 1 5 9 : 0 0 5 , 1 1 9 . 0 6 5, 1 1 9 . 8 9 (0 . 8 3 ) 5, 1 2 0 . 0 2 5, 1 2 0 . 8 7 (0.85) 10 / 1 3 / 2 0 1 5 1 0 : 0 0 5 , 1 1 8 . 2 7 5, 1 2 0 . 0 5 (1 . 7 8 ) 5, 1 1 9 . 9 1 5, 1 2 0 . 9 4 (1.03) 10 / 1 3 / 2 0 1 5 1 1 : 0 0 5 , 1 1 8 . 1 6 5, 1 2 0 . 2 0 (2 . 0 4 ) 5, 1 2 0 . 2 5 5, 1 2 1 . 0 2 (0.77) 10 / 1 3 / 2 0 1 5 1 2 : 0 0 5 , 1 1 7 . 5 9 5, 1 2 0 . 3 4 (2 . 7 5 ) 5, 1 2 0 . 1 4 5, 1 2 1 . 1 2 (0.98) 10 / 1 3 / 2 0 1 5 1 3 : 0 0 5 , 1 1 7 . 5 9 5, 1 2 0 . 4 8 (2 . 8 9 ) 5, 1 2 0 . 3 6 5, 1 2 1 . 2 3 (0.87) 10 / 1 3 / 2 0 1 5 1 4 : 0 0 5 , 1 1 7 . 8 2 5, 1 2 0 . 6 4 (2 . 8 2 ) 5, 1 2 0 . 5 9 5, 1 2 1 . 3 5 (0.76) 10 / 1 3 / 2 0 1 5 1 5 : 0 0 5 , 1 1 7 . 8 2 5, 1 2 0 . 9 2 (3 . 1 0 ) 5, 1 2 0 . 8 1 5, 1 2 1 . 5 4 (0.73) 10 / 1 3 / 2 0 1 5 1 6 : 0 0 5 , 1 1 6 . 2 4 5, 1 1 9 . 8 3 (3 . 5 9 ) 5, 1 2 0 . 1 4 5, 1 2 0 . 9 9 (0.85) 10 / 1 3 / 2 0 1 5 1 7 : 0 0 5 , 1 1 5 . 5 6 5, 1 1 9 . 3 2 (3 . 7 6 ) 5, 1 1 9 . 9 1 5, 1 2 0 . 6 8 (0.77) 10 / 1 3 / 2 0 1 5 1 8 : 0 0 5 , 1 1 5 . 6 7 5, 1 1 8 . 9 7 (3 . 3 0 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 3 6 (0.68) 10 / 1 3 / 2 0 1 5 1 9 : 0 0 5 , 1 1 5 . 6 7 5, 1 1 8 . 6 5 (2 . 9 8 ) 5, 1 1 9 . 1 2 5, 1 2 0 . 0 6 (0.94) 10 / 1 3 / 2 0 1 5 2 0 : 0 0 5 , 1 1 6 . 1 2 5, 1 1 8 . 5 7 (2 . 4 5 ) 5, 1 1 9 . 0 1 5, 1 1 9 . 8 4 (0.83) 10 / 1 3 / 2 0 1 5 2 1 : 0 0 5 , 1 1 6 . 4 6 5, 1 1 8 . 4 9 (2 . 0 3 ) 5, 1 1 8 . 7 8 5, 1 1 9 . 6 7 (0.89) 10 / 1 3 / 2 0 1 5 2 2 : 0 0 5 , 1 1 6 . 9 1 5, 1 1 8 . 5 1 (1 . 6 0 ) 5, 1 1 8 . 6 7 5, 1 1 9 . 5 6 (0.89) 10 / 1 3 / 2 0 1 5 2 3 : 0 0 5 , 1 1 7 . 8 2 5, 1 1 8 . 8 0 (0 . 9 8 ) 5, 1 1 8 . 8 9 5, 1 1 9 . 5 9 (0.70) Da t e / T i m e Re c o r d e r # 1 2 4 2 Te s t N o . 1 Te s t N o . 2 Re c o r d e r # 1 2 4 0 Page 1 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 3 / 2 0 1 5 0 : 0 0 10 / 1 3 / 2 0 1 5 1 : 0 0 10 / 1 3 / 2 0 1 5 2 : 0 0 10 / 1 3 / 2 0 1 5 3 : 0 0 10 / 1 3 / 2 0 1 5 4 : 0 0 10 / 1 3 / 2 0 1 5 5 : 0 0 10 / 1 3 / 2 0 1 5 6 : 0 0 10 / 1 3 / 2 0 1 5 7 : 0 0 10 / 1 3 / 2 0 1 5 8 : 0 0 10 / 1 3 / 2 0 1 5 9 : 0 0 10 / 1 3 / 2 0 1 5 1 0 : 0 0 10 / 1 3 / 2 0 1 5 1 1 : 0 0 10 / 1 3 / 2 0 1 5 1 2 : 0 0 10 / 1 3 / 2 0 1 5 1 3 : 0 0 10 / 1 3 / 2 0 1 5 1 4 : 0 0 10 / 1 3 / 2 0 1 5 1 5 : 0 0 10 / 1 3 / 2 0 1 5 1 6 : 0 0 10 / 1 3 / 2 0 1 5 1 7 : 0 0 10 / 1 3 / 2 0 1 5 1 8 : 0 0 10 / 1 3 / 2 0 1 5 1 9 : 0 0 10 / 1 3 / 2 0 1 5 2 0 : 0 0 10 / 1 3 / 2 0 1 5 2 1 : 0 0 10 / 1 3 / 2 0 1 5 2 2 : 0 0 10 / 1 3 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 4 9 0 No d e = Hy d r a n t # 2 7 8 El e v a t i o n = 48 8 0 . 2 5 El e v a t i o n = 48 6 1 . 1 9 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 4 1 5, 1 1 9 . 9 9 (1 . 5 8 ) 5, 1 2 0 . 6 8 5, 1 2 0 . 4 8 0.20 5, 1 1 9 . 0 9 5, 1 2 0 . 3 3 (1 . 2 4 ) 5, 1 2 1 . 0 2 5, 1 2 0 . 7 1 0.31 5, 1 1 9 . 5 4 5, 1 2 0 . 6 6 (1 . 1 2 ) 5, 1 2 1 . 3 5 5, 1 2 0 . 9 7 0.38 5, 1 1 9 . 9 9 5, 1 2 0 . 7 9 (0 . 8 0 ) 5, 1 2 1 . 6 9 5, 1 2 1 . 1 6 0.53 5, 1 1 9 . 9 9 5, 1 2 0 . 8 1 (0 . 8 2 ) 5, 1 2 1 . 8 1 5, 1 2 1 . 2 8 0.53 5, 1 1 9 . 9 9 5, 1 2 0 . 7 4 (0 . 7 5 ) 5, 1 2 1 . 9 2 5, 1 2 1 . 3 0 0.62 5, 1 1 8 . 8 7 5, 1 2 0 . 3 3 (1 . 4 6 ) 5, 1 2 1 . 6 9 5, 1 2 1 . 1 5 0.54 5, 1 1 5 . 8 2 5, 1 1 8 . 4 4 (2 . 6 2 ) 5, 1 2 0 . 3 4 5, 1 2 0 . 2 6 0.08 5, 1 1 5 . 9 3 5, 1 1 7 . 3 4 (1 . 4 1 ) 5, 1 2 0 . 1 1 5, 1 1 9 . 4 8 0.63 5, 1 1 7 . 9 6 5, 1 1 9 . 5 3 (1 . 5 7 ) 5, 1 2 0 . 6 8 5, 1 2 0 . 4 5 0.23 5, 1 1 7 . 8 5 5, 1 1 9 . 7 3 (1 . 8 8 ) 5, 1 2 0 . 4 5 5, 1 2 0 . 5 8 (0.13) 5, 1 1 8 . 1 9 5, 1 1 9 . 9 0 (1 . 7 1 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 7 0 (0.14) 5, 1 1 8 . 1 9 5, 1 2 0 . 0 6 (1 . 8 7 ) 5, 1 2 0 . 3 4 5, 1 2 0 . 8 2 (0.48) 5, 1 1 8 . 5 3 5, 1 2 0 . 2 2 (1 . 6 9 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 9 5 (0.39) 5, 1 1 8 . 7 5 5, 1 2 0 . 3 9 (1 . 6 4 ) 5, 1 2 1 . 0 2 5, 1 2 1 . 0 8 (0.06) 5, 1 1 9 . 2 0 5, 1 2 0 . 7 0 (1 . 5 0 ) 5, 1 2 1 . 1 3 5, 1 2 1 . 2 9 (0.16) 5, 1 1 7 . 1 7 5, 1 1 9 . 3 5 (2 . 1 8 ) 5, 1 2 0 . 7 9 5, 1 2 0 . 4 5 0.34 5, 1 1 6 . 5 0 5, 1 1 8 . 7 5 (2 . 2 5 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 0 6 0.50 5, 1 1 6 . 1 6 5, 1 1 8 . 3 8 (2 . 2 2 ) 5, 1 2 0 . 3 4 5, 1 1 9 . 7 1 0.63 5, 1 1 5 . 4 8 5, 1 1 8 . 0 6 (2 . 5 8 ) 5, 1 2 0 . 0 0 5, 1 1 9 . 3 9 0.61 5, 1 1 5 . 7 1 5, 1 1 8 . 0 3 (2 . 3 2 ) 5, 1 1 9 . 8 9 5, 1 1 9 . 2 0 0.69 5, 1 1 5 . 7 1 5, 1 1 7 . 9 9 (2 . 2 8 ) 5, 1 1 9 . 5 5 5, 1 1 9 . 0 6 0.49 5, 1 1 6 . 1 6 5, 1 1 8 . 0 7 (1 . 9 1 ) 5, 1 1 9 . 3 2 5, 1 1 9 . 0 0 0.32 5, 1 1 6 . 9 5 5, 1 1 8 . 4 7 (1 . 5 2 ) 5, 1 1 9 . 5 5 5, 1 1 9 . 1 1 0.44 Te s t N o . 3 Re c o r d e r # 1 2 5 1 Te s t N o . 4 Re c o r d e r # 1 2 4 9 Page 2 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 3 / 2 0 1 5 0 : 0 0 10 / 1 3 / 2 0 1 5 1 : 0 0 10 / 1 3 / 2 0 1 5 2 : 0 0 10 / 1 3 / 2 0 1 5 3 : 0 0 10 / 1 3 / 2 0 1 5 4 : 0 0 10 / 1 3 / 2 0 1 5 5 : 0 0 10 / 1 3 / 2 0 1 5 6 : 0 0 10 / 1 3 / 2 0 1 5 7 : 0 0 10 / 1 3 / 2 0 1 5 8 : 0 0 10 / 1 3 / 2 0 1 5 9 : 0 0 10 / 1 3 / 2 0 1 5 1 0 : 0 0 10 / 1 3 / 2 0 1 5 1 1 : 0 0 10 / 1 3 / 2 0 1 5 1 2 : 0 0 10 / 1 3 / 2 0 1 5 1 3 : 0 0 10 / 1 3 / 2 0 1 5 1 4 : 0 0 10 / 1 3 / 2 0 1 5 1 5 : 0 0 10 / 1 3 / 2 0 1 5 1 6 : 0 0 10 / 1 3 / 2 0 1 5 1 7 : 0 0 10 / 1 3 / 2 0 1 5 1 8 : 0 0 10 / 1 3 / 2 0 1 5 1 9 : 0 0 10 / 1 3 / 2 0 1 5 2 0 : 0 0 10 / 1 3 / 2 0 1 5 2 1 : 0 0 10 / 1 3 / 2 0 1 5 2 2 : 0 0 10 / 1 3 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 2 1 No d e = Hy d r a n t # 1 8 8 7 El e v a t i o n = 48 1 7 . 6 1 El e v a t i o n = 47 5 4 . 5 3 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 7 9 5, 1 2 0 . 0 9 (1 . 3 0 ) 5, 1 1 7 . 4 7 5, 1 1 9 . 9 7 (2.50) 5, 1 1 9 . 4 0 5, 1 2 0 . 4 0 (1 . 0 0 ) 5, 1 1 8 . 2 6 5, 1 2 0 . 3 0 (2.04) 5, 1 1 9 . 8 8 5, 1 2 0 . 7 2 (0 . 8 4 ) 5, 1 1 8 . 7 1 5, 1 2 0 . 6 4 (1.93) 5, 1 2 0 . 2 5 5, 1 2 0 . 8 7 (0 . 6 2 ) 5, 1 1 9 . 2 8 5, 1 2 0 . 7 7 (1.49) 5, 1 2 0 . 3 7 5, 1 2 0 . 9 1 (0 . 5 4 ) 5, 1 1 9 . 3 9 5, 1 2 0 . 8 0 (1.41) 5, 1 2 0 . 3 7 5, 1 2 0 . 8 7 (0 . 5 0 ) 5, 1 1 9 . 3 9 5, 1 2 0 . 7 3 (1.34) 5, 1 1 9 . 5 2 5, 1 2 0 . 5 2 (1 . 0 0 ) 5, 1 1 8 . 3 8 5, 1 2 0 . 3 2 (1.94) 5, 1 1 6 . 8 5 5, 1 1 8 . 8 9 (2 . 0 4 ) 5, 1 1 5 . 4 4 5, 1 1 8 . 4 5 (3.01) 5, 1 1 7 . 4 6 5, 1 1 7 . 8 7 (0 . 4 1 ) 5, 1 1 6 . 2 3 5, 1 1 7 . 3 5 (1.12) 5, 1 1 9 . 4 0 5, 1 2 0 . 2 9 (0 . 8 9 ) 5, 1 1 9 . 2 8 5, 1 2 0 . 8 6 (1.58) 5, 1 1 9 . 2 8 5, 1 2 0 . 4 5 (1 . 1 7 ) 5, 1 1 8 . 3 8 5, 1 2 1 . 0 2 (2.64) 5, 1 1 9 . 2 8 5, 1 2 0 . 5 9 (1 . 3 1 ) 5, 1 1 8 . 4 9 5, 1 2 1 . 1 7 (2.68) 5, 1 1 9 . 1 5 5, 1 2 0 . 7 2 (1 . 5 7 ) 5, 1 1 8 . 0 4 5, 1 2 1 . 3 0 (3.26) 5, 1 1 9 . 5 2 5, 1 2 0 . 8 6 (1 . 3 4 ) 5, 1 1 7 . 4 7 5, 1 2 1 . 4 3 (3.96) 5, 1 1 9 . 7 6 5, 1 2 1 . 0 1 (1 . 2 5 ) 5, 1 1 7 . 9 2 5, 1 2 1 . 5 8 (3.66) 5, 1 1 9 . 8 8 5, 1 2 1 . 2 5 (1 . 3 7 ) 5, 1 1 8 . 3 8 5, 1 2 1 . 8 3 (3.45) 5, 1 1 7 . 5 8 5, 1 1 9 . 6 1 (2 . 0 3 ) 5, 1 1 4 . 0 9 5, 1 1 9 . 3 4 (5.25) 5, 1 1 6 . 7 3 5, 1 1 9 . 0 6 (2 . 3 3 ) 5, 1 1 3 . 5 2 5, 1 1 8 . 7 4 (5.22) 5, 1 1 6 . 4 9 5, 1 1 8 . 7 0 (2 . 2 1 ) 5, 1 1 3 . 8 6 5, 1 1 8 . 3 7 (4.51) 5, 1 1 6 . 0 0 5, 1 1 8 . 3 7 (2 . 3 7 ) 5, 1 1 3 . 4 1 5, 1 1 8 . 0 5 (4.64) 5, 1 1 6 . 2 4 5, 1 1 8 . 3 1 (2 . 0 7 ) 5, 1 1 3 . 9 8 5, 1 1 8 . 0 2 (4.04) 5, 1 1 6 . 2 4 5, 1 1 8 . 2 3 (1 . 9 9 ) 5, 1 1 4 . 4 3 5, 1 1 7 . 9 7 (3.54) 5, 1 1 6 . 6 1 5, 1 1 8 . 2 8 (1 . 6 7 ) 5, 1 1 5 . 1 0 5, 1 1 8 . 0 5 (2.95) 5, 1 1 7 . 3 3 5, 1 1 8 . 6 0 (1 . 2 7 ) 5, 1 1 6 . 0 1 5, 1 1 8 . 4 4 (2.43) Te s t N o . 5 Re c o r d e r # 3 4 1 2 9 8 Te s t N o . 6 Re c o r d e r # 1 2 4 5 Page 3 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 3 / 2 0 1 5 0 : 0 0 10 / 1 3 / 2 0 1 5 1 : 0 0 10 / 1 3 / 2 0 1 5 2 : 0 0 10 / 1 3 / 2 0 1 5 3 : 0 0 10 / 1 3 / 2 0 1 5 4 : 0 0 10 / 1 3 / 2 0 1 5 5 : 0 0 10 / 1 3 / 2 0 1 5 6 : 0 0 10 / 1 3 / 2 0 1 5 7 : 0 0 10 / 1 3 / 2 0 1 5 8 : 0 0 10 / 1 3 / 2 0 1 5 9 : 0 0 10 / 1 3 / 2 0 1 5 1 0 : 0 0 10 / 1 3 / 2 0 1 5 1 1 : 0 0 10 / 1 3 / 2 0 1 5 1 2 : 0 0 10 / 1 3 / 2 0 1 5 1 3 : 0 0 10 / 1 3 / 2 0 1 5 1 4 : 0 0 10 / 1 3 / 2 0 1 5 1 5 : 0 0 10 / 1 3 / 2 0 1 5 1 6 : 0 0 10 / 1 3 / 2 0 1 5 1 7 : 0 0 10 / 1 3 / 2 0 1 5 1 8 : 0 0 10 / 1 3 / 2 0 1 5 1 9 : 0 0 10 / 1 3 / 2 0 1 5 2 0 : 0 0 10 / 1 3 / 2 0 1 5 2 1 : 0 0 10 / 1 3 / 2 0 1 5 2 2 : 0 0 10 / 1 3 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 7 5 4 No d e = Hy d r a n t # 1 1 2 5 El e v a t i o n = 48 2 0 . 1 1 El e v a t i o n = 47 7 9 . 5 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 8 9 5, 1 1 9 . 7 0 (1 . 8 1 ) 5, 1 1 8 . 7 5 5, 1 1 9 . 7 0 (0.95) 5, 1 1 8 . 7 4 5, 1 2 0 . 0 8 (1 . 3 4 ) 5, 1 1 9 . 7 7 5, 1 2 0 . 0 9 (0.32) 5, 1 1 9 . 1 1 5, 1 2 0 . 4 6 (1 . 3 5 ) 5, 1 2 0 . 1 1 5, 1 2 0 . 4 6 (0.35) 5, 1 1 9 . 5 9 5, 1 2 0 . 5 7 (0 . 9 8 ) 5, 1 2 0 . 7 8 5, 1 2 0 . 5 7 0.21 5, 1 1 9 . 5 9 5, 1 2 0 . 5 4 (0 . 9 5 ) 5, 1 2 0 . 6 7 5, 1 2 0 . 5 5 0.12 5, 1 1 9 . 4 7 5, 1 2 0 . 4 2 (0 . 9 5 ) 5, 1 2 0 . 6 7 5, 1 2 0 . 4 3 0.24 5, 1 1 7 . 7 7 5, 1 1 9 . 8 8 (2 . 1 1 ) 5, 1 1 8 . 9 8 5, 1 1 9 . 8 9 (0.91) 5, 1 1 4 . 0 1 5, 1 1 7 . 3 8 (3 . 3 7 ) 5, 1 1 5 . 3 7 5, 1 1 7 . 3 9 (2.02) 5, 1 1 4 . 6 2 5, 1 1 6 . 0 9 (1 . 4 7 ) 5, 1 1 5 . 9 3 5, 1 1 6 . 0 9 (0.16) 5, 1 1 7 . 4 1 5, 1 1 8 . 7 7 (1 . 3 6 ) 5, 1 1 8 . 4 1 5, 1 1 8 . 7 8 (0.37) 5, 1 1 7 . 0 5 5, 1 1 9 . 0 3 (1 . 9 8 ) 5, 1 1 7 . 8 5 5, 1 1 9 . 0 4 (1.19) 5, 1 1 7 . 2 9 5, 1 1 9 . 2 5 (1 . 9 6 ) 5, 1 1 7 . 9 6 5, 1 1 9 . 2 6 (1.30) 5, 1 1 7 . 0 5 5, 1 1 9 . 4 3 (2 . 3 8 ) 5, 1 1 7 . 2 8 5, 1 1 9 . 4 4 (2.16) 5, 1 1 7 . 2 9 5, 1 1 9 . 6 2 (2 . 3 3 ) 5, 1 1 7 . 1 7 5, 1 1 9 . 6 2 (2.45) 5, 1 1 7 . 5 3 5, 1 1 9 . 8 2 (2 . 2 9 ) 5, 1 1 7 . 4 0 5, 1 1 9 . 8 2 (2.42) 5, 1 1 8 . 1 4 5, 1 2 0 . 1 9 (2 . 0 5 ) 5, 1 1 7 . 9 6 5, 1 2 0 . 2 0 (2.24) 5, 1 1 5 . 8 3 5, 1 1 8 . 7 1 (2 . 8 8 ) 5, 1 1 5 . 3 7 5, 1 1 8 . 7 1 (3.34) 5, 1 1 4 . 8 6 5, 1 1 7 . 9 8 (3 . 1 2 ) 5, 1 1 4 . 5 8 5, 1 1 7 . 9 9 (3.41) 5, 1 1 4 . 6 2 5, 1 1 7 . 6 0 (2 . 9 8 ) 5, 1 1 4 . 4 6 5, 1 1 7 . 6 1 (3.15) 5, 1 1 4 . 0 1 5, 1 1 7 . 2 7 (3 . 2 6 ) 5, 1 1 3 . 9 0 5, 1 1 7 . 2 8 (3.38) 5, 1 1 4 . 5 0 5, 1 1 7 . 3 4 (2 . 8 4 ) 5, 1 1 4 . 6 9 5, 1 1 7 . 3 4 (2.65) 5, 1 1 4 . 6 2 5, 1 1 7 . 3 4 (2 . 7 2 ) 5, 1 1 5 . 1 4 5, 1 1 7 . 3 5 (2.21) 5, 1 1 5 . 2 3 5, 1 1 7 . 5 2 (2 . 2 9 ) 5, 1 1 5 . 9 3 5, 1 1 7 . 5 3 (1.60) 5, 1 1 6 . 4 4 5, 1 1 8 . 0 9 (1 . 6 5 ) 5, 1 1 7 . 1 7 5, 1 1 8 . 0 9 (0.92) Te s t N o . 7 Te s t N o . 8 Re c o r d e r # 3 4 1 2 8 9 Re c o r d e r # 2 0 1 2 5 0 Page 4 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 3 / 2 0 1 5 0 : 0 0 10 / 1 3 / 2 0 1 5 1 : 0 0 10 / 1 3 / 2 0 1 5 2 : 0 0 10 / 1 3 / 2 0 1 5 3 : 0 0 10 / 1 3 / 2 0 1 5 4 : 0 0 10 / 1 3 / 2 0 1 5 5 : 0 0 10 / 1 3 / 2 0 1 5 6 : 0 0 10 / 1 3 / 2 0 1 5 7 : 0 0 10 / 1 3 / 2 0 1 5 8 : 0 0 10 / 1 3 / 2 0 1 5 9 : 0 0 10 / 1 3 / 2 0 1 5 1 0 : 0 0 10 / 1 3 / 2 0 1 5 1 1 : 0 0 10 / 1 3 / 2 0 1 5 1 2 : 0 0 10 / 1 3 / 2 0 1 5 1 3 : 0 0 10 / 1 3 / 2 0 1 5 1 4 : 0 0 10 / 1 3 / 2 0 1 5 1 5 : 0 0 10 / 1 3 / 2 0 1 5 1 6 : 0 0 10 / 1 3 / 2 0 1 5 1 7 : 0 0 10 / 1 3 / 2 0 1 5 1 8 : 0 0 10 / 1 3 / 2 0 1 5 1 9 : 0 0 10 / 1 3 / 2 0 1 5 2 0 : 0 0 10 / 1 3 / 2 0 1 5 2 1 : 0 0 10 / 1 3 / 2 0 1 5 2 2 : 0 0 10 / 1 3 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 0 2 5 No d e = Hy d r a n t # El e v a t i o n = 47 5 5 . 6 7 El e v a t i o n = 0. 0 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 8 4 5, 1 1 9 . 8 4 (1 . 0 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 6 3 5, 1 2 0 . 2 0 (0 . 5 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 9 7 5, 1 2 0 . 5 5 (0 . 5 8 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 5 3 5, 1 2 0 . 6 8 (0 . 1 5 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 6 4 5, 1 2 0 . 6 8 (0 . 0 4 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 6 4 5, 1 2 0 . 5 8 0. 0 6 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 2 9 5, 1 2 0 . 1 1 (0 . 8 2 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 0 2 5, 1 1 7 . 9 1 (1 . 8 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 3 6 5, 1 1 6 . 7 1 (0 . 3 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 7 3 5, 1 1 9 . 3 9 (0 . 6 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 2 8 5, 1 1 9 . 6 2 (1 . 3 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 3 9 5, 1 1 9 . 8 2 (1 . 4 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 9 4 5, 1 1 9 . 9 8 (2 . 0 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 0 5 5, 1 2 0 . 1 6 (2 . 1 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 3 9 5, 1 2 0 . 3 4 (1 . 9 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 7 3 5, 1 2 0 . 6 8 (1 . 9 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 0 2 5, 1 1 9 . 0 6 (3 . 0 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 2 3 5, 1 1 8 . 3 8 (3 . 1 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 3 4 5, 1 1 8 . 0 1 (2 . 6 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 4 . 8 9 5, 1 1 7 . 6 8 (2 . 7 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 3 4 5, 1 1 7 . 7 1 (2 . 3 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 6 8 5, 1 1 7 . 6 9 (2 . 0 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 2 4 5, 1 1 7 . 8 1 (1 . 5 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 2 6 5, 1 1 8 . 2 8 (1 . 0 2 ) 0. 0 0 0. 0 0 0.00 Re c o r d e r # 1 2 4 3 Re c o r d e r # 1 2 4 1 Te s t N o . 9 Te s t N o . 1 0 Page 5 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 3 / 2 0 1 5 0 : 0 0 10 / 1 3 / 2 0 1 5 1 : 0 0 10 / 1 3 / 2 0 1 5 2 : 0 0 10 / 1 3 / 2 0 1 5 3 : 0 0 10 / 1 3 / 2 0 1 5 4 : 0 0 10 / 1 3 / 2 0 1 5 5 : 0 0 10 / 1 3 / 2 0 1 5 6 : 0 0 10 / 1 3 / 2 0 1 5 7 : 0 0 10 / 1 3 / 2 0 1 5 8 : 0 0 10 / 1 3 / 2 0 1 5 9 : 0 0 10 / 1 3 / 2 0 1 5 1 0 : 0 0 10 / 1 3 / 2 0 1 5 1 1 : 0 0 10 / 1 3 / 2 0 1 5 1 2 : 0 0 10 / 1 3 / 2 0 1 5 1 3 : 0 0 10 / 1 3 / 2 0 1 5 1 4 : 0 0 10 / 1 3 / 2 0 1 5 1 5 : 0 0 10 / 1 3 / 2 0 1 5 1 6 : 0 0 10 / 1 3 / 2 0 1 5 1 7 : 0 0 10 / 1 3 / 2 0 1 5 1 8 : 0 0 10 / 1 3 / 2 0 1 5 1 9 : 0 0 10 / 1 3 / 2 0 1 5 2 0 : 0 0 10 / 1 3 / 2 0 1 5 2 1 : 0 0 10 / 1 3 / 2 0 1 5 2 2 : 0 0 10 / 1 3 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 2 7 1 2 No d e = Hy d r a n t # 1 7 7 0 El e v a t i o n = 46 9 2 . 6 4 El e v a t i o n = 46 7 9 . 9 1 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 4, 9 2 6 . 5 2 4, 9 2 5 . 2 2 1. 3 0 5, 0 2 8 . 8 6 5, 0 2 8 . 2 3 0.63 4, 9 2 6 . 6 3 4, 9 2 6 . 3 2 0. 3 1 5, 0 2 8 . 9 8 5, 0 2 9 . 0 0 (0.02) 4, 9 2 6 . 8 6 4, 9 2 7 . 0 7 (0 . 2 1 ) 5, 0 2 9 . 3 2 5, 0 2 9 . 5 8 (0.26) 4, 9 2 6 . 8 6 4, 9 2 6 . 5 8 0. 2 8 5, 0 2 9 . 3 2 5, 0 2 9 . 3 9 (0.07) 4, 9 2 5 . 3 9 4, 9 2 5 . 6 6 (0 . 2 7 ) 5, 0 2 8 . 5 3 5, 0 2 8 . 9 3 (0.40) 4, 9 2 3 . 7 0 4, 9 2 4 . 6 5 (0 . 9 5 ) 5, 0 2 6 . 4 9 5, 0 2 8 . 4 1 (1.92) 4, 9 1 8 . 8 5 4, 9 2 2 . 0 4 (3 . 1 9 ) 5, 0 2 1 . 5 3 5, 0 2 6 . 8 8 (5.35) 4, 9 1 0 . 6 1 4, 9 2 1 . 5 8 (1 0 . 9 7 ) 5, 0 1 4 . 4 2 5, 0 2 6 . 2 7 (11.85) 4, 9 1 5 . 2 3 4, 9 2 1 . 5 2 (6 . 2 9 ) 5, 0 0 7 . 9 9 5, 0 2 6 . 1 7 (18.18) 4, 9 2 0 . 5 4 4, 9 2 1 . 6 2 (1 . 0 8 ) 5, 0 1 1 . 7 2 5, 0 1 8 . 1 6 (6.44) 4, 9 2 1 . 7 8 4, 9 2 1 . 6 3 0. 1 5 5, 0 1 2 . 3 9 5, 0 1 8 . 0 9 (5.70) 4, 9 2 2 . 5 7 4, 9 2 1 . 6 5 0. 9 2 5, 0 1 3 . 6 3 5, 0 1 8 . 0 0 (4.37) 4, 9 2 2 . 3 4 4, 9 2 1 . 6 5 0. 6 9 5, 0 1 3 . 4 1 5, 0 1 7 . 8 9 (4.48) 4, 9 2 1 . 1 0 4, 9 2 1 . 6 6 (0 . 5 6 ) 5, 0 1 2 . 9 6 5, 0 1 7 . 7 9 (4.83) 4, 9 2 2 . 2 3 4, 9 2 1 . 6 7 0. 5 6 5, 0 1 3 . 4 1 5, 0 1 7 . 6 8 (4.27) 4, 9 2 2 . 7 9 4, 9 2 1 . 6 9 1. 1 0 5, 0 1 9 . 9 5 5, 0 1 7 . 6 7 2.28 4, 9 2 2 . 9 1 4, 9 2 1 . 6 8 1. 2 3 5, 0 2 2 . 7 7 5, 0 2 5 . 1 4 (2.37) 4, 9 2 2 . 3 4 4, 9 2 1 . 6 6 0. 6 8 5, 0 2 2 . 6 6 5, 0 2 5 . 0 9 (2.43) 4, 9 2 1 . 3 3 4, 9 2 1 . 6 5 (0 . 3 2 ) 5, 0 2 0 . 7 4 5, 0 2 5 . 1 4 (4.40) 4, 9 1 9 . 4 1 4, 9 2 1 . 6 5 (2 . 2 4 ) 5, 0 2 0 . 2 9 5, 0 2 5 . 2 0 (4.91) 4, 9 1 9 . 6 3 4, 9 2 1 . 6 7 (2 . 0 4 ) 5, 0 2 1 . 4 2 5, 0 2 5 . 3 3 (3.91) 4, 9 2 0 . 7 6 4, 9 2 1 . 6 9 (0 . 9 3 ) 5, 0 2 2 . 8 8 5, 0 2 5 . 4 4 (2.56) 4, 9 2 0 . 2 0 4, 9 2 1 . 7 3 (1 . 5 3 ) 5, 0 2 3 . 0 0 5, 0 2 5 . 5 9 (2.59) 4, 9 2 3 . 5 8 4, 9 2 3 . 5 6 0. 0 2 5, 0 2 6 . 8 3 5, 0 2 6 . 8 4 (0.01) Re c o r d e r # 1 2 4 6 Re c o r d e r # 1 2 4 4 Te s t N o . 1 1 Te s t N o . 1 2 Page 6 of 6 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y We d n e s d a y , O c t o b e r 1 4 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 10 / 1 4 / 2 0 1 5 0 : 0 0 0 : 0 0 2 6 . 4 0 2 6 . 4 0 0 . 0 0 2 3 . 2 7 2 3 . 2 7 0 . 0 0 3 5 . 4 9 3 5 . 4 9 0.00 10 / 1 4 / 2 0 1 5 1 : 0 0 1 : 0 0 26 . 7 0 26 . 5 0 0.2 0 23 . 4 2 23 . 3 7 0.0 5 35 . 8 2 35 . 6 3 0.19 10 / 1 4 / 2 0 1 5 2 : 0 0 2 : 0 0 26 . 9 0 26 . 6 6 0.2 4 23 . 5 4 23 . 4 8 0.0 6 36 . 1 6 35 . 8 7 0.29 10 / 1 4 / 2 0 1 5 3 : 0 0 3 : 0 0 27 . 1 0 26 . 8 8 0.2 2 23 . 6 9 23 . 6 0 0.0 9 36 . 4 9 36 . 1 4 0.35 10 / 1 4 / 2 0 1 5 4 : 0 0 4 : 0 0 27 . 4 0 27 . 0 7 0.3 3 23 . 8 4 23 . 7 2 0.1 2 36 . 8 0 36 . 3 4 0.46 10 / 1 4 / 2 0 1 5 5 : 0 0 5 : 0 0 27 . 6 0 27 . 2 3 0.3 7 23 . 9 6 23 . 8 2 0.1 4 37 . 0 1 36 . 4 5 0.56 10 / 1 4 / 2 0 1 5 6 : 0 0 6 : 0 0 27 . 8 0 27 . 3 3 0.4 7 24 . 0 4 23 . 9 1 0.1 3 37 . 0 3 36 . 4 8 0.55 10 / 1 4 / 2 0 1 5 7 : 0 0 7 : 0 0 27 . 6 0 27 . 3 3 0.2 7 24 . 0 4 23 . 9 8 0.0 6 36 . 4 9 36 . 3 4 0.15 10 / 1 4 / 2 0 1 5 8 : 0 0 8 : 0 0 27 . 1 0 27 . 0 4 0.0 6 24 . 0 1 24 . 0 3 -0 . 0 2 35 . 7 2 35 . 6 6 0.06 10 / 1 4 / 2 0 1 5 9 : 0 0 9 : 0 0 26 . 9 0 26 . 8 7 0.0 3 23 . 8 1 23 . 8 1 0.0 0 35 . 7 3 35 . 6 1 0.12 10 / 1 4 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 26 . 9 0 26 . 8 6 0.0 4 23 . 5 9 23 . 5 8 0.0 1 35 . 8 3 35 . 8 2 0.01 10 / 1 4 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 26 . 9 0 26 . 9 2 -0 . 0 2 23 . 3 8 23 . 3 5 0.0 3 35 . 9 6 36 . 0 1 -0 . 0 5 10 / 1 4 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 26 . 9 0 27 . 0 2 -0 . 1 2 23 . 1 6 23 . 1 2 0.0 4 36 . 0 6 36 . 1 8 -0 . 1 2 10 / 1 4 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 27 . 1 0 27 . 1 4 -0 . 0 4 22 . 9 9 22 . 8 9 0.1 0 36 . 2 2 36 . 3 5 -0 . 1 3 10 / 1 4 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 27 . 1 0 27 . 2 8 -0 . 1 8 22 . 7 9 22 . 6 6 0.1 3 36 . 3 9 36 . 5 2 -0 . 1 3 10 / 1 4 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 27 . 4 0 27 . 4 4 -0 . 0 4 22 . 5 9 22 . 4 4 0.1 5 36 . 6 2 36 . 7 1 -0 . 0 9 10 / 1 4 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 27 . 4 0 27 . 4 1 -0 . 0 1 22 . 6 7 22 . 4 8 0.1 9 36 . 3 2 36 . 3 7 -0 . 0 5 10 / 1 4 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 27 . 1 0 27 . 2 9 -0 . 1 9 22 . 7 4 22 . 5 4 0.2 0 35 . 9 9 36 . 1 1 -0 . 1 2 10 / 1 4 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 26 . 9 0 27 . 1 0 -0 . 2 0 22 . 8 2 22 . 5 9 0.2 3 35 . 6 8 35 . 7 8 -0 . 1 0 10 / 1 4 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 26 . 7 0 26 . 8 7 -0 . 1 7 22 . 9 0 22 . 6 5 0.2 5 35 . 3 6 35 . 4 9 -0 . 1 3 10 / 1 4 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 26 . 4 0 26 . 6 3 -0 . 2 3 22 . 9 5 22 . 7 0 0.2 5 35 . 0 8 35 . 2 2 -0 . 1 4 10 / 1 4 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 26 . 2 0 26 . 4 3 -0 . 2 3 23 . 0 2 22 . 7 6 0.2 6 34 . 9 4 35 . 0 7 -0 . 1 3 10 / 1 4 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 26 . 0 0 26 . 2 6 -0 . 2 6 23 . 0 7 22 . 8 2 0.2 5 34 . 8 3 34 . 9 6 -0 . 1 3 10 / 1 4 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 26 . 0 0 26 . 1 5 -0 . 1 5 23 . 1 7 22 . 8 8 0.2 9 34 . 8 3 34 . 9 2 -0 . 0 9 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r We d n e s d a y , O c t o b e r 1 4 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) We d n e s d a y , O c t o b e r 1 4 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 4.55 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) No d e = Hy d r a n t # 2 1 0 7 No d e = Hy d r a n t # 4 3 3 El e v a t i o n = 50 2 4 . 7 4 El e v a t i o n = 49 6 9 . 5 2 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 10 / 1 4 / 2 0 1 5 0 : 0 0 5 , 1 1 8 . 7 2 5, 1 1 9 . 4 2 (0 . 7 0 ) 5, 1 1 9 . 2 3 5, 1 1 9 . 9 9 (0.76) 10 / 1 4 / 2 0 1 5 1 : 0 0 5 , 1 1 9 . 1 7 5, 1 1 9 . 6 9 (0 . 5 2 ) 5, 1 1 9 . 4 6 5, 1 2 0 . 1 7 (0.71) 10 / 1 4 / 2 0 1 5 2 : 0 0 5 , 1 1 9 . 6 2 5, 1 2 0 . 0 0 (0 . 3 8 ) 5, 1 1 9 . 8 0 5, 1 2 0 . 4 0 (0.60) 10 / 1 4 / 2 0 1 5 3 : 0 0 5 , 1 2 0 . 0 7 5, 1 2 0 . 1 6 (0 . 0 9 ) 5, 1 2 0 . 2 5 5, 1 2 0 . 6 0 (0.35) 10 / 1 4 / 2 0 1 5 4 : 0 0 5 , 1 2 0 . 1 9 5, 1 2 0 . 2 4 (0 . 0 5 ) 5, 1 2 0 . 3 6 5, 1 2 0 . 7 5 (0.39) 10 / 1 4 / 2 0 1 5 5 : 0 0 5 , 1 2 0 . 3 0 5, 1 2 0 . 2 4 0. 0 6 5, 1 2 0 . 4 7 5, 1 2 0 . 8 3 (0.36) 10 / 1 4 / 2 0 1 5 6 : 0 0 5 , 1 1 9 . 2 8 5, 1 1 9 . 9 7 (0 . 6 9 ) 5, 1 2 0 . 2 5 5, 1 2 0 . 7 8 (0.53) 10 / 1 4 / 2 0 1 5 7 : 0 0 5 , 1 1 7 . 1 4 5, 1 1 8 . 6 3 (1 . 4 9 ) 5, 1 1 9 . 2 3 5, 1 2 0 . 2 7 (1.04) 10 / 1 4 / 2 0 1 5 8 : 0 0 5 , 1 1 6 . 9 1 5, 1 1 7 . 7 6 (0 . 8 5 ) 5, 1 1 8 . 8 9 5, 1 1 9 . 7 0 (0.81) 10 / 1 4 / 2 0 1 5 9 : 0 0 5 , 1 1 8 . 4 9 5, 1 1 9 . 3 7 (0 . 8 8 ) 5, 1 1 9 . 2 3 5, 1 2 0 . 2 4 (1.01) 10 / 1 4 / 2 0 1 5 1 0 : 0 0 5 , 1 1 7 . 9 3 5, 1 1 9 . 5 7 (1 . 6 4 ) 5, 1 1 9 . 2 3 5, 1 2 0 . 3 5 (1.12) 10 / 1 4 / 2 0 1 5 1 1 : 0 0 5 , 1 1 7 . 4 8 5, 1 1 9 . 7 5 (2 . 2 7 ) 5, 1 1 9 . 3 5 5, 1 2 0 . 4 8 (1.13) 10 / 1 4 / 2 0 1 5 1 2 : 0 0 5 , 1 1 7 . 3 7 5, 1 1 9 . 9 3 (2 . 5 6 ) 5, 1 1 9 . 4 6 5, 1 2 0 . 6 2 (1.16) 10 / 1 4 / 2 0 1 5 1 3 : 0 0 5 , 1 1 7 . 4 8 5, 1 2 0 . 1 2 (2 . 6 4 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 7 8 (1.10) 10 / 1 4 / 2 0 1 5 1 4 : 0 0 5 , 1 1 7 . 4 8 5, 1 2 0 . 3 2 (2 . 8 4 ) 5, 1 1 9 . 9 1 5, 1 2 0 . 9 5 (1.04) 10 / 1 4 / 2 0 1 5 1 5 : 0 0 5 , 1 1 7 . 4 8 5, 1 2 0 . 6 1 (3 . 1 3 ) 5, 1 2 0 . 2 5 5, 1 2 1 . 1 7 (0.92) 10 / 1 4 / 2 0 1 5 1 6 : 0 0 5 , 1 1 5 . 9 0 5, 1 1 9 . 6 0 (3 . 7 0 ) 5, 1 1 9 . 5 7 5, 1 2 0 . 6 7 (1.10) 10 / 1 4 / 2 0 1 5 1 7 : 0 0 5 , 1 1 5 . 5 6 5, 1 1 9 . 1 6 (3 . 6 0 ) 5, 1 1 9 . 3 5 5, 1 2 0 . 4 1 (1.06) 10 / 1 4 / 2 0 1 5 1 8 : 0 0 5 , 1 1 5 . 2 2 5, 1 1 8 . 8 6 (3 . 6 4 ) 5, 1 1 9 . 1 2 5, 1 2 0 . 1 3 (1.01) 10 / 1 4 / 2 0 1 5 1 9 : 0 0 5 , 1 1 5 . 9 0 5, 1 1 8 . 5 9 (2 . 6 9 ) 5, 1 1 8 . 6 7 5, 1 1 9 . 8 7 (1.20) 10 / 1 4 / 2 0 1 5 2 0 : 0 0 5 , 1 1 6 . 2 4 5, 1 1 8 . 5 3 (2 . 2 9 ) 5, 1 1 8 . 4 4 5, 1 1 9 . 6 9 (1.25) 10 / 1 4 / 2 0 1 5 2 1 : 0 0 5 , 1 1 6 . 8 0 5, 1 1 8 . 4 8 (1 . 6 8 ) 5, 1 1 8 . 4 4 5, 1 1 9 . 5 6 (1.12) 10 / 1 4 / 2 0 1 5 2 2 : 0 0 5 , 1 1 7 . 0 3 5, 1 1 8 . 5 2 (1 . 4 9 ) 5, 1 1 8 . 2 2 5, 1 1 9 . 4 8 (1.26) 10 / 1 4 / 2 0 1 5 2 3 : 0 0 5 , 1 1 7 . 7 0 5, 1 1 8 . 8 0 (1 . 1 0 ) 5, 1 1 8 . 3 3 5, 1 1 9 . 5 3 (1.20) Da t e / T i m e Re c o r d e r # 1 2 4 2 Te s t N o . 1 Te s t N o . 2 Re c o r d e r # 1 2 4 0 Page 1 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 4 / 2 0 1 5 0 : 0 0 10 / 1 4 / 2 0 1 5 1 : 0 0 10 / 1 4 / 2 0 1 5 2 : 0 0 10 / 1 4 / 2 0 1 5 3 : 0 0 10 / 1 4 / 2 0 1 5 4 : 0 0 10 / 1 4 / 2 0 1 5 5 : 0 0 10 / 1 4 / 2 0 1 5 6 : 0 0 10 / 1 4 / 2 0 1 5 7 : 0 0 10 / 1 4 / 2 0 1 5 8 : 0 0 10 / 1 4 / 2 0 1 5 9 : 0 0 10 / 1 4 / 2 0 1 5 1 0 : 0 0 10 / 1 4 / 2 0 1 5 1 1 : 0 0 10 / 1 4 / 2 0 1 5 1 2 : 0 0 10 / 1 4 / 2 0 1 5 1 3 : 0 0 10 / 1 4 / 2 0 1 5 1 4 : 0 0 10 / 1 4 / 2 0 1 5 1 5 : 0 0 10 / 1 4 / 2 0 1 5 1 6 : 0 0 10 / 1 4 / 2 0 1 5 1 7 : 0 0 10 / 1 4 / 2 0 1 5 1 8 : 0 0 10 / 1 4 / 2 0 1 5 1 9 : 0 0 10 / 1 4 / 2 0 1 5 2 0 : 0 0 10 / 1 4 / 2 0 1 5 2 1 : 0 0 10 / 1 4 / 2 0 1 5 2 2 : 0 0 10 / 1 4 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 4 9 0 No d e = Hy d r a n t # 2 7 8 El e v a t i o n = 48 8 0 . 2 5 El e v a t i o n = 48 6 1 . 1 9 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 8 5 5, 1 1 9 . 1 8 (1 . 3 3 ) 5, 1 1 9 . 8 9 5, 1 1 9 . 6 4 0.25 5, 1 1 8 . 3 0 5, 1 1 9 . 4 9 (1 . 1 9 ) 5, 1 2 0 . 2 3 5, 1 1 9 . 8 5 0.38 5, 1 1 8 . 8 7 5, 1 1 9 . 8 2 (0 . 9 5 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 1 1 0.45 5, 1 1 9 . 3 2 5, 1 1 9 . 9 7 (0 . 6 5 ) 5, 1 2 0 . 9 0 5, 1 2 0 . 3 1 0.59 5, 1 1 9 . 2 0 5, 1 2 0 . 0 2 (0 . 8 2 ) 5, 1 2 1 . 1 3 5, 1 2 0 . 4 5 0.68 5, 1 1 9 . 0 9 5, 1 1 9 . 9 8 (0 . 8 9 ) 5, 1 2 1 . 1 3 5, 1 2 0 . 5 0 0.63 5, 1 1 7 . 8 5 5, 1 1 9 . 6 3 (1 . 7 8 ) 5, 1 2 0 . 7 9 5, 1 2 0 . 3 8 0.41 5, 1 1 5 . 0 3 5, 1 1 7 . 9 4 (2 . 9 1 ) 5, 1 1 9 . 5 5 5, 1 1 9 . 6 1 (0.06) 5, 1 1 4 . 9 2 5, 1 1 6 . 9 5 (2 . 0 3 ) 5, 1 1 9 . 3 2 5, 1 1 8 . 9 0 0.42 5, 1 1 7 . 4 0 5, 1 1 9 . 0 5 (1 . 6 5 ) 5, 1 2 0 . 0 0 5, 1 1 9 . 8 7 0.13 5, 1 1 7 . 2 9 5, 1 1 9 . 2 9 (2 . 0 0 ) 5, 1 1 9 . 7 7 5, 1 2 0 . 0 3 (0.26) 5, 1 1 7 . 1 7 5, 1 1 9 . 5 0 (2 . 3 3 ) 5, 1 1 9 . 5 5 5, 1 2 0 . 2 0 (0.65) 5, 1 1 7 . 6 2 5, 1 1 9 . 6 9 (2 . 0 7 ) 5, 1 1 9 . 6 6 5, 1 2 0 . 3 6 (0.70) 5, 1 1 7 . 8 5 5, 1 1 9 . 8 9 (2 . 0 4 ) 5, 1 1 9 . 8 9 5, 1 2 0 . 5 3 (0.64) 5, 1 1 8 . 0 8 5, 1 2 0 . 1 0 (2 . 0 2 ) 5, 1 2 0 . 2 3 5, 1 2 0 . 7 1 (0.48) 5, 1 1 8 . 5 3 5, 1 2 0 . 4 2 (1 . 8 9 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 9 5 (0.39) 5, 1 1 6 . 6 1 5, 1 1 9 . 1 6 (2 . 5 5 ) 5, 1 2 0 . 3 4 5, 1 2 0 . 1 7 0.17 5, 1 1 6 . 3 8 5, 1 1 8 . 6 4 (2 . 2 6 ) 5, 1 2 0 . 1 1 5, 1 1 9 . 8 3 0.28 5, 1 1 5 . 5 9 5, 1 1 8 . 3 2 (2 . 7 3 ) 5, 1 1 9 . 7 7 5, 1 1 9 . 5 3 0.24 5, 1 1 5 . 1 4 5, 1 1 8 . 0 5 (2 . 9 1 ) 5, 1 1 9 . 4 4 5, 1 1 9 . 2 5 0.19 5, 1 1 5 . 2 6 5, 1 1 8 . 0 3 (2 . 7 7 ) 5, 1 1 9 . 2 1 5, 1 1 9 . 1 0 0.11 5, 1 1 5 . 7 1 5, 1 1 8 . 0 3 (2 . 3 2 ) 5, 1 1 8 . 9 8 5, 1 1 9 . 0 0 (0.02) 5, 1 1 5 . 8 2 5, 1 1 8 . 1 2 (2 . 3 0 ) 5, 1 1 8 . 8 7 5, 1 1 8 . 9 6 (0.09) 5, 1 1 6 . 5 0 5, 1 1 8 . 4 9 (1 . 9 9 ) 5, 1 1 8 . 9 8 5, 1 1 9 . 0 8 (0.10) Te s t N o . 3 Re c o r d e r # 1 2 5 1 Te s t N o . 4 Re c o r d e r # 1 2 4 9 Page 2 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 4 / 2 0 1 5 0 : 0 0 10 / 1 4 / 2 0 1 5 1 : 0 0 10 / 1 4 / 2 0 1 5 2 : 0 0 10 / 1 4 / 2 0 1 5 3 : 0 0 10 / 1 4 / 2 0 1 5 4 : 0 0 10 / 1 4 / 2 0 1 5 5 : 0 0 10 / 1 4 / 2 0 1 5 6 : 0 0 10 / 1 4 / 2 0 1 5 7 : 0 0 10 / 1 4 / 2 0 1 5 8 : 0 0 10 / 1 4 / 2 0 1 5 9 : 0 0 10 / 1 4 / 2 0 1 5 1 0 : 0 0 10 / 1 4 / 2 0 1 5 1 1 : 0 0 10 / 1 4 / 2 0 1 5 1 2 : 0 0 10 / 1 4 / 2 0 1 5 1 3 : 0 0 10 / 1 4 / 2 0 1 5 1 4 : 0 0 10 / 1 4 / 2 0 1 5 1 5 : 0 0 10 / 1 4 / 2 0 1 5 1 6 : 0 0 10 / 1 4 / 2 0 1 5 1 7 : 0 0 10 / 1 4 / 2 0 1 5 1 8 : 0 0 10 / 1 4 / 2 0 1 5 1 9 : 0 0 10 / 1 4 / 2 0 1 5 2 0 : 0 0 10 / 1 4 / 2 0 1 5 2 1 : 0 0 10 / 1 4 / 2 0 1 5 2 2 : 0 0 10 / 1 4 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 2 1 No d e = Hy d r a n t # 1 8 8 7 El e v a t i o n = 48 1 7 . 6 1 El e v a t i o n = 47 5 4 . 5 3 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 0 6 5, 1 1 9 . 2 7 (1 . 2 1 ) 5, 1 1 7 . 1 4 5, 1 1 9 . 1 6 (2.02) 5, 1 1 8 . 6 7 5, 1 1 9 . 5 6 (0 . 8 9 ) 5, 1 1 7 . 4 7 5, 1 1 9 . 4 7 (2.00) 5, 1 1 9 . 1 5 5, 1 1 9 . 8 8 (0 . 7 3 ) 5, 1 1 8 . 1 5 5, 1 1 9 . 8 0 (1.65) 5, 1 1 9 . 6 4 5, 1 2 0 . 0 4 (0 . 4 0 ) 5, 1 1 8 . 7 1 5, 1 1 9 . 9 6 (1.25) 5, 1 1 9 . 6 4 5, 1 2 0 . 1 1 (0 . 4 7 ) 5, 1 1 8 . 6 0 5, 1 2 0 . 0 1 (1.41) 5, 1 1 9 . 5 2 5, 1 2 0 . 1 0 (0 . 5 8 ) 5, 1 1 8 . 6 0 5, 1 1 9 . 9 7 (1.37) 5, 1 1 8 . 5 5 5, 1 1 9 . 8 0 (1 . 2 5 ) 5, 1 1 7 . 3 6 5, 1 1 9 . 6 2 (2.26) 5, 1 1 6 . 1 2 5, 1 1 8 . 3 5 (2 . 2 3 ) 5, 1 1 4 . 6 5 5, 1 1 7 . 9 5 (3.30) 5, 1 1 6 . 3 6 5, 1 1 7 . 4 3 (1 . 0 7 ) 5, 1 1 5 . 3 3 5, 1 1 6 . 9 6 (1.63) 5, 1 1 8 . 6 7 5, 1 1 9 . 7 6 (1 . 0 9 ) 5, 1 1 8 . 8 3 5, 1 2 0 . 3 6 (1.53) 5, 1 1 8 . 4 3 5, 1 1 9 . 9 5 (1 . 5 2 ) 5, 1 1 7 . 9 2 5, 1 2 0 . 5 6 (2.64) 5, 1 1 8 . 4 3 5, 1 2 0 . 1 3 (1 . 7 0 ) 5, 1 1 7 . 1 4 5, 1 2 0 . 7 4 (3.60) 5, 1 1 8 . 7 9 5, 1 2 0 . 3 0 (1 . 5 1 ) 5, 1 1 7 . 1 4 5, 1 2 0 . 9 1 (3.77) 5, 1 1 8 . 6 7 5, 1 2 0 . 4 7 (1 . 8 0 ) 5, 1 1 6 . 9 1 5, 1 2 1 . 0 8 (4.17) 5, 1 1 9 . 0 3 5, 1 2 0 . 6 6 (1 . 6 3 ) 5, 1 1 7 . 2 5 5, 1 2 1 . 2 7 (4.02) 5, 1 1 9 . 1 5 5, 1 2 0 . 9 3 (1 . 7 8 ) 5, 1 1 7 . 3 6 5, 1 2 1 . 5 4 (4.18) 5, 1 1 6 . 9 7 5, 1 1 9 . 4 0 (2 . 4 3 ) 5, 1 1 3 . 7 5 5, 1 1 9 . 1 5 (5.40) 5, 1 1 6 . 6 1 5, 1 1 8 . 9 2 (2 . 3 1 ) 5, 1 1 3 . 5 2 5, 1 1 8 . 6 4 (5.12) 5, 1 1 6 . 1 2 5, 1 1 8 . 6 1 (2 . 4 9 ) 5, 1 1 3 . 5 2 5, 1 1 8 . 3 1 (4.79) 5, 1 1 5 . 6 4 5, 1 1 8 . 3 3 (2 . 6 9 ) 5, 1 1 3 . 3 0 5, 1 1 8 . 0 4 (4.74) 5, 1 1 5 . 8 8 5, 1 1 8 . 2 8 (2 . 4 0 ) 5, 1 1 3 . 7 5 5, 1 1 8 . 0 2 (4.27) 5, 1 1 6 . 1 2 5, 1 1 8 . 2 5 (2 . 1 3 ) 5, 1 1 4 . 5 4 5, 1 1 8 . 0 1 (3.47) 5, 1 1 6 . 3 6 5, 1 1 8 . 3 1 (1 . 9 5 ) 5, 1 1 4 . 9 9 5, 1 1 8 . 1 0 (3.11) 5, 1 1 6 . 8 5 5, 1 1 8 . 6 1 (1 . 7 6 ) 5, 1 1 5 . 7 8 5, 1 1 8 . 4 6 (2.68) Te s t N o . 5 Re c o r d e r # 3 4 1 2 9 8 Te s t N o . 6 Re c o r d e r # 1 2 4 5 Page 3 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 4 / 2 0 1 5 0 : 0 0 10 / 1 4 / 2 0 1 5 1 : 0 0 10 / 1 4 / 2 0 1 5 2 : 0 0 10 / 1 4 / 2 0 1 5 3 : 0 0 10 / 1 4 / 2 0 1 5 4 : 0 0 10 / 1 4 / 2 0 1 5 5 : 0 0 10 / 1 4 / 2 0 1 5 6 : 0 0 10 / 1 4 / 2 0 1 5 7 : 0 0 10 / 1 4 / 2 0 1 5 8 : 0 0 10 / 1 4 / 2 0 1 5 9 : 0 0 10 / 1 4 / 2 0 1 5 1 0 : 0 0 10 / 1 4 / 2 0 1 5 1 1 : 0 0 10 / 1 4 / 2 0 1 5 1 2 : 0 0 10 / 1 4 / 2 0 1 5 1 3 : 0 0 10 / 1 4 / 2 0 1 5 1 4 : 0 0 10 / 1 4 / 2 0 1 5 1 5 : 0 0 10 / 1 4 / 2 0 1 5 1 6 : 0 0 10 / 1 4 / 2 0 1 5 1 7 : 0 0 10 / 1 4 / 2 0 1 5 1 8 : 0 0 10 / 1 4 / 2 0 1 5 1 9 : 0 0 10 / 1 4 / 2 0 1 5 2 0 : 0 0 10 / 1 4 / 2 0 1 5 2 1 : 0 0 10 / 1 4 / 2 0 1 5 2 2 : 0 0 10 / 1 4 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 7 5 4 No d e = Hy d r a n t # 1 1 2 5 El e v a t i o n = 48 2 0 . 1 1 El e v a t i o n = 47 7 9 . 5 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 5 3 5, 1 1 8 . 9 1 (1 . 3 8 ) 5, 1 1 8 . 6 4 5, 1 1 8 . 9 1 (0.27) 5, 1 1 7 . 8 9 5, 1 1 9 . 2 7 (1 . 3 8 ) 5, 1 1 9 . 0 9 5, 1 1 9 . 2 7 (0.18) 5, 1 1 8 . 6 2 5, 1 1 9 . 6 4 (1 . 0 2 ) 5, 1 1 9 . 7 7 5, 1 1 9 . 6 4 0.13 5, 1 1 8 . 9 9 5, 1 1 9 . 7 6 (0 . 7 7 ) 5, 1 2 0 . 2 2 5, 1 1 9 . 7 7 0.45 5, 1 1 8 . 9 9 5, 1 1 9 . 7 7 (0 . 7 8 ) 5, 1 2 0 . 1 1 5, 1 1 9 . 7 8 0.33 5, 1 1 8 . 6 2 5, 1 1 9 . 6 9 (1 . 0 7 ) 5, 1 1 9 . 9 9 5, 1 1 9 . 6 9 0.30 5, 1 1 6 . 8 0 5, 1 1 9 . 2 1 (2 . 4 1 ) 5, 1 1 8 . 1 9 5, 1 1 9 . 2 2 (1.03) 5, 1 1 3 . 5 3 5, 1 1 6 . 9 8 (3 . 4 5 ) 5, 1 1 4 . 9 2 5, 1 1 6 . 9 9 (2.07) 5, 1 1 3 . 7 7 5, 1 1 5 . 8 1 (2 . 0 4 ) 5, 1 1 5 . 2 5 5, 1 1 5 . 8 1 (0.56) 5, 1 1 6 . 8 0 5, 1 1 8 . 3 7 (1 . 5 7 ) 5, 1 1 8 . 0 7 5, 1 1 8 . 3 8 (0.31) 5, 1 1 6 . 3 2 5, 1 1 8 . 6 6 (2 . 3 4 ) 5, 1 1 7 . 4 0 5, 1 1 8 . 6 7 (1.27) 5, 1 1 6 . 5 6 5, 1 1 8 . 9 1 (2 . 3 5 ) 5, 1 1 7 . 1 7 5, 1 1 8 . 9 2 (1.75) 5, 1 1 6 . 5 6 5, 1 1 9 . 1 2 (2 . 5 6 ) 5, 1 1 7 . 1 7 5, 1 1 9 . 1 3 (1.96) 5, 1 1 6 . 8 0 5, 1 1 9 . 3 5 (2 . 5 5 ) 5, 1 1 7 . 2 8 5, 1 1 9 . 3 5 (2.07) 5, 1 1 7 . 0 5 5, 1 1 9 . 5 8 (2 . 5 3 ) 5, 1 1 7 . 2 8 5, 1 1 9 . 5 9 (2.31) 5, 1 1 7 . 7 7 5, 1 1 9 . 9 6 (2 . 1 9 ) 5, 1 1 7 . 8 5 5, 1 1 9 . 9 7 (2.12) 5, 1 1 5 . 3 5 5, 1 1 8 . 5 8 (3 . 2 3 ) 5, 1 1 5 . 2 5 5, 1 1 8 . 5 9 (3.34) 5, 1 1 4 . 7 4 5, 1 1 7 . 9 4 (3 . 2 0 ) 5, 1 1 4 . 6 9 5, 1 1 7 . 9 5 (3.26) 5, 1 1 4 . 2 6 5, 1 1 7 . 6 1 (3 . 3 5 ) 5, 1 1 3 . 9 0 5, 1 1 7 . 6 2 (3.72) 5, 1 1 3 . 7 7 5, 1 1 7 . 3 3 (3 . 5 6 ) 5, 1 1 3 . 7 9 5, 1 1 7 . 3 4 (3.55) 5, 1 1 3 . 8 9 5, 1 1 7 . 3 9 (3 . 5 0 ) 5, 1 1 4 . 5 8 5, 1 1 7 . 4 0 (2.82) 5, 1 1 4 . 7 4 5, 1 1 7 . 4 6 (2 . 7 2 ) 5, 1 1 5 . 5 9 5, 1 1 7 . 4 7 (1.88) 5, 1 1 5 . 1 0 5, 1 1 7 . 6 3 (2 . 5 3 ) 5, 1 1 6 . 0 4 5, 1 1 7 . 6 4 (1.60) 5, 1 1 5 . 9 5 5, 1 1 8 . 1 3 (2 . 1 8 ) 5, 1 1 7 . 0 6 5, 1 1 8 . 1 4 (1.08) Te s t N o . 7 Te s t N o . 8 Re c o r d e r # 3 4 1 2 8 9 Re c o r d e r # 2 0 1 2 5 0 Page 4 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 4 / 2 0 1 5 0 : 0 0 10 / 1 4 / 2 0 1 5 1 : 0 0 10 / 1 4 / 2 0 1 5 2 : 0 0 10 / 1 4 / 2 0 1 5 3 : 0 0 10 / 1 4 / 2 0 1 5 4 : 0 0 10 / 1 4 / 2 0 1 5 5 : 0 0 10 / 1 4 / 2 0 1 5 6 : 0 0 10 / 1 4 / 2 0 1 5 7 : 0 0 10 / 1 4 / 2 0 1 5 8 : 0 0 10 / 1 4 / 2 0 1 5 9 : 0 0 10 / 1 4 / 2 0 1 5 1 0 : 0 0 10 / 1 4 / 2 0 1 5 1 1 : 0 0 10 / 1 4 / 2 0 1 5 1 2 : 0 0 10 / 1 4 / 2 0 1 5 1 3 : 0 0 10 / 1 4 / 2 0 1 5 1 4 : 0 0 10 / 1 4 / 2 0 1 5 1 5 : 0 0 10 / 1 4 / 2 0 1 5 1 6 : 0 0 10 / 1 4 / 2 0 1 5 1 7 : 0 0 10 / 1 4 / 2 0 1 5 1 8 : 0 0 10 / 1 4 / 2 0 1 5 1 9 : 0 0 10 / 1 4 / 2 0 1 5 2 0 : 0 0 10 / 1 4 / 2 0 1 5 2 1 : 0 0 10 / 1 4 / 2 0 1 5 2 2 : 0 0 10 / 1 4 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 0 2 5 No d e = Hy d r a n t # El e v a t i o n = 47 5 5 . 6 7 El e v a t i o n = 0. 0 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 5 0 5, 1 1 9 . 0 4 (0 . 5 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 7 3 5, 1 1 9 . 3 8 (0 . 6 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 5 2 5, 1 1 9 . 7 3 (0 . 2 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 9 7 5, 1 1 9 . 8 7 0. 1 0 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 8 5 5, 1 1 9 . 9 0 (0 . 0 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 7 4 5, 1 1 9 . 8 4 (0 . 1 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 3 9 5, 1 1 9 . 4 2 (1 . 0 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 3 4 5, 1 1 7 . 4 8 (2 . 1 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 4 5 5, 1 1 6 . 3 8 (0 . 9 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 2 8 5, 1 1 8 . 9 5 (0 . 6 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 7 1 5, 1 1 9 . 2 1 (1 . 5 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 7 1 5, 1 1 9 . 4 5 (1 . 7 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 6 0 5, 1 1 9 . 6 5 (2 . 0 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 4 9 5, 1 1 9 . 8 6 (2 . 3 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 8 2 5, 1 2 0 . 0 8 (2 . 2 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 2 8 5, 1 2 0 . 4 2 (2 . 1 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 6 8 5, 1 1 8 . 8 9 (3 . 2 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 2 3 5, 1 1 8 . 3 2 (3 . 0 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 4 . 8 9 5, 1 1 7 . 9 9 (3 . 1 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 4 . 5 5 5, 1 1 7 . 7 1 (3 . 1 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 0 0 5, 1 1 7 . 7 4 (2 . 7 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 9 1 5, 1 1 7 . 7 6 (1 . 8 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 2 4 5, 1 1 7 . 8 8 (1 . 6 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 0 3 5, 1 1 8 . 3 1 (1 . 2 8 ) 0. 0 0 0. 0 0 0.00 Re c o r d e r # 1 2 4 3 Re c o r d e r # 1 2 4 1 Te s t N o . 9 Te s t N o . 1 0 Page 5 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 4 / 2 0 1 5 0 : 0 0 10 / 1 4 / 2 0 1 5 1 : 0 0 10 / 1 4 / 2 0 1 5 2 : 0 0 10 / 1 4 / 2 0 1 5 3 : 0 0 10 / 1 4 / 2 0 1 5 4 : 0 0 10 / 1 4 / 2 0 1 5 5 : 0 0 10 / 1 4 / 2 0 1 5 6 : 0 0 10 / 1 4 / 2 0 1 5 7 : 0 0 10 / 1 4 / 2 0 1 5 8 : 0 0 10 / 1 4 / 2 0 1 5 9 : 0 0 10 / 1 4 / 2 0 1 5 1 0 : 0 0 10 / 1 4 / 2 0 1 5 1 1 : 0 0 10 / 1 4 / 2 0 1 5 1 2 : 0 0 10 / 1 4 / 2 0 1 5 1 3 : 0 0 10 / 1 4 / 2 0 1 5 1 4 : 0 0 10 / 1 4 / 2 0 1 5 1 5 : 0 0 10 / 1 4 / 2 0 1 5 1 6 : 0 0 10 / 1 4 / 2 0 1 5 1 7 : 0 0 10 / 1 4 / 2 0 1 5 1 8 : 0 0 10 / 1 4 / 2 0 1 5 1 9 : 0 0 10 / 1 4 / 2 0 1 5 2 0 : 0 0 10 / 1 4 / 2 0 1 5 2 1 : 0 0 10 / 1 4 / 2 0 1 5 2 2 : 0 0 10 / 1 4 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 2 7 1 2 No d e = Hy d r a n t # 1 7 7 0 El e v a t i o n = 46 9 2 . 6 4 El e v a t i o n = 46 7 9 . 9 1 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 4, 9 2 5 . 5 0 4, 9 2 5 . 6 4 (0 . 1 4 ) 5, 0 2 8 . 0 7 5, 0 2 8 . 4 7 (0.40) 4, 9 2 5 . 6 1 4, 9 2 6 . 6 6 (1 . 0 5 ) 5, 0 2 8 . 3 0 5, 0 2 9 . 1 9 (0.89) 4, 9 2 6 . 9 7 4, 9 2 7 . 3 5 (0 . 3 8 ) 5, 0 2 9 . 0 9 5, 0 2 9 . 7 3 (0.64) 4, 9 2 7 . 3 1 4, 9 2 6 . 9 0 0. 4 1 5, 0 2 9 . 4 3 5, 0 2 9 . 5 6 (0.13) 4, 9 2 5 . 5 0 4, 9 2 6 . 0 5 (0 . 5 5 ) 5, 0 2 8 . 4 1 5, 0 2 9 . 1 5 (0.74) 4, 9 2 3 . 7 0 4, 9 2 5 . 1 1 (1 . 4 1 ) 5, 0 2 6 . 9 5 5, 0 2 8 . 6 8 (1.73) 4, 9 1 6 . 5 9 4, 9 2 2 . 7 0 (6 . 1 1 ) 5, 0 1 9 . 8 4 5, 0 2 7 . 2 7 (7.43) 4, 9 1 0 . 3 8 4, 9 2 1 . 6 1 (1 1 . 2 3 ) 5, 0 1 4 . 2 0 5, 0 2 6 . 3 3 (12.13) 4, 9 1 6 . 3 6 4, 9 2 1 . 5 6 (5 . 2 0 ) 5, 0 0 8 . 8 9 5, 0 2 6 . 2 4 (17.35) 4, 9 2 0 . 9 9 4, 9 2 1 . 6 4 (0 . 6 5 ) 5, 0 1 2 . 7 3 5, 0 1 8 . 1 5 (5.42) 4, 9 2 1 . 2 1 4, 9 2 1 . 6 5 (0 . 4 4 ) 5, 0 1 1 . 4 9 5, 0 1 8 . 0 7 (6.58) 4, 9 2 2 . 3 4 4, 9 2 1 . 6 6 0. 6 8 5, 0 1 2 . 3 9 5, 0 1 7 . 9 6 (5.57) 4, 9 2 2 . 2 3 4, 9 2 1 . 6 7 0. 5 6 5, 0 1 2 . 1 7 5, 0 1 7 . 8 6 (5.69) 4, 9 2 1 . 4 4 4, 9 2 1 . 6 7 (0 . 2 3 ) 5, 0 1 2 . 7 3 5, 0 1 7 . 7 5 (5.02) 4, 9 2 2 . 2 3 4, 9 2 1 . 6 8 0. 5 5 5, 0 1 3 . 1 8 5, 0 1 7 . 6 5 (4.47) 4, 9 2 2 . 2 3 4, 9 2 1 . 7 2 0. 5 1 5, 0 2 0 . 6 3 5, 0 1 7 . 6 3 3.00 4, 9 2 3 . 3 6 4, 9 2 1 . 7 1 1. 6 5 5, 0 2 1 . 4 2 5, 0 2 5 . 1 4 (3.72) 4, 9 2 0 . 2 0 4, 9 2 1 . 6 7 (1 . 4 7 ) 5, 0 2 0 . 9 7 5, 0 2 5 . 1 0 (4.13) 4, 9 2 0 . 4 2 4, 9 2 1 . 6 7 (1 . 2 5 ) 5, 0 2 1 . 7 6 5, 0 2 5 . 1 4 (3.38) 4, 9 2 0 . 8 8 4, 9 2 1 . 6 7 (0 . 7 9 ) 5, 0 2 2 . 5 5 5, 0 2 5 . 2 0 (2.65) 4, 9 1 9 . 4 1 4, 9 2 1 . 6 9 (2 . 2 8 ) 5, 0 2 1 . 6 4 5, 0 2 5 . 3 2 (3.68) 4, 9 1 8 . 9 6 4, 9 2 1 . 7 2 (2 . 7 6 ) 5, 0 2 0 . 8 5 5, 0 2 5 . 4 4 (4.59) 4, 9 2 1 . 8 9 4, 9 2 1 . 7 6 0. 1 3 5, 0 2 4 . 6 9 5, 0 2 5 . 5 8 (0.89) 4, 9 2 4 . 2 6 4, 9 2 4 . 1 1 0. 1 5 5, 0 2 7 . 6 2 5, 0 2 7 . 1 1 0.51 Re c o r d e r # 1 2 4 6 Re c o r d e r # 1 2 4 4 Te s t N o . 1 1 Te s t N o . 1 2 Page 6 of 6 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Th u r s d a y , O c t o b e r 1 5 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 10 / 1 5 / 2 0 1 5 0 : 0 0 0 : 0 0 2 6 . 0 0 2 6 . 0 0 0 . 0 0 2 3 . 2 9 2 3 . 2 9 0 . 0 0 3 5 . 0 4 3 5 . 0 4 0.00 10 / 1 5 / 2 0 1 5 1 : 0 0 1 : 0 0 26 . 2 0 26 . 0 9 0.1 1 23 . 4 5 23 . 3 9 0.0 6 35 . 3 3 35 . 2 0 0.13 10 / 1 5 / 2 0 1 5 2 : 0 0 2 : 0 0 26 . 4 0 26 . 2 4 0.1 6 23 . 5 9 23 . 5 0 0.0 9 35 . 6 5 35 . 4 3 0.22 10 / 1 5 / 2 0 1 5 3 : 0 0 3 : 0 0 26 . 7 0 26 . 4 4 0.2 6 23 . 7 4 23 . 6 2 0.1 2 35 . 9 9 35 . 7 0 0.29 10 / 1 5 / 2 0 1 5 4 : 0 0 4 : 0 0 26 . 9 0 26 . 6 3 0.2 7 23 . 8 6 23 . 7 4 0.1 2 36 . 2 9 35 . 8 9 0.40 10 / 1 5 / 2 0 1 5 5 : 0 0 5 : 0 0 27 . 1 0 26 . 7 8 0.3 2 23 . 9 9 23 . 8 4 0.1 5 36 . 5 4 35 . 9 9 0.55 10 / 1 5 / 2 0 1 5 6 : 0 0 6 : 0 0 27 . 4 0 26 . 8 7 0.5 3 24 . 0 6 23 . 9 3 0.1 3 36 . 5 9 36 . 0 2 0.57 10 / 1 5 / 2 0 1 5 7 : 0 0 7 : 0 0 27 . 4 0 26 . 8 6 0.5 4 24 . 0 8 24 . 0 0 0.0 8 36 . 2 3 35 . 8 6 0.37 10 / 1 5 / 2 0 1 5 8 : 0 0 8 : 0 0 26 . 9 0 26 . 5 6 0.3 4 24 . 0 6 24 . 0 4 0.0 2 35 . 6 0 35 . 1 7 0.43 10 / 1 5 / 2 0 1 5 9 : 0 0 9 : 0 0 26 . 9 0 26 . 4 4 0.4 6 23 . 8 6 23 . 8 3 0.0 3 35 . 5 9 35 . 1 1 0.48 10 / 1 5 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 26 . 9 0 26 . 4 7 0.4 3 23 . 6 1 23 . 5 9 0.0 2 35 . 7 4 35 . 3 5 0.39 10 / 1 5 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 26 . 9 0 26 . 5 7 0.3 3 23 . 3 8 23 . 3 6 0.0 2 35 . 7 9 35 . 5 6 0.23 10 / 1 5 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 26 . 9 0 26 . 7 0 0.2 0 23 . 1 8 23 . 1 3 0.0 5 35 . 9 4 35 . 7 8 0.16 10 / 1 5 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 27 . 1 0 26 . 8 7 0.2 3 22 . 9 9 22 . 9 0 0.0 9 36 . 1 0 35 . 9 8 0.12 10 / 1 5 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 27 . 4 0 27 . 0 5 0.3 5 22 . 7 9 22 . 6 6 0.1 3 36 . 3 2 36 . 1 9 0.13 10 / 1 5 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 27 . 6 0 27 . 2 5 0.3 5 22 . 5 9 22 . 4 4 0.1 5 36 . 5 5 36 . 4 2 0.13 10 / 1 5 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 27 . 6 0 27 . 2 5 0.3 5 22 . 6 7 22 . 4 7 0.2 0 36 . 3 1 36 . 1 2 0.19 10 / 1 5 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 27 . 4 0 27 . 1 7 0.2 3 22 . 7 1 22 . 5 3 0.1 8 36 . 0 4 35 . 9 0 0.14 10 / 1 5 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 27 . 1 0 27 . 0 1 0.0 9 22 . 7 8 22 . 5 9 0.1 9 35 . 7 5 35 . 6 0 0.15 10 / 1 5 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 26 . 9 0 26 . 8 2 0.0 8 22 . 8 6 22 . 6 4 0.2 2 35 . 4 7 35 . 3 4 0.13 10 / 1 5 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 26 . 7 0 26 . 6 2 0.0 8 22 . 9 1 22 . 7 0 0.2 1 35 . 2 1 35 . 1 1 0.10 10 / 1 5 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 26 . 4 0 26 . 4 6 -0 . 0 6 22 . 9 9 22 . 7 6 0.2 3 35 . 0 9 34 . 9 8 0.11 10 / 1 5 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 26 . 2 0 26 . 3 3 -0 . 1 3 23 . 0 6 22 . 8 1 0.2 5 35 . 0 2 34 . 9 1 0.11 10 / 1 5 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 26 . 2 0 26 . 2 5 -0 . 0 5 23 . 1 3 22 . 8 8 0.2 5 35 . 0 9 34 . 9 2 0.17 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Th u r s d a y , O c t o b e r 1 5 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Th u r s d a y , O c t o b e r 1 5 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 4.75 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) No d e = Hy d r a n t # 2 1 0 7 No d e = Hy d r a n t # 4 3 3 El e v a t i o n = 50 2 4 . 7 4 El e v a t i o n = 49 6 9 . 5 2 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 10 / 1 5 / 2 0 1 5 0 : 0 0 5 , 1 1 8 . 3 8 5, 1 1 8 . 9 8 (0 . 6 0 ) 5, 1 1 8 . 6 7 5, 1 1 9 . 5 6 (0.89) 10 / 1 5 / 2 0 1 5 1 : 0 0 5 , 1 1 8 . 9 5 5, 1 1 9 . 2 5 (0 . 3 0 ) 5, 1 1 8 . 8 9 5, 1 1 9 . 7 4 (0.85) 10 / 1 5 / 2 0 1 5 2 : 0 0 5 , 1 1 9 . 5 1 5, 1 1 9 . 5 5 (0 . 0 4 ) 5, 1 1 9 . 3 5 5, 1 1 9 . 9 7 (0.62) 10 / 1 5 / 2 0 1 5 3 : 0 0 5 , 1 1 9 . 8 5 5, 1 1 9 . 7 1 0. 1 4 5, 1 1 9 . 5 7 5, 1 2 0 . 1 6 (0.59) 10 / 1 5 / 2 0 1 5 4 : 0 0 5 , 1 2 0 . 1 9 5, 1 1 9 . 7 8 0. 4 1 5, 1 1 9 . 9 1 5, 1 2 0 . 3 0 (0.39) 10 / 1 5 / 2 0 1 5 5 : 0 0 5 , 1 2 0 . 3 0 5, 1 1 9 . 7 7 0. 5 3 5, 1 2 0 . 0 2 5, 1 2 0 . 3 8 (0.36) 10 / 1 5 / 2 0 1 5 6 : 0 0 5 , 1 1 9 . 9 6 5, 1 1 9 . 4 8 0. 4 8 5, 1 1 9 . 9 1 5, 1 2 0 . 3 1 (0.40) 10 / 1 5 / 2 0 1 5 7 : 0 0 5 , 1 1 8 . 1 6 5, 1 1 8 . 0 9 0. 0 7 5, 1 1 9 . 2 3 5, 1 1 9 . 7 7 (0.54) 10 / 1 5 / 2 0 1 5 8 : 0 0 5 , 1 1 7 . 7 0 5, 1 1 7 . 2 0 0. 5 0 5, 1 1 8 . 8 9 5, 1 1 9 . 1 8 (0.29) 10 / 1 5 / 2 0 1 5 9 : 0 0 5 , 1 1 8 . 3 8 5, 1 1 8 . 8 7 (0 . 4 9 ) 5, 1 1 9 . 1 2 5, 1 1 9 . 7 7 (0.65) 10 / 1 5 / 2 0 1 5 1 0 : 0 0 5 , 1 1 8 . 3 8 5, 1 1 9 . 1 1 (0 . 7 3 ) 5, 1 1 9 . 3 5 5, 1 1 9 . 9 2 (0.57) 10 / 1 5 / 2 0 1 5 1 1 : 0 0 5 , 1 1 8 . 2 7 5, 1 1 9 . 3 3 (1 . 0 6 ) 5, 1 1 9 . 3 5 5, 1 2 0 . 0 9 (0.74) 10 / 1 5 / 2 0 1 5 1 2 : 0 0 5 , 1 1 8 . 1 6 5, 1 1 9 . 5 5 (1 . 3 9 ) 5, 1 1 9 . 3 5 5, 1 2 0 . 2 7 (0.92) 10 / 1 5 / 2 0 1 5 1 3 : 0 0 5 , 1 1 8 . 2 7 5, 1 1 9 . 7 8 (1 . 5 1 ) 5, 1 1 9 . 5 7 5, 1 2 0 . 4 6 (0.89) 10 / 1 5 / 2 0 1 5 1 4 : 0 0 5 , 1 1 8 . 4 9 5, 1 2 0 . 0 2 (1 . 5 3 ) 5, 1 2 0 . 0 2 5, 1 2 0 . 6 7 (0.65) 10 / 1 5 / 2 0 1 5 1 5 : 0 0 5 , 1 1 8 . 4 9 5, 1 2 0 . 3 6 (1 . 8 7 ) 5, 1 2 0 . 2 5 5, 1 2 0 . 9 4 (0.69) 10 / 1 5 / 2 0 1 5 1 6 : 0 0 5 , 1 1 6 . 9 1 5, 1 1 9 . 3 6 (2 . 4 5 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 4 6 (0.78) 10 / 1 5 / 2 0 1 5 1 7 : 0 0 5 , 1 1 6 . 8 0 5, 1 1 8 . 9 4 (2 . 1 4 ) 5, 1 1 9 . 5 7 5, 1 2 0 . 2 3 (0.66) 10 / 1 5 / 2 0 1 5 1 8 : 0 0 5 , 1 1 6 . 6 9 5, 1 1 8 . 6 8 (1 . 9 9 ) 5, 1 1 9 . 1 2 5, 1 1 9 . 9 9 (0.87) 10 / 1 5 / 2 0 1 5 1 9 : 0 0 5 , 1 1 7 . 0 3 5, 1 1 8 . 4 4 (1 . 4 1 ) 5, 1 1 8 . 7 8 5, 1 1 9 . 7 7 (0.99) 10 / 1 5 / 2 0 1 5 2 0 : 0 0 5 , 1 1 7 . 1 4 5, 1 1 8 . 4 3 (1 . 2 9 ) 5, 1 1 8 . 6 7 5, 1 1 9 . 6 3 (0.96) 10 / 1 5 / 2 0 1 5 2 1 : 0 0 5 , 1 1 7 . 3 7 5, 1 1 8 . 4 2 (1 . 0 5 ) 5, 1 1 8 . 5 6 5, 1 1 9 . 5 3 (0.97) 10 / 1 5 / 2 0 1 5 2 2 : 0 0 5 , 1 1 7 . 4 8 5, 1 1 8 . 5 0 (1 . 0 2 ) 5, 1 1 8 . 5 6 5, 1 1 9 . 5 0 (0.94) 10 / 1 5 / 2 0 1 5 2 3 : 0 0 5 , 1 1 8 . 2 7 5, 1 1 8 . 8 3 (0 . 5 6 ) 5, 1 1 8 . 7 8 5, 1 1 9 . 5 9 (0.81) Da t e / T i m e Re c o r d e r # 1 2 4 2 Te s t N o . 1 Te s t N o . 2 Re c o r d e r # 1 2 4 0 Page 1 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 5 / 2 0 1 5 0 : 0 0 10 / 1 5 / 2 0 1 5 1 : 0 0 10 / 1 5 / 2 0 1 5 2 : 0 0 10 / 1 5 / 2 0 1 5 3 : 0 0 10 / 1 5 / 2 0 1 5 4 : 0 0 10 / 1 5 / 2 0 1 5 5 : 0 0 10 / 1 5 / 2 0 1 5 6 : 0 0 10 / 1 5 / 2 0 1 5 7 : 0 0 10 / 1 5 / 2 0 1 5 8 : 0 0 10 / 1 5 / 2 0 1 5 9 : 0 0 10 / 1 5 / 2 0 1 5 1 0 : 0 0 10 / 1 5 / 2 0 1 5 1 1 : 0 0 10 / 1 5 / 2 0 1 5 1 2 : 0 0 10 / 1 5 / 2 0 1 5 1 3 : 0 0 10 / 1 5 / 2 0 1 5 1 4 : 0 0 10 / 1 5 / 2 0 1 5 1 5 : 0 0 10 / 1 5 / 2 0 1 5 1 6 : 0 0 10 / 1 5 / 2 0 1 5 1 7 : 0 0 10 / 1 5 / 2 0 1 5 1 8 : 0 0 10 / 1 5 / 2 0 1 5 1 9 : 0 0 10 / 1 5 / 2 0 1 5 2 0 : 0 0 10 / 1 5 / 2 0 1 5 2 1 : 0 0 10 / 1 5 / 2 0 1 5 2 2 : 0 0 10 / 1 5 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 4 9 0 No d e = Hy d r a n t # 2 7 8 El e v a t i o n = 48 8 0 . 2 5 El e v a t i o n = 48 6 1 . 1 9 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 4 0 5, 1 1 8 . 7 3 (1 . 3 3 ) 5, 1 1 9 . 3 2 5, 1 1 9 . 2 0 0.12 5, 1 1 7 . 8 5 5, 1 1 9 . 0 5 (1 . 2 0 ) 5, 1 1 9 . 6 6 5, 1 1 9 . 4 1 0.25 5, 1 1 8 . 4 1 5, 1 1 9 . 3 8 (0 . 9 7 ) 5, 1 2 0 . 0 0 5, 1 1 9 . 6 7 0.33 5, 1 1 8 . 6 4 5, 1 1 9 . 5 2 (0 . 8 8 ) 5, 1 2 0 . 3 4 5, 1 1 9 . 8 7 0.47 5, 1 1 8 . 7 5 5, 1 1 9 . 5 6 (0 . 8 1 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 0 0 0.56 5, 1 1 8 . 8 7 5, 1 1 9 . 5 1 (0 . 6 4 ) 5, 1 2 0 . 7 9 5, 1 2 0 . 0 4 0.75 5, 1 1 8 . 1 9 5, 1 1 9 . 1 3 (0 . 9 4 ) 5, 1 2 0 . 5 6 5, 1 1 9 . 9 1 0.65 5, 1 1 5 . 9 3 5, 1 1 7 . 3 9 (1 . 4 6 ) 5, 1 1 9 . 7 7 5, 1 1 9 . 1 0 0.67 5, 1 1 5 . 4 8 5, 1 1 6 . 3 6 (0 . 8 8 ) 5, 1 1 9 . 3 2 5, 1 1 8 . 3 6 0.96 5, 1 1 6 . 8 3 5, 1 1 8 . 5 4 (1 . 7 1 ) 5, 1 1 9 . 6 6 5, 1 1 9 . 3 8 0.28 5, 1 1 7 . 1 7 5, 1 1 8 . 8 1 (1 . 6 4 ) 5, 1 1 9 . 7 7 5, 1 1 9 . 5 8 0.19 5, 1 1 7 . 0 6 5, 1 1 9 . 0 6 (2 . 0 0 ) 5, 1 1 9 . 8 9 5, 1 1 9 . 7 8 0.11 5, 1 1 7 . 4 0 5, 1 1 9 . 3 0 (1 . 9 0 ) 5, 1 2 0 . 0 0 5, 1 1 9 . 9 8 0.02 5, 1 1 7 . 7 4 5, 1 1 9 . 5 4 (1 . 8 0 ) 5, 1 2 0 . 2 3 5, 1 2 0 . 1 9 0.04 5, 1 1 8 . 4 1 5, 1 1 9 . 7 9 (1 . 3 8 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 4 1 0.15 5, 1 1 8 . 5 3 5, 1 2 0 . 1 6 (1 . 6 3 ) 5, 1 2 0 . 7 9 5, 1 2 0 . 7 0 0.09 5, 1 1 6 . 6 1 5, 1 1 8 . 9 1 (2 . 3 0 ) 5, 1 2 0 . 3 4 5, 1 1 9 . 9 3 0.41 5, 1 1 6 . 3 8 5, 1 1 8 . 4 0 (2 . 0 2 ) 5, 1 2 0 . 1 1 5, 1 1 9 . 6 3 0.48 5, 1 1 5 . 7 1 5, 1 1 8 . 1 2 (2 . 4 1 ) 5, 1 1 9 . 6 6 5, 1 1 9 . 3 6 0.30 5, 1 1 5 . 4 8 5, 1 1 7 . 8 8 (2 . 4 0 ) 5, 1 1 9 . 3 2 5, 1 1 9 . 1 2 0.20 5, 1 1 5 . 4 8 5, 1 1 7 . 9 2 (2 . 4 4 ) 5, 1 1 9 . 1 0 5, 1 1 9 . 0 1 0.09 5, 1 1 5 . 7 1 5, 1 1 7 . 9 5 (2 . 2 4 ) 5, 1 1 8 . 9 8 5, 1 1 8 . 9 4 0.04 5, 1 1 5 . 9 3 5, 1 1 8 . 0 9 (2 . 1 6 ) 5, 1 1 8 . 8 7 5, 1 1 8 . 9 4 (0.07) 5, 1 1 6 . 8 3 5, 1 1 8 . 5 1 (1 . 6 8 ) 5, 1 1 9 . 2 1 5, 1 1 9 . 1 0 0.11 Te s t N o . 3 Re c o r d e r # 1 2 5 1 Te s t N o . 4 Re c o r d e r # 1 2 4 9 Page 2 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 5 / 2 0 1 5 0 : 0 0 10 / 1 5 / 2 0 1 5 1 : 0 0 10 / 1 5 / 2 0 1 5 2 : 0 0 10 / 1 5 / 2 0 1 5 3 : 0 0 10 / 1 5 / 2 0 1 5 4 : 0 0 10 / 1 5 / 2 0 1 5 5 : 0 0 10 / 1 5 / 2 0 1 5 6 : 0 0 10 / 1 5 / 2 0 1 5 7 : 0 0 10 / 1 5 / 2 0 1 5 8 : 0 0 10 / 1 5 / 2 0 1 5 9 : 0 0 10 / 1 5 / 2 0 1 5 1 0 : 0 0 10 / 1 5 / 2 0 1 5 1 1 : 0 0 10 / 1 5 / 2 0 1 5 1 2 : 0 0 10 / 1 5 / 2 0 1 5 1 3 : 0 0 10 / 1 5 / 2 0 1 5 1 4 : 0 0 10 / 1 5 / 2 0 1 5 1 5 : 0 0 10 / 1 5 / 2 0 1 5 1 6 : 0 0 10 / 1 5 / 2 0 1 5 1 7 : 0 0 10 / 1 5 / 2 0 1 5 1 8 : 0 0 10 / 1 5 / 2 0 1 5 1 9 : 0 0 10 / 1 5 / 2 0 1 5 2 0 : 0 0 10 / 1 5 / 2 0 1 5 2 1 : 0 0 10 / 1 5 / 2 0 1 5 2 2 : 0 0 10 / 1 5 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 2 1 No d e = Hy d r a n t # 1 8 8 7 El e v a t i o n = 48 1 7 . 6 1 El e v a t i o n = 47 5 4 . 5 3 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 7 0 5, 1 1 8 . 8 3 (1 . 1 3 ) 5, 1 1 6 . 8 0 5, 1 1 8 . 7 1 (1.91) 5, 1 1 8 . 0 6 5, 1 1 9 . 1 2 (1 . 0 6 ) 5, 1 1 7 . 3 6 5, 1 1 9 . 0 2 (1.66) 5, 1 1 8 . 5 5 5, 1 1 9 . 4 3 (0 . 8 8 ) 5, 1 1 7 . 9 2 5, 1 1 9 . 3 5 (1.43) 5, 1 1 8 . 9 1 5, 1 1 9 . 5 9 (0 . 6 8 ) 5, 1 1 8 . 2 6 5, 1 1 9 . 5 0 (1.24) 5, 1 1 9 . 1 5 5, 1 1 9 . 6 5 (0 . 5 0 ) 5, 1 1 8 . 3 8 5, 1 1 9 . 5 4 (1.16) 5, 1 1 9 . 1 5 5, 1 1 9 . 6 3 (0 . 4 8 ) 5, 1 1 8 . 6 0 5, 1 1 9 . 4 9 (0.89) 5, 1 1 8 . 6 7 5, 1 1 9 . 3 1 (0 . 6 4 ) 5, 1 1 8 . 0 4 5, 1 1 9 . 1 2 (1.08) 5, 1 1 6 . 7 3 5, 1 1 7 . 8 1 (1 . 0 8 ) 5, 1 1 5 . 7 8 5, 1 1 7 . 4 0 (1.62) 5, 1 1 6 . 7 3 5, 1 1 6 . 8 6 (0 . 1 3 ) 5, 1 1 5 . 8 9 5, 1 1 6 . 3 7 (0.48) 5, 1 1 8 . 1 8 5, 1 1 9 . 2 6 (1 . 0 8 ) 5, 1 1 8 . 4 9 5, 1 1 9 . 8 7 (1.38) 5, 1 1 8 . 4 3 5, 1 1 9 . 4 9 (1 . 0 6 ) 5, 1 1 8 . 4 9 5, 1 2 0 . 1 0 (1.61) 5, 1 1 8 . 4 3 5, 1 1 9 . 7 1 (1 . 2 8 ) 5, 1 1 8 . 0 4 5, 1 2 0 . 3 2 (2.28) 5, 1 1 8 . 6 7 5, 1 1 9 . 9 2 (1 . 2 5 ) 5, 1 1 7 . 9 2 5, 1 2 0 . 5 3 (2.61) 5, 1 1 8 . 9 1 5, 1 2 0 . 1 3 (1 . 2 2 ) 5, 1 1 8 . 2 6 5, 1 2 0 . 7 5 (2.49) 5, 1 1 9 . 2 8 5, 1 2 0 . 3 6 (1 . 0 8 ) 5, 1 1 8 . 7 1 5, 1 2 0 . 9 7 (2.26) 5, 1 1 9 . 4 0 5, 1 2 0 . 6 7 (1 . 2 7 ) 5, 1 1 8 . 7 1 5, 1 2 1 . 2 9 (2.58) 5, 1 1 7 . 0 9 5, 1 1 9 . 1 4 (2 . 0 5 ) 5, 1 1 5 . 1 0 5, 1 1 8 . 9 0 (3.80) 5, 1 1 6 . 7 3 5, 1 1 8 . 6 9 (1 . 9 6 ) 5, 1 1 5 . 1 0 5, 1 1 8 . 4 0 (3.30) 5, 1 1 6 . 4 9 5, 1 1 8 . 4 1 (1 . 9 2 ) 5, 1 1 4 . 8 8 5, 1 1 8 . 1 1 (3.23) 5, 1 1 6 . 1 2 5, 1 1 8 . 1 7 (2 . 0 5 ) 5, 1 1 4 . 8 8 5, 1 1 7 . 8 7 (2.99) 5, 1 1 6 . 2 4 5, 1 1 8 . 1 7 (1 . 9 3 ) 5, 1 1 4 . 9 9 5, 1 1 7 . 9 1 (2.92) 5, 1 1 6 . 3 6 5, 1 1 8 . 1 8 (1 . 8 2 ) 5, 1 1 5 . 3 3 5, 1 1 7 . 9 4 (2.61) 5, 1 1 6 . 4 9 5, 1 1 8 . 2 7 (1 . 7 8 ) 5, 1 1 5 . 5 6 5, 1 1 8 . 0 6 (2.50) 5, 1 1 7 . 2 1 5, 1 1 8 . 6 3 (1 . 4 2 ) 5, 1 1 6 . 5 7 5, 1 1 8 . 4 8 (1.91) Te s t N o . 6 Re c o r d e r # 1 2 4 5 Te s t N o . 5 Re c o r d e r # 3 4 1 2 9 8 Page 3 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 5 / 2 0 1 5 0 : 0 0 10 / 1 5 / 2 0 1 5 1 : 0 0 10 / 1 5 / 2 0 1 5 2 : 0 0 10 / 1 5 / 2 0 1 5 3 : 0 0 10 / 1 5 / 2 0 1 5 4 : 0 0 10 / 1 5 / 2 0 1 5 5 : 0 0 10 / 1 5 / 2 0 1 5 6 : 0 0 10 / 1 5 / 2 0 1 5 7 : 0 0 10 / 1 5 / 2 0 1 5 8 : 0 0 10 / 1 5 / 2 0 1 5 9 : 0 0 10 / 1 5 / 2 0 1 5 1 0 : 0 0 10 / 1 5 / 2 0 1 5 1 1 : 0 0 10 / 1 5 / 2 0 1 5 1 2 : 0 0 10 / 1 5 / 2 0 1 5 1 3 : 0 0 10 / 1 5 / 2 0 1 5 1 4 : 0 0 10 / 1 5 / 2 0 1 5 1 5 : 0 0 10 / 1 5 / 2 0 1 5 1 6 : 0 0 10 / 1 5 / 2 0 1 5 1 7 : 0 0 10 / 1 5 / 2 0 1 5 1 8 : 0 0 10 / 1 5 / 2 0 1 5 1 9 : 0 0 10 / 1 5 / 2 0 1 5 2 0 : 0 0 10 / 1 5 / 2 0 1 5 2 1 : 0 0 10 / 1 5 / 2 0 1 5 2 2 : 0 0 10 / 1 5 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 7 5 4 No d e = Hy d r a n t # 1 1 2 5 El e v a t i o n = 48 2 0 . 1 1 El e v a t i o n = 47 7 9 . 5 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 0 5 5, 1 1 8 . 4 5 (1 . 4 0 ) 5, 1 1 8 . 1 9 5, 1 1 8 . 4 6 (0.27) 5, 1 1 7 . 5 3 5, 1 1 8 . 8 2 (1 . 2 9 ) 5, 1 1 8 . 7 5 5, 1 1 8 . 8 2 (0.07) 5, 1 1 8 . 1 4 5, 1 1 9 . 1 8 (1 . 0 4 ) 5, 1 1 9 . 5 4 5, 1 1 9 . 1 9 0.35 5, 1 1 8 . 5 0 5, 1 1 9 . 3 1 (0 . 8 1 ) 5, 1 1 9 . 7 7 5, 1 1 9 . 3 1 0.46 5, 1 1 8 . 3 8 5, 1 1 9 . 3 0 (0 . 9 2 ) 5, 1 1 9 . 8 8 5, 1 1 9 . 3 1 0.57 5, 1 1 8 . 5 0 5, 1 1 9 . 2 0 (0 . 7 0 ) 5, 1 1 9 . 9 9 5, 1 1 9 . 2 1 0.78 5, 1 1 7 . 5 3 5, 1 1 8 . 7 1 (1 . 1 8 ) 5, 1 1 9 . 0 9 5, 1 1 8 . 7 1 0.38 5, 1 1 4 . 7 4 5, 1 1 6 . 4 0 (1 . 6 6 ) 5, 1 1 6 . 3 8 5, 1 1 6 . 4 1 (0.03) 5, 1 1 4 . 2 6 5, 1 1 5 . 2 0 (0 . 9 4 ) 5, 1 1 5 . 9 3 5, 1 1 5 . 2 0 0.73 5, 1 1 6 . 4 4 5, 1 1 7 . 8 4 (1 . 4 0 ) 5, 1 1 7 . 8 5 5, 1 1 7 . 8 5 (0.00) 5, 1 1 6 . 6 8 5, 1 1 8 . 1 7 (1 . 4 9 ) 5, 1 1 7 . 8 5 5, 1 1 8 . 1 7 (0.32) 5, 1 1 6 . 3 2 5, 1 1 8 . 4 6 (2 . 1 4 ) 5, 1 1 7 . 2 8 5, 1 1 8 . 4 6 (1.18) 5, 1 1 6 . 4 4 5, 1 1 8 . 7 1 (2 . 2 7 ) 5, 1 1 7 . 4 0 5, 1 1 8 . 7 2 (1.32) 5, 1 1 6 . 6 8 5, 1 1 8 . 9 8 (2 . 3 0 ) 5, 1 1 7 . 6 2 5, 1 1 8 . 9 9 (1.37) 5, 1 1 7 . 4 1 5, 1 1 9 . 2 5 (1 . 8 4 ) 5, 1 1 8 . 0 7 5, 1 1 9 . 2 6 (1.19) 5, 1 1 7 . 4 1 5, 1 1 9 . 6 9 (2 . 2 8 ) 5, 1 1 8 . 0 7 5, 1 1 9 . 6 9 (1.62) 5, 1 1 5 . 7 1 5, 1 1 8 . 3 2 (2 . 6 1 ) 5, 1 1 5 . 9 3 5, 1 1 8 . 3 2 (2.39) 5, 1 1 5 . 3 5 5, 1 1 7 . 6 9 (2 . 3 4 ) 5, 1 1 5 . 7 1 5, 1 1 7 . 6 9 (1.98) 5, 1 1 4 . 2 6 5, 1 1 7 . 4 0 (3 . 1 4 ) 5, 1 1 4 . 9 2 5, 1 1 7 . 4 0 (2.48) 5, 1 1 4 . 1 3 5, 1 1 7 . 1 5 (3 . 0 2 ) 5, 1 1 5 . 1 4 5, 1 1 7 . 1 5 (2.01) 5, 1 1 4 . 2 6 5, 1 1 7 . 2 7 (3 . 0 1 ) 5, 1 1 5 . 4 8 5, 1 1 7 . 2 7 (1.79) 5, 1 1 4 . 7 4 5, 1 1 7 . 3 7 (2 . 6 3 ) 5, 1 1 6 . 0 4 5, 1 1 7 . 3 8 (1.34) 5, 1 1 5 . 2 3 5, 1 1 7 . 5 8 (2 . 3 5 ) 5, 1 1 6 . 4 9 5, 1 1 7 . 5 9 (1.10) 5, 1 1 6 . 3 2 5, 1 1 8 . 1 4 (1 . 8 2 ) 5, 1 1 7 . 7 4 5, 1 1 8 . 1 5 (0.41) Te s t N o . 7 Te s t N o . 8 Re c o r d e r # 3 4 1 2 8 9 Re c o r d e r # 2 0 1 2 5 0 Page 4 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 5 / 2 0 1 5 0 : 0 0 10 / 1 5 / 2 0 1 5 1 : 0 0 10 / 1 5 / 2 0 1 5 2 : 0 0 10 / 1 5 / 2 0 1 5 3 : 0 0 10 / 1 5 / 2 0 1 5 4 : 0 0 10 / 1 5 / 2 0 1 5 5 : 0 0 10 / 1 5 / 2 0 1 5 6 : 0 0 10 / 1 5 / 2 0 1 5 7 : 0 0 10 / 1 5 / 2 0 1 5 8 : 0 0 10 / 1 5 / 2 0 1 5 9 : 0 0 10 / 1 5 / 2 0 1 5 1 0 : 0 0 10 / 1 5 / 2 0 1 5 1 1 : 0 0 10 / 1 5 / 2 0 1 5 1 2 : 0 0 10 / 1 5 / 2 0 1 5 1 3 : 0 0 10 / 1 5 / 2 0 1 5 1 4 : 0 0 10 / 1 5 / 2 0 1 5 1 5 : 0 0 10 / 1 5 / 2 0 1 5 1 6 : 0 0 10 / 1 5 / 2 0 1 5 1 7 : 0 0 10 / 1 5 / 2 0 1 5 1 8 : 0 0 10 / 1 5 / 2 0 1 5 1 9 : 0 0 10 / 1 5 / 2 0 1 5 2 0 : 0 0 10 / 1 5 / 2 0 1 5 2 1 : 0 0 10 / 1 5 / 2 0 1 5 2 2 : 0 0 10 / 1 5 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 0 2 5 No d e = Hy d r a n t # El e v a t i o n = 47 5 5 . 6 7 El e v a t i o n = 0. 0 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 0 5 5, 1 1 8 . 5 9 (0 . 5 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 5 0 5, 1 1 8 . 9 3 (0 . 4 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 1 8 5, 1 1 9 . 2 8 (0 . 1 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 4 0 5, 1 1 9 . 4 1 (0 . 0 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 5 2 5, 1 1 9 . 4 3 0. 0 9 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 7 4 5, 1 1 9 . 3 6 0. 3 8 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 9 5 5, 1 1 8 . 9 3 0. 0 2 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 5 8 5, 1 1 6 . 9 1 (0 . 3 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 1 3 5, 1 1 5 . 7 8 0. 3 5 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 0 5 5, 1 1 8 . 4 4 (0 . 3 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 2 8 5, 1 1 8 . 7 3 (0 . 4 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 9 4 5, 1 1 9 . 0 0 (1 . 0 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 0 5 5, 1 1 9 . 2 5 (1 . 2 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 1 6 5, 1 1 9 . 5 0 (1 . 3 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 5 0 5, 1 1 9 . 7 6 (1 . 2 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 6 1 5, 1 2 0 . 1 5 (1 . 5 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 4 7 5, 1 1 8 . 6 3 (2 . 1 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 2 4 5, 1 1 8 . 0 7 (1 . 8 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 6 8 5, 1 1 7 . 7 8 (2 . 1 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 7 9 5, 1 1 7 . 5 3 (1 . 7 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 9 1 5, 1 1 7 . 6 2 (1 . 7 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 2 4 5, 1 1 7 . 6 8 (1 . 4 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 7 0 5, 1 1 7 . 8 4 (1 . 1 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 6 0 5, 1 1 8 . 3 2 (0 . 7 2 ) 0. 0 0 0. 0 0 0.00 Re c o r d e r # 1 2 4 3 Re c o r d e r # 1 2 4 1 Te s t N o . 9 Te s t N o . 1 0 Page 5 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 5 / 2 0 1 5 0 : 0 0 10 / 1 5 / 2 0 1 5 1 : 0 0 10 / 1 5 / 2 0 1 5 2 : 0 0 10 / 1 5 / 2 0 1 5 3 : 0 0 10 / 1 5 / 2 0 1 5 4 : 0 0 10 / 1 5 / 2 0 1 5 5 : 0 0 10 / 1 5 / 2 0 1 5 6 : 0 0 10 / 1 5 / 2 0 1 5 7 : 0 0 10 / 1 5 / 2 0 1 5 8 : 0 0 10 / 1 5 / 2 0 1 5 9 : 0 0 10 / 1 5 / 2 0 1 5 1 0 : 0 0 10 / 1 5 / 2 0 1 5 1 1 : 0 0 10 / 1 5 / 2 0 1 5 1 2 : 0 0 10 / 1 5 / 2 0 1 5 1 3 : 0 0 10 / 1 5 / 2 0 1 5 1 4 : 0 0 10 / 1 5 / 2 0 1 5 1 5 : 0 0 10 / 1 5 / 2 0 1 5 1 6 : 0 0 10 / 1 5 / 2 0 1 5 1 7 : 0 0 10 / 1 5 / 2 0 1 5 1 8 : 0 0 10 / 1 5 / 2 0 1 5 1 9 : 0 0 10 / 1 5 / 2 0 1 5 2 0 : 0 0 10 / 1 5 / 2 0 1 5 2 1 : 0 0 10 / 1 5 / 2 0 1 5 2 2 : 0 0 10 / 1 5 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 2 7 1 2 No d e = Hy d r a n t # 1 7 7 0 El e v a t i o n = 46 9 2 . 6 4 El e v a t i o n = 46 7 9 . 9 1 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 4, 9 2 5 . 2 8 4, 9 2 5 . 5 2 (0 . 2 4 ) 5, 0 2 7 . 8 5 5, 0 2 8 . 4 2 (0.57) 4, 9 2 6 . 2 9 4, 9 2 6 . 5 7 (0 . 2 8 ) 5, 0 2 8 . 8 6 5, 0 2 9 . 1 5 (0.29) 4, 9 2 6 . 8 6 4, 9 2 7 . 2 7 (0 . 4 1 ) 5, 0 2 9 . 6 5 5, 0 2 9 . 7 0 (0.05) 4, 9 2 6 . 2 9 4, 9 2 6 . 8 1 (0 . 5 2 ) 5, 0 2 9 . 4 3 5, 0 2 9 . 5 3 (0.10) 4, 9 2 5 . 5 0 4, 9 2 5 . 9 4 (0 . 4 4 ) 5, 0 2 8 . 7 5 5, 0 2 9 . 1 0 (0.35) 4, 9 2 4 . 6 0 4, 9 2 4 . 9 9 (0 . 3 9 ) 5, 0 2 8 . 0 7 5, 0 2 8 . 6 2 (0.55) 4, 9 1 9 . 8 6 4, 9 2 2 . 5 2 (2 . 6 6 ) 5, 0 2 2 . 6 6 5, 0 2 7 . 1 8 (4.52) 4, 9 1 5 . 1 2 4, 9 2 1 . 6 0 (6 . 4 8 ) 5, 0 1 6 . 9 0 5, 0 2 6 . 3 3 (9.43) 4, 9 1 4 . 4 5 4, 9 2 1 . 5 5 (7 . 1 0 ) 5, 0 0 6 . 0 7 5, 0 2 6 . 2 3 (20.16) 4, 9 1 7 . 9 4 4, 9 2 1 . 6 3 (3 . 6 9 ) 5, 0 1 2 . 3 9 5, 0 1 8 . 0 5 (5.66) 4, 9 2 0 . 3 1 4, 9 2 1 . 6 5 (1 . 3 4 ) 5, 0 1 2 . 3 9 5, 0 1 7 . 9 7 (5.58) 4, 9 2 0 . 7 6 4, 9 2 1 . 6 6 (0 . 9 0 ) 5, 0 1 2 . 6 2 5, 0 1 7 . 8 7 (5.25) 4, 9 2 2 . 9 1 4, 9 2 1 . 6 7 1. 2 4 5, 0 1 2 . 7 3 5, 0 1 7 . 7 5 (5.02) 4, 9 2 1 . 6 7 4, 9 2 1 . 6 7 (0 . 0 0 ) 5, 0 1 1 . 9 4 5, 0 1 7 . 6 6 (5.72) 4, 9 2 2 . 6 8 4, 9 2 1 . 6 8 1. 0 0 5, 0 1 3 . 2 9 5, 0 1 7 . 5 6 (4.27) 4, 9 2 3 . 1 3 4, 9 2 1 . 7 1 1. 4 2 5, 0 2 1 . 4 2 5, 0 1 7 . 5 6 3.86 4, 9 2 2 . 7 9 4, 9 2 1 . 7 1 1. 0 8 5, 0 2 3 . 4 5 5, 0 2 5 . 1 3 (1.68) 4, 9 2 1 . 4 4 4, 9 2 1 . 6 7 (0 . 2 3 ) 5, 0 2 2 . 0 9 5, 0 2 5 . 0 8 (2.99) 4, 9 2 0 . 9 9 4, 9 2 1 . 6 7 (0 . 6 8 ) 5, 0 2 1 . 8 7 5, 0 2 5 . 1 2 (3.25) 4, 9 2 0 . 7 6 4, 9 2 1 . 6 7 (0 . 9 1 ) 5, 0 2 2 . 8 8 5, 0 2 5 . 1 7 (2.29) 4, 9 2 1 . 8 9 4, 9 2 1 . 6 8 0. 2 1 5, 0 2 4 . 3 5 5, 0 2 5 . 3 0 (0.95) 4, 9 2 2 . 2 3 4, 9 2 1 . 7 1 0. 5 2 5, 0 2 4 . 3 5 5, 0 2 5 . 4 2 (1.07) 4, 9 2 2 . 0 0 4, 9 2 1 . 7 5 0. 2 5 5, 0 2 5 . 0 3 5, 0 2 5 . 5 6 (0.53) 4, 9 2 4 . 7 1 4, 9 2 3 . 9 5 0. 7 6 5, 0 2 7 . 1 7 5, 0 2 7 . 0 1 0.16 Re c o r d e r # 1 2 4 6 Re c o r d e r # 1 2 4 4 Te s t N o . 1 1 Te s t N o . 1 2 Page 6 of 6 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Fr i d a y , O c t o b e r 1 6 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 10 / 1 6 / 2 0 1 5 0 : 0 0 0 : 0 0 2 6 . 4 0 2 6 . 4 0 0 . 0 0 2 3 . 2 7 2 3 . 2 7 0 . 0 0 3 5 . 3 5 3 5 . 3 5 0.00 10 / 1 6 / 2 0 1 5 1 : 0 0 1 : 0 0 26 . 7 0 26 . 5 3 0.1 7 23 . 4 1 23 . 3 6 0.0 5 35 . 6 7 35 . 5 6 0.11 10 / 1 6 / 2 0 1 5 2 : 0 0 2 : 0 0 26 . 9 0 26 . 7 3 0.1 7 23 . 5 6 23 . 4 7 0.0 9 36 . 0 2 35 . 8 4 0.18 10 / 1 6 / 2 0 1 5 3 : 0 0 3 : 0 0 27 . 1 0 26 . 9 8 0.1 2 23 . 7 3 23 . 5 9 0.1 4 36 . 3 8 36 . 1 6 0.22 10 / 1 6 / 2 0 1 5 4 : 0 0 4 : 0 0 27 . 6 0 27 . 2 2 0.3 8 23 . 8 8 23 . 7 0 0.1 8 36 . 7 1 36 . 4 1 0.30 10 / 1 6 / 2 0 1 5 5 : 0 0 5 : 0 0 27 . 8 0 27 . 4 1 0.3 9 23 . 9 9 23 . 8 0 0.1 9 36 . 9 8 36 . 5 6 0.42 10 / 1 6 / 2 0 1 5 6 : 0 0 6 : 0 0 27 . 8 0 27 . 5 5 0.2 5 24 . 0 8 23 . 8 9 0.1 9 37 . 0 8 36 . 6 3 0.45 10 / 1 6 / 2 0 1 5 7 : 0 0 7 : 0 0 27 . 8 0 27 . 5 9 0.2 1 24 . 0 8 23 . 9 5 0.1 3 36 . 7 5 36 . 5 2 0.23 10 / 1 6 / 2 0 1 5 8 : 0 0 8 : 0 0 27 . 6 0 27 . 3 4 0.2 6 24 . 0 8 24 . 0 0 0.0 8 36 . 1 9 35 . 8 7 0.32 10 / 1 6 / 2 0 1 5 9 : 0 0 9 : 0 0 27 . 6 0 27 . 2 1 0.3 9 23 . 8 6 23 . 7 8 0.0 8 36 . 2 2 35 . 8 4 0.38 10 / 1 6 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 27 . 6 0 27 . 2 3 0.3 7 23 . 6 1 23 . 5 4 0.0 7 36 . 3 0 36 . 0 9 0.21 10 / 1 6 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 27 . 6 0 27 . 3 2 0.2 8 23 . 3 9 23 . 3 1 0.0 8 36 . 3 4 36 . 3 1 0.03 10 / 1 6 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 27 . 6 0 27 . 4 5 0.1 5 23 . 1 6 23 . 0 8 0.0 8 36 . 4 6 36 . 5 2 -0 . 0 6 10 / 1 6 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 27 . 6 0 27 . 6 0 0.0 0 22 . 9 2 22 . 8 5 0.0 7 36 . 5 8 36 . 7 2 -0 . 1 4 10 / 1 6 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 27 . 8 0 27 . 7 8 0.0 2 22 . 6 9 22 . 6 2 0.0 7 36 . 7 4 36 . 9 3 -0 . 1 9 10 / 1 6 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 27 . 8 0 27 . 9 7 -0 . 1 7 22 . 4 9 22 . 4 0 0.0 9 36 . 9 1 37 . 1 4 -0 . 2 3 10 / 1 6 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 28 . 0 0 28 . 1 3 -0 . 1 3 22 . 3 9 22 . 2 7 0.1 2 36 . 9 2 37 . 1 9 -0 . 2 7 10 / 1 6 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 27 . 8 0 28 . 0 8 -0 . 2 8 22 . 4 7 22 . 3 2 0.1 5 36 . 6 0 36 . 8 9 -0 . 2 9 10 / 1 6 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 27 . 6 0 27 . 9 3 -0 . 3 3 22 . 5 4 22 . 3 8 0.1 6 36 . 3 5 36 . 5 6 -0 . 2 1 10 / 1 6 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 27 . 6 0 27 . 7 5 -0 . 1 5 22 . 5 9 22 . 4 3 0.1 6 36 . 1 2 36 . 2 9 -0 . 1 7 10 / 1 6 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 27 . 4 0 27 . 5 5 -0 . 1 5 22 . 6 6 22 . 4 8 0.1 8 35 . 9 9 36 . 0 5 -0 . 0 6 10 / 1 6 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 27 . 4 0 27 . 3 9 0.0 1 22 . 7 4 22 . 5 4 0.2 0 35 . 9 9 35 . 9 3 0.06 10 / 1 6 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 27 . 4 0 27 . 2 6 0.1 4 22 . 8 1 22 . 5 9 0.2 2 36 . 0 3 35 . 8 5 0.18 10 / 1 6 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 27 . 1 0 27 . 1 8 -0 . 0 8 22 . 9 2 22 . 6 5 0.2 7 36 . 1 2 35 . 8 5 0.27 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Fr i d a y , O c t o b e r 1 6 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Fr i d a y , O c t o b e r 1 6 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 4.63 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) No d e = Hy d r a n t # 2 1 0 7 No d e = Hy d r a n t # 4 3 3 El e v a t i o n = 50 2 4 . 7 4 El e v a t i o n = 49 6 9 . 5 2 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 10 / 1 6 / 2 0 1 5 0 : 0 0 5 , 1 1 8 . 8 3 5, 1 1 9 . 3 4 (0 . 5 1 ) 5, 1 1 9 . 0 1 5, 1 1 9 . 9 4 (0.93) 10 / 1 6 / 2 0 1 5 1 : 0 0 5 , 1 1 9 . 6 2 5, 1 1 9 . 6 7 (0 . 0 5 ) 5, 1 1 9 . 3 5 5, 1 2 0 . 1 7 (0.82) 10 / 1 6 / 2 0 1 5 2 : 0 0 5 , 1 2 0 . 0 7 5, 1 2 0 . 0 2 0. 0 5 5, 1 1 9 . 6 8 5, 1 2 0 . 4 4 (0.76) 10 / 1 6 / 2 0 1 5 3 : 0 0 5 , 1 2 0 . 6 4 5, 1 2 0 . 2 2 0. 4 2 5, 1 2 0 . 1 4 5, 1 2 0 . 6 8 (0.54) 10 / 1 6 / 2 0 1 5 4 : 0 0 5 , 1 2 0 . 8 6 5, 1 2 0 . 3 3 0. 5 3 5, 1 2 0 . 3 6 5, 1 2 0 . 8 6 (0.50) 10 / 1 6 / 2 0 1 5 5 : 0 0 5 , 1 2 0 . 9 8 5, 1 2 0 . 3 7 0. 6 1 5, 1 2 0 . 5 9 5, 1 2 0 . 9 9 (0.40) 10 / 1 6 / 2 0 1 5 6 : 0 0 5 , 1 2 0 . 5 2 5, 1 2 0 . 1 3 0. 3 9 5, 1 2 0 . 4 7 5, 1 2 0 . 9 7 (0.50) 10 / 1 6 / 2 0 1 5 7 : 0 0 5 , 1 1 9 . 1 7 5, 1 1 8 . 8 2 0. 3 5 5, 1 1 9 . 9 1 5, 1 2 0 . 4 9 (0.58) 10 / 1 6 / 2 0 1 5 8 : 0 0 5 , 1 1 8 . 1 6 5, 1 1 7 . 9 8 0. 1 8 5, 1 1 9 . 5 7 5, 1 1 9 . 9 5 (0.38) 10 / 1 6 / 2 0 1 5 9 : 0 0 5 , 1 1 9 . 1 7 5, 1 1 9 . 6 3 (0 . 4 6 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 5 3 (0.85) 10 / 1 6 / 2 0 1 5 1 0 : 0 0 5 , 1 1 8 . 3 8 5, 1 1 9 . 8 6 (1 . 4 8 ) 5, 1 1 9 . 8 0 5, 1 2 0 . 6 7 (0.87) 10 / 1 6 / 2 0 1 5 1 1 : 0 0 5 , 1 1 8 . 2 7 5, 1 2 0 . 0 8 (1 . 8 1 ) 5, 1 1 9 . 8 0 5, 1 2 0 . 8 4 (1.04) 10 / 1 6 / 2 0 1 5 1 2 : 0 0 5 , 1 1 8 . 1 6 5, 1 2 0 . 2 9 (2 . 1 3 ) 5, 1 1 9 . 9 1 5, 1 2 1 . 0 1 (1.10) 10 / 1 6 / 2 0 1 5 1 3 : 0 0 5 , 1 1 8 . 0 4 5, 1 2 0 . 5 1 (2 . 4 7 ) 5, 1 2 0 . 0 2 5, 1 2 1 . 2 0 (1.18) 10 / 1 6 / 2 0 1 5 1 4 : 0 0 5 , 1 1 7 . 9 3 5, 1 2 0 . 7 4 (2 . 8 1 ) 5, 1 2 0 . 3 6 5, 1 2 1 . 4 0 (1.04) 10 / 1 6 / 2 0 1 5 1 5 : 0 0 5 , 1 1 8 . 1 6 5, 1 2 1 . 0 8 (2 . 9 2 ) 5, 1 2 0 . 4 7 5, 1 2 1 . 6 6 (1.19) 10 / 1 6 / 2 0 1 5 1 6 : 0 0 5 , 1 1 6 . 5 8 5, 1 2 0 . 3 6 (3 . 7 8 ) 5, 1 2 0 . 2 5 5, 1 2 1 . 4 3 (1.18) 10 / 1 6 / 2 0 1 5 1 7 : 0 0 5 , 1 1 6 . 0 1 5, 1 1 9 . 9 1 (3 . 9 0 ) 5, 1 1 9 . 9 1 5, 1 2 1 . 1 8 (1.27) 10 / 1 6 / 2 0 1 5 1 8 : 0 0 5 , 1 1 6 . 0 1 5, 1 1 9 . 6 3 (3 . 6 2 ) 5, 1 1 9 . 8 0 5, 1 2 0 . 9 4 (1.14) 10 / 1 6 / 2 0 1 5 1 9 : 0 0 5 , 1 1 7 . 1 4 5, 1 1 9 . 3 9 (2 . 2 5 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 7 1 (1.03) 10 / 1 6 / 2 0 1 5 2 0 : 0 0 5 , 1 1 7 . 8 2 5, 1 1 9 . 3 7 (1 . 5 5 ) 5, 1 1 9 . 5 7 5, 1 2 0 . 5 7 (1.00) 10 / 1 6 / 2 0 1 5 2 1 : 0 0 5 , 1 1 8 . 3 8 5, 1 1 9 . 3 7 (0 . 9 9 ) 5, 1 1 9 . 5 7 5, 1 2 0 . 4 7 (0.90) 10 / 1 6 / 2 0 1 5 2 2 : 0 0 5 , 1 1 8 . 7 2 5, 1 1 9 . 4 5 (0 . 7 3 ) 5, 1 1 9 . 5 7 5, 1 2 0 . 4 3 (0.86) 10 / 1 6 / 2 0 1 5 2 3 : 0 0 5 , 1 1 9 . 1 7 5, 1 1 9 . 7 7 (0 . 6 0 ) 5, 1 1 9 . 8 0 5, 1 2 0 . 5 2 (0.72) Da t e / T i m e Re c o r d e r # 1 2 4 2 Te s t N o . 1 Te s t N o . 2 Re c o r d e r # 1 2 4 0 Page 1 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 6 / 2 0 1 5 0 : 0 0 10 / 1 6 / 2 0 1 5 1 : 0 0 10 / 1 6 / 2 0 1 5 2 : 0 0 10 / 1 6 / 2 0 1 5 3 : 0 0 10 / 1 6 / 2 0 1 5 4 : 0 0 10 / 1 6 / 2 0 1 5 5 : 0 0 10 / 1 6 / 2 0 1 5 6 : 0 0 10 / 1 6 / 2 0 1 5 7 : 0 0 10 / 1 6 / 2 0 1 5 8 : 0 0 10 / 1 6 / 2 0 1 5 9 : 0 0 10 / 1 6 / 2 0 1 5 1 0 : 0 0 10 / 1 6 / 2 0 1 5 1 1 : 0 0 10 / 1 6 / 2 0 1 5 1 2 : 0 0 10 / 1 6 / 2 0 1 5 1 3 : 0 0 10 / 1 6 / 2 0 1 5 1 4 : 0 0 10 / 1 6 / 2 0 1 5 1 5 : 0 0 10 / 1 6 / 2 0 1 5 1 6 : 0 0 10 / 1 6 / 2 0 1 5 1 7 : 0 0 10 / 1 6 / 2 0 1 5 1 8 : 0 0 10 / 1 6 / 2 0 1 5 1 9 : 0 0 10 / 1 6 / 2 0 1 5 2 0 : 0 0 10 / 1 6 / 2 0 1 5 2 1 : 0 0 10 / 1 6 / 2 0 1 5 2 2 : 0 0 10 / 1 6 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 4 9 0 No d e = Hy d r a n t # 2 7 8 El e v a t i o n = 48 8 0 . 2 5 El e v a t i o n = 48 6 1 . 1 9 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 5 1 5, 1 1 9 . 0 9 (1 . 5 8 ) 5, 1 1 9 . 5 5 5, 1 1 9 . 5 5 (0.00) 5, 1 1 8 . 3 0 5, 1 1 9 . 4 6 (1 . 1 6 ) 5, 1 2 0 . 0 0 5, 1 1 9 . 8 2 0.18 5, 1 1 8 . 6 4 5, 1 1 9 . 8 4 (1 . 2 0 ) 5, 1 2 0 . 3 4 5, 1 2 0 . 1 3 0.21 5, 1 1 9 . 2 0 5, 1 2 0 . 0 3 (0 . 8 3 ) 5, 1 2 0 . 7 9 5, 1 2 0 . 3 7 0.42 5, 1 1 9 . 3 2 5, 1 2 0 . 1 1 (0 . 7 9 ) 5, 1 2 1 . 0 2 5, 1 2 0 . 5 4 0.48 5, 1 1 9 . 3 2 5, 1 2 0 . 1 1 (0 . 7 9 ) 5, 1 2 1 . 2 4 5, 1 2 0 . 6 4 0.60 5, 1 1 8 . 6 4 5, 1 1 9 . 7 9 (1 . 1 5 ) 5, 1 2 1 . 1 3 5, 1 2 0 . 5 5 0.58 5, 1 1 6 . 6 1 5, 1 1 8 . 1 2 (1 . 5 1 ) 5, 1 2 0 . 3 4 5, 1 1 9 . 8 1 0.53 5, 1 1 5 . 5 9 5, 1 1 7 . 1 4 (1 . 5 5 ) 5, 1 1 9 . 8 9 5, 1 1 9 . 1 2 0.77 5, 1 1 7 . 4 0 5, 1 1 9 . 3 0 (1 . 9 0 ) 5, 1 2 0 . 3 4 5, 1 2 0 . 1 3 0.21 5, 1 1 7 . 2 9 5, 1 1 9 . 5 7 (2 . 2 8 ) 5, 1 2 0 . 2 3 5, 1 2 0 . 3 3 (0.10) 5, 1 1 7 . 5 1 5, 1 1 9 . 8 1 (2 . 3 0 ) 5, 1 2 0 . 4 5 5, 1 2 0 . 5 3 (0.08) 5, 1 1 7 . 7 4 5, 1 2 0 . 0 4 (2 . 3 0 ) 5, 1 2 0 . 2 3 5, 1 2 0 . 7 2 (0.49) 5, 1 1 7 . 9 6 5, 1 2 0 . 2 7 (2 . 3 1 ) 5, 1 2 0 . 3 4 5, 1 2 0 . 9 3 (0.59) 5, 1 1 8 . 4 1 5, 1 2 0 . 5 1 (2 . 1 0 ) 5, 1 2 0 . 6 8 5, 1 2 1 . 1 4 (0.46) 5, 1 1 8 . 8 7 5, 1 2 0 . 8 8 (2 . 0 1 ) 5, 1 2 1 . 1 3 5, 1 2 1 . 4 2 (0.29) 5, 1 1 7 . 2 9 5, 1 1 9 . 9 2 (2 . 6 3 ) 5, 1 2 0 . 9 0 5, 1 2 0 . 9 5 (0.05) 5, 1 1 6 . 7 2 5, 1 1 9 . 3 8 (2 . 6 6 ) 5, 1 2 0 . 6 8 5, 1 2 0 . 6 0 0.08 5, 1 1 6 . 5 0 5, 1 1 9 . 0 8 (2 . 5 8 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 3 1 0.25 5, 1 1 6 . 6 1 5, 1 1 8 . 8 4 (2 . 2 3 ) 5, 1 2 0 . 4 5 5, 1 2 0 . 0 7 0.38 5, 1 1 6 . 7 2 5, 1 1 8 . 8 7 (2 . 1 5 ) 5, 1 2 0 . 1 1 5, 1 1 9 . 9 5 0.16 5, 1 1 7 . 0 6 5, 1 1 8 . 9 0 (1 . 8 4 ) 5, 1 2 0 . 1 1 5, 1 1 9 . 8 8 0.23 5, 1 1 7 . 4 0 5, 1 1 9 . 0 3 (1 . 6 3 ) 5, 1 2 0 . 2 3 5, 1 1 9 . 8 8 0.35 5, 1 1 8 . 0 8 5, 1 1 9 . 4 4 (1 . 3 6 ) 5, 1 2 0 . 4 5 5, 1 2 0 . 0 4 0.41 Te s t N o . 3 Re c o r d e r # 1 2 5 1 Te s t N o . 4 Re c o r d e r # 1 2 4 9 Page 2 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 6 / 2 0 1 5 0 : 0 0 10 / 1 6 / 2 0 1 5 1 : 0 0 10 / 1 6 / 2 0 1 5 2 : 0 0 10 / 1 6 / 2 0 1 5 3 : 0 0 10 / 1 6 / 2 0 1 5 4 : 0 0 10 / 1 6 / 2 0 1 5 5 : 0 0 10 / 1 6 / 2 0 1 5 6 : 0 0 10 / 1 6 / 2 0 1 5 7 : 0 0 10 / 1 6 / 2 0 1 5 8 : 0 0 10 / 1 6 / 2 0 1 5 9 : 0 0 10 / 1 6 / 2 0 1 5 1 0 : 0 0 10 / 1 6 / 2 0 1 5 1 1 : 0 0 10 / 1 6 / 2 0 1 5 1 2 : 0 0 10 / 1 6 / 2 0 1 5 1 3 : 0 0 10 / 1 6 / 2 0 1 5 1 4 : 0 0 10 / 1 6 / 2 0 1 5 1 5 : 0 0 10 / 1 6 / 2 0 1 5 1 6 : 0 0 10 / 1 6 / 2 0 1 5 1 7 : 0 0 10 / 1 6 / 2 0 1 5 1 8 : 0 0 10 / 1 6 / 2 0 1 5 1 9 : 0 0 10 / 1 6 / 2 0 1 5 2 0 : 0 0 10 / 1 6 / 2 0 1 5 2 1 : 0 0 10 / 1 6 / 2 0 1 5 2 2 : 0 0 10 / 1 6 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 2 1 No d e = Hy d r a n t # 1 8 8 7 El e v a t i o n = 48 1 7 . 6 1 El e v a t i o n = 47 5 4 . 5 3 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 9 4 5, 1 1 9 . 1 8 (1 . 2 4 ) 5, 1 1 7 . 1 4 5, 1 1 9 . 0 7 (1.93) 5, 1 1 8 . 6 7 5, 1 1 9 . 5 3 (0 . 8 6 ) 5, 1 1 7 . 9 2 5, 1 1 9 . 4 4 (1.52) 5, 1 1 9 . 0 3 5, 1 1 9 . 9 0 (0 . 8 7 ) 5, 1 1 8 . 3 8 5, 1 1 9 . 8 2 (1.44) 5, 1 1 9 . 5 2 5, 1 2 0 . 1 0 (0 . 5 8 ) 5, 1 1 8 . 9 4 5, 1 2 0 . 0 1 (1.07) 5, 1 1 9 . 7 6 5, 1 2 0 . 2 0 (0 . 4 4 ) 5, 1 1 8 . 9 4 5, 1 2 0 . 0 9 (1.15) 5, 1 1 9 . 7 6 5, 1 2 0 . 2 3 (0 . 4 7 ) 5, 1 1 8 . 9 4 5, 1 2 0 . 1 0 (1.16) 5, 1 1 9 . 4 0 5, 1 1 9 . 9 6 (0 . 5 6 ) 5, 1 1 8 . 3 8 5, 1 1 9 . 7 7 (1.39) 5, 1 1 7 . 4 6 5, 1 1 8 . 5 3 (1 . 0 7 ) 5, 1 1 6 . 4 6 5, 1 1 8 . 1 3 (1.67) 5, 1 1 7 . 0 9 5, 1 1 7 . 6 3 (0 . 5 4 ) 5, 1 1 6 . 3 5 5, 1 1 7 . 1 5 (0.80) 5, 1 1 9 . 1 5 5, 1 2 0 . 0 1 (0 . 8 6 ) 5, 1 1 9 . 1 7 5, 1 2 0 . 6 0 (1.43) 5, 1 1 8 . 9 1 5, 1 2 0 . 2 4 (1 . 3 3 ) 5, 1 1 8 . 6 0 5, 1 2 0 . 8 3 (2.23) 5, 1 1 9 . 0 3 5, 1 2 0 . 4 5 (1 . 4 2 ) 5, 1 1 7 . 8 1 5, 1 2 1 . 0 5 (3.24) 5, 1 1 9 . 1 5 5, 1 2 0 . 6 5 (1 . 5 0 ) 5, 1 1 7 . 7 0 5, 1 2 1 . 2 5 (3.55) 5, 1 1 9 . 0 3 5, 1 2 0 . 8 6 (1 . 8 3 ) 5, 1 1 7 . 4 7 5, 1 2 1 . 4 5 (3.98) 5, 1 1 9 . 4 0 5, 1 2 1 . 0 8 (1 . 6 8 ) 5, 1 1 7 . 8 1 5, 1 2 1 . 6 7 (3.86) 5, 1 1 9 . 7 6 5, 1 2 1 . 3 9 (1 . 6 3 ) 5, 1 1 7 . 9 2 5, 1 2 1 . 9 8 (4.06) 5, 1 1 7 . 5 8 5, 1 2 0 . 1 6 (2 . 5 8 ) 5, 1 1 4 . 4 3 5, 1 1 9 . 9 2 (5.49) 5, 1 1 7 . 3 3 5, 1 1 9 . 6 7 (2 . 3 4 ) 5, 1 1 4 . 0 9 5, 1 1 9 . 3 8 (5.29) 5, 1 1 7 . 0 9 5, 1 1 9 . 3 7 (2 . 2 8 ) 5, 1 1 4 . 5 4 5, 1 1 9 . 0 8 (4.54) 5, 1 1 7 . 0 9 5, 1 1 9 . 1 3 (2 . 0 4 ) 5, 1 1 4 . 9 9 5, 1 1 8 . 8 3 (3.84) 5, 1 1 7 . 2 1 5, 1 1 9 . 1 2 (1 . 9 1 ) 5, 1 1 5 . 3 3 5, 1 1 8 . 8 6 (3.53) 5, 1 1 7 . 5 8 5, 1 1 9 . 1 2 (1 . 5 4 ) 5, 1 1 6 . 0 1 5, 1 1 8 . 8 8 (2.87) 5, 1 1 7 . 7 0 5, 1 1 9 . 2 2 (1 . 5 2 ) 5, 1 1 6 . 3 5 5, 1 1 9 . 0 1 (2.66) 5, 1 1 8 . 4 3 5, 1 1 9 . 5 7 (1 . 1 4 ) 5, 1 1 7 . 1 4 5, 1 1 9 . 4 2 (2.28) Te s t N o . 6 Re c o r d e r # 1 2 4 5 Te s t N o . 5 Re c o r d e r # 3 4 1 2 9 8 Page 3 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 6 / 2 0 1 5 0 : 0 0 10 / 1 6 / 2 0 1 5 1 : 0 0 10 / 1 6 / 2 0 1 5 2 : 0 0 10 / 1 6 / 2 0 1 5 3 : 0 0 10 / 1 6 / 2 0 1 5 4 : 0 0 10 / 1 6 / 2 0 1 5 5 : 0 0 10 / 1 6 / 2 0 1 5 6 : 0 0 10 / 1 6 / 2 0 1 5 7 : 0 0 10 / 1 6 / 2 0 1 5 8 : 0 0 10 / 1 6 / 2 0 1 5 9 : 0 0 10 / 1 6 / 2 0 1 5 1 0 : 0 0 10 / 1 6 / 2 0 1 5 1 1 : 0 0 10 / 1 6 / 2 0 1 5 1 2 : 0 0 10 / 1 6 / 2 0 1 5 1 3 : 0 0 10 / 1 6 / 2 0 1 5 1 4 : 0 0 10 / 1 6 / 2 0 1 5 1 5 : 0 0 10 / 1 6 / 2 0 1 5 1 6 : 0 0 10 / 1 6 / 2 0 1 5 1 7 : 0 0 10 / 1 6 / 2 0 1 5 1 8 : 0 0 10 / 1 6 / 2 0 1 5 1 9 : 0 0 10 / 1 6 / 2 0 1 5 2 0 : 0 0 10 / 1 6 / 2 0 1 5 2 1 : 0 0 10 / 1 6 / 2 0 1 5 2 2 : 0 0 10 / 1 6 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 7 5 4 No d e = Hy d r a n t # 1 1 2 5 El e v a t i o n = 48 2 0 . 1 1 El e v a t i o n = 47 7 9 . 5 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 7 . 0 5 5, 1 1 8 . 8 1 (1 . 7 6 ) 5, 1 1 8 . 4 1 5, 1 1 8 . 8 2 (0.41) 5, 1 1 7 . 8 9 5, 1 1 9 . 2 4 (1 . 3 5 ) 5, 1 1 9 . 2 0 5, 1 1 9 . 2 4 (0.04) 5, 1 1 8 . 2 6 5, 1 1 9 . 6 5 (1 . 3 9 ) 5, 1 1 9 . 6 5 5, 1 1 9 . 6 5 0.00 5, 1 1 8 . 9 9 5, 1 1 9 . 8 1 (0 . 8 2 ) 5, 1 2 0 . 4 4 5, 1 1 9 . 8 2 0.62 5, 1 1 8 . 9 9 5, 1 1 9 . 8 5 (0 . 8 6 ) 5, 1 2 0 . 4 4 5, 1 1 9 . 8 6 0.58 5, 1 1 8 . 9 9 5, 1 1 9 . 8 1 (0 . 8 2 ) 5, 1 2 0 . 4 4 5, 1 1 9 . 8 2 0.62 5, 1 1 7 . 8 9 5, 1 1 9 . 3 6 (1 . 4 7 ) 5, 1 1 9 . 3 2 5, 1 1 9 . 3 7 (0.05) 5, 1 1 5 . 4 7 5, 1 1 7 . 1 3 (1 . 6 6 ) 5, 1 1 6 . 9 5 5, 1 1 7 . 1 4 (0.19) 5, 1 1 4 . 5 0 5, 1 1 5 . 9 8 (1 . 4 8 ) 5, 1 1 6 . 0 4 5, 1 1 5 . 9 8 0.06 5, 1 1 6 . 5 6 5, 1 1 8 . 6 0 (2 . 0 4 ) 5, 1 1 7 . 9 6 5, 1 1 8 . 6 1 (0.65) 5, 1 1 6 . 5 6 5, 1 1 8 . 9 2 (2 . 3 6 ) 5, 1 1 7 . 6 2 5, 1 1 8 . 9 3 (1.31) 5, 1 1 6 . 6 8 5, 1 1 9 . 2 1 (2 . 5 3 ) 5, 1 1 7 . 5 1 5, 1 1 9 . 2 2 (1.71) 5, 1 1 6 . 5 6 5, 1 1 9 . 4 6 (2 . 9 0 ) 5, 1 1 7 . 5 1 5, 1 1 9 . 4 7 (1.96) 5, 1 1 6 . 8 0 5, 1 1 9 . 7 2 (2 . 9 2 ) 5, 1 1 7 . 4 0 5, 1 1 9 . 7 2 (2.32) 5, 1 1 7 . 4 1 5, 1 1 9 . 9 8 (2 . 5 7 ) 5, 1 1 7 . 7 4 5, 1 1 9 . 9 9 (2.25) 5, 1 1 7 . 4 1 5, 1 2 0 . 4 1 (3 . 0 0 ) 5, 1 1 7 . 6 2 5, 1 2 0 . 4 1 (2.79) 5, 1 1 5 . 9 5 5, 1 1 9 . 3 4 (3 . 3 9 ) 5, 1 1 5 . 8 2 5, 1 1 9 . 3 5 (3.53) 5, 1 1 5 . 1 0 5, 1 1 8 . 6 7 (3 . 5 7 ) 5, 1 1 4 . 8 0 5, 1 1 8 . 6 8 (3.88) 5, 1 1 5 . 1 0 5, 1 1 8 . 3 6 (3 . 2 6 ) 5, 1 1 4 . 8 0 5, 1 1 8 . 3 7 (3.57) 5, 1 1 5 . 2 3 5, 1 1 8 . 1 1 (2 . 8 8 ) 5, 1 1 5 . 3 7 5, 1 1 8 . 1 1 (2.74) 5, 1 1 5 . 8 3 5, 1 1 8 . 2 2 (2 . 3 9 ) 5, 1 1 6 . 2 7 5, 1 1 8 . 2 3 (1.96) 5, 1 1 6 . 3 2 5, 1 1 8 . 3 2 (2 . 0 0 ) 5, 1 1 6 . 9 5 5, 1 1 8 . 3 3 (1.38) 5, 1 1 6 . 6 8 5, 1 1 8 . 5 4 (1 . 8 6 ) 5, 1 1 7 . 5 1 5, 1 1 8 . 5 4 (1.03) 5, 1 1 7 . 4 1 5, 1 1 9 . 0 8 (1 . 6 7 ) 5, 1 1 8 . 4 1 5, 1 1 9 . 0 9 (0.68) Te s t N o . 7 Te s t N o . 8 Re c o r d e r # 3 4 1 2 8 9 Re c o r d e r # 2 0 1 2 5 0 Page 4 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 6 / 2 0 1 5 0 : 0 0 10 / 1 6 / 2 0 1 5 1 : 0 0 10 / 1 6 / 2 0 1 5 2 : 0 0 10 / 1 6 / 2 0 1 5 3 : 0 0 10 / 1 6 / 2 0 1 5 4 : 0 0 10 / 1 6 / 2 0 1 5 5 : 0 0 10 / 1 6 / 2 0 1 5 6 : 0 0 10 / 1 6 / 2 0 1 5 7 : 0 0 10 / 1 6 / 2 0 1 5 8 : 0 0 10 / 1 6 / 2 0 1 5 9 : 0 0 10 / 1 6 / 2 0 1 5 1 0 : 0 0 10 / 1 6 / 2 0 1 5 1 1 : 0 0 10 / 1 6 / 2 0 1 5 1 2 : 0 0 10 / 1 6 / 2 0 1 5 1 3 : 0 0 10 / 1 6 / 2 0 1 5 1 4 : 0 0 10 / 1 6 / 2 0 1 5 1 5 : 0 0 10 / 1 6 / 2 0 1 5 1 6 : 0 0 10 / 1 6 / 2 0 1 5 1 7 : 0 0 10 / 1 6 / 2 0 1 5 1 8 : 0 0 10 / 1 6 / 2 0 1 5 1 9 : 0 0 10 / 1 6 / 2 0 1 5 2 0 : 0 0 10 / 1 6 / 2 0 1 5 2 1 : 0 0 10 / 1 6 / 2 0 1 5 2 2 : 0 0 10 / 1 6 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 0 2 5 No d e = Hy d r a n t # El e v a t i o n = 47 5 5 . 6 7 El e v a t i o n = 0. 0 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 2 8 5, 1 1 8 . 9 5 (0 . 6 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 0 6 5, 1 1 9 . 3 5 (0 . 2 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 5 2 5, 1 1 9 . 7 4 (0 . 2 2 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 1 9 5, 1 1 9 . 9 2 0. 2 7 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 1 9 5, 1 1 9 . 9 8 0. 2 1 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 3 1 5, 1 1 9 . 9 6 0. 3 5 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 2 9 5, 1 1 9 . 5 8 (0 . 2 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 2 6 5, 1 1 7 . 6 4 (0 . 3 8 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 5 8 5, 1 1 6 . 5 5 0. 0 3 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 3 9 5, 1 1 9 . 1 9 (0 . 8 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 3 9 5, 1 1 9 . 4 8 (1 . 0 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 1 6 5, 1 1 9 . 7 5 (1 . 5 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 0 5 5, 1 1 9 . 9 9 (1 . 9 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 9 4 5, 1 2 0 . 2 3 (2 . 2 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 2 8 5, 1 2 0 . 4 9 (2 . 2 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 1 6 5, 1 2 0 . 8 7 (2 . 7 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 2 4 5, 1 1 9 . 6 5 (3 . 4 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 4 5 5, 1 1 9 . 0 5 (3 . 6 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 7 9 5, 1 1 8 . 7 4 (2 . 9 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 1 3 5, 1 1 8 . 4 9 (2 . 3 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 5 8 5, 1 1 8 . 5 7 (1 . 9 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 1 5 5, 1 1 8 . 6 3 (1 . 4 8 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 6 0 5, 1 1 8 . 7 9 (1 . 1 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 2 8 5, 1 1 9 . 2 6 (0 . 9 8 ) 0. 0 0 0. 0 0 0.00 Re c o r d e r # 1 2 4 3 Re c o r d e r # 1 2 4 1 Te s t N o . 9 Te s t N o . 1 0 Page 5 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 6 / 2 0 1 5 0 : 0 0 10 / 1 6 / 2 0 1 5 1 : 0 0 10 / 1 6 / 2 0 1 5 2 : 0 0 10 / 1 6 / 2 0 1 5 3 : 0 0 10 / 1 6 / 2 0 1 5 4 : 0 0 10 / 1 6 / 2 0 1 5 5 : 0 0 10 / 1 6 / 2 0 1 5 6 : 0 0 10 / 1 6 / 2 0 1 5 7 : 0 0 10 / 1 6 / 2 0 1 5 8 : 0 0 10 / 1 6 / 2 0 1 5 9 : 0 0 10 / 1 6 / 2 0 1 5 1 0 : 0 0 10 / 1 6 / 2 0 1 5 1 1 : 0 0 10 / 1 6 / 2 0 1 5 1 2 : 0 0 10 / 1 6 / 2 0 1 5 1 3 : 0 0 10 / 1 6 / 2 0 1 5 1 4 : 0 0 10 / 1 6 / 2 0 1 5 1 5 : 0 0 10 / 1 6 / 2 0 1 5 1 6 : 0 0 10 / 1 6 / 2 0 1 5 1 7 : 0 0 10 / 1 6 / 2 0 1 5 1 8 : 0 0 10 / 1 6 / 2 0 1 5 1 9 : 0 0 10 / 1 6 / 2 0 1 5 2 0 : 0 0 10 / 1 6 / 2 0 1 5 2 1 : 0 0 10 / 1 6 / 2 0 1 5 2 2 : 0 0 10 / 1 6 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 2 7 1 2 No d e = Hy d r a n t # 1 7 7 0 El e v a t i o n = 46 9 2 . 6 4 El e v a t i o n = 46 7 9 . 9 1 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 4, 9 2 6 . 1 8 4, 9 2 5 . 5 5 0. 6 3 5, 0 2 8 . 5 3 5, 0 2 8 . 4 1 0.12 4, 9 2 6 . 4 0 4, 9 2 6 . 5 9 (0 . 1 9 ) 5, 0 2 9 . 0 9 5, 0 2 9 . 1 4 (0.05) 4, 9 2 7 . 3 1 4, 9 2 7 . 3 0 0. 0 1 5, 0 2 9 . 6 5 5, 0 2 9 . 6 8 (0.03) 4, 9 2 7 . 6 5 4, 9 2 6 . 8 3 0. 8 2 5, 0 3 0 . 1 0 5, 0 2 9 . 5 1 0.59 4, 9 2 6 . 0 7 4, 9 2 5 . 9 7 0. 1 0 5, 0 2 8 . 8 6 5, 0 2 9 . 0 9 (0.23) 4, 9 2 4 . 6 0 4, 9 2 5 . 0 2 (0 . 4 2 ) 5, 0 2 7 . 5 1 5, 0 2 8 . 6 0 (1.09) 4, 9 2 0 . 3 1 4, 9 2 2 . 5 7 (2 . 2 6 ) 5, 0 2 3 . 1 1 5, 0 2 7 . 1 6 (4.05) 4, 9 1 5 . 3 5 4, 9 2 1 . 6 0 (6 . 2 5 ) 5, 0 1 8 . 0 3 5, 0 2 6 . 2 9 (8.26) 4, 9 1 4 . 6 7 4, 9 2 1 . 5 5 (6 . 8 8 ) 5, 0 0 4 . 3 8 5, 0 2 6 . 1 9 (21.81) 4, 9 1 6 . 7 0 4, 9 2 1 . 6 3 (4 . 9 3 ) 5, 0 0 9 . 0 1 5, 0 1 8 . 1 5 (9.14) 4, 9 1 9 . 8 6 4, 9 2 1 . 6 5 (1 . 7 9 ) 5, 0 1 0 . 5 9 5, 0 1 8 . 0 7 (7.48) 4, 9 2 0 . 7 6 4, 9 2 1 . 6 6 (0 . 9 0 ) 5, 0 1 1 . 8 3 5, 0 1 7 . 9 8 (6.15) 4, 9 2 1 . 2 1 4, 9 2 1 . 6 7 (0 . 4 6 ) 5, 0 1 1 . 0 4 5, 0 1 7 . 8 9 (6.85) 4, 9 2 0 . 0 9 4, 9 2 1 . 6 7 (1 . 5 8 ) 5, 0 1 0 . 1 4 5, 0 1 7 . 7 9 (7.65) 4, 9 2 0 . 5 4 4, 9 2 1 . 6 8 (1 . 1 4 ) 5, 0 1 1 . 3 8 5, 0 1 7 . 6 9 (6.31) 4, 9 2 1 . 7 8 4, 9 2 1 . 7 2 0. 0 6 5, 0 1 2 . 2 8 5, 0 1 7 . 6 9 (5.41) 4, 9 2 0 . 2 0 4, 9 2 1 . 7 1 (1 . 5 1 ) 5, 0 1 9 . 9 5 5, 0 2 4 . 9 2 (4.97) 4, 9 1 9 . 6 3 4, 9 2 1 . 6 7 (2 . 0 4 ) 5, 0 1 9 . 5 0 5, 0 2 4 . 8 7 (5.37) 4, 9 2 0 . 2 0 4, 9 2 1 . 6 7 (1 . 4 7 ) 5, 0 2 1 . 8 7 5, 0 2 4 . 9 2 (3.05) 4, 9 2 0 . 7 6 4, 9 2 1 . 6 7 (0 . 9 1 ) 5, 0 2 3 . 0 0 5, 0 2 4 . 9 6 (1.96) 4, 9 2 1 . 5 5 4, 9 2 1 . 6 9 (0 . 1 4 ) 5, 0 2 3 . 1 1 5, 0 2 5 . 0 9 (1.98) 4, 9 2 2 . 4 6 4, 9 2 1 . 7 1 0. 7 5 5, 0 2 3 . 4 5 5, 0 2 5 . 2 0 (1.75) 4, 9 2 2 . 1 2 4, 9 2 1 . 7 5 0. 3 7 5, 0 2 3 . 6 7 5, 0 2 5 . 3 4 (1.67) 4, 9 2 4 . 9 4 4, 9 2 4 . 0 0 0. 9 4 5, 0 2 6 . 1 6 5, 0 2 6 . 8 1 (0.65) Re c o r d e r # 1 2 4 6 Re c o r d e r # 1 2 4 4 Te s t N o . 1 1 Te s t N o . 1 2 Page 6 of 6 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Sa t u r d a y , O c t o b e r 1 7 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 10 / 1 7 / 2 0 1 5 0 : 0 0 0 : 0 0 2 7 . 4 0 2 7 . 4 0 0 . 0 0 2 3 . 0 4 2 3 . 0 4 0 . 0 0 3 6 . 3 6 3 6 . 3 6 0.00 10 / 1 7 / 2 0 1 5 1 : 0 0 1 : 0 0 27 . 6 0 27 . 4 5 0.1 5 23 . 1 6 23 . 1 2 0.0 4 36 . 6 5 36 . 3 6 0.29 10 / 1 7 / 2 0 1 5 2 : 0 0 2 : 0 0 27 . 8 0 27 . 5 9 0.2 1 23 . 3 1 23 . 2 2 0.0 9 36 . 9 8 36 . 6 2 0.36 10 / 1 7 / 2 0 1 5 3 : 0 0 3 : 0 0 28 . 3 0 27 . 7 7 0.5 3 23 . 4 7 23 . 3 2 0.1 5 37 . 3 5 36 . 8 6 0.49 10 / 1 7 / 2 0 1 5 4 : 0 0 4 : 0 0 28 . 5 0 28 . 0 2 0.4 8 23 . 5 9 23 . 4 4 0.1 5 37 . 7 2 37 . 1 9 0.53 10 / 1 7 / 2 0 1 5 5 : 0 0 5 : 0 0 29 . 0 0 28 . 2 9 0.7 1 23 . 7 4 23 . 5 6 0.1 8 38 . 0 8 37 . 5 0 0.58 10 / 1 7 / 2 0 1 5 6 : 0 0 6 : 0 0 29 . 2 0 28 . 5 6 0.6 4 23 . 8 4 23 . 6 8 0.1 6 38 . 3 8 37 . 7 9 0.59 10 / 1 7 / 2 0 1 5 7 : 0 0 7 : 0 0 29 . 4 0 28 . 7 7 0.6 3 23 . 9 1 23 . 7 8 0.1 3 38 . 5 0 37 . 9 5 0.55 10 / 1 7 / 2 0 1 5 8 : 0 0 8 : 0 0 29 . 4 0 28 . 8 0 0.6 0 23 . 9 6 23 . 8 6 0.1 0 38 . 3 5 37 . 9 1 0.44 10 / 1 7 / 2 0 1 5 9 : 0 0 9 : 0 0 29 . 4 0 28 . 9 7 0.4 3 23 . 7 4 23 . 6 7 0.0 7 38 . 3 8 38 . 2 4 0.14 10 / 1 7 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 29 . 4 0 28 . 9 6 0.4 4 23 . 4 9 23 . 4 4 0.0 5 38 . 2 7 38 . 0 8 0.19 10 / 1 7 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 29 . 2 0 28 . 8 3 0.3 7 23 . 2 4 23 . 2 1 0.0 3 38 . 1 5 37 . 7 6 0.39 10 / 1 7 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 29 . 2 0 28 . 8 5 0.3 5 23 . 0 1 22 . 9 9 0.0 2 38 . 1 1 37 . 9 5 0.16 10 / 1 7 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 29 . 2 0 28 . 9 1 0.2 9 22 . 7 8 22 . 7 7 0.0 1 38 . 1 1 38 . 1 0 0.01 10 / 1 7 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 29 . 2 0 28 . 9 1 0.2 9 22 . 5 6 22 . 5 4 0.0 2 38 . 1 7 38 . 0 4 0.13 10 / 1 7 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 29 . 2 0 29 . 0 2 0.1 8 22 . 3 4 22 . 3 2 0.0 2 38 . 3 1 38 . 2 5 0.06 10 / 1 7 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 29 . 2 0 29 . 0 8 0.1 2 22 . 2 4 22 . 2 0 0.0 4 38 . 1 8 38 . 2 3 -0 . 0 5 10 / 1 7 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 29 . 0 0 28 . 9 2 0.0 8 22 . 2 9 22 . 2 5 0.0 4 37 . 7 8 37 . 7 8 0.00 10 / 1 7 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 28 . 7 0 28 . 7 6 -0 . 0 6 22 . 3 4 22 . 3 1 0.0 3 37 . 4 8 37 . 5 8 -0 . 1 0 10 / 1 7 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 28 . 5 0 28 . 5 9 -0 . 0 9 22 . 4 2 22 . 3 7 0.0 5 37 . 2 2 37 . 3 9 -0 . 1 7 10 / 1 7 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 28 . 3 0 28 . 4 3 -0 . 1 3 22 . 4 7 22 . 4 2 0.0 5 37 . 0 7 37 . 2 4 -0 . 1 7 10 / 1 7 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 28 . 3 0 28 . 3 3 -0 . 0 3 22 . 5 7 22 . 4 9 0.0 8 37 . 0 5 37 . 2 2 -0 . 1 7 10 / 1 7 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 28 . 0 0 28 . 2 6 -0 . 2 6 22 . 6 4 22 . 5 6 0.0 8 37 . 0 4 37 . 2 0 -0 . 1 6 10 / 1 7 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 28 . 3 0 28 . 1 6 0.1 4 22 . 7 4 22 . 6 3 0.1 1 37 . 1 5 37 . 0 9 0.06 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Sa t u r d a y , O c t o b e r 1 7 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Sa t u r d a y , O c t o b e r 1 7 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 4.45 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) No d e = Hy d r a n t # 2 1 0 7 No d e = Hy d r a n t # 4 3 3 El e v a t i o n = 50 2 4 . 7 4 El e v a t i o n = 49 6 9 . 5 2 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 10 / 1 7 / 2 0 1 5 0 : 0 0 5 , 1 1 9 . 9 6 5, 1 2 0 . 0 3 (0 . 0 7 ) 5, 1 2 0 . 1 4 5, 1 2 0 . 8 1 (0.67) 10 / 1 7 / 2 0 1 5 1 : 0 0 5 , 1 2 0 . 5 2 5, 1 2 0 . 4 3 0. 0 9 5, 1 2 0 . 3 6 5, 1 2 0 . 9 9 (0.63) 10 / 1 7 / 2 0 1 5 2 : 0 0 5 , 1 2 0 . 9 8 5, 1 2 0 . 6 6 0. 3 2 5, 1 2 0 . 8 1 5, 1 2 1 . 1 9 (0.38) 10 / 1 7 / 2 0 1 5 3 : 0 0 5 , 1 2 1 . 3 1 5, 1 2 1 . 0 6 0. 2 5 5, 1 2 1 . 1 5 5, 1 2 1 . 4 8 (0.33) 10 / 1 7 / 2 0 1 5 4 : 0 0 5 , 1 2 1 . 8 8 5, 1 2 1 . 3 5 0. 5 3 5, 1 2 1 . 6 0 5, 1 2 1 . 7 6 (0.16) 10 / 1 7 / 2 0 1 5 5 : 0 0 5 , 1 2 2 . 2 2 5, 1 2 1 . 6 3 0. 5 9 5, 1 2 1 . 9 4 5, 1 2 2 . 0 3 (0.09) 10 / 1 7 / 2 0 1 5 6 : 0 0 5 , 1 2 2 . 2 2 5, 1 2 1 . 7 4 0. 4 8 5, 1 2 2 . 0 5 5, 1 2 2 . 2 4 (0.19) 10 / 1 7 / 2 0 1 5 7 : 0 0 5 , 1 2 1 . 9 9 5, 1 2 1 . 6 3 0. 3 6 5, 1 2 2 . 0 5 5, 1 2 2 . 3 2 (0.27) 10 / 1 7 / 2 0 1 5 8 : 0 0 5 , 1 2 1 . 2 0 5, 1 2 1 . 2 7 (0 . 0 7 ) 5, 1 2 1 . 9 4 5, 1 2 2 . 1 9 (0.25) 10 / 1 7 / 2 0 1 5 9 : 0 0 5 , 1 2 0 . 8 6 5, 1 2 1 . 5 1 (0 . 6 5 ) 5, 1 2 1 . 7 1 5, 1 2 2 . 4 7 (0.76) 10 / 1 7 / 2 0 1 5 1 0 : 0 0 5 , 1 2 0 . 1 9 5, 1 2 1 . 0 0 (0 . 8 1 ) 5, 1 2 1 . 6 0 5, 1 2 2 . 2 6 (0.66) 10 / 1 7 / 2 0 1 5 1 1 : 0 0 5 , 1 1 9 . 6 2 5, 1 2 1 . 5 5 (1 . 9 3 ) 5, 1 2 1 . 6 0 5, 1 2 2 . 3 1 (0.71) 10 / 1 7 / 2 0 1 5 1 2 : 0 0 5 , 1 1 9 . 0 6 5, 1 2 1 . 6 9 (2 . 6 3 ) 5, 1 2 1 . 4 9 5, 1 2 2 . 4 1 (0.92) 10 / 1 7 / 2 0 1 5 1 3 : 0 0 5 , 1 1 9 . 1 7 5, 1 2 1 . 5 2 (2 . 3 5 ) 5, 1 2 1 . 6 0 5, 1 2 2 . 4 1 (0.81) 10 / 1 7 / 2 0 1 5 1 4 : 0 0 5 , 1 1 8 . 9 5 5, 1 2 1 . 9 0 (2 . 9 5 ) 5, 1 2 1 . 8 3 5, 1 2 2 . 5 4 (0.71) 10 / 1 7 / 2 0 1 5 1 5 : 0 0 5 , 1 1 8 . 6 1 5, 1 2 2 . 1 2 (3 . 5 1 ) 5, 1 2 1 . 9 4 5, 1 2 2 . 7 0 (0.76) 10 / 1 7 / 2 0 1 5 1 6 : 0 0 5 , 1 1 7 . 5 9 5, 1 2 1 . 1 8 (3 . 5 9 ) 5, 1 2 1 . 6 0 5, 1 2 2 . 3 5 (0.75) 10 / 1 7 / 2 0 1 5 1 7 : 0 0 5 , 1 1 7 . 1 4 5, 1 2 1 . 0 8 (3 . 9 4 ) 5, 1 2 1 . 2 6 5, 1 2 2 . 1 4 (0.88) 10 / 1 7 / 2 0 1 5 1 8 : 0 0 5 , 1 1 7 . 4 8 5, 1 2 0 . 9 1 (3 . 4 3 ) 5, 1 2 1 . 0 4 5, 1 2 1 . 9 6 (0.92) 10 / 1 7 / 2 0 1 5 1 9 : 0 0 5 , 1 1 8 . 0 4 5, 1 2 0 . 8 0 (2 . 7 6 ) 5, 1 2 0 . 8 1 5, 1 2 1 . 8 1 (1.00) 10 / 1 7 / 2 0 1 5 2 0 : 0 0 5 , 1 1 8 . 7 2 5, 1 2 0 . 8 8 (2 . 1 6 ) 5, 1 2 0 . 7 0 5, 1 2 1 . 7 4 (1.04) 10 / 1 7 / 2 0 1 5 2 1 : 0 0 5 , 1 1 9 . 0 6 5, 1 2 0 . 8 8 (1 . 8 2 ) 5, 1 2 0 . 7 0 5, 1 2 1 . 7 0 (1.00) 10 / 1 7 / 2 0 1 5 2 2 : 0 0 5 , 1 1 9 . 5 1 5, 1 2 0 . 7 0 (1 . 1 9 ) 5, 1 2 0 . 7 0 5, 1 2 1 . 5 9 (0.89) 10 / 1 7 / 2 0 1 5 2 3 : 0 0 5 , 1 1 9 . 8 5 5, 1 2 0 . 9 0 (1 . 0 5 ) 5, 1 2 0 . 8 1 5, 1 2 1 . 6 1 (0.80) Da t e / T i m e Re c o r d e r # 1 2 4 2 Te s t N o . 1 Te s t N o . 2 Re c o r d e r # 1 2 4 0 Page 1 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 7 / 2 0 1 5 0 : 0 0 10 / 1 7 / 2 0 1 5 1 : 0 0 10 / 1 7 / 2 0 1 5 2 : 0 0 10 / 1 7 / 2 0 1 5 3 : 0 0 10 / 1 7 / 2 0 1 5 4 : 0 0 10 / 1 7 / 2 0 1 5 5 : 0 0 10 / 1 7 / 2 0 1 5 6 : 0 0 10 / 1 7 / 2 0 1 5 7 : 0 0 10 / 1 7 / 2 0 1 5 8 : 0 0 10 / 1 7 / 2 0 1 5 9 : 0 0 10 / 1 7 / 2 0 1 5 1 0 : 0 0 10 / 1 7 / 2 0 1 5 1 1 : 0 0 10 / 1 7 / 2 0 1 5 1 2 : 0 0 10 / 1 7 / 2 0 1 5 1 3 : 0 0 10 / 1 7 / 2 0 1 5 1 4 : 0 0 10 / 1 7 / 2 0 1 5 1 5 : 0 0 10 / 1 7 / 2 0 1 5 1 6 : 0 0 10 / 1 7 / 2 0 1 5 1 7 : 0 0 10 / 1 7 / 2 0 1 5 1 8 : 0 0 10 / 1 7 / 2 0 1 5 1 9 : 0 0 10 / 1 7 / 2 0 1 5 2 0 : 0 0 10 / 1 7 / 2 0 1 5 2 1 : 0 0 10 / 1 7 / 2 0 1 5 2 2 : 0 0 10 / 1 7 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 4 9 0 No d e = Hy d r a n t # 2 7 8 El e v a t i o n = 48 8 0 . 2 5 El e v a t i o n = 48 6 1 . 1 9 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 8 7 5, 1 1 9 . 7 1 (0 . 8 4 ) 5, 1 2 0 . 7 9 5, 1 2 0 . 3 9 0.40 5, 1 1 9 . 3 2 5, 1 2 0 . 1 9 (0 . 8 7 ) 5, 1 2 1 . 1 3 5, 1 2 0 . 6 1 0.52 5, 1 1 9 . 7 7 5, 1 2 0 . 4 3 (0 . 6 6 ) 5, 1 2 1 . 4 7 5, 1 2 0 . 8 3 0.64 5, 1 2 0 . 2 2 5, 1 2 0 . 8 9 (0 . 6 7 ) 5, 1 2 1 . 8 1 5, 1 2 1 . 1 7 0.64 5, 1 2 0 . 6 7 5, 1 2 1 . 1 7 (0 . 5 0 ) 5, 1 2 2 . 2 6 5, 1 2 1 . 4 6 0.80 5, 1 2 1 . 0 1 5, 1 2 1 . 4 5 (0 . 4 4 ) 5, 1 2 2 . 6 0 5, 1 2 1 . 7 4 0.86 5, 1 2 0 . 7 8 5, 1 2 1 . 5 2 (0 . 7 4 ) 5, 1 2 2 . 7 1 5, 1 2 1 . 9 3 0.78 5, 1 2 0 . 4 4 5, 1 2 1 . 3 5 (0 . 9 1 ) 5, 1 2 2 . 7 1 5, 1 2 1 . 9 5 0.76 5, 1 1 9 . 5 4 5, 1 2 0 . 8 9 (1 . 3 5 ) 5, 1 2 2 . 4 8 5, 1 2 1 . 7 5 0.73 5, 1 1 9 . 5 4 5, 1 2 1 . 1 6 (1 . 6 2 ) 5, 1 2 2 . 4 8 5, 1 2 2 . 1 7 0.31 5, 1 1 9 . 3 2 5, 1 2 0 . 5 4 (1 . 2 2 ) 5, 1 2 2 . 1 4 5, 1 2 1 . 8 8 0.26 5, 1 1 9 . 0 9 5, 1 2 1 . 2 7 (2 . 1 8 ) 5, 1 2 2 . 0 3 5, 1 2 1 . 9 9 0.04 5, 1 1 8 . 9 8 5, 1 2 1 . 4 3 (2 . 4 5 ) 5, 1 2 1 . 8 1 5, 1 2 2 . 1 3 (0.32) 5, 1 1 9 . 5 4 5, 1 2 1 . 2 0 (1 . 6 6 ) 5, 1 2 1 . 9 2 5, 1 2 2 . 1 2 (0.20) 5, 1 1 9 . 7 7 5, 1 2 1 . 6 7 (1 . 9 0 ) 5, 1 2 2 . 0 3 5, 1 2 2 . 2 7 (0.24) 5, 1 1 9 . 9 9 5, 1 2 1 . 9 1 (1 . 9 2 ) 5, 1 2 2 . 2 6 5, 1 2 2 . 4 7 (0.21) 5, 1 1 8 . 8 7 5, 1 2 0 . 6 9 (1 . 8 2 ) 5, 1 2 2 . 2 6 5, 1 2 1 . 8 5 0.41 5, 1 1 8 . 4 1 5, 1 2 0 . 6 4 (2 . 2 3 ) 5, 1 2 2 . 1 4 5, 1 2 1 . 6 2 0.52 5, 1 1 7 . 8 5 5, 1 2 0 . 4 6 (2 . 6 1 ) 5, 1 2 1 . 8 1 5, 1 2 1 . 4 4 0.37 5, 1 1 7 . 7 4 5, 1 2 0 . 3 8 (2 . 6 4 ) 5, 1 2 1 . 6 9 5, 1 2 1 . 2 9 0.40 5, 1 1 8 . 0 8 5, 1 2 0 . 5 1 (2 . 4 3 ) 5, 1 2 1 . 5 8 5, 1 2 1 . 2 7 0.31 5, 1 1 8 . 4 1 5, 1 2 0 . 5 4 (2 . 1 3 ) 5, 1 2 1 . 3 5 5, 1 2 1 . 2 5 0.10 5, 1 1 8 . 7 5 5, 1 2 0 . 3 3 (1 . 5 8 ) 5, 1 2 1 . 3 5 5, 1 2 1 . 1 4 0.21 5, 1 1 9 . 2 0 5, 1 2 0 . 6 0 (1 . 4 0 ) 5, 1 2 1 . 4 7 5, 1 2 1 . 1 9 0.28 Te s t N o . 3 Re c o r d e r # 1 2 5 1 Te s t N o . 4 Re c o r d e r # 1 2 4 9 Page 2 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 7 / 2 0 1 5 0 : 0 0 10 / 1 7 / 2 0 1 5 1 : 0 0 10 / 1 7 / 2 0 1 5 2 : 0 0 10 / 1 7 / 2 0 1 5 3 : 0 0 10 / 1 7 / 2 0 1 5 4 : 0 0 10 / 1 7 / 2 0 1 5 5 : 0 0 10 / 1 7 / 2 0 1 5 6 : 0 0 10 / 1 7 / 2 0 1 5 7 : 0 0 10 / 1 7 / 2 0 1 5 8 : 0 0 10 / 1 7 / 2 0 1 5 9 : 0 0 10 / 1 7 / 2 0 1 5 1 0 : 0 0 10 / 1 7 / 2 0 1 5 1 1 : 0 0 10 / 1 7 / 2 0 1 5 1 2 : 0 0 10 / 1 7 / 2 0 1 5 1 3 : 0 0 10 / 1 7 / 2 0 1 5 1 4 : 0 0 10 / 1 7 / 2 0 1 5 1 5 : 0 0 10 / 1 7 / 2 0 1 5 1 6 : 0 0 10 / 1 7 / 2 0 1 5 1 7 : 0 0 10 / 1 7 / 2 0 1 5 1 8 : 0 0 10 / 1 7 / 2 0 1 5 1 9 : 0 0 10 / 1 7 / 2 0 1 5 2 0 : 0 0 10 / 1 7 / 2 0 1 5 2 1 : 0 0 10 / 1 7 / 2 0 1 5 2 2 : 0 0 10 / 1 7 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 2 1 No d e = Hy d r a n t # 1 8 8 7 El e v a t i o n = 48 1 7 . 6 1 El e v a t i o n = 47 5 4 . 5 3 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 9 . 1 5 5, 1 1 9 . 8 6 (0 . 7 1 ) 5, 1 1 7 . 9 2 5, 1 1 9 . 6 9 (1.77) 5, 1 1 9 . 5 2 5, 1 2 0 . 2 7 (0 . 7 5 ) 5, 1 1 8 . 3 8 5, 1 2 0 . 1 6 (1.78) 5, 1 2 0 . 0 0 5, 1 2 0 . 5 1 (0 . 5 1 ) 5, 1 1 8 . 9 4 5, 1 2 0 . 4 1 (1.47) 5, 1 2 0 . 4 9 5, 1 2 0 . 9 4 (0 . 4 5 ) 5, 1 1 9 . 5 0 5, 1 2 0 . 8 6 (1.36) 5, 1 2 0 . 9 7 5, 1 2 1 . 2 3 (0 . 2 6 ) 5, 1 1 9 . 9 6 5, 1 2 1 . 1 5 (1.19) 5, 1 2 1 . 3 4 5, 1 2 1 . 5 1 (0 . 1 7 ) 5, 1 2 0 . 2 9 5, 1 2 1 . 4 3 (1.14) 5, 1 2 1 . 3 4 5, 1 2 1 . 6 1 (0 . 2 7 ) 5, 1 2 0 . 2 9 5, 1 2 1 . 5 1 (1.22) 5, 1 2 0 . 9 7 5, 1 2 1 . 4 8 (0 . 5 1 ) 5, 1 1 9 . 8 4 5, 1 2 1 . 3 3 (1.49) 5, 1 2 0 . 6 1 5, 1 2 1 . 0 8 (0 . 4 7 ) 5, 1 1 9 . 7 3 5, 1 2 0 . 8 8 (1.15) 5, 1 2 1 . 0 9 5, 1 2 1 . 9 8 (0 . 8 9 ) 5, 1 2 0 . 9 7 5, 1 2 2 . 4 8 (1.51) 5, 1 2 0 . 8 5 5, 1 2 1 . 5 3 (0 . 6 8 ) 5, 1 2 0 . 1 8 5, 1 2 1 . 9 7 (1.79) 5, 1 2 0 . 6 1 5, 1 2 1 . 9 0 (1 . 2 9 ) 5, 1 1 9 . 2 8 5, 1 2 2 . 4 5 (3.17) 5, 1 2 0 . 6 1 5, 1 2 2 . 0 4 (1 . 4 3 ) 5, 1 1 8 . 6 0 5, 1 2 2 . 5 9 (3.99) 5, 1 2 0 . 6 1 5, 1 2 1 . 9 5 (1 . 3 4 ) 5, 1 1 8 . 6 0 5, 1 2 2 . 4 5 (3.85) 5, 1 2 0 . 7 3 5, 1 2 2 . 2 2 (1 . 4 9 ) 5, 1 1 8 . 9 4 5, 1 2 2 . 7 8 (3.84) 5, 1 2 1 . 0 9 5, 1 2 2 . 4 3 (1 . 3 4 ) 5, 1 1 8 . 6 0 5, 1 2 2 . 9 8 (4.38) 5, 1 1 9 . 1 5 5, 1 2 0 . 9 7 (1 . 8 2 ) 5, 1 1 5 . 5 6 5, 1 2 0 . 6 9 (5.13) 5, 1 1 8 . 6 7 5, 1 2 0 . 8 7 (2 . 2 0 ) 5, 1 1 5 . 3 3 5, 1 2 0 . 6 3 (5.30) 5, 1 1 8 . 1 8 5, 1 2 0 . 6 9 (2 . 5 1 ) 5, 1 1 5 . 4 4 5, 1 2 0 . 4 5 (5.01) 5, 1 1 8 . 3 0 5, 1 2 0 . 5 9 (2 . 2 9 ) 5, 1 1 5 . 7 8 5, 1 2 0 . 3 6 (4.58) 5, 1 1 8 . 5 5 5, 1 2 0 . 6 8 (2 . 1 3 ) 5, 1 1 6 . 4 6 5, 1 2 0 . 4 9 (4.03) 5, 1 1 8 . 9 1 5, 1 2 0 . 6 9 (1 . 7 8 ) 5, 1 1 7 . 0 2 5, 1 2 0 . 5 2 (3.50) 5, 1 1 9 . 1 5 5, 1 2 0 . 5 1 (1 . 3 6 ) 5, 1 1 7 . 3 6 5, 1 2 0 . 3 1 (2.95) 5, 1 1 9 . 4 0 5, 1 2 0 . 7 2 (1 . 3 2 ) 5, 1 1 8 . 0 4 5, 1 2 0 . 5 8 (2.54) Te s t N o . 6 Re c o r d e r # 1 2 4 5 Te s t N o . 5 Re c o r d e r # 3 4 1 2 9 8 Page 3 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 7 / 2 0 1 5 0 : 0 0 10 / 1 7 / 2 0 1 5 1 : 0 0 10 / 1 7 / 2 0 1 5 2 : 0 0 10 / 1 7 / 2 0 1 5 3 : 0 0 10 / 1 7 / 2 0 1 5 4 : 0 0 10 / 1 7 / 2 0 1 5 5 : 0 0 10 / 1 7 / 2 0 1 5 6 : 0 0 10 / 1 7 / 2 0 1 5 7 : 0 0 10 / 1 7 / 2 0 1 5 8 : 0 0 10 / 1 7 / 2 0 1 5 9 : 0 0 10 / 1 7 / 2 0 1 5 1 0 : 0 0 10 / 1 7 / 2 0 1 5 1 1 : 0 0 10 / 1 7 / 2 0 1 5 1 2 : 0 0 10 / 1 7 / 2 0 1 5 1 3 : 0 0 10 / 1 7 / 2 0 1 5 1 4 : 0 0 10 / 1 7 / 2 0 1 5 1 5 : 0 0 10 / 1 7 / 2 0 1 5 1 6 : 0 0 10 / 1 7 / 2 0 1 5 1 7 : 0 0 10 / 1 7 / 2 0 1 5 1 8 : 0 0 10 / 1 7 / 2 0 1 5 1 9 : 0 0 10 / 1 7 / 2 0 1 5 2 0 : 0 0 10 / 1 7 / 2 0 1 5 2 1 : 0 0 10 / 1 7 / 2 0 1 5 2 2 : 0 0 10 / 1 7 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 7 5 4 No d e = Hy d r a n t # 1 1 2 5 El e v a t i o n = 48 2 0 . 1 1 El e v a t i o n = 47 7 9 . 5 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 8 . 5 0 5, 1 1 9 . 3 2 (0 . 8 2 ) 5, 1 1 9 . 4 3 5, 1 1 9 . 3 2 0.11 5, 1 1 8 . 8 6 5, 1 1 9 . 9 3 (1 . 0 7 ) 5, 1 1 9 . 8 8 5, 1 1 9 . 9 3 (0.05) 5, 1 1 9 . 4 7 5, 1 2 0 . 1 8 (0 . 7 1 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 1 9 0.37 5, 1 2 0 . 0 8 5, 1 2 0 . 7 0 (0 . 6 2 ) 5, 1 2 1 . 2 3 5, 1 2 0 . 7 0 0.53 5, 1 2 0 . 5 6 5, 1 2 0 . 9 9 (0 . 4 3 ) 5, 1 2 1 . 6 8 5, 1 2 0 . 9 9 0.69 5, 1 2 0 . 6 8 5, 1 2 1 . 2 7 (0 . 5 9 ) 5, 1 2 1 . 9 1 5, 1 2 1 . 2 7 0.64 5, 1 2 0 . 6 8 5, 1 2 1 . 2 8 (0 . 6 0 ) 5, 1 2 1 . 8 0 5, 1 2 1 . 2 9 0.51 5, 1 1 9 . 9 6 5, 1 2 1 . 0 0 (1 . 0 4 ) 5, 1 2 1 . 1 2 5, 1 2 1 . 0 1 0.11 5, 1 1 8 . 7 4 5, 1 2 0 . 4 1 (1 . 6 7 ) 5, 1 1 9 . 9 9 5, 1 2 0 . 4 2 (0.43) 5, 1 1 8 . 7 4 5, 1 2 0 . 3 8 (1 . 6 4 ) 5, 1 1 9 . 9 9 5, 1 2 0 . 3 9 (0.40) 5, 1 1 8 . 2 6 5, 1 1 9 . 5 4 (1 . 2 8 ) 5, 1 1 9 . 2 0 5, 1 1 9 . 5 4 (0.34) 5, 1 1 8 . 0 2 5, 1 2 0 . 6 7 (2 . 6 5 ) 5, 1 1 8 . 6 4 5, 1 2 0 . 6 8 (2.04) 5, 1 1 7 . 6 5 5, 1 2 0 . 8 6 (3 . 2 1 ) 5, 1 1 8 . 0 7 5, 1 2 0 . 8 6 (2.79) 5, 1 1 8 . 2 6 5, 1 2 0 . 4 9 (2 . 2 3 ) 5, 1 1 8 . 6 4 5, 1 2 0 . 5 0 (1.86) 5, 1 1 8 . 3 8 5, 1 2 1 . 1 6 (2 . 7 8 ) 5, 1 1 8 . 5 3 5, 1 2 1 . 1 7 (2.64) 5, 1 1 8 . 8 6 5, 1 2 1 . 4 4 (2 . 5 8 ) 5, 1 1 8 . 5 3 5, 1 2 1 . 4 5 (2.92) 5, 1 1 7 . 2 9 5, 1 2 0 . 0 2 (2 . 7 3 ) 5, 1 1 6 . 8 3 5, 1 2 0 . 0 3 (3.20) 5, 1 1 6 . 5 6 5, 1 2 0 . 0 6 (3 . 5 0 ) 5, 1 1 6 . 1 6 5, 1 2 0 . 0 6 (3.90) 5, 1 1 6 . 3 2 5, 1 1 9 . 9 0 (3 . 5 8 ) 5, 1 1 5 . 8 2 5, 1 1 9 . 9 1 (4.09) 5, 1 1 6 . 5 6 5, 1 1 9 . 8 5 (3 . 2 9 ) 5, 1 1 6 . 3 8 5, 1 1 9 . 8 6 (3.48) 5, 1 1 7 . 1 7 5, 1 2 0 . 0 8 (2 . 9 1 ) 5, 1 1 7 . 2 8 5, 1 2 0 . 0 9 (2.81) 5, 1 1 7 . 7 7 5, 1 2 0 . 1 3 (2 . 3 6 ) 5, 1 1 8 . 0 7 5, 1 2 0 . 1 4 (2.07) 5, 1 1 8 . 0 2 5, 1 1 9 . 8 8 (1 . 8 6 ) 5, 1 1 8 . 5 3 5, 1 1 9 . 8 9 (1.36) 5, 1 1 8 . 7 4 5, 1 2 0 . 2 5 (1 . 5 1 ) 5, 1 1 9 . 3 2 5, 1 2 0 . 2 5 (0.93) Te s t N o . 7 Te s t N o . 8 Re c o r d e r # 3 4 1 2 8 9 Re c o r d e r # 2 0 1 2 5 0 Page 4 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 7 / 2 0 1 5 0 : 0 0 10 / 1 7 / 2 0 1 5 1 : 0 0 10 / 1 7 / 2 0 1 5 2 : 0 0 10 / 1 7 / 2 0 1 5 3 : 0 0 10 / 1 7 / 2 0 1 5 4 : 0 0 10 / 1 7 / 2 0 1 5 5 : 0 0 10 / 1 7 / 2 0 1 5 6 : 0 0 10 / 1 7 / 2 0 1 5 7 : 0 0 10 / 1 7 / 2 0 1 5 8 : 0 0 10 / 1 7 / 2 0 1 5 9 : 0 0 10 / 1 7 / 2 0 1 5 1 0 : 0 0 10 / 1 7 / 2 0 1 5 1 1 : 0 0 10 / 1 7 / 2 0 1 5 1 2 : 0 0 10 / 1 7 / 2 0 1 5 1 3 : 0 0 10 / 1 7 / 2 0 1 5 1 4 : 0 0 10 / 1 7 / 2 0 1 5 1 5 : 0 0 10 / 1 7 / 2 0 1 5 1 6 : 0 0 10 / 1 7 / 2 0 1 5 1 7 : 0 0 10 / 1 7 / 2 0 1 5 1 8 : 0 0 10 / 1 7 / 2 0 1 5 1 9 : 0 0 10 / 1 7 / 2 0 1 5 2 0 : 0 0 10 / 1 7 / 2 0 1 5 2 1 : 0 0 10 / 1 7 / 2 0 1 5 2 2 : 0 0 10 / 1 7 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 0 2 5 No d e = Hy d r a n t # El e v a t i o n = 47 5 5 . 6 7 El e v a t i o n = 0. 0 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 9 . 2 9 5, 1 1 9 . 5 1 (0 . 2 2 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 7 4 5, 1 2 0 . 0 5 (0 . 3 1 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 3 1 5, 1 2 0 . 3 0 0. 0 1 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 9 8 5, 1 2 0 . 7 9 0. 1 9 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 3 2 5, 1 2 1 . 0 8 0. 2 4 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 5 5 5, 1 2 1 . 3 6 0. 1 9 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 4 3 5, 1 2 1 . 4 0 0. 0 3 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 8 7 5, 1 2 1 . 1 8 (0 . 3 1 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 0 8 5, 1 2 0 . 6 5 (0 . 5 7 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 4 2 5, 1 2 1 . 0 2 (0 . 6 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 7 4 5, 1 2 0 . 3 0 (0 . 5 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 4 0 5, 1 2 1 . 2 0 (1 . 8 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 7 3 5, 1 2 1 . 3 8 (2 . 6 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 0 6 5, 1 2 1 . 0 9 (2 . 0 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 1 8 5, 1 2 1 . 6 5 (2 . 4 7 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 1 8 5, 1 2 1 . 9 0 (2 . 7 2 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 2 6 5, 1 2 0 . 3 9 (3 . 1 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 5 8 5, 1 2 0 . 3 7 (3 . 7 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 7 0 5, 1 2 0 . 2 0 (3 . 5 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 1 5 5, 1 2 0 . 1 3 (2 . 9 8 ) 0. 0 0 0. 0 0 0.00 5, 1 1 7 . 7 1 5, 1 2 0 . 3 0 (2 . 5 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 2 8 5, 1 2 0 . 3 4 (2 . 0 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 6 1 5, 1 2 0 . 1 1 (1 . 5 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 1 8 5, 1 2 0 . 4 2 (1 . 2 4 ) 0. 0 0 0. 0 0 0.00 Re c o r d e r # 1 2 4 3 Re c o r d e r # 1 2 4 1 Te s t N o . 9 Te s t N o . 1 0 Page 5 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 7 / 2 0 1 5 0 : 0 0 10 / 1 7 / 2 0 1 5 1 : 0 0 10 / 1 7 / 2 0 1 5 2 : 0 0 10 / 1 7 / 2 0 1 5 3 : 0 0 10 / 1 7 / 2 0 1 5 4 : 0 0 10 / 1 7 / 2 0 1 5 5 : 0 0 10 / 1 7 / 2 0 1 5 6 : 0 0 10 / 1 7 / 2 0 1 5 7 : 0 0 10 / 1 7 / 2 0 1 5 8 : 0 0 10 / 1 7 / 2 0 1 5 9 : 0 0 10 / 1 7 / 2 0 1 5 1 0 : 0 0 10 / 1 7 / 2 0 1 5 1 1 : 0 0 10 / 1 7 / 2 0 1 5 1 2 : 0 0 10 / 1 7 / 2 0 1 5 1 3 : 0 0 10 / 1 7 / 2 0 1 5 1 4 : 0 0 10 / 1 7 / 2 0 1 5 1 5 : 0 0 10 / 1 7 / 2 0 1 5 1 6 : 0 0 10 / 1 7 / 2 0 1 5 1 7 : 0 0 10 / 1 7 / 2 0 1 5 1 8 : 0 0 10 / 1 7 / 2 0 1 5 1 9 : 0 0 10 / 1 7 / 2 0 1 5 2 0 : 0 0 10 / 1 7 / 2 0 1 5 2 1 : 0 0 10 / 1 7 / 2 0 1 5 2 2 : 0 0 10 / 1 7 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 2 7 1 2 No d e = Hy d r a n t # 1 7 7 0 El e v a t i o n = 46 9 2 . 6 4 El e v a t i o n = 46 7 9 . 9 1 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 4, 9 2 5 . 6 1 4, 9 2 3 . 3 4 2. 2 7 5, 0 2 7 . 7 4 5, 0 2 6 . 7 7 0.97 4, 9 2 5 . 8 4 4, 9 2 5 . 9 1 (0 . 0 7 ) 5, 0 2 7 . 6 2 5, 0 2 8 . 4 5 (0.83) 4, 9 2 6 . 9 7 4, 9 2 6 . 1 4 0. 8 3 5, 0 2 8 . 7 5 5, 0 2 8 . 7 1 0.04 4, 9 2 6 . 8 6 4, 9 2 7 . 3 7 (0 . 5 1 ) 5, 0 2 9 . 0 9 5, 0 2 9 . 5 8 (0.49) 4, 9 2 5 . 7 3 4, 9 2 7 . 3 7 (1 . 6 4 ) 5, 0 2 8 . 3 0 5, 0 2 9 . 7 0 (1.40) 4, 9 2 5 . 1 6 4, 9 2 7 . 3 7 (2 . 2 1 ) 5, 0 2 8 . 3 0 5, 0 2 9 . 8 1 (1.51) 4, 9 2 4 . 3 7 4, 9 2 6 . 2 6 (1 . 8 9 ) 5, 0 2 7 . 2 8 5, 0 2 9 . 2 4 (1.96) 4, 9 2 2 . 4 6 4, 9 2 4 . 1 9 (1 . 7 3 ) 5, 0 2 4 . 6 9 5, 0 2 8 . 0 6 (3.37) 4, 9 1 6 . 7 0 4, 9 2 1 . 7 5 (5 . 0 5 ) 5, 0 0 8 . 4 4 5, 0 2 6 . 6 1 (18.17) 4, 9 1 6 . 9 3 4, 9 2 1 . 6 1 (4 . 6 8 ) 5, 0 0 6 . 5 3 5, 0 1 8 . 3 7 (11.84) 4, 9 1 5 . 3 5 4, 9 2 1 . 5 3 (6 . 1 8 ) 5, 0 0 6 . 5 3 5, 0 1 7 . 8 1 (11.28) 4, 9 1 7 . 8 3 4, 9 2 1 . 6 6 (3 . 8 3 ) 5, 0 0 8 . 6 7 5, 0 1 8 . 2 3 (9.56) 4, 9 1 7 . 2 7 4, 9 2 1 . 6 7 (4 . 4 0 ) 5, 0 0 6 . 9 8 5, 0 1 8 . 1 3 (11.15) 4, 9 1 7 . 2 7 4, 9 2 1 . 6 3 (4 . 3 6 ) 5, 0 0 9 . 1 2 5, 0 1 7 . 7 5 (8.63) 4, 9 1 9 . 3 0 4, 9 2 1 . 6 9 (2 . 3 9 ) 5, 0 0 9 . 2 3 5, 0 1 7 . 9 1 (8.68) 4, 9 1 9 . 6 3 4, 9 2 1 . 7 1 (2 . 0 8 ) 5, 0 0 9 . 9 1 5, 0 1 7 . 8 5 (7.94) 4, 9 1 9 . 3 0 4, 9 2 1 . 6 8 (2 . 3 8 ) 5, 0 1 9 . 2 7 5, 0 2 4 . 7 8 (5.51) 4, 9 1 9 . 9 7 4, 9 2 1 . 7 3 (1 . 7 6 ) 5, 0 1 8 . 9 4 5, 0 2 4 . 9 2 (5.98) 4, 9 1 8 . 8 5 4, 9 2 1 . 7 2 (2 . 8 7 ) 5, 0 2 0 . 5 2 5, 0 2 4 . 9 9 (4.47) 4, 9 2 0 . 7 6 4, 9 2 1 . 7 3 (0 . 9 7 ) 5, 0 2 1 . 0 8 5, 0 2 5 . 0 8 (4.00) 4, 9 2 2 . 0 0 4, 9 2 1 . 8 4 0. 1 6 5, 0 2 3 . 4 5 5, 0 2 5 . 2 5 (1.80) 4, 9 2 2 . 6 8 4, 9 2 3 . 0 2 (0 . 3 4 ) 5, 0 2 3 . 7 9 5, 0 2 6 . 0 5 (2.26) 4, 9 2 2 . 0 0 4, 9 2 2 . 0 8 (0 . 0 8 ) 5, 0 2 3 . 6 7 5, 0 2 5 . 5 3 (1.86) 4, 9 2 4 . 2 6 4, 9 2 4 . 1 9 0. 0 7 5, 0 2 6 . 2 7 5, 0 2 6 . 9 0 (0.63) Re c o r d e r # 1 2 4 6 Re c o r d e r # 1 2 4 4 Te s t N o . 1 1 Te s t N o . 1 2 Page 6 of 6 15171921232527293133353739414345 12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM8 PM9 PM10 PM L e v e l ( f t ) Ti m e o f D a y Su n d a y , O c t o b e r 1 8 , 2 0 1 5 So u r d o u g h R e s e r v o i r - O b s e r v e d Ly m a n C r e e k R e s e r v o i r - O b s e r v e d Hi l l t o p R e s e r v o i r - O b s e r v e d So u r d o u g h R e s e r v o i r - S i m u l a t e d Ly m a n C r e e k R e s e r v o i r - S i m u l a t e d Hi l l t o p R e s e r v o i r - S i m u l a t e d Re s e r v o i r L e v e l C o m p a r i s o n Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Re s e r v o i r L e v e l C a l i b r a t i o n (T o w e r L e v e l i n f t ) Ob s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e O b s e r v e d S i m u l a t e d D i f f e r e n c e 10 / 1 8 / 2 0 1 5 0 : 0 0 0 : 0 0 2 8 . 3 0 2 8 . 3 0 0 . 0 0 2 2 . 8 7 2 2 . 8 7 0 . 0 0 3 7 . 3 9 3 7 . 3 9 0.00 10 / 1 8 / 2 0 1 5 1 : 0 0 1 : 0 0 28 . 5 0 28 . 4 2 0.0 8 23 . 0 2 22 . 9 8 0.0 4 37 . 6 3 37 . 6 3 0.00 10 / 1 8 / 2 0 1 5 2 : 0 0 2 : 0 0 28 . 5 0 28 . 5 7 -0 . 0 7 23 . 1 7 23 . 1 0 0.0 7 37 . 8 9 37 . 8 5 0.04 10 / 1 8 / 2 0 1 5 3 : 0 0 3 : 0 0 29 . 0 0 28 . 7 4 0.2 6 23 . 3 1 23 . 2 1 0.1 0 38 . 1 8 38 . 0 6 0.12 10 / 1 8 / 2 0 1 5 4 : 0 0 4 : 0 0 29 . 2 0 28 . 9 4 0.2 6 23 . 4 7 23 . 3 3 0.1 4 38 . 4 8 38 . 2 9 0.19 10 / 1 8 / 2 0 1 5 5 : 0 0 5 : 0 0 29 . 4 0 29 . 1 9 0.2 1 23 . 5 9 23 . 4 6 0.1 3 38 . 7 4 38 . 5 8 0.16 10 / 1 8 / 2 0 1 5 6 : 0 0 6 : 0 0 29 . 2 0 28 . 9 6 0.2 4 23 . 7 1 23 . 5 6 0.1 5 38 . 8 7 38 . 5 4 0.33 10 / 1 8 / 2 0 1 5 7 : 0 0 7 : 0 0 28 . 5 0 28 . 2 3 0.2 7 23 . 8 1 23 . 6 4 0.1 7 38 . 5 3 38 . 0 7 0.46 10 / 1 8 / 2 0 1 5 8 : 0 0 8 : 0 0 28 . 3 0 28 . 0 0 0.3 0 23 . 8 8 23 . 7 4 0.1 4 37 . 9 7 37 . 6 6 0.31 10 / 1 8 / 2 0 1 5 9 : 0 0 9 : 0 0 28 . 5 0 28 . 3 3 0.1 7 23 . 6 7 23 . 5 6 0.1 1 37 . 8 2 37 . 8 6 -0 . 0 4 10 / 1 8 / 2 0 1 5 1 0 : 0 0 1 0 : 0 0 28 . 5 0 28 . 4 9 0.0 1 23 . 4 1 23 . 3 3 0.0 8 37 . 6 1 37 . 8 4 -0 . 2 3 10 / 1 8 / 2 0 1 5 1 1 : 0 0 1 1 : 0 0 28 . 3 0 28 . 4 5 -0 . 1 5 23 . 1 4 23 . 1 0 0.0 4 37 . 3 7 37 . 5 3 -0 . 1 6 10 / 1 8 / 2 0 1 5 1 2 : 0 0 1 2 : 0 0 28 . 3 0 28 . 3 8 -0 . 0 8 22 . 9 2 22 . 8 6 0.0 6 37 . 2 3 37 . 4 1 -0 . 1 8 10 / 1 8 / 2 0 1 5 1 3 : 0 0 1 3 : 0 0 28 . 3 0 28 . 4 1 -0 . 1 1 22 . 6 6 22 . 6 2 0.0 4 37 . 1 8 37 . 5 2 -0 . 3 4 10 / 1 8 / 2 0 1 5 1 4 : 0 0 1 4 : 0 0 28 . 0 0 28 . 4 6 -0 . 4 6 22 . 4 4 22 . 3 9 0.0 5 37 . 1 8 37 . 6 4 -0 . 4 6 10 / 1 8 / 2 0 1 5 1 5 : 0 0 1 5 : 0 0 28 . 3 0 28 . 2 4 0.0 6 22 . 2 2 22 . 1 4 0.0 8 37 . 2 7 37 . 0 6 0.21 10 / 1 8 / 2 0 1 5 1 6 : 0 0 1 6 : 0 0 28 . 0 0 27 . 9 9 0.0 1 22 . 1 2 21 . 9 9 0.1 3 37 . 1 4 36 . 6 9 0.45 10 / 1 8 / 2 0 1 5 1 7 : 0 0 1 7 : 0 0 27 . 8 0 27 . 7 3 0.0 7 22 . 1 5 22 . 0 4 0.1 1 36 . 6 9 36 . 3 6 0.33 10 / 1 8 / 2 0 1 5 1 8 : 0 0 1 8 : 0 0 27 . 6 0 27 . 4 6 0.1 4 22 . 2 1 22 . 0 8 0.1 3 36 . 3 1 36 . 0 8 0.23 10 / 1 8 / 2 0 1 5 1 9 : 0 0 1 9 : 0 0 27 . 4 0 27 . 1 7 0.2 3 22 . 2 6 22 . 1 3 0.1 3 35 . 8 8 35 . 7 5 0.13 10 / 1 8 / 2 0 1 5 2 0 : 0 0 2 0 : 0 0 26 . 9 0 26 . 9 2 -0 . 0 2 22 . 3 1 22 . 1 8 0.1 3 35 . 5 6 35 . 5 7 -0 . 0 1 10 / 1 8 / 2 0 1 5 2 1 : 0 0 2 1 : 0 0 26 . 7 0 26 . 6 8 0.0 2 22 . 3 9 22 . 2 3 0.1 6 35 . 3 5 35 . 3 3 0.02 10 / 1 8 / 2 0 1 5 2 2 : 0 0 2 2 : 0 0 26 . 4 0 26 . 5 9 -0 . 1 9 22 . 4 7 22 . 3 0 0.1 7 35 . 3 2 35 . 4 5 -0 . 1 3 10 / 1 8 / 2 0 1 5 2 3 : 0 0 2 3 : 0 0 26 . 4 0 26 . 3 5 0.0 5 22 . 5 7 22 . 3 4 0.2 3 35 . 3 9 35 . 0 3 0.36 Ly m a n R e s e r v o i r L e v e l So u r d o u g h R e s e r v o i r L e v e l Ti m e Da t e / T i m e Hi l l t o p R e s e r v o i r L e v e l Page 1 of 1 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d F a c t o r Su n d a y , O c t o b e r 1 8 , 2 0 1 5 Di u r n a l D e m a n d P a t t e r n - O v e r a l l 0 1, 0 0 0 2, 0 0 0 3, 0 0 0 4, 0 0 0 5, 0 0 0 6, 0 0 0 7, 0 0 0 8, 0 0 0 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM11:00 PM12:00 AM D e m a n d ( g p m ) Su n d a y , O c t o b e r 1 8 , 2 0 1 5 Di u r n a l D e m a n d C u r v e - O v e r a l l Av e r a g e D e m a n d = M G D 4.52 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) No d e = Hy d r a n t # 2 1 0 7 No d e = Hy d r a n t # 4 3 3 El e v a t i o n = 50 2 4 . 7 4 El e v a t i o n = 49 6 9 . 5 2 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 10 / 1 8 / 2 0 1 5 0 : 0 0 5 , 1 2 0 . 4 1 5, 1 2 1 . 4 7 (1 . 0 6 ) 5, 1 2 1 . 0 4 5, 1 2 1 . 9 5 (0.91) 10 / 1 8 / 2 0 1 5 1 : 0 0 5 , 1 2 0 . 7 5 5, 1 2 1 . 7 0 (0 . 9 5 ) 5, 1 2 1 . 3 8 5, 1 2 2 . 1 3 (0.75) 10 / 1 8 / 2 0 1 5 2 : 0 0 5 , 1 2 0 . 9 8 5, 1 2 1 . 9 0 (0 . 9 2 ) 5, 1 2 1 . 6 0 5, 1 2 2 . 3 2 (0.72) 10 / 1 8 / 2 0 1 5 3 : 0 0 5 , 1 2 1 . 4 3 5, 1 2 2 . 1 4 (0 . 7 1 ) 5, 1 2 1 . 9 4 5, 1 2 2 . 5 2 (0.58) 10 / 1 8 / 2 0 1 5 4 : 0 0 5 , 1 2 1 . 6 5 5, 1 2 2 . 4 7 (0 . 8 2 ) 5, 1 2 2 . 1 7 5, 1 2 2 . 7 9 (0.62) 10 / 1 8 / 2 0 1 5 5 : 0 0 5 , 1 2 1 . 9 9 5, 1 2 2 . 3 8 (0 . 3 9 ) 5, 1 2 2 . 5 0 5, 1 2 2 . 9 0 (0.40) 10 / 1 8 / 2 0 1 5 6 : 0 0 5 , 1 2 1 . 4 3 5, 1 2 2 . 0 1 (0 . 5 8 ) 5, 1 2 2 . 1 7 5, 1 2 2 . 6 4 (0.47) 10 / 1 8 / 2 0 1 5 7 : 0 0 5 , 1 2 0 . 5 2 5, 1 2 1 . 6 3 (1 . 1 1 ) 5, 1 2 1 . 4 9 5, 1 2 2 . 1 0 (0.61) 10 / 1 8 / 2 0 1 5 8 : 0 0 5 , 1 1 9 . 6 2 5, 1 2 0 . 9 1 (1 . 2 9 ) 5, 1 2 1 . 0 4 5, 1 2 1 . 6 6 (0.62) 10 / 1 8 / 2 0 1 5 9 : 0 0 5 , 1 1 9 . 9 6 5, 1 2 1 . 4 3 (1 . 4 7 ) 5, 1 2 1 . 1 5 5, 1 2 2 . 0 8 (0.93) 10 / 1 8 / 2 0 1 5 1 0 : 0 0 5 , 1 1 9 . 0 6 5, 1 2 0 . 8 7 (1 . 8 1 ) 5, 1 2 0 . 8 1 5, 1 2 1 . 9 6 (1.15) 10 / 1 8 / 2 0 1 5 1 1 : 0 0 5 , 1 1 8 . 4 9 5, 1 2 0 . 8 0 (2 . 3 1 ) 5, 1 2 0 . 5 9 5, 1 2 1 . 8 3 (1.24) 10 / 1 8 / 2 0 1 5 1 2 : 0 0 5 , 1 1 8 . 1 6 5, 1 2 1 . 0 8 (2 . 9 2 ) 5, 1 2 0 . 7 0 5, 1 2 1 . 8 8 (1.18) 10 / 1 8 / 2 0 1 5 1 3 : 0 0 5 , 1 1 8 . 2 7 5, 1 2 1 . 2 2 (2 . 9 5 ) 5, 1 2 0 . 7 0 5, 1 2 1 . 9 6 (1.26) 10 / 1 8 / 2 0 1 5 1 4 : 0 0 5 , 1 1 8 . 2 7 5, 1 2 0 . 0 0 (1 . 7 3 ) 5, 1 2 0 . 5 9 5, 1 2 1 . 5 9 (1.00) 10 / 1 8 / 2 0 1 5 1 5 : 0 0 5 , 1 1 8 . 2 7 5, 1 2 0 . 2 1 (1 . 9 4 ) 5, 1 2 0 . 7 0 5, 1 2 1 . 4 3 (0.73) 10 / 1 8 / 2 0 1 5 1 6 : 0 0 5 , 1 1 7 . 2 5 5, 1 1 9 . 7 2 (2 . 4 7 ) 5, 1 2 0 . 3 6 5, 1 2 1 . 0 3 (0.67) 10 / 1 8 / 2 0 1 5 1 7 : 0 0 5 , 1 1 6 . 8 0 5, 1 1 9 . 4 4 (2 . 6 4 ) 5, 1 1 9 . 9 1 5, 1 2 0 . 7 4 (0.83) 10 / 1 8 / 2 0 1 5 1 8 : 0 0 5 , 1 1 6 . 6 9 5, 1 1 9 . 0 8 (2 . 3 9 ) 5, 1 1 9 . 6 8 5, 1 2 0 . 4 3 (0.75) 10 / 1 8 / 2 0 1 5 1 9 : 0 0 5 , 1 1 6 . 2 4 5, 1 1 9 . 0 2 (2 . 7 8 ) 5, 1 1 9 . 1 2 5, 1 2 0 . 2 1 (1.09) 10 / 1 8 / 2 0 1 5 2 0 : 0 0 5 , 1 1 6 . 4 6 5, 1 1 8 . 7 5 (2 . 2 9 ) 5, 1 1 8 . 8 9 5, 1 1 9 . 9 7 (1.08) 10 / 1 8 / 2 0 1 5 2 1 : 0 0 5 , 1 1 6 . 9 1 5, 1 1 9 . 1 9 (2 . 2 8 ) 5, 1 1 8 . 7 8 5, 1 1 9 . 9 9 (1.21) 10 / 1 8 / 2 0 1 5 2 2 : 0 0 5 , 1 1 7 . 3 7 5, 1 1 8 . 3 7 (1 . 0 0 ) 5, 1 1 8 . 7 8 5, 1 1 9 . 6 9 (0.91) 10 / 1 8 / 2 0 1 5 2 3 : 0 0 5 , 1 1 7 . 8 2 5, 1 1 9 . 2 3 (1 . 4 1 ) 5, 1 1 8 . 8 9 5, 1 1 9 . 8 2 (0.93) Da t e / T i m e Re c o r d e r # 1 2 4 2 Te s t N o . 1 Te s t N o . 2 Re c o r d e r # 1 2 4 0 Page 1 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 8 / 2 0 1 5 0 : 0 0 10 / 1 8 / 2 0 1 5 1 : 0 0 10 / 1 8 / 2 0 1 5 2 : 0 0 10 / 1 8 / 2 0 1 5 3 : 0 0 10 / 1 8 / 2 0 1 5 4 : 0 0 10 / 1 8 / 2 0 1 5 5 : 0 0 10 / 1 8 / 2 0 1 5 6 : 0 0 10 / 1 8 / 2 0 1 5 7 : 0 0 10 / 1 8 / 2 0 1 5 8 : 0 0 10 / 1 8 / 2 0 1 5 9 : 0 0 10 / 1 8 / 2 0 1 5 1 0 : 0 0 10 / 1 8 / 2 0 1 5 1 1 : 0 0 10 / 1 8 / 2 0 1 5 1 2 : 0 0 10 / 1 8 / 2 0 1 5 1 3 : 0 0 10 / 1 8 / 2 0 1 5 1 4 : 0 0 10 / 1 8 / 2 0 1 5 1 5 : 0 0 10 / 1 8 / 2 0 1 5 1 6 : 0 0 10 / 1 8 / 2 0 1 5 1 7 : 0 0 10 / 1 8 / 2 0 1 5 1 8 : 0 0 10 / 1 8 / 2 0 1 5 1 9 : 0 0 10 / 1 8 / 2 0 1 5 2 0 : 0 0 10 / 1 8 / 2 0 1 5 2 1 : 0 0 10 / 1 8 / 2 0 1 5 2 2 : 0 0 10 / 1 8 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 4 9 0 No d e = Hy d r a n t # 2 7 8 El e v a t i o n = 48 8 0 . 2 5 El e v a t i o n = 48 6 1 . 1 9 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 9 . 7 7 5, 1 2 1 . 2 7 (1 . 5 0 ) 5, 1 2 1 . 8 1 5, 1 2 1 . 6 2 0.19 5, 1 2 0 . 2 2 5, 1 2 1 . 5 1 (1 . 2 9 ) 5, 1 2 2 . 1 4 5, 1 2 1 . 8 3 0.31 5, 1 2 0 . 4 4 5, 1 2 1 . 7 2 (1 . 2 8 ) 5, 1 2 2 . 3 7 5, 1 2 2 . 0 4 0.33 5, 1 2 1 . 0 1 5, 1 2 1 . 9 7 (0 . 9 6 ) 5, 1 2 2 . 7 1 5, 1 2 2 . 2 6 0.45 5, 1 2 1 . 2 3 5, 1 2 2 . 3 3 (1 . 1 0 ) 5, 1 2 2 . 9 3 5, 1 2 2 . 5 5 0.38 5, 1 2 1 . 4 6 5, 1 2 2 . 1 6 (0 . 7 0 ) 5, 1 2 3 . 2 7 5, 1 2 2 . 6 2 0.65 5, 1 2 1 . 0 1 5, 1 2 1 . 7 5 (0 . 7 4 ) 5, 1 2 3 . 0 5 5, 1 2 2 . 3 7 0.68 5, 1 1 9 . 9 9 5, 1 2 1 . 4 4 (1 . 4 5 ) 5, 1 2 2 . 3 7 5, 1 2 1 . 9 1 0.46 5, 1 1 8 . 8 7 5, 1 2 0 . 6 1 (1 . 7 4 ) 5, 1 2 1 . 9 2 5, 1 2 1 . 3 6 0.56 5, 1 1 9 . 3 2 5, 1 2 1 . 2 1 (1 . 8 9 ) 5, 1 2 2 . 0 3 5, 1 2 1 . 9 0 0.13 5, 1 1 8 . 3 0 5, 1 2 0 . 4 8 (2 . 1 8 ) 5, 1 2 1 . 5 8 5, 1 2 1 . 6 5 (0.07) 5, 1 1 8 . 3 0 5, 1 2 0 . 4 3 (2 . 1 3 ) 5, 1 2 1 . 2 4 5, 1 2 1 . 4 9 (0.25) 5, 1 1 8 . 3 0 5, 1 2 0 . 7 9 (2 . 4 9 ) 5, 1 2 1 . 2 4 5, 1 2 1 . 5 7 (0.33) 5, 1 1 8 . 4 1 5, 1 2 0 . 9 5 (2 . 5 4 ) 5, 1 2 1 . 3 5 5, 1 2 1 . 6 8 (0.33) 5, 1 1 8 . 5 3 5, 1 1 9 . 4 0 (0 . 8 7 ) 5, 1 2 1 . 3 5 5, 1 2 1 . 1 3 0.22 5, 1 1 8 . 6 4 5, 1 1 9 . 7 6 (1 . 1 2 ) 5, 1 2 1 . 4 7 5, 1 2 1 . 0 0 0.47 5, 1 1 7 . 4 0 5, 1 1 9 . 1 7 (1 . 7 7 ) 5, 1 2 1 . 0 2 5, 1 2 0 . 4 2 0.60 5, 1 1 6 . 7 2 5, 1 1 8 . 9 0 (2 . 1 8 ) 5, 1 2 0 . 5 6 5, 1 2 0 . 1 2 0.44 5, 1 1 6 . 3 8 5, 1 1 8 . 5 0 (2 . 1 2 ) 5, 1 2 0 . 2 3 5, 1 1 9 . 7 9 0.44 5, 1 1 5 . 3 7 5, 1 1 8 . 5 2 (3 . 1 5 ) 5, 1 1 9 . 7 7 5, 1 1 9 . 6 1 0.16 5, 1 1 5 . 4 8 5, 1 1 8 . 2 3 (2 . 7 5 ) 5, 1 1 9 . 4 4 5, 1 1 9 . 3 7 0.07 5, 1 1 6 . 0 4 5, 1 1 8 . 8 5 (2 . 8 1 ) 5, 1 1 9 . 3 2 5, 1 1 9 . 4 9 (0.17) 5, 1 1 6 . 3 8 5, 1 1 7 . 8 3 (1 . 4 5 ) 5, 1 1 9 . 4 4 5, 1 1 9 . 1 0 0.34 5, 1 1 6 . 8 3 5, 1 1 8 . 9 7 (2 . 1 4 ) 5, 1 1 9 . 4 4 5, 1 1 9 . 3 8 0.06 Te s t N o . 3 Re c o r d e r # 1 2 5 1 Te s t N o . 4 Re c o r d e r # 1 2 4 9 Page 2 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 8 / 2 0 1 5 0 : 0 0 10 / 1 8 / 2 0 1 5 1 : 0 0 10 / 1 8 / 2 0 1 5 2 : 0 0 10 / 1 8 / 2 0 1 5 3 : 0 0 10 / 1 8 / 2 0 1 5 4 : 0 0 10 / 1 8 / 2 0 1 5 5 : 0 0 10 / 1 8 / 2 0 1 5 6 : 0 0 10 / 1 8 / 2 0 1 5 7 : 0 0 10 / 1 8 / 2 0 1 5 8 : 0 0 10 / 1 8 / 2 0 1 5 9 : 0 0 10 / 1 8 / 2 0 1 5 1 0 : 0 0 10 / 1 8 / 2 0 1 5 1 1 : 0 0 10 / 1 8 / 2 0 1 5 1 2 : 0 0 10 / 1 8 / 2 0 1 5 1 3 : 0 0 10 / 1 8 / 2 0 1 5 1 4 : 0 0 10 / 1 8 / 2 0 1 5 1 5 : 0 0 10 / 1 8 / 2 0 1 5 1 6 : 0 0 10 / 1 8 / 2 0 1 5 1 7 : 0 0 10 / 1 8 / 2 0 1 5 1 8 : 0 0 10 / 1 8 / 2 0 1 5 1 9 : 0 0 10 / 1 8 / 2 0 1 5 2 0 : 0 0 10 / 1 8 / 2 0 1 5 2 1 : 0 0 10 / 1 8 / 2 0 1 5 2 2 : 0 0 10 / 1 8 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 2 1 No d e = Hy d r a n t # 1 8 8 7 El e v a t i o n = 48 1 7 . 6 1 El e v a t i o n = 47 5 4 . 5 3 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 2 0 . 0 0 5, 1 2 1 . 3 3 (1 . 3 3 ) 5, 1 1 8 . 6 0 5, 1 2 1 . 2 4 (2.64) 5, 1 2 0 . 4 9 5, 1 2 1 . 5 8 (1 . 0 9 ) 5, 1 1 9 . 1 7 5, 1 2 1 . 4 9 (2.32) 5, 1 2 0 . 8 5 5, 1 2 1 . 7 8 (0 . 9 3 ) 5, 1 1 9 . 2 8 5, 1 2 1 . 7 0 (2.42) 5, 1 2 1 . 2 2 5, 1 2 2 . 0 3 (0 . 8 1 ) 5, 1 1 9 . 7 3 5, 1 2 1 . 9 6 (2.23) 5, 1 2 1 . 4 6 5, 1 2 2 . 3 7 (0 . 9 1 ) 5, 1 2 0 . 0 7 5, 1 2 2 . 3 1 (2.24) 5, 1 2 1 . 7 0 5, 1 2 2 . 2 6 (0 . 5 6 ) 5, 1 2 0 . 4 1 5, 1 2 2 . 1 5 (1.74) 5, 1 2 1 . 3 4 5, 1 2 1 . 9 0 (0 . 5 6 ) 5, 1 1 9 . 9 6 5, 1 2 1 . 7 5 (1.79) 5, 1 2 0 . 4 9 5, 1 2 1 . 5 6 (1 . 0 7 ) 5, 1 1 8 . 8 3 5, 1 2 1 . 4 4 (2.61) 5, 1 1 9 . 8 8 5, 1 2 0 . 7 8 (0 . 9 0 ) 5, 1 1 8 . 4 9 5, 1 2 0 . 6 0 (2.11) 5, 1 2 0 . 4 9 5, 1 2 1 . 8 2 (1 . 3 3 ) 5, 1 2 0 . 0 7 5, 1 2 2 . 4 0 (2.33) 5, 1 1 9 . 7 6 5, 1 2 1 . 3 9 (1 . 6 3 ) 5, 1 1 9 . 0 5 5, 1 2 1 . 8 6 (2.81) 5, 1 1 9 . 7 6 5, 1 2 1 . 2 7 (1 . 5 1 ) 5, 1 1 8 . 3 8 5, 1 2 1 . 7 6 (3.38) 5, 1 1 9 . 5 2 5, 1 2 1 . 4 6 (1 . 9 4 ) 5, 1 1 7 . 5 9 5, 1 2 2 . 0 0 (4.41) 5, 1 1 9 . 6 4 5, 1 2 1 . 5 8 (1 . 9 4 ) 5, 1 1 8 . 2 6 5, 1 2 2 . 1 3 (3.87) 5, 1 1 9 . 6 4 5, 1 2 0 . 5 9 (0 . 9 5 ) 5, 1 1 8 . 2 6 5, 1 2 0 . 9 6 (2.70) 5, 1 1 9 . 7 6 5, 1 2 0 . 6 9 (0 . 9 3 ) 5, 1 1 8 . 3 8 5, 1 2 1 . 1 4 (2.76) 5, 1 1 7 . 9 4 5, 1 1 9 . 4 7 (1 . 5 3 ) 5, 1 1 5 . 3 3 5, 1 1 9 . 1 7 (3.84) 5, 1 1 7 . 2 1 5, 1 1 9 . 1 8 (1 . 9 7 ) 5, 1 1 4 . 7 7 5, 1 1 8 . 8 9 (4.12) 5, 1 1 6 . 8 5 5, 1 1 8 . 8 1 (1 . 9 6 ) 5, 1 1 4 . 6 5 5, 1 1 8 . 5 0 (3.85) 5, 1 1 6 . 1 2 5, 1 1 8 . 7 7 (2 . 6 5 ) 5, 1 1 3 . 9 8 5, 1 1 8 . 5 1 (4.53) 5, 1 1 6 . 2 4 5, 1 1 8 . 5 0 (2 . 2 6 ) 5, 1 1 4 . 0 9 5, 1 1 8 . 2 2 (4.13) 5, 1 1 6 . 6 1 5, 1 1 8 . 9 9 (2 . 3 8 ) 5, 1 1 4 . 6 5 5, 1 1 8 . 8 3 (4.18) 5, 1 1 6 . 9 7 5, 1 1 8 . 1 3 (1 . 1 6 ) 5, 1 1 5 . 2 2 5, 1 1 7 . 8 2 (2.60) 5, 1 1 7 . 3 3 5, 1 1 9 . 0 5 (1 . 7 2 ) 5, 1 1 5 . 6 7 5, 1 1 8 . 9 4 (3.27) Te s t N o . 5 Re c o r d e r # 3 4 1 2 9 8 Te s t N o . 6 Re c o r d e r # 1 2 4 5 Page 3 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 8 / 2 0 1 5 0 : 0 0 10 / 1 8 / 2 0 1 5 1 : 0 0 10 / 1 8 / 2 0 1 5 2 : 0 0 10 / 1 8 / 2 0 1 5 3 : 0 0 10 / 1 8 / 2 0 1 5 4 : 0 0 10 / 1 8 / 2 0 1 5 5 : 0 0 10 / 1 8 / 2 0 1 5 6 : 0 0 10 / 1 8 / 2 0 1 5 7 : 0 0 10 / 1 8 / 2 0 1 5 8 : 0 0 10 / 1 8 / 2 0 1 5 9 : 0 0 10 / 1 8 / 2 0 1 5 1 0 : 0 0 10 / 1 8 / 2 0 1 5 1 1 : 0 0 10 / 1 8 / 2 0 1 5 1 2 : 0 0 10 / 1 8 / 2 0 1 5 1 3 : 0 0 10 / 1 8 / 2 0 1 5 1 4 : 0 0 10 / 1 8 / 2 0 1 5 1 5 : 0 0 10 / 1 8 / 2 0 1 5 1 6 : 0 0 10 / 1 8 / 2 0 1 5 1 7 : 0 0 10 / 1 8 / 2 0 1 5 1 8 : 0 0 10 / 1 8 / 2 0 1 5 1 9 : 0 0 10 / 1 8 / 2 0 1 5 2 0 : 0 0 10 / 1 8 / 2 0 1 5 2 1 : 0 0 10 / 1 8 / 2 0 1 5 2 2 : 0 0 10 / 1 8 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 7 5 4 No d e = Hy d r a n t # 1 1 2 5 El e v a t i o n = 48 2 0 . 1 1 El e v a t i o n = 47 7 9 . 5 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 9 . 4 7 5, 1 2 1 . 0 4 (1 . 5 7 ) 5, 1 2 0 . 1 1 5, 1 2 1 . 0 5 (0.94) 5, 1 1 9 . 9 6 5, 1 2 1 . 3 1 (1 . 3 5 ) 5, 1 2 0 . 5 6 5, 1 2 1 . 3 1 (0.75) 5, 1 2 0 . 2 0 5, 1 2 1 . 5 2 (1 . 3 2 ) 5, 1 2 0 . 6 7 5, 1 2 1 . 5 2 (0.85) 5, 1 2 0 . 6 8 5, 1 2 1 . 7 9 (1 . 1 1 ) 5, 1 2 1 . 2 3 5, 1 2 1 . 8 0 (0.57) 5, 1 2 0 . 8 0 5, 1 2 2 . 1 9 (1 . 3 9 ) 5, 1 2 1 . 4 6 5, 1 2 2 . 1 9 (0.73) 5, 1 2 1 . 0 5 5, 1 2 1 . 9 0 (0 . 8 5 ) 5, 1 2 1 . 6 8 5, 1 2 1 . 9 1 (0.23) 5, 1 2 0 . 5 6 5, 1 2 1 . 4 2 (0 . 8 6 ) 5, 1 2 1 . 2 3 5, 1 2 1 . 4 3 (0.20) 5, 1 1 9 . 3 5 5, 1 2 1 . 1 9 (1 . 8 4 ) 5, 1 2 0 . 1 1 5, 1 2 1 . 2 0 (1.09) 5, 1 1 8 . 0 2 5, 1 2 0 . 2 0 (2 . 1 8 ) 5, 1 1 8 . 8 6 5, 1 2 0 . 2 1 (1.35) 5, 1 1 8 . 3 8 5, 1 2 0 . 6 4 (2 . 2 6 ) 5, 1 1 9 . 2 0 5, 1 2 0 . 6 5 (1.45) 5, 1 1 7 . 0 5 5, 1 1 9 . 6 0 (2 . 5 5 ) 5, 1 1 7 . 7 4 5, 1 1 9 . 6 1 (1.87) 5, 1 1 6 . 9 2 5, 1 1 9 . 6 0 (2 . 6 8 ) 5, 1 1 7 . 4 0 5, 1 1 9 . 6 1 (2.21) 5, 1 1 7 . 0 5 5, 1 2 0 . 1 6 (3 . 1 1 ) 5, 1 1 7 . 0 6 5, 1 2 0 . 1 7 (3.11) 5, 1 1 7 . 2 9 5, 1 2 0 . 3 6 (3 . 0 7 ) 5, 1 1 7 . 2 8 5, 1 2 0 . 3 7 (3.09) 5, 1 1 7 . 2 9 5, 1 1 8 . 1 4 (0 . 8 5 ) 5, 1 1 7 . 2 8 5, 1 1 8 . 1 4 (0.86) 5, 1 1 7 . 5 3 5, 1 1 8 . 8 0 (1 . 2 7 ) 5, 1 1 7 . 4 0 5, 1 1 8 . 8 1 (1.41) 5, 1 1 5 . 8 3 5, 1 1 8 . 4 4 (2 . 6 1 ) 5, 1 1 5 . 9 3 5, 1 1 8 . 4 5 (2.52) 5, 1 1 5 . 1 0 5, 1 1 8 . 1 7 (3 . 0 7 ) 5, 1 1 5 . 1 4 5, 1 1 8 . 1 8 (3.04) 5, 1 1 4 . 8 6 5, 1 1 7 . 7 4 (2 . 8 8 ) 5, 1 1 4 . 9 2 5, 1 1 7 . 7 5 (2.83) 5, 1 1 3 . 8 9 5, 1 1 7 . 8 7 (3 . 9 8 ) 5, 1 1 4 . 1 3 5, 1 1 7 . 8 7 (3.74) 5, 1 1 4 . 2 6 5, 1 1 7 . 5 5 (3 . 2 9 ) 5, 1 1 4 . 5 8 5, 1 1 7 . 5 6 (2.98) 5, 1 1 4 . 9 8 5, 1 1 8 . 4 7 (3 . 4 9 ) 5, 1 1 5 . 3 7 5, 1 1 8 . 4 8 (3.11) 5, 1 1 5 . 4 7 5, 1 1 7 . 0 9 (1 . 6 2 ) 5, 1 1 6 . 1 6 5, 1 1 7 . 0 9 (0.93) 5, 1 1 6 . 4 4 5, 1 1 8 . 7 0 (2 . 2 6 ) 5, 1 1 7 . 0 6 5, 1 1 8 . 7 0 (1.64) Te s t N o . 7 Te s t N o . 8 Re c o r d e r # 3 4 1 2 8 9 Re c o r d e r # 2 0 1 2 5 0 Page 4 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 8 / 2 0 1 5 0 : 0 0 10 / 1 8 / 2 0 1 5 1 : 0 0 10 / 1 8 / 2 0 1 5 2 : 0 0 10 / 1 8 / 2 0 1 5 3 : 0 0 10 / 1 8 / 2 0 1 5 4 : 0 0 10 / 1 8 / 2 0 1 5 5 : 0 0 10 / 1 8 / 2 0 1 5 6 : 0 0 10 / 1 8 / 2 0 1 5 7 : 0 0 10 / 1 8 / 2 0 1 5 8 : 0 0 10 / 1 8 / 2 0 1 5 9 : 0 0 10 / 1 8 / 2 0 1 5 1 0 : 0 0 10 / 1 8 / 2 0 1 5 1 1 : 0 0 10 / 1 8 / 2 0 1 5 1 2 : 0 0 10 / 1 8 / 2 0 1 5 1 3 : 0 0 10 / 1 8 / 2 0 1 5 1 4 : 0 0 10 / 1 8 / 2 0 1 5 1 5 : 0 0 10 / 1 8 / 2 0 1 5 1 6 : 0 0 10 / 1 8 / 2 0 1 5 1 7 : 0 0 10 / 1 8 / 2 0 1 5 1 8 : 0 0 10 / 1 8 / 2 0 1 5 1 9 : 0 0 10 / 1 8 / 2 0 1 5 2 0 : 0 0 10 / 1 8 / 2 0 1 5 2 1 : 0 0 10 / 1 8 / 2 0 1 5 2 2 : 0 0 10 / 1 8 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 1 0 2 5 No d e = Hy d r a n t # El e v a t i o n = 47 5 5 . 6 7 El e v a t i o n = 0. 0 0 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 5, 1 1 9 . 9 7 5, 1 2 1 . 1 5 (1 . 1 8 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 4 2 5, 1 2 1 . 4 1 (0 . 9 9 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 5 3 5, 1 2 1 . 6 2 (1 . 0 9 ) 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 1 0 5, 1 2 1 . 8 8 (0 . 7 8 ) 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 3 2 5, 1 2 2 . 2 5 (0 . 9 3 ) 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 5 5 5, 1 2 2 . 0 3 (0 . 4 8 ) 0. 0 0 0. 0 0 0.00 5, 1 2 1 . 2 1 5, 1 2 1 . 5 9 (0 . 3 8 ) 0. 0 0 0. 0 0 0.00 5, 1 2 0 . 0 8 5, 1 2 1 . 3 3 (1 . 2 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 0 6 5, 1 2 0 . 4 1 (1 . 3 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 9 . 6 3 5, 1 2 1 . 1 9 (1 . 5 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 5 0 5, 1 2 0 . 2 9 (1 . 7 9 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 1 6 5, 1 2 0 . 2 6 (2 . 1 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 0 5 5, 1 2 0 . 7 1 (2 . 6 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 1 6 5, 1 2 0 . 8 9 (2 . 7 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 1 6 5, 1 1 9 . 0 4 (0 . 8 8 ) 0. 0 0 0. 0 0 0.00 5, 1 1 8 . 3 9 5, 1 1 9 . 5 3 (1 . 1 4 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 5 8 5, 1 1 8 . 8 3 (2 . 2 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 9 1 5, 1 1 8 . 5 6 (2 . 6 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 6 8 5, 1 1 8 . 1 4 (2 . 4 6 ) 0. 0 0 0. 0 0 0.00 5, 1 1 4 . 8 9 5, 1 1 8 . 2 2 (3 . 3 3 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 1 2 5, 1 1 7 . 9 2 (2 . 8 0 ) 0. 0 0 0. 0 0 0.00 5, 1 1 5 . 9 1 5, 1 1 8 . 6 6 (2 . 7 5 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 3 6 5, 1 1 7 . 4 7 (1 . 1 1 ) 0. 0 0 0. 0 0 0.00 5, 1 1 6 . 9 2 5, 1 1 8 . 8 3 (1 . 9 1 ) 0. 0 0 0. 0 0 0.00 Re c o r d e r # 1 2 4 3 Re c o r d e r # 1 2 4 1 Te s t N o . 9 Te s t N o . 1 0 Page 5 of 6 Wa t e r D i s t r i b u t i o n S y s t e m H y d r a u l i c M o d e l C a l i b r a t i o n Ci t y o f B o z e m a n Ex t e n d e d P r e s s u r e T e s t i n g C a l i b r a t i o n (H y d r a u l i c G r a d e L i n e E l e v a t i o n i n f t ) 10 / 1 8 / 2 0 1 5 0 : 0 0 10 / 1 8 / 2 0 1 5 1 : 0 0 10 / 1 8 / 2 0 1 5 2 : 0 0 10 / 1 8 / 2 0 1 5 3 : 0 0 10 / 1 8 / 2 0 1 5 4 : 0 0 10 / 1 8 / 2 0 1 5 5 : 0 0 10 / 1 8 / 2 0 1 5 6 : 0 0 10 / 1 8 / 2 0 1 5 7 : 0 0 10 / 1 8 / 2 0 1 5 8 : 0 0 10 / 1 8 / 2 0 1 5 9 : 0 0 10 / 1 8 / 2 0 1 5 1 0 : 0 0 10 / 1 8 / 2 0 1 5 1 1 : 0 0 10 / 1 8 / 2 0 1 5 1 2 : 0 0 10 / 1 8 / 2 0 1 5 1 3 : 0 0 10 / 1 8 / 2 0 1 5 1 4 : 0 0 10 / 1 8 / 2 0 1 5 1 5 : 0 0 10 / 1 8 / 2 0 1 5 1 6 : 0 0 10 / 1 8 / 2 0 1 5 1 7 : 0 0 10 / 1 8 / 2 0 1 5 1 8 : 0 0 10 / 1 8 / 2 0 1 5 1 9 : 0 0 10 / 1 8 / 2 0 1 5 2 0 : 0 0 10 / 1 8 / 2 0 1 5 2 1 : 0 0 10 / 1 8 / 2 0 1 5 2 2 : 0 0 10 / 1 8 / 2 0 1 5 2 3 : 0 0 Da t e / T i m e No d e = Hy d r a n t # 2 7 1 2 No d e = Hy d r a n t # 1 7 7 0 El e v a t i o n = 46 9 2 . 6 4 El e v a t i o n = 46 7 9 . 9 1 Ob s e r v e d Si m u l a t e d Di f f e r e n c e Ob s e r v e d Si m u l a t e d Difference 4, 9 2 5 . 3 9 4, 9 2 6 . 6 5 (1 . 2 6 ) 5, 0 2 7 . 1 7 5, 0 2 8 . 6 9 (1.52) 4, 9 2 5 . 8 4 4, 9 2 7 . 0 2 (1 . 1 8 ) 5, 0 2 7 . 7 4 5, 0 2 9 . 0 1 (1.27) 4, 9 2 6 . 9 7 4, 9 2 7 . 1 2 (0 . 1 5 ) 5, 0 2 8 . 5 3 5, 0 2 9 . 2 0 (0.67) 4, 9 2 7 . 3 1 4, 9 2 7 . 4 6 (0 . 1 5 ) 5, 0 2 8 . 7 5 5, 0 2 9 . 5 2 (0.77) 4, 9 2 5 . 8 4 4, 9 2 8 . 1 7 (2 . 3 3 ) 5, 0 2 8 . 0 7 5, 0 3 0 . 0 8 (2.01) 4, 9 2 5 . 8 4 4, 9 2 5 . 8 1 0. 0 3 5, 0 2 7 . 8 5 5, 0 2 8 . 7 4 (0.89) 4, 9 2 4 . 4 9 4, 9 2 4 . 3 0 0. 1 9 5, 0 2 6 . 4 9 5, 0 2 7 . 9 1 (1.42) 4, 9 2 2 . 5 7 4, 9 2 5 . 9 3 (3 . 3 6 ) 5, 0 2 6 . 0 4 5, 0 2 9 . 0 0 (2.96) 4, 9 1 6 . 8 1 4, 9 2 2 . 9 3 (6 . 1 2 ) 5, 0 0 8 . 6 7 5, 0 2 7 . 2 4 (18.57) 4, 9 1 7 . 1 5 4, 9 2 1 . 6 7 (4 . 5 2 ) 5, 0 0 8 . 6 7 5, 0 1 8 . 5 4 (9.87) 4, 9 1 3 . 4 3 4, 9 2 1 . 5 7 (8 . 1 4 ) 5, 0 0 3 . 3 7 5, 0 1 7 . 8 4 (14.47) 4, 9 1 7 . 0 4 4, 9 2 1 . 5 9 (4 . 5 5 ) 5, 0 0 7 . 2 0 5, 0 1 7 . 7 1 (10.51) 4, 9 1 5 . 8 0 4, 9 2 1 . 6 5 (5 . 8 5 ) 5, 0 0 4 . 4 9 5, 0 1 7 . 8 2 (13.33) 4, 9 1 7 . 3 8 4, 9 2 1 . 6 6 (4 . 2 8 ) 5, 0 0 8 . 4 4 5, 0 1 7 . 7 1 (9.27) 4, 9 2 0 . 6 5 4, 9 2 1 . 4 4 (0 . 7 9 ) 5, 0 1 0 . 7 0 5, 0 1 6 . 4 9 (5.79) 4, 9 1 7 . 8 3 4, 9 2 1 . 5 5 (3 . 7 2 ) 5, 0 1 0 . 0 2 5, 0 1 6 . 6 8 (6.66) 4, 9 1 8 . 7 3 4, 9 2 1 . 6 7 (2 . 9 4 ) 5, 0 2 0 . 2 9 5, 0 2 4 . 5 2 (4.23) 4, 9 1 8 . 7 3 4, 9 2 1 . 6 7 (2 . 9 4 ) 5, 0 2 1 . 1 9 5, 0 2 4 . 5 8 (3.39) 4, 9 2 0 . 8 8 4, 9 2 1 . 6 6 (0 . 7 8 ) 5, 0 2 1 . 3 0 5, 0 2 4 . 6 0 (3.30) 4, 9 2 0 . 3 1 4, 9 2 1 . 6 8 (1 . 3 7 ) 5, 0 2 0 . 9 7 5, 0 2 4 . 7 3 (3.76) 4, 9 1 9 . 8 6 4, 9 2 1 . 6 8 (1 . 8 2 ) 5, 0 2 0 . 8 5 5, 0 2 4 . 7 5 (3.90) 4, 9 1 9 . 9 7 4, 9 2 3 . 5 6 (3 . 5 9 ) 5, 0 2 2 . 0 9 5, 0 2 6 . 1 1 (4.02) 4, 9 2 2 . 9 1 4, 9 2 1 . 6 6 1. 2 5 5, 0 2 4 . 8 0 5, 0 2 4 . 8 2 (0.02) 4, 9 2 4 . 8 2 4, 9 2 5 . 8 1 (0 . 9 9 ) 5, 0 2 6 . 2 7 5, 0 2 7 . 6 3 (1.36) Re c o r d e r # 1 2 4 6 Re c o r d e r # 1 2 4 4 Te s t N o . 1 1 Te s t N o . 1 2 Page 6 of 6 Water Facility Plan Update Appendices July 2017 Appendix F – Non-Potable Irrigation Evaluation NON-POTABLE WATER IRRIGATION SYSTEM DESIGN CRITERIA 1. Any proposed non-potable water system shall meet the requirements specified in section V, sub-sections A.2. and A.3. of the COB Design Standards and Specifications Policy for Water Distribution Lines Design Criteria for Master Plans and Engineering Design Reports. A separate non-potable water system master plan shall be submitted for each subdivision or major development prior to the approval and commissioning of the system. The engineering design report shall be prepared in accordance with this document by a professional engineer licensed in the state of Montana prior to submitting plans and specifications for regulatory review. All design criteria and critical conditions shall be shown on the overall plan for the study area. 2. The non-potable water systems designed and constructed under authority of this document shall be used for the sole purpose of irrigation and shall in no way be designated as “public water supply”, “potable water”, or “fire service”. All manholes, valve boxes, air relief valves, blow-offs, hydrants, or other appurtenances associated with the non-potable water system shall be marked as “Non-Potable, Do Not Drink” and color coded purple. 3. Non-Potable Water Main Design: The non-potable water distribution system shall be designed to meet the peak hour demand as determined in the engineering design report listed in section E.1. of these specifications. The design report for each development shall include a detailed analysis of the estimated demands for all new customers and base the distribution pipe sizing on this demand plus an adequate factor of safety. a. Polyvinyl Chloride (PVC) pipe shall be used exclusively unless special approval, in writing, of alternative materials is given by the City Engineer. PVC shall be manufactured from class 1245A or 1245B compounds conforming to ASTM D1784 and have a minimum hydrostatic test basis (HDB) of 4,000 psi. All PVC pipe shall conform to AWWA C900 and shall be Class 150 psi (DR 18). b. A “C” factor of 150 should be used when modeling non-potable water systems with PVC pipe. c. The non-potable water system shall be designed to maintain a working pressure 5 – 10 psi less than adjacent potable water lines, with a maximum pressure of 55 psi and minimum pressure of 30 psi. d. All non-potable water system piping shall be manufactured, painted, or wrapped in polyethylene with purple coloring. The pipe may also be stenciled or marked with tape. 4. Main Extensions: All main extensions shall be looped, where possible. All permanent and temporary dead end mains shall end with a flushing hydrant or a 2” blow-off. Permanent dead- end mains shall not exceed 500-feet long. 5. Services: Non-potable water lines are designated as either a “service line” or “water main” based on its use, not its size. In general, a single irrigation line serving a residential or commercial property is considered a service line; a line serving more than one building, or intended to provide service to an entire development, is considered a non-potable water main. Service lines can range from ¾” to 2”; mains shall be 24” diameter or smaller. a. Service pipes shall be either PVC Schedule 40 or polyethylene (PE) piping rated at 200 psi, colored purple. The COB will provide service stubs to each property. Each property owner will be responsible for installation of the irrigation system components downstream of the meter. A master control valve, shut-off valve, and wye strainer are required at each service connection. b. All service stubs shall be installed in accordance with the COB Standard Drawings for water distribution service lines. The service lines shall be installed at the center of each lot, with a minimum horizontal distance of 3-feet from any potable water or gravity sewer line, unless otherwise approved by the Water Superintendent. The service line connections shall be uniform in size and shall be sized to adequately serve the maximum anticipated demand for the property being served. c. No service line shall be extended into a building or home until a “Non-Potable Water New Customer Service Connection” application has been completed and a permit has been obtained from the COB. d. No backflow prevention devices are required for non-potable water irrigation systems, however, a cross connection inspection performed by a certified COB technician is required prior to placing the new connection in service. Annual cross-connection inspections shall be required for each non-potable water customers. Refer to the Quick Check List for Non- Potable Water Connections . Backflow prevention devices are required for all potable water systems to protect the public water supply from any contamination or possible cross connections with the non-potable water system. Refer to the COB Design Standards and Specifications Policy Section V, Subsection A.6.e. for water system backflow prevention requirements. e. Meters shall be installed inside the building by the Water Department for all service lines. Meter pits shall not be used unless specifically approved by the Water Superintendent. Where allowed, any meters or appurtenances installed in an outdoor pit, shall be designed to withstand freezing. 6. Valves: Valves shall be installed in accordance with the following unless otherwise approved or required by the Water Superintendent: a. All connections to an existing non-potable water main shall begin with a new shut-off valve. b. Valves shall not be located at more than 500-foot intervals c. Every leg of a main intersection shall have a valve. d. All valves shall open counterclockwise, opposite of potable water systems. e. Valve boxes and all above-grade appurtenances shall be color coded purple and clearly labeled “Non-Potable”. f. Valves and controllers shall be keyed to limit access to authorized personnel only. 7. Hydrants: Flushing hydrants shall be placed at each street intersection, dead-end, and intermediate points at least every 500-feet. 8. Air Relief: Air relief valves shall be provided at all high points in the line where air can accumulate. a. Automatic air relief valves may not be used in situations where flooding of the manhole or chamber can occur, use of manual air relief valves is recommended wherever possible. b. The open end of a relief pipe must be extended to at least one foot above grade and provided screened, facing downward. c. All relief pipes that extend above grade shall be purple and marked as “Non-Potable”. 9. Pressure Reducing Valves: Pressure reducing valves should be placed where anticipated pressures exceed 50 psi. The Engineering Design Report should detail the hydraulic modeling or analysis for determination of high pressure zones. 10. Thrust Restraint: All thrust restraint shall be designed to withstand the test pressure or working pressure plus surge allowance, whichever is larger. Adequate factors of safety shall be employed in the design. a. The use of thrust blocks should be minimized to prevent leaking. b. Mechanically restrained joints should be used for restraining movement on PVC piping. 11. Pressure and Leakage Testing: The minimum required hydrostatic pressure for any non-potable water main is 200 psi. a. The testing gauge shall be marked in increments no greater than 10 psi. b. Conduct leakage testing concurrently with hydrostatic pressure testing for a minimum of 2 hours. c. Do not perform pressure or leakage testing until backfill over the pipe is complete. d. Visually inspect mains that cannot be hydrostatically tested. e. If there is leakage, repair defective pipe section and repeat hydrostatic test. 12. Pipe Separation: All non-potable water system mains shall have a minimum horizontal separation of 10-feet from any parallel water mains, sanitary sewers, or storm sewers. Any pipeline crossings shall be perpendicular and arranged such that non-potable water main pipeline joints are equidistant, and as far as possible from water or sewer main joints. a. All crossings shall have a minimum 18-inch vertical separation b. Where 18-inch vertical separation cannot be met, then 6-inch separation is required and the water or sewer main musts be encased in a watertight carrier pipe or 6-inches of flowable fill that extends 10 feet on both sides of the crossing. c. Non-potable water mains must be located inside COB right-of-way in accordance with Section V, Subsection D of the COB Design Standards and Specifications Policy. d. Non-potable water mains shall be located on the opposite side of the street from water mains. 13. Pumping and Storage Facility: Where the source of non-potable water is to be stored prior to distribution, a storage pond shall be constructed. A pumping and filtration system shall be used prior to discharging the water into the distribution system. a. Non-Potable Water Storage Pond (1) Pond shall not be located in the floodway (2) Design of pond shall conform to Montana DEQ Pond Guideline (latest version) (3) Usable volume of water storage shall be a minimum of peak daily demand. (4) Pond shall have screen on inlet capable of being cleaned/maintained and minimize debris from reaching pump station. (5) Pond Liners: (a) The ponds, whether constructed of earthen or other impervious materials, shall be designed and constructed so as to minimize losses through seepage; (b) Soils used for pond lining shall be free from foreign material such as paper, brush, trees, and large rocks; (c) All soil liners must be of compacted material having a permeability less than or equal to 1 x 10-4 cm/sec, at least 18 inches thick, compacted in lifts no greater than 6 inches each; (d) Synthetic membrane linings shall have a minimum thickness of 40 mils. b. Pump Station/Filtration System (1) Pump station shall be designed to provide two times the peak day demand with one large pump off-line; (2) Pump station shall consist of at least three pumps, with the largest pump having a standby pump. Minimum pump station flow will be provided by hydropneumatics tank, with the station’s smallest pump being sized to provide the minimum day demand with no more than two start-stop cycles per hour. (3) Pump station shall include flow meter and check valve. (4) Pumps, filters, and hydropneumatic tank shall be located within a weather-tight building that is adequately ventilated in non-freezing weather and heating to maintain an above- freezing temperature during freezing weather. (5) Pumps shall be sized to provide two times the peak daily demand. (6) Sequence of Operation: Station shall utilize three (3) pumps to maintain system pressure by sequencing pumps on and off, as required, to maintain smooth and efficient operation. Pumps start and stop on level of water in hydropneumatic tank. Tank is equipped with probes on a still well that starts and stops the pumps. Air compressor starts and stops based on air/water level in tank. Operating point shall be adjustable in the field. Pumps shall be sequenced off at user selectable intervals to reduce possibility of water hammer within the piping system. Lead pump shall rotate among operating pumps to equalize operating time of individual pumps. (7) Main switch gear controls must be located above grade, in areas not subject to flooding. All electric work must conform to the requirements of the National Electrical Code or to relevant state and local codes. (8) Filtration system shall be designed to remove solids equal to or greater than one-tenth the emitter opening diameter for irrigation system being served. Backwash time shall not exceed 10% of the operating time. Backwash shall be discharged to sanitary water system. (9) Hydropneumatic tank shall be sized to minimize pump start/stop cycles and shall be sized at a minimum volume equal to 20 minutes of peak demand. Quick Checklist for Non Quick Checklist for Non Quick Checklist for Non Quick Checklist for Non-- --Potable Water Connections Potable Water Connections Potable Water Connections Potable Water Connections This checklist establishes the application and permitting process for new customer service connections for the City of Bozeman Non-Potable Irrigation System. Each new customer musts adhere to the application procedure prior to bringing their system online. 1. City or Bozeman provides an application form that specifies the following: a. A description of the property to be served b. The applicants relationship to the property (owner or tenant) c. The purpose for which the property is to be used d. The estimated non-potable water demand e. Delivery requirements for pressure and time of day f. Specific purpose for the use of the non-potable water 2. Home owner to complete and sign the application. 3. Return the application to the City of Bozeman. 4. Once the application has been received and processed, a confirmation will be sent to the home owner. 5. Once the irrigation system is complete and operable, except for final connection to the non- potable water system, the home owner shall call to schedule the irrigation system and cross connection inspection. 6. The inspection will check for the following requirements: a. A complete and operable system. b. A master control valve c. A wye strainer (may be optional) d. Piping and appurtenances identified as non-potable with purple coloring and warning signs. e. Irrigation valve box with a lid indicating non-potable system. f. The new connection has met requirements for minimum separation from the potable water service line (typically 3 feet). g. If a soaker hose (semi-permeable) is part of the system, the supply pipe and terminal end must be painted purple and the hose must be permanently secured to the supply pipe. Once the system passes inspection a permit will be issued, setting forth the conditions of the connection with regards to interruptions in service, public health and safety, liability, and maintenance responsibilities. The permit will also detail the requirements for the annual irrigation system and cross- connection inspections. 678995 DD04.DGN 8 " 2 '-8 " 8 " 5'-0" 6" #4 @ 12" OCEW, TYP FOR NON-POTABLE TOP COAT, SAFETY PURPLE PAINT WITH POLYURETHANE WELDED CAP, HIGH BUILD EPOXY 3" SCH 40 STEEL PIPE WITH AND COVER DETAIL SEE MANHOLE RING NTS NON-POTABLE AIR RELIEF DETAIL FINISH GRADE CORPORATION STOP NON-POTABLE WATER MAIN 1 2 3 4 CURB STOP 1' PL CURB BOX TOP SECTION VALVE BOX 8' MIN MIN 6.5' COUPLING COMPRESSION 1/4 BEND 1/8" DIA. DRAIN HOLE DIAMETER PROVIDE 1/8" FLUSHING HYDRANT DETAIL NTS OR BRASS CAP GALVANIZED WITH COUPLING STRAIGHT H-15428 MUELLER 2" COPPER SERVICE LINE 672582_DD05 678995 DD03.DGN 1. 2. 3. 4. 5. 10'-0" REQUIREMENT NO VERTICAL SEWER LINE 10'-0" REQUIREMENT NO VERTICAL WATER LINE NON-POTABLE WATER LINE POTABLE BEDDING ZONE TYPICAL PIPE ADEQUATE STRUCTURAL SUPPORT FOR PIPES AT CROSSINGS SHALL BE PROVIDED. "L" IS A STANDARD LENGTH OF PIPE AS SUPPLIED BY A PIPE MANUFACTURER. SANITARY SEWER. REQUIRED FOR A VERTICAL SEPARATION OF LESS THAN 18 INCHES(0.5m) BETWEEN WATER MAIN AND IS MADE FROM A SINGLE 20 FOOT(6.1m) LENGTH OF AWWA PRESSURE PIPE. SPECIFIC APPROVAL IS LESS THAN 18 INCHES(0.5m) OF SEPARATION IS PERMITTED WHEN THE GRAVITY SEWER AT THE CROSSING LOCATED SO THAT BOTH JOINTS WILL BE AS FAR FROM THE FORCE MAIN AS POSSIBLE. IS A FORCE MAIN. AT CROSSINGS, ONE FULL LENGTH OF WATER MAIN OR NON-POTABLE PIPE SHALL BE NO EXCEPTION TO THE MIN. SEPARATION REQUIREMENT IS PERMITTED WHEN THE SEWAGE CARRYING PIPE NON-POTABLE WATER LINE, AND/OR GRAVITY SEWERS. SPECIFIC APPROVAL IS REQUIRED FOR A DISTANCE LESS THAN 10 FEET(3m) BETWEEN MAIN, NOTES: SEPARATION DISTANCE REQUIREMENTS FOR PARALLEL AND CROSSING PIPES NTS 672582_DD06.DGN NON-POTABLE WATER STORAGE, PUMPING AND FILTRATION SYSTEM FILTER(s) TANK HYDROPNEUMATIC WET WELL PUMPS TURBINE VERTICAL MULTIPLE VALVE GATE 1' MIN SYSTEM DISTRIBUTION WATER NON-POTABLE TO FREEBOARD 1' MIN SCREEN BUILDING LINER POND VOLUME USABLE VALVE BOX DETAIL NTS 678995 DD01.DGN NON-POTABLE NTS 678995 DD02.DGN MANHOLE RING AND COVER DETAIL RE T A W ELBATOP-NON Description Quantity Unit Unit Price Total Storage Pond 8.0 ac-ft 26,000$ 208,000$ Distribution Main, 8-inch C900 8,000 lf 28$ 224,000$ Distribution Pipe, 8-inch C900 138,000 lf 28$ 3,864,000$ Stream Crossings 0 ea -$ -$ Booster System 1 ea 150,000$ 150,000$ Filters 5 ea 4,000$ 20,000$ Building 1 ls 25,000$ 25,000$ Hydropneumatic Tank, 10,000 gal 10,000 gal 7.50$ 75,000$ Disinfection System 1 ls 40,000$ 40,000$ Distribution Pipe, 8-inch DI 146,000 lf 61$ 8,906,000$ Subtotal Potable and Non-Potable Materials 13,512,000$ Mobilization 1 ls 0.1 1,351,000$ Traffic Control 1 ls 0.02 270,000$ Erosion Control 1 ls 0.01 135,000$ Contractor Overhead and Profit 1 ls 0.15 2,027,000$ Subtotal Hard Cost Markups 3,783,000$ Engineering 1 ls 0.15 2,594,000$ Construction Admin and Mgmt 1 ls 0.05 865,000$ Legal and Administrative 1 ls 0.1 1,730,000$ Subtotal Soft Cost Markups 5,189,000$ Water Rights Potable Water Rights to be Purchased 560 ac-ft 6,000$ 3,360,000$ Non-Potable Water Rights to be Purchased 771 ac-ft 600$ 462,600$ Contingency 1 ls 0.3 7,892,000$ Total Capital Costs 34,200,000$ Table F1. Capital Costs for Dual Piped System Table Notes Non-Potable Water System Potable Water System Hard Cost Markups Soft Cost Markups Project Contingency (Includes Water Rights) Description Quantity Unit Unit Price Total Distribution Pipe, 8-inch DI 146,000 lf 61$ 8,906,000$ Stream crossings 0 ea -$ -$ Subtotal Potable Materials 8,906,000$ Mobilization 1 ls 0.1 891,000$ Traffic Control 1 ls 0.02 178,000$ Erosion Control 1 ls 0.01 89,000$ Contractor Overhead and Profit 1 ls 0.15 1,336,000$ Subtotal Hard Cost Markups 2,494,000$ Engineering 1 ls 0.15 1,710,000$ Construction Admin and Mgmt 1 ls 0.05 570,000$ Legal and Administrative 1 ls 0.1 1,140,000$ Subtotal Soft Cost Markups 3,420,000$ Water Rights Potable Water Rights to be Purchased 1,331 ac-ft 6,000.00$ 7,988,523$ Contingency 1 ls 0.3 6,842,556.82$ Total Capital Costs 29,650,000$ Table Notes Table F2. Capital Costs for Potable Only System Potable Water System Hard Cost Markups Soft Cost Markups Project Contingency (Includes Water Rights) Description Quantity Unit Unit Price Total Pond (1.5% of Storage Pond Capital Costs)1 ls 0.015 3,000$ Disinfection System (20% of Disinfection Capital Costs)1 ls 0.2 8,000$ Pipeline (1% of Non-Potable Pipeline Capital Costs, excludes water right cost)1 ls 0.01 99,637$ Pumping Energy Costs 99,681 kW-hr 0.055$ 5,500$ Subtotal 116,137$ Annual Treatment 182,601,124 gal 0.00101$ 184,000$ Pipeline (1.2% of Capital Costs)1 ls 0.012 231,186$ Subtotal 415,186$ Total annual operations and maintenance costs 531,323$ Total Cost Over Life of Project 30 years 0.03375 9,930,000$ Table F3. Operations and Maintenance Costs for Dual Piped System Table Caption Non-Potable Water System Operations Costs Potable Water System Operations Costs Description Quantity Unit Unit Price Total Annual Treatment 433,815,129 gal 0.00101$ 438,000$ Pipeline (1.2% of Potable Pipeline Capital Costs, excludes water right cost) 1 ls 0.012 231,186$ Subtotal 669,186$ Total annual operations and maintenance costs 669,186$ Total Cost Over Life of Project 30 years 0.03375 12,500,000$ Table F4. Operations and Maintenance Costs for Potable Only System Table Caption Potable Water System Operations Costs Description Quantity Unit Unit Price Total Water Rights to be Purchased 771 ac-ft 600$ 462,600$ Table F5. Water Rights Acquisition Cost Dual Piped System Table Caption Non-Potable Water System Description Quantity Unit Unit Price Total Water Rights to be Purchased 771 ac-ft 6,000$ 4,626,000$ Table F6. Water Rights Acquisition Cost Potable Only System Table Caption Non-Potable Water System Description Treatment Plant Expansion Cost in 2017 dollars Years Present Value Calculation Treatment Plant Expansion Cost - Year 2040 25,000,000$ 23 11,350,073$ Treatment Plant Expansion Cost - Year 2047 25,000,000$ 30 8,925,349$ Difference 2,420,000$ Table F7. Benefit of Delayed Water Treatment Plant Expansion Table Caption Description Quantity Unit Unit Price Total Storage Pond 3.5 ac-ft 26,000$ 91,000$ Distribution Main, 8-inch C900 8,000 lf 28$ 224,000$ Distribution Pipe, 8-inch C900 2,000 lf 28$ 56,000$ Stream Crossings 3 ea -$ -$ Booster System 1 ea 150,000$ 150,000$ Filters 5 ea 4,000$ 20,000$ Building 1 ls 25,000$ 25,000$ Hydropneumatic Tank, 10,000 gal 10,000 gal 7.50$ 75,000$ Disinfection System 1 ls 40,000$ 40,000$ Non-Potable Water Rights to be Purchased 327 ac-ft 600$ 196,081$ Distribution Pipe, 8-inch DI 146,000 lf 61$ 8,906,000$ Subtotal Potable and Non-Potable Materials 9,783,081$ Mobilization 1 ls 0.1 978,000$ Traffic Control 1 ls 0.02 196,000$ Erosion Control 1 ls 0.01 98,000$ Contractor Overhead and Profit 1 ls 0.15 1,467,000$ Subtotal Hard Cost Markups 2,739,000$ Engineering 1 ls 0.15 1,878,000$ Construction Admin and Mgmt 1 ls 0.05 626,000$ Legal and Administrative 1 ls 0.1 1,252,000$ Subtotal Soft Cost Markups 3,756,000$ Water Rights Non-Potable Water Rights to be Purchased 327 ac-ft 600.00$ 196,081$ Potable Water Rights to be Purchased 1,005 ac-ft 6,000.00$ 6,027,716$ Contingency 1 ls 0.3 6,751,000$ Total Capital Costs 29,250,000$ Table F8. Dual Piped System for Parks and Open Spaces Only Table Notes Non-Potable Water System Potable Water System Hard Cost Markups Soft Cost Markups Project Contingency (Includes Water Rights) Description Quantity Unit Unit Price Total Pond (1.5% of Storage Pond Capital Costs) 1 ls 0.015 1,000$ Disinfection System (20% of Disinfection Capital Costs) 1 ls 0.2 8,000$ Pipeline (1% of Non-Potable Pipeline Capital Costs) 1 ls 0.01 14,731$ Pumping Energy Costs 175,182 kW-hr 0.055$ 9,600$ Subtotal 33,331$ Annual Treatment 327,333,886 gal 0.00101$ 331,000$ Pipeline (1.2% of Capital Costs)1 ls 0.012 192,693$ Subtotal 523,693$ Total annual operations and maintenance costs 557,024$ Total Cost Over Life of Project 30 years 0.03375 10,410,000$ Potable Water System Operations Costs Table F9. Dual Piped System for Parks and Open Spaces Only Table Caption Non-Potable Water System Operations Costs Table F10. Water Rights Acquisition Cost Dual Piped System for Parks and Open Spaces Only Description Quantity Unit Unit Price Total Water Rights to be Purchased 327 ac-ft 600$ 196,081$ Table Caption Non-Potable Water System Table F11. Benefit of Delayed Water Treatment Plant Expansion Description Treatment Plant Expansion Cost in 2017 dollars Years Present Value Calculation Treatment Plant Expansion Cost - Year 2040 25,000,000$ 23 11,350,073$ Treatment Plant Expansion Cost - Year 2042 25,000,000$ 25 10,596,872$ Difference 750,000$ Dual Piped System for Parks and Open Spaces Only Water Facility Plan Update Appendices July 2017 Appendix G – Opinion of Probable Project Cost Methodology Ca p i t a l I m p r o v e m e n t P r o j e c t C a t e g o r y P l a n n i n g P h a s e C I P T y p e P r o j e c t R a n k P r o j e c t I D O P P C C o s t R e f e r e n c e Ri s k - B a s e d C A # 5 - S o u r d o u g h T r a n s m i s s i o n M a i n C o n d i t i o n A s s e s s m e n t C o n d i t i o n A s s e s s m e n t Sh o r t - t e r m N o n - C o n s t r u c t i o n 1 W F P _ 0 2 a $7 1 9 , 7 8 5 OP P C N o n - C o n s t r u c t i o n So u r d o u g h T r a n s m i s s i o n M a i n C A B a s e d R e h a b Re h a b i l i t a t i o n a n d R e p a i r Sh o r t - t e r m C o n s t r u c t i o n 2 W F P _ 0 2 b $ 1 , 0 0 0 , 0 0 0 En g i n e e r s E s t i m a t e So u r d o u g h W a t e r R i g h t s U t i l i z a t i o n S t u d y St u d i e s Sh o r t - t e r m N o n - C o n s t r u c t i o n 3 W F P _ 0 4 $ 4 0 0 , 0 0 0 En g i n e e r s E s t i m a t e We s t T r a n s m i s s i o n M a i n P l a n n i n g S t u d y St u d i e s Sh o r t - t e r m N o n - C o n s t r u c t i o n 4 W F P _ 0 1 a $ 4 0 0 , 0 0 0 En g i n e e r s E s t i m a t e Hil l t o p R e s e r v o i r I n s p e c t i o n a n d M i x i n g S y s t e m Op t i m i z a t i o n Sh o r t - t e r m C o n s t r u c t i o n 5 W F P _ 0 5 $2 3 9 , 6 1 6 OP P C N o n - C o n s t r u c t i o n SC A D A M a s t e r P l a n Op t i m i z a t i o n Sh o r t - t e r m N o n - C o n s t r u c t i o n 6 W F P _ 1 2 $ 2 5 0 , 0 0 0 En g i n e e r s E s t i m a t e Ri s k B a s e d C A # 4 - L y m a n C r e e k W a t e r T r a n s m i s s i o n M a i n C o n d i t i o n A s s e s s m e n t Sh o r t - t e r m N o n - C o n s t r u c t i o n 7 W F P _ 1 9 a $1 3 4 , 6 7 0 OP P C N o n - C o n s t r u c t i o n Gr o u n d w a t e r W e l l F i e l d D e v e l o p m e n t - P h a s e 1 Su p p l y Sh o r t - t e r m C o n s t r u c t i o n 8 W F P _ 1 0 a $8 , 6 1 2 , 4 0 0 OP P C C o n s t r u c t i o n Ve r t i c a l A s s e t R i s k A s s e s s m e n t P h a s e 1 St u d i e s Sh o r t - t e r m N o n - C o n s t r u c t i o n 9 W F P _ 1 3 $1 9 , 8 3 8 OP P C N o n - C o n s t r u c t i o n So u r d o u g h T a n k I n s p e c t i o n a n d I m p r o v e m e n t s Op t i m i z a t i o n Sh o r t - t e r m N o n - C o n s t r u c t i o n 1 0 W F P _ 1 6 $ 5 0 0 , 0 0 0 En g i n e e r s E s t i m a t e Ve r t i c a l A s s e t R i s k A s s e s s m e n t P h a s e 2 St u d i e s Sh o r t - t e r m N o n - C o n s t r u c t i o n 1 1 W F P _ 1 4 $8 5 , 9 6 3 En g i n e e r s E s t i m a t e Ri s k B a s e d R & R Re h a b i l i t a t i o n a n d R e p a i r Sh o r t - t e r m C o n s t r u c t i o n 1 2 W F P _ 1 5 $ 2 , 5 0 0 , 0 0 0 Cit y P r o v i d e d PR V U p g r a d e s ( a p p r o x i m a t e l y 1 6 s i t e s ) Op t i m i z a t i o n Sh o r t - t e r m C o n s t r u c t i o n 1 3 W F P _ 1 8 $7 , 6 3 7 , 7 6 0 OP P C C o n s t r u c t i o n Ly m a n T r a n s m i s s i o n M a i n C A B a s e d R e h a b Re h a b i l i t a t i o n a n d R e p a i r Sh o r t - t e r m C o n s t r u c t i o n 1 4 W F P _ 1 9 b $ 5 0 0 , 0 0 0 En g i n e e r s E s t i m a t e In t e g r a t e d W a t e r R e s o u r c e s P l a n U p d a t e St u d i e s Sh o r t - t e r m N o n - C o n s t r u c t i o n 1 5 W F P _ 1 1 $ 1 5 0 , 0 0 0 En g i n e e r s E s t i m a t e Re s e r v o i r 1 - S i t i n g St u d i e s Sh o r t - t e r m N o n - C o n s t r u c t i o n 1 6 W F P _ 0 9 a $ 3 5 0 , 0 0 0 En g i n e e r s E s t i m a t e Pe a r S t . B o o s t e r S t a t i o n U p g r a d e Re h a b i l i t a t i o n a n d R e p a i r Sh o r t - t e r m C o n s t r u c t i o n 1 7 W F P _ 3 8 $4 8 6 , 7 2 0 OP P C C o n s t r u c t i o n SC A D A P h a s e 1 Op t i m i z a t i o n Sh o r t - t e r m C o n s t r u c t i o n 1 8 W F P _ 2 4 $2 , 2 3 9 , 0 5 0 OP P C C o n s t r u c t i o n Ri s k B a s e d C A # 2 - D o w n t o w n A r e a Co n d i t i o n A s s e s s m e n t Sh o r t - t e r m N o n - C o n s t r u c t i o n 1 9 W F P _ 3 2 $2 8 , 1 1 6 OP P C N o n - C o n s t r u c t i o n We s t T r a n s m i s s i o n M a i n - P h a s e 1 D e s i g n Tr a n s m i s s i o n Sh o r t - t e r m N o n - C o n s t r u c t i o n 2 0 W F P _ 0 1 b $ 2 , 9 0 7 , 2 3 5 OP P C - L e g a l a n d E n g i n e e r i n g Re d u n d a n t N o r t h 5 0 3 8 Z o n e F e e d Op t i m i z a t i o n Sh o r t - t e r m C o n s t r u c t i o n 2 1 W F P _ 2 6 $5 9 , 4 8 8 OP P C C o n s t r u c t i o n Ri s k B a s e d C A # 1 - W e s t B o z e m a n T r a n s m i s s i o n C o n d i t i o n A s s e s s m e n t Sh o r t - t e r m N o n - C o n s t r u c t i o n 2 2 W F P _ 3 4 $4 7 , 8 2 6 OP P C N o n - C o n s t r u c t i o n Ri s k B a s e d C A # 3 - B a x t e r / O a k s o u t h o f F r e e w a y C o n d i t i o n A s s e s s m e n t Sh o r t - t e r m N o n - C o n s t r u c t i o n 2 3 W F P _ 3 5 $2 3 , 7 7 5 OP P C N o n - C o n s t r u c t i o n Wa t e r I n f o r m a t i o n M a n a g e m e n t S o l u t i o n s ( W I M S ) O p t i m i z a t i o n Sh o r t - t e r m N o n - C o n s t r u c t i o n 2 4 W F P _ 3 6 $1 8 6 , 3 0 0 OP P C N o n - C o n s t r u c t i o n Hy a l i t e W a t e r s h e d a n d R e s e r v o i r S t u d y St u d i e s Ne a r - t e r m N o n - C o n s t r u c t i o n N R W F P _ 2 3 $ 3 5 0 , 0 0 0 En g i n e e r s E s t i m a t e So u r d o u g h C a n y o n N a t u r a l S t o r a g e a n d W e t l a n d E n h a n c e m e n t - P l a n n i n g a n d D e s i g n S t u d i e s Ne a r - t e r m N o n - C o n s t r u c t i o n N R W F P _ 5 3 $ 5 0 0 , 0 0 0 En g i n e e r s E s t i m a t e Hy a l i t e R e s e r v o i r I n f r a s t r u c t u r e a n d C o n t r o l I m p r o v e m e n t s O p t i m i z a t i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 5 4 $3 , 8 5 8 , 3 0 0 OP P C C o n s t r u c t i o n So u r d o u g h T r a n s m i s s i o n M a i n – P h a s e 1 Tr a n s m i s s i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 0 3 $4 , 2 4 1 , 2 7 2 OP P C C o n s t r u c t i o n Gr o u n d w a t e r W e l l F i e l d T r a n s m i s s i o n M a i n - P h a s e 1 T r a n s m i s s i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 2 0 $8 , 9 7 4 , 9 6 9 OP P C C o n s t r u c t i o n Wa t e r T r e a t m e n t P l a n t M a s t e r M e t e r i n g Op t i m i z a t i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 1 7 $ 7 5 0 , 0 0 0 Cit y P r o v i d e d PR V A b a n d o n m e n t s ( a p p r o x i m a t e l y 6 s i t e s ) Op t i m i z a t i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 2 2 $4 6 0 , 5 1 2 OP P C C o n s t r u c t i o n SC A D A P h a s e 2 Op t i m i z a t i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 2 5 $2 , 5 9 5 , 8 4 0 OP P C C o n s t r u c t i o n Re m o t e W a t e r Q u a l i t y S u r v e i l l a n c e S y s t e m Op t i m i z a t i o n Ne a r - t e r m N o n - C o n s t r u c t i o n N R W F P _ 3 3 $5 6 , 9 2 5 OP P C N o n - C o n s t r u c t i o n 51 2 5 W e s t S o u r d o u g h R e s e r v o i r 1 St o r a g e Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 0 9 b $8 , 4 2 0 , 8 7 5 OP P C C o n s t r u c t i o n 55 6 0 S o u t h e a s t M o u n t a i n R e s e r v o i r a n d P u m p S t a t i o n S t o r a g e Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 3 0 $1 8 , 5 4 2 , 6 9 8 OP P C C o n s t r u c t i o n 49 7 5 N o r t h w e s t R e s e r v o i r 1 St o r a g e Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 3 1 $8 , 4 2 0 , 8 7 5 OP P C C o n s t r u c t i o n Wa t e r F a c i l i t y P l a n U p d a t e St u d i e s Ne a r - t e r m N o n - C o n s t r u c t i o n N R W F P _ 2 7 $ 5 0 0 , 0 0 0 En g i n e e r s E s t i m a t e Dr o u g h t M a n a g e m e n t P l a n U p d a t e St u d i e s Ne a r - t e r m N o n - C o n s t r u c t i o n N R W F P _ 2 8 $ 2 0 , 0 0 0 En g i n e e r s E s t i m a t e Ly m a n C r e e k W a t e r S y s t e m I m p r o v e m e n t s Su p p l y Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 0 7 $2 4 , 8 0 5 , 4 4 0 OP P C C o n s t r u c t i o n Gr o u n d w a t e r W e l l F i e l d D e v e l o p m e n t - P h a s e 2 Su p p l y Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 1 0 b $1 2 , 9 7 8 , 6 0 0 OP P C C o n s t r u c t i o n Ly m a n S p r i n g G r o u n d w a t e r W e l l D e v e l o p m e n t Su p p l y Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 2 1 $ 2 , 5 0 0 , 0 0 0 En g i n e e r s E s t i m a t e So u r d o u g h C a n y o n N a t u r a l S t o r a g e a n d W e t l a n d E n h a n c e m e n t S u p p l y Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 5 1 $ 8 , 0 0 0 , 0 0 0 En g i n e e r s E s t i m a t e We s t T r a n s m i s s i o n M a i n – P h a s e 1 C o n s t r u c t i o n T r a n s m i s s i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 0 1 c $2 3 , 6 8 9 , 0 8 2 OP P C C o n s t r u c t i o n - W F P _ 0 1 b So u r d o u g h T r a n s m i s s i o n M a i n – P h a s e 2 Tr a n s m i s s i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 0 8 $5 , 7 8 5 , 7 8 8 OP P C C o n s t r u c t i o n Ea s t T r a n s m i s s i o n M a i n Tr a n s m i s s i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 2 9 $6 , 0 9 2 , 3 1 6 OP P C C o n s t r u c t i o n We s t T r a n s m i s s i o n M a i n - P h a s e 2 Tr a n s m i s s i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 3 9 $3 5 , 8 9 1 , 8 8 7 OP P C C o n s t r u c t i o n Gr o u n d w a t e r W e l l F i e l d T r a n s m i s s i o n M a i n - P h a s e 2 T r a n s m i s s i o n Ne a r - t e r m C o n s t r u c t i o n N R W F P _ 5 2 $8 , 9 7 4 , 9 6 9 OP P C C o n s t r u c t i o n 49 7 5 N o r t h w e s t R e s e r v o i r 2 St o r a g e Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 0 $8 , 4 2 0 , 8 7 5 OP P C C o n s t r u c t i o n 51 2 5 W e s t S o u r d o u g h R e s e r v o i r 2 St o r a g e Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 1 $8 , 4 2 0 , 8 7 5 OP P C C o n s t r u c t i o n 53 5 0 S o u t h w e s t R e s e r v o i r a n d P u m p S t a t i o n St o r a g e Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 2 $1 3 , 7 9 5 , 8 4 6 OP P C C o n s t r u c t i o n 53 6 0 N o r t h M o u n t a i n R e s e r v o i r a n d P u m p S t a t i o n S t o r a g e Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 3 $1 0 , 5 8 4 , 3 2 0 OP P C C o n s t r u c t i o n 56 3 0 E a s t M o u n t a i n Z o n e R e s e r v o i r a n d P u m p S t a t i o n S t o r a g e Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 4 $1 6 , 5 8 9 , 6 0 4 OP P C C o n s t r u c t i o n So u r d o u g h R e s e r v o i r 2 St o r a g e Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 5 $6 , 5 0 6 , 7 0 0 OP P C C o n s t r u c t i o n Wa t e r T r e a t m e n t P l a n t R e s e r v o i r 2 St o r a g e Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 6 $7 , 7 7 9 , 7 5 0 OP P C C o n s t r u c t i o n Wa t e r T r e a t m e n t P l a n t R e s e r v o i r 3 St o r a g e Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 7 $7 , 7 7 9 , 7 5 0 OP P C C o n s t r u c t i o n So u r d o u g h W a t e r T r e a t m e n t P l a n t E x p a n s i o n Su p p l y Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 5 5 $ 2 5 , 0 0 0 , 0 0 0 En g i n e e r s E s t i m a t e We s t T r a n s m i s s i o n M a i n - P h a s e 3 Tr a n s m i s s i o n Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 8 $1 0 , 9 3 6 , 3 4 2 OP P C C o n s t r u c t i o n We s t T r a n s m i s s i o n M a i n - P h a s e 4 Tr a n s m i s s i o n Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 4 9 $3 , 7 5 5 , 2 2 1 OP P C C o n s t r u c t i o n We s t T r a n s m i s s i o n M a i n - P h a s e 5 Tr a n s m i s s i o n Lo n g - t e r m C o n s t r u c t i o n N R W F P _ 5 0 $2 , 4 5 7 , 0 0 9 OP P C C o n s t r u c t i o n $ 2 9 , 4 7 8 , 5 4 2 $3 3 7 , 9 1 5 , 1 8 2 $ 1 8 6 , 4 1 0 , 3 4 8 $ 1 2 2 , 0 2 6 , 2 9 2 To t a l $ 3 3 7 , 9 1 5 , 1 8 2 Do e s n o t i n c l u d e Gr o w t h a n d De v e l o p m e n t Do e s n o t i n c l u d e Gr o w t h a n d De v e l o p m e n t C o s t s Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T Pr o j e c t I D : C I P N a m e : WF P _ 0 2 a Ri s k - B a s e d C A # 5 - S o u r d o u g h Tr a n s m i s s i o n M a i n C o n d i t i o n As s e s s m e n t Ha r d C o s t 1 . 0 a. Sc o p e - I n s p e c t i o n a n d A s s e s s m e n t 1. H i g h R e s o l u t i o n A s s e s s m e n t 1 L S $ 5 0 0 , 0 0 0 . 0 0 $ 5 0 0 , 0 0 0 2. T r a n s i e n t P r e s s u r e M o n i t o r i n g 1 L S $ 1 0 , 0 0 0 . 0 0 $ 1 0 , 0 0 0 3. F i e l d M o d i f i c a t i o n s f o r I n s p e c t i o n 1 L S $ 1 0 , 0 0 0 . 0 0 $ 1 0 , 0 0 0 4. E n g r A n a l y s i s / F i e l d F o r e n s i c s 1 L S $ 4 9 , 0 0 0 . 0 0 $ 4 9 , 0 0 0 Su b t o t a l $5 6 9 , 0 0 0 Ha r d C o s t - M a r k u p s 2. 0 a. Mo b i l i z a t i o n ( 0 % ) 1 l . s . $0 . 0 0 b. Tr a f f i c C o n t r o l ( 0 % ) 1 l . s . $0 . 0 0 c. Er o s i o n C o n t r o l ( 0 % ) 1 l . s . $0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 0 % ) 1 l . s . $0 . 0 0 Su b t o t a l $0 . 0 0 $5 6 9 , 0 0 0 . 0 0 Es t i m a t e d H a r d C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 0 % ) 1 l . s . $0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $5 6 , 9 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $0 Su b t o t a l $5 6 , 9 0 0 $5 6 , 9 0 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4. 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5. 0 a. Co n t i n g e n c y ( 1 5 % ) 1 l . s . $1 4 2 , 2 5 0 Su b t o t a l $1 4 2 , 2 5 0 $1 4 2 , 2 5 0 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $7 6 8 , 1 5 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T Pr o j e c t I D : C I P N a m e : WF P _ 0 5 Hi l l t o p T a n k I n s p e c t i o n a n d Mi x i n g S y s t e m Ha r d C o s t 1 . 0 a. Mi x e r s , E l e c t r i c a l , C o n t r o l , S C A D A , R e s e r v o i r C l e a n i n g 1. R e s e r v o i r C l e a n i n g 1 L S $ 5 , 0 0 0 . 0 0 $ 5 , 0 0 0 2. R e s e r v o i r I n s p e c t i o n 1 L S $ 2 0 , 0 0 0 . 0 0 $ 2 0 , 0 0 0 . 0 0 2. F & I M i x e r s 2 L S $ 2 5 , 0 0 0 . 0 0 $ 5 0 , 0 0 0 3. E l e c r t r i c a l a n d L o c a l C o n t r o l s 2 L S $ 1 5 , 0 0 0 . 0 0 $ 3 0 , 0 0 0 4. S C A D A 2 L S $ 7 , 5 0 0 . 0 0 $ 1 5 , 0 0 0 Su b t o t a l $ 1 2 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 1 2 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 2 , 4 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 1 , 2 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 1 8 , 0 0 0 . 0 0 Su b t o t a l $3 3 , 6 0 0 . 0 0 $1 5 3 , 6 0 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 5 % ) 1 l . s . $ 7 , 6 8 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 1 5 , 3 6 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 7 , 6 8 0 Su b t o t a l $3 0 , 7 2 0 $3 0 , 7 2 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $ 0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 3 0 % ) 1 l . s . $ 5 5 , 2 9 6 Su b t o t a l $5 5 , 2 9 6 $5 5 , 2 9 6 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $2 3 9 , 6 1 6 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T CO M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 1 9 a Ri s k B a s e d C A # 4 - L y m a n C r e e k Wa t e r T r a n s m i s s i o n M a i n Ha r d C o s t 1 . 0 a. Sc o p e - I n s p e c t i o n a n d A s s e s s m e n t 1. M e d R e s o l u t i o n A s s e s s m e n t 6,5 0 0 l f $ 6 . 6 7 $ 4 3 , 3 5 5 2. F i e l d M o d i f i c a t i o n s f o r I n s p e c t i o n 3 E A $ 5 , 0 0 0 . 0 0 $ 1 5 , 0 0 0 3. E x t e r n a l I n s p e c t i o n 1 E A $ 1 5 , 0 0 0 . 0 0 $ 1 5 , 0 0 0 4. E n g r A n a l y s i s / F i e l d F o r e n s i c s / R e p o r t 1 L S $ 2 0 , 0 0 0 . 0 0 $ 2 0 , 0 0 0 $9 3 , 3 5 5 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 9 , 3 3 5 . 5 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 , 8 6 7 . 1 0 c. Er o s i o n C o n t r o l ( 0 % ) 1 l . s . $0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 0 % ) 1 l . s . $0 . 0 0 Su b t o t a l $1 1 , 2 0 2 . 6 0 10 $1 0 4 , 5 5 7 . 6 0 Es t i m a t e d H a r d C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 0 % ) 1 l . s . $2 , 0 9 1 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $1 0 , 4 5 6 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $0 Su b t o t a l $1 2 , 5 4 7 $1 2 , 5 4 7 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 1 5 % ) 1 l . s . $1 7 , 5 6 6 Su b t o t a l $1 7 , 5 6 6 $1 7 , 5 6 6 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $1 3 4 , 6 7 0 . 1 9 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 1 0 a Gr o u n d w a t e r W e l l F i e l d - D e s i g n & C o n s t r u c t i o n P h a s e 1 Ha r d C o s t 1 . 0 a. Ne w L y m a n C r e e k W a t e r R e s e r v o i r 1. S i t e D e v e l o p m e n t 3 L S $ 2 5 0 , 0 0 0 . 0 0 $ 7 5 0 , 0 0 0 2. W e l l s , P o w e r a n d C o n t r o l 3 E A $ 4 0 0 , 0 0 0 . 0 0 $ 1 , 2 0 0 , 0 0 0 3. C o n n e c t t o T r a n s m i s s i o n M a i n ( s ) 3 L S $ 1 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 4. J u n c t i o n a n d B o o s t e r S t a t i o n 1 E A $ 2 , 2 5 0 , 0 0 0 . 0 0 $ 2 , 2 5 0 , 0 0 0 5. D i s i n f e c t i o n ( R e s i d u a l ) F a c i l i t i e s 1 E A $ 1 0 0 , 0 0 0 . 0 0 $ 1 0 0 , 0 0 0 Su b t o t a l $ 4 , 6 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 9 2 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 9 2 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 4 6 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 4 6 0 , 0 0 0 . 0 0 Su b t o t a l $6 9 0 , 0 0 0 . 0 0 $5 , 2 9 0 , 0 0 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 5 2 9 , 0 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 5 2 9 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 1 0 % ) 1 l . s . $ 5 2 9 , 0 0 0 Su b t o t a l $1 , 5 8 7 , 0 0 0 $1 , 5 8 7 , 0 0 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 3 A c r e s 3 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 Su b t o t a l $3 0 0 , 0 0 0 $3 0 0 , 0 0 0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 1 , 4 3 5 , 4 0 0 Su b t o t a l $1 , 4 3 5 , 4 0 0 $1 , 4 3 5 , 4 0 0 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $8 , 6 1 2 , 4 0 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T CI P I D : C I P N a m e : WF P _ 1 3 V e r t i c a l A s s e t R i s k A s s e s s m e n t P h a s e 1 Ha r d C o s t 1 . 0 a. Sc o p e - P h a s e I 1. O v e r a l l R i s k P o l i c y F r a m e w o r k - 1 L S $ 0 . 0 0 $ 0 2. I m p l e m e n t a t i o n p l a n a c r o s s C O B 1 L S $ 0 . 0 0 $ 0 3. P o l i c y a n d I m p l e m e n t a t i o n R e p o r t 1 L S $ 0 . 0 0 $ 0 4. O u t r e a c h 1 L S $ 1 5 , 0 0 0 . 0 0 $ 1 5 , 0 0 0 Su b t o t a l $1 5 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 0 % ) 1 l . s . $0 . 0 0 b. Tr a f f i c C o n t r o l ( 0 % ) 1 l . s . $0 . 0 0 c. Er o s i o n C o n t r o l ( 0 % ) 1 l . s . $0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 0 % ) 1 l . s . $0 . 0 0 Su b t o t a l $0 . 0 0 $1 5 , 0 0 0 . 0 0 Es t i m a t e d H a r d C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 5 % ) 1 l . s . $2 , 2 5 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 5 % ) 1 l . s . $0 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $0 Su b t o t a l $2 , 2 5 0 $2 , 2 5 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 1 5 % ) 1 l . s . $2 , 5 8 8 Su b t o t a l $2 , 5 8 8 $2 , 5 8 8 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $1 9 , 8 3 7 . 5 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) TO T A L C O S T C O M P O N E N T S U B T O T A L CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T U N I T C O S T CI P I D : C I P N a m e : WF P _ 1 4 V e r t i c a l A s s e t R i s k A s s e s s m e n t P h a s e 2 Ha r d C o s t 1 . 0 a. Sc o p e - P h a s e I 1. O v e r a l l R i s k P o l i c y F r a m e w o r k - 1 L S $ 0 . 0 0 $ 0 2. I m p l e m e n t a t i o n p l a n a c r o s s C O B 1 L S $ 0 . 0 0 $ 0 3. P o l i c y a n d I m p l e m e n t a t i o n R e p o r t 1 L S $ 0 . 0 0 $ 0 4. O u t r e a c h 1 L S $ 6 5 , 0 0 0 . 0 0 $ 6 5 , 0 0 0 Su b t o t a l $ 6 5 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 0 % ) 1 l . s . $ 0 . 0 0 b. Tr a f f i c C o n t r o l ( 0 % ) 1 l . s . $ 0 . 0 0 c. Er o s i o n C o n t r o l ( 0 % ) 1 l . s . $ 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 0 % ) 1 l . s . $ 0 . 0 0 Su b t o t a l $0 . 0 0 $6 5 , 0 0 0 . 0 0 Es t i m a t e d H a r d C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 5 % ) 1 l . s . $ 9 , 7 5 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 5 % ) 1 l . s . $ 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $ 0 Su b t o t a l $9 , 7 5 0 $9 , 7 5 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $ 0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 1 5 % ) 1 l . s . $ 1 1 , 2 1 3 Su b t o t a l $1 1 , 2 1 3 $1 1 , 2 1 3 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $8 5 , 9 6 2 . 5 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) TO T A L C O S T C O M P O N E N T S U B T O T A L CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T U N I T C O S T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 1 8 PR V U p g r a d e s ( a p p r o x i m a t e l y 1 6 si t e s ) Ha r d C o s t 1 . 0 a. Pu m p s , E l e c t r i c a l , C o n t r o l , S C A D A , P R V ' s 1. W a t e r p r o o f i n g & s u m p p u m p 16 L S $ 1 5 , 0 0 0 . 0 0 $ 2 4 0 , 0 0 0 2. A b o v e g r a d e S C A D A / C o n t r o l w e a t h e r e n c l o s u r e 16 L S $ 9 0 , 0 0 0 . 0 0 $ 1 , 4 4 0 , 0 0 0 3. P R V ' s h a r n e s s i n g 16 L S $ 7 , 5 0 0 . 0 0 $ 1 2 0 , 0 0 0 4. E l e c t r i c a l & C o n t r o l s 16 L S $ 8 0 , 0 0 0 . 0 0 $ 1 , 2 8 0 , 0 0 0 5. H e a t i n g & V e n t i l a t i o n / D e h u m i d i f i c a t i o n 16 L S $ 2 , 0 0 0 . 0 0 $ 3 2 , 0 0 0 6. B i l c o H a t c h ( S a f e t y a c c e s s - e l i m i n a t e c o n f i n e d sp a c e e n t r y ) 16 L S $ 5 , 0 0 0 . 0 0 $ 8 0 , 0 0 0 7. P o w e r t o s i t e 16 L S $ 2 0 , 0 0 0 . 0 0 $ 3 2 0 , 0 0 0 8. S C A D A p r o g r a m m i n g 16 L S $ 1 0 , 0 0 0 . 0 0 $ 1 6 0 , 0 0 0 Su b t o t a l $ 3 , 6 7 2 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 3 6 7 , 2 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 7 3 , 4 4 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 3 6 , 7 2 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 5 5 0 , 8 0 0 . 0 0 Su b t o t a l $1 , 0 2 8 , 1 6 0 . 0 0 $4 , 7 0 0 , 1 6 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 4 7 0 , 0 1 6 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 4 7 0 , 0 1 6 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 3 5 , 0 0 8 Su b t o t a l $1 , 1 7 5 , 0 4 0 $1 , 1 7 5 , 0 4 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $ 0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 3 0 % ) 1 l . s . $ 1 , 7 6 2 , 5 6 0 Su b t o t a l $1 , 7 6 2 , 5 6 0 $1 , 7 6 2 , 5 6 0 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $7 , 6 3 7 , 7 6 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T CO M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 3 8 Pe a r S t . B o o s t e r S t a t i o n U p g r a d e Ha r d C o s t 1 . 0 a. Pu m p s , E l e c t r i c a l , C o n t r o l , S C A D A , P R V ' s 1. P u m p M e c h 3 E A $ 3 0 , 0 0 0 . 0 0 $ 9 0 , 0 0 0 2. M e c h a n i c a l 1 L S $ 1 0 , 0 0 0 . 0 0 $ 1 0 , 0 0 0 3. P R V ' s 2 E A $ 7 , 5 0 0 . 0 0 $ 1 5 , 0 0 0 4. E l e c t r i c a l & C o n t r o l s 1 L S $ 9 0 , 0 0 0 . 0 0 $ 1 0 0 , 0 0 0 5. C o n n e c t t o e x i s t i n g S C A D A 1 L S $ 1 0 , 0 0 0 . 0 0 $ 1 0 , 0 0 0 Su b t o t a l $ 2 2 5 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 2 2 , 5 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 4 , 5 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 2 , 2 5 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 3 3 , 7 5 0 . 0 0 Su b t o t a l $6 3 , 0 0 0 . 0 0 $2 8 8 , 0 0 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 5 % ) 1 l . s . $ 4 3 , 2 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 5 % ) 1 l . s . $ 1 4 , 4 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 1 0 % ) 1 l . s . $ 2 8 , 8 0 0 Su b t o t a l $8 6 , 4 0 0 $8 6 , 4 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 3 0 % ) 1 l . s . $ 1 1 2 , 3 2 0 Su b t o t a l $1 1 2 , 3 2 0 $1 1 2 , 3 2 0 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 Inflation $4 8 6 , 7 2 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T C: \ U s e r s \ l l e h i g h \ D e s k t o p \ A E 2 S \ P r o j e c t s a n d P r o p o s a l s \ 0 5 0 9 7 - 20 1 3 - 0 0 1 B o z e m a n \ D e l i v e r a b l e s \ N o v e m b e r D r a f t \ B o z e m a n O P P C S h e e t s _ N o n - C o n s t _ P r o j e c t s ( D r a f t _ N o v ) . x l s x Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 2 4 SC A D A P h a s e 1 Ha r d C o s t 1 . 0 a. Im p l e m e n t S y s t e m - w i d e S C A D A 1. S C A D A N e t w o r k 1 L S $ 9 5 0 , 0 0 0 . 0 0 $ 9 5 0 , 0 0 0 2. S C A D A H i s t o r i a n 1 L S $ 1 5 0 , 0 0 0 . 0 0 $ 1 5 0 , 0 0 0 3. C e n t r a l S i t e I m p r o v e m e n t s 2 L S $ 1 5 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 4. S C A D A C o n f i g u r a t i o n 1 L S $ 7 5 , 0 0 0 . 0 0 $ 7 5 , 0 0 0 Su b t o t a l $ 1 , 4 7 5 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 2 9 , 5 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 2 9 , 5 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 1 4 , 7 5 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 1 4 7 , 5 0 0 . 0 0 Su b t o t a l $2 2 1 , 2 5 0 . 0 0 $1 , 6 9 6 , 2 5 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 5 % ) 1 l . s . $ 8 4 , 8 1 3 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 1 6 9 , 6 2 5 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 8 4 , 8 1 3 Su b t o t a l $3 3 9 , 2 5 0 $3 3 9 , 2 5 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 2 0 3 , 5 5 0 Su b t o t a l $2 0 3 , 5 5 0 $2 0 3 , 5 5 0 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 Inflation $2 , 2 3 9 , 0 5 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D C I P N a m e : WF P _ 3 2 Ri s k B a s e d C A # 2 - D o w n t o w n Ar e a Ha r d C o s t 1 . 0 a. Sc o p e - I n s p e c t i o n a n d A s s e s s m e n t 1. M e d i u m R e s o l u t i o n A s s e s s m e n t 1, 0 1 8 l f $ 6 . 6 7 $ 6 , 7 9 0 3. S p o t d i g s t o v a l i d a t e l o w r e s a s s e s s m e n t 1 L S $ 5 , 0 0 0 . 0 0 $ 5 , 0 0 0 4. E n g r A n a l y s i s / F i e l d F o r e n s i c s / R e p o r t 1 L S $ 1 0 , 0 0 0 . 0 0 $ 1 0 , 0 0 0 Su b t o t a l $ 2 1 , 7 9 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 0 % ) 1 l . s . $ 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 4 3 5 . 8 0 c. Er o s i o n C o n t r o l ( 0 % ) 1 l . s . $ 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 0 % ) 1 l . s . $ 0 . 0 0 Su b t o t a l $4 3 5 . 8 0 $2 2 , 2 2 5 . 8 6 Es t i m a t e d H a r d C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 0 % ) 1 l . s . $0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 2 , 2 2 3 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $0 Su b t o t a l $2 , 2 2 3 $2 , 2 2 3 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 1 5 % ) 1 l . s . $ 3 , 6 6 7 Su b t o t a l $3 , 6 6 7 $3 , 6 6 7 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $2 8 , 1 1 5 . 7 1 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P N a m e : C I P N a m e : WF P _ 2 6 Re d u n d a n t N o r t h 5 0 3 8 Z o n e F e e d Ha r d C o s t 1 . 0 a. E l e c t r i c a l , C o n t r o l , S C A D A , P R V ' s 1. V e r i f y P R V s i z i n g , i n s t a l l n e w a s r e q d 2 E A $ 7 , 5 0 0 . 0 0 $ 1 5 , 0 0 0 2. M e c h a n i c a l 1 L S $ 5 , 0 0 0 . 0 0 $ 5 , 0 0 0 3. S i t e m i s c e l l a n e o u s 1 E A $ 7 , 5 0 0 . 0 0 $ 7 , 5 0 0 Su b t o t a l $ 2 7 , 5 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 2 , 7 5 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 5 5 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 2 7 5 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 4 , 1 2 5 . 0 0 Su b t o t a l $7 , 7 0 0 . 0 0 $3 5 , 2 0 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 5 % ) 1 l . s . $ 5 , 2 8 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 5 % ) 1 l . s . $ 1 , 7 6 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 1 0 % ) 1 l . s . $ 3 , 5 2 0 Su b t o t a l $1 0 , 5 6 0 $1 0 , 5 6 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $ 0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 3 0 % ) 1 l . s . $ 1 3 , 7 2 8 Su b t o t a l $1 3 , 7 2 8 $1 3 , 7 2 8 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $5 9 , 4 8 8 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T TO T A L C O S T CO M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 3 4 Ri s k B a s e d C A # 1 - W e s t Bo z e m a n T r a n s m i s s i o n Ha r d C o s t 1 . 0 a. Sc o p e - I n s p e c t i o n a n d A s s e s s m e n t 1. M e d i u m R e s o l u t i o n A s s e s s m e n t 1, 8 0 9 l f $ 6 . 6 7 $ 1 2 , 0 6 6 3. F i e l d M o d i f i c a t i o n s f o r I n s p e c t i o n 1 L S $ 1 0 , 0 0 0 . 0 0 $ 1 0 , 0 0 0 4. E n g r A n a l y s i s / F i e l d F o r e n s i c s / R e p o r t 1 L S $ 1 5 , 0 0 0 . 0 0 $ 1 5 , 0 0 0 Su b t o t a l $ 3 7 , 0 6 6 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 0 % ) 1 l . s . $ 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 7 4 1 . 3 2 c. Er o s i o n C o n t r o l ( 0 % ) 1 l . s . $ 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 0 % ) 1 l . s . $ 0 . 0 0 Su b t o t a l $7 4 1 . 3 2 $3 7 , 8 0 7 . 3 5 Es t i m a t e d H a r d C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 0 % ) 1 l . s . $0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 3 , 7 8 1 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $0 Su b t o t a l $3 , 7 8 1 $3 , 7 8 1 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 1 5 % ) 1 l . s . $ 6 , 2 3 8 Su b t o t a l $6 , 2 3 8 $6 , 2 3 8 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $4 7 , 8 2 6 . 3 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 3 5 Ri s k B a s e d C A # 3 - B a x t e r / O a k so u t h o f F r e e w a y Ha r d C o s t 1 . 0 a. Sc o p e - I n s p e c t i o n a n d A s s e s s m e n t 1. M e d i u m R e s o l u t i o n A s s e s s m e n t 26 7 l f $ 6 . 6 7 $ 1 , 7 8 1 3. S p o t d i g s t o v a l i d a t e l o w r e s a s s e s s m e n t 1 L S $ 5 , 0 0 0 . 0 0 $ 5 , 0 0 0 3. E n g r A n a l y s i s / F i e l d F o r e n s i c s / R e p o r t 1 L S $ 1 0 , 0 0 0 . 0 0 $ 1 0 , 0 0 0 Su b t o t a l $ 1 6 , 7 8 1 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 1 , 6 7 8 . 0 9 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 3 3 5 . 6 2 c. Er o s i o n C o n t r o l ( 0 % ) 1 l . s . $ 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 0 % ) 1 l . s . $ 0 . 0 0 Su b t o t a l $2 , 0 1 3 . 7 1 10 $1 8 , 7 9 4 . 6 0 Es t i m a t e d H a r d C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 0 % ) 1 l . s . $ 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 1 , 8 7 9 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $ 0 Su b t o t a l $1 , 8 7 9 $1 , 8 7 9 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $ 0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 1 5 % ) 1 l . s . $ 3 , 1 0 1 Su b t o t a l $3 , 1 0 1 $3 , 1 0 1 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $2 3 , 7 7 5 . 1 6 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : CI P N a m e : WF P _ 3 6 Wa t e r I n f o r m a t i o n M a n a g e m e n t S o l u t i o n Ha r d C o s t 1 . 0 a. S c o p e - S t u d y r e p o r t 1. G o a l s / o b j e c t i v e s d e v e l o p m e n t 1 L S $ 0 . 0 0 $0 2. E x i s t i n g S y s t e m A n a l y s i s 1 L S $ 0 . 0 0 3. S y s t e m I n t e g r a t i o n D e s i g n 1 L S $ 0 . 0 0 4. V e n d o r p r o c u r e m e n t 1 L S $ 0 . 0 0 5. S o l u t i o n D e v e l o p m e n t & T e s t i n g 1 L S $ 0 . 0 0 7. D a t a i n t e g r a t i o n w i t h o t h e r P W D s y s t e m s 1 L S $ 0 . 0 0 $0 8. R o l l o u t & T e c h S u p p o r t 1 L S $ 0 . 0 0 $0 9. 3 y r . m a i n t e n a n c e a g r e e m e n t 1 L S $ 1 2 0 , 0 0 0 . 0 0 $1 2 0 , 0 0 0 Su b t o t a l $1 2 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $0 . 0 0 b. Tra f f i c C o n t r o l ( 2 % ) 1 l . s . $0 . 0 0 c. Ero s i o n C o n t r o l ( 1 % ) 1 l . s . $0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $0 . 0 0 Su b t o t a l $0 . 0 0 $1 2 0 , 0 0 0 . 0 0 Estimated Hard Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 2 0 % ) 1 l . s . $2 4 , 0 0 0 b. IT A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 5 % ) 1 l . s . $1 8 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $0 Su b t o t a l $4 2 , 0 0 0 $4 2 , 0 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 1 5 % ) 1 l . s . $2 4 , 3 0 0 Su b t o t a l $2 4 , 3 0 0 $2 4 , 3 0 0 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 Inflation $1 8 6 , 3 0 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # IT E M D E S C R I P T I O N QU A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 5 4 Hy a l i t e R e s e r v o i r I n f r a s t r u c t u r e Im p r o v e m e n t s Ha r d C o s t 1 . 0 a. Hy a l i t e R e s e r v o i r I n f r a s t r u c t u r e I m p r o v e m e n t s 1. C o n t r o l T o w e r A r m o r i n g 3 L S $ 2 5 0 , 0 0 0 . 0 0 $ 7 5 0 , 0 0 0 2. C o n t r o l s U p g r a d e s 3 E A $ 4 0 0 , 0 0 0 . 0 0 $ 1 , 2 0 0 , 0 0 0 Su b t o t a l $ 1 , 9 5 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 3 9 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 3 9 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 1 9 , 5 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 1 9 5 , 0 0 0 . 0 0 Su b t o t a l $2 9 2 , 5 0 0 . 0 0 $2 , 2 4 2 , 5 0 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 2 2 4 , 2 5 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 2 2 4 , 2 5 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 1 0 % ) 1 l . s . $ 2 2 4 , 2 5 0 Su b t o t a l $6 7 2 , 7 5 0 $6 7 2 , 7 5 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 3 A c r e s 3 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 Su b t o t a l $3 0 0 , 0 0 0 $3 0 0 , 0 0 0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 6 4 3 , 0 5 0 Su b t o t a l $6 4 3 , 0 5 0 $6 4 3 , 0 5 0 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $3 , 8 5 8 , 3 0 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 0 3 So u r d o u g h T r a n s m i s s i o n M a i n – Ph a s e 1 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 3 0 " D I P - C l a s s 5 1 8, 6 7 8 l . f $ 2 9 4 . 0 0 $ 2 , 5 5 1 , 3 3 2 Su b t o t a l $ 2 , 5 5 1 , 3 3 2 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 5 1 , 0 2 6 . 6 4 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 5 1 , 0 2 6 . 6 4 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 2 5 , 5 1 3 . 3 2 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 1 2 7 , 5 6 6 . 6 0 Su b t o t a l $2 5 5 , 1 3 3 . 2 0 $2 , 8 0 6 , 4 6 5 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 2 8 0 , 6 4 7 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 2 2 4 , 5 1 7 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 1 4 0 , 3 2 3 Su b t o t a l $6 4 5 , 4 8 7 $6 4 5 , 4 8 7 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 8, 6 7 8 l . f . $ 9 . 5 0 $ 8 2 , 4 4 1 Su b t o t a l $8 2 , 4 4 1 $8 2 , 4 4 1 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 7 0 6 , 8 7 9 Su b t o t a l $7 0 6 , 8 7 9 $7 0 6 , 8 7 9 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $4 , 2 4 1 , 2 7 2 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 2 0 Gr o u n d w a t e r W e l l F i e l d Tr a n s m i s s i o n M a i n - P h a s e 1 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 2 4 " D I P - C l a s s 5 1 30 , 3 0 0 l. f $ 1 9 2 . 0 0 $ 5 , 8 1 7 , 6 0 0 Su b t o t a l $ 5 , 8 1 7 , 6 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 1 6 , 3 5 2 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 1 6 , 3 5 2 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 8 , 1 7 6 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 2 9 0 , 8 8 0 . 0 0 Su b t o t a l $5 8 1 , 7 6 0 . 0 0 $6 , 3 9 9 , 3 6 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 6 3 9 , 9 3 6 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 5 1 1 , 9 4 9 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 3 1 9 , 9 6 8 Su b t o t a l $1 , 4 7 1 , 8 5 3 $1 , 4 7 1 , 8 5 3 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 30 , 3 0 0 l . f . $ 9 . 5 0 $ 2 8 7 , 8 5 0 Su b t o t a l $2 8 7 , 8 5 0 $2 8 7 , 8 5 0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 8 1 5 , 9 0 6 Su b t o t a l $8 1 5 , 9 0 6 $8 1 5 , 9 0 6 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $8 , 9 7 4 , 9 6 9 . 0 8 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 2 5 P R V A b a n d o n m e n t Ha r d C o s t 1 . 0 a. Pu m p s , E l e c t r i c a l , C o n t r o l , S C A D A , P R V ' s 1. E x c a v a t i o n a n d B a c k f i l l 6 L S $ 2 , 5 0 0 . 0 0 $ 1 5 , 0 0 0 2. S a l v a g e m e c h a n i c a l 6 L S $ 4 , 0 0 0 . 0 0 $ 2 4 , 0 0 0 3. V a u l t L i d r e m o v a l a n d c a p p i n g 6 L S $ 2 , 5 0 0 . 0 0 $ 1 5 , 0 0 0 4. F u r n i s h & I n s t a l l V a l v e R i s e r 6 L S $ 2 , 0 0 0 . 0 0 $ 1 2 , 0 0 0 5. I m p o r t f o r v a u l t 6 L S $ 6 0 0 . 0 0 $ 3 , 6 0 0 6. I n t e r c o n n e c t i o n P i p e 60 0 L F $ 2 3 3 . 0 0 $ 1 3 9 , 8 0 0 7. S i t e r e s t o r a t i o n 6 L S $ 2 , 0 0 0 . 0 0 $ 1 2 , 0 0 0 Su b t o t a l $ 2 2 1 , 4 0 0 Ha r d C o s t - M a r k u p s 2. 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 2 2 , 1 4 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 4 , 4 2 8 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 2 , 2 1 4 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 3 3 , 2 1 0 . 0 0 Su b t o t a l $6 1 , 9 9 2 . 0 0 $2 8 3 , 3 9 2 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 2 8 , 3 3 9 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 2 8 , 3 3 9 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 1 4 , 1 7 0 Su b t o t a l $7 0 , 8 4 8 $7 0 , 8 4 8 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4. 0 a. No t I n c l u d e d 0 l . s . $ 0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5. 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 3 0 % ) 1 l . s . $ 1 0 6 , 2 7 2 Su b t o t a l $1 0 6 , 2 7 2 $1 0 6 , 2 7 2 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $4 6 0 , 5 1 2 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D C I P N a m e : WF P _ 2 5 SC A D A P h a s e 2 Ha r d C o s t 1 . 0 a. Im p l e m e n t S y s t e m - w i d e S C A D A 1. S C A D A E q u i p m e n t A d d i t i o n s 1 L S $ 1 , 0 0 0 , 0 0 0 . 0 0 $ 1 , 0 0 0 , 0 0 0 2. S C A D A E q u i p m e n t R e p l a c e m e n t s 1 L S $ 3 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 Su b t o t a l $ 1 , 3 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 1 3 0 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 2 6 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 1 3 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 1 9 5 , 0 0 0 . 0 0 Su b t o t a l $3 6 4 , 0 0 0 . 0 0 $1 , 6 6 4 , 0 0 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 5 % ) 1 l . s . $ 8 3 , 2 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 1 6 6 , 4 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 8 3 , 2 0 0 Su b t o t a l $3 3 2 , 8 0 0 $3 3 2 , 8 0 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 3 0 % ) 1 l . s . $ 5 9 9 , 0 4 0 Su b t o t a l $5 9 9 , 0 4 0 $5 9 9 , 0 4 0 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $2 , 5 9 5 , 8 4 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : CI P N a m e : WF P _ 3 3 Re m o t e W Q S u r v e i l l a n c e S y s t e m Ha r d C o s t 1 . 0 a. S c o p e - S t u d y r e p o r t 1. G o a l s / o b j e c t i v e s d e v e l o p m e n t 1 L S $ 0 . 0 0 $0 2. E v a l u a t e e x i s t / f u t u r e W Q r e p o r t i n g r e q t s 1 L S $ 0 . 0 0 $0 3. H a r d w a r e , p r o g r a m m i n g , i n t e r f a c e w i t h S C A D A 1 L S $ 0 . 0 0 $0 4. F i n a l R e p o r t a n d I m p l e m e n t a t i o n P l a n 1 L S $ 4 5 , 0 0 0 . 0 0 $4 5 , 0 0 0 Su b t o t a l $4 5 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $0 . 0 0 Su b t o t a l $0 . 0 0 $4 5 , 0 0 0 . 0 0 Estimated Hard Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $4 , 5 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 0 % ) 1 l . s . $0 c. Le g a l a n d A d m i n i s t r a t i v e ( 0 % ) 1 l . s . $0 Su b t o t a l $4 , 5 0 0 $4 , 5 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $0 Su b t o t a l $0 $0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. Co n t i n g e n c y ( 3 0 % ) 1 l . s . $7 , 4 2 5 Su b t o t a l $7 , 4 2 5 $7 , 4 2 5 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 Inflation $5 6 , 9 2 5 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 0 9 b 51 2 5 W e s t S o u r d o u g h R e s e r v o i r 1 Ha r d C o s t 1 . 0 a. 51 2 5 W e s t S o u r d o u g h R e s e r v o i r 1 1. W e s t S o u r d o u g h R e s e r v o i r 1 ( 5 M G ) 5 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 5 , 0 0 0 , 0 0 0 Su b t o t a l $ 5 , 0 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 0 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 5 0 0 , 0 0 0 . 0 0 Su b t o t a l $7 5 0 , 0 0 0 . 0 0 $5 , 7 5 0 , 0 0 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 5 7 5 , 0 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 4 6 0 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 8 7 , 5 0 0 Su b t o t a l $1 , 3 2 2 , 5 0 0 $1 , 3 2 2 , 5 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 2 . 5 A c r e s 2. 5 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 2 5 0 , 0 0 0 Su b t o t a l $2 5 0 , 0 0 0 $2 5 0 , 0 0 0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 5 % ) 1 l . s . $ 1 , 0 9 8 , 3 7 5 Su b t o t a l $1 , 0 9 8 , 3 7 5 $1 , 0 9 8 , 3 7 5 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $8 , 4 2 0 , 8 7 5 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 3 0 55 6 0 S o u t h e a s t M o u n t a i n Re s e r v o i r a n d P u m p S t a t i o n Ha r d C o s t 1 . 0 a. So u t h e a s t R e s e r v o i r a n d P u m p S t a t i o n 1. S o u t h e a s t R e s e r v o i r P u m p S t a t i o n 1 l. s $1 , 4 7 7 , 0 0 2 $1 , 4 7 7 , 0 0 2 2. S o u t h e a s t R e s e r v o i r ( 4 M G ) 4 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 4 , 0 0 0 , 0 0 0 3. 1 6 " D I P C l a s s 5 1 14 , 8 9 5 l. f $ 1 1 8 . 0 0 $ 1 , 7 5 7 , 6 1 0 4. 2 4 " D I P C l a s s 5 1 14 , 7 9 2 l. f . $ 1 9 2 . 0 0 $ 2 , 8 4 0 , 0 6 4 Su b t o t a l $ 1 0 , 0 7 4 , 6 7 6 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 2 0 1 , 4 9 3 . 5 2 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 2 0 1 , 4 9 3 . 5 2 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 1 0 0 , 7 4 6 . 7 6 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 1 , 5 1 1 , 2 0 1 . 3 8 Su b t o t a l $2 , 0 1 4 , 9 3 5 . 1 7 $1 2 , 0 8 9 , 6 1 1 . 0 4 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 1 , 2 0 8 , 9 6 1 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 9 6 7 , 1 6 9 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 6 0 4 , 4 8 1 Su b t o t a l $2 , 7 8 0 , 6 1 1 $2 , 7 8 0 , 6 1 1 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 3 A c r e P r o p e r t y R e q u i r e m e n t 3 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 b. Ri g h t - o f - w a y 29 , 6 8 7 l . f . $ 9 . 5 0 $ 2 8 2 , 0 2 7 Su b t o t a l $5 8 2 , 0 2 7 $5 8 2 , 0 2 7 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 3 , 0 9 0 , 4 5 0 Su b t o t a l $3 , 0 9 0 , 4 5 0 $3 , 0 9 0 , 4 5 0 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $1 8 , 5 4 2 , 6 9 7 . 6 9 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P N a m e : C I P N a m e : WF P _ 3 1 49 7 5 N o r t h w e s t R e s e r v o i r 1 Ha r d C o s t 1 . 0 a. 49 7 5 N o r t h w e s t R e s e r v o i r 1 1. N o r t h w e s t R e s e r v o i r 1 ( 5 M G ) 5 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 5 , 0 0 0 , 0 0 0 Su b t o t a l $ 5 , 0 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 0 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 5 0 0 , 0 0 0 . 0 0 Su b t o t a l $7 5 0 , 0 0 0 . 0 0 $5 , 7 5 0 , 0 0 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 5 7 5 , 0 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 4 6 0 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 8 7 , 5 0 0 Su b t o t a l $1 , 3 2 2 , 5 0 0 $1 , 3 2 2 , 5 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 2 . 5 A c r e P r o p e r t y R e q u i r e m e n t 2 . 5 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 2 5 0 , 0 0 0 Su b t o t a l $2 5 0 , 0 0 0 $2 5 0 , 0 0 0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 5 % ) 1 l . s . $ 1 , 0 9 8 , 3 7 5 Su b t o t a l $1 , 0 9 8 , 3 7 5 $1 , 0 9 8 , 3 7 5 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $8 , 4 2 0 , 8 7 5 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 0 7 Ly m a n C r e e k W a t e r S y s t e m Im p r o v e m e n t s Ha r d C o s t 1 . 0 a. Wa t e r M a i n 1. 1 8 " D I P - C l a s s 5 1 ( O u t s i d e - C i t y ) 7 , 1 2 0 l. f $ 1 3 6 . 0 0 $ 9 6 8 , 3 2 0 2. 1 8 " D I P - C l a s s 5 1 ( I n - C i t y ) 3 , 8 0 0 l. f $ 3 8 8 . 0 0 $ 1 , 4 7 4 , 4 0 0 b. Ne w L y m a n C r e e k W a t e r R e s e r v o i r s 1. S i t e D e v e l o p m e n t 1 E A $ 1 , 0 0 0 , 0 0 0 . 0 0 $ 1 , 0 0 0 , 0 0 0 2. P r e s s u r e R e g u l a t i n g F a c i l i t i e s 1 L S $ 2 5 0 , 0 0 0 . 0 0 $ 2 5 0 , 0 0 0 3. C o n n e c t t o e x i s t i n g T r a n s m i s s i o n M a i n ( s ) 1 E A $ 1 0 0 , 0 0 0 . 0 0 $ 1 0 0 , 0 0 0 4. R e s e r v o i r s ( 2 , 5 M G ) 10 , 0 0 0 , 0 0 0 g a l $ 1 . 0 0 $ 1 0 , 0 0 0 , 0 0 0 5. C h l o r i n a t i o n / F l u o r i d a t i o n F a c i l i t i e s 1 L S $ 3 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 c. Mi c r o H y d r o 1 L S $ 4 0 0 , 0 0 0 . 0 0 $ 4 0 0 , 0 0 0 d. Ly m a n R e s e r v o i r D e c o m m i s s i o n g 1 L S $ 5 0 0 , 0 0 0 . 0 0 $ 5 0 0 , 0 0 0 . 0 0 c. Pe a r S t r e e t P u m p S t a t i o n D e c o m m i s s i o n i n g 1 L S $ 2 0 0 , 0 0 0 . 0 0 $ 2 0 0 , 0 0 0 . 0 0 d. Ne w P R V / M i c r o H y d r o N E o f C i t y 1 L S $ 3 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 Su b t o t a l $ 1 3 , 0 5 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 2 % ) 1 l . s . $ 2 6 1 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 2 6 1 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 1 3 0 , 5 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 1 , 9 5 7 , 5 0 0 . 0 0 Su b t o t a l $2 , 6 1 0 , 0 0 0 . 0 0 $1 5 , 6 6 0 , 0 0 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 2 % ) 1 l . s . $ 1 , 8 7 9 , 2 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 1 , 5 6 6 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 1 0 % ) 1 l . s . $ 1 , 5 6 6 , 0 0 0 Su b t o t a l $5 , 0 1 1 , 2 0 0 $5 , 0 1 1 , 2 0 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d e x i s t i n g R O W a n d L a n d 0 l . s . $0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 4 , 1 3 4 , 2 4 0 Su b t o t a l $4 , 1 3 4 , 2 4 0 $4 , 1 3 4 , 2 4 0 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $2 4 , 8 0 5 , 4 4 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 1 0 b Gr o u n d w a t e r W e l l F i e l d - D e s i g n & C o n s t r u c t i o n P h a s e 2 Ha r d C o s t 1 . 0 a. Ne w L y m a n C r e e k W a t e r R e s e r v o i r 1. S i t e D e v e l o p m e n t 5 L S $ 2 5 0 , 0 0 0 . 0 0 $ 1 , 2 5 0 , 0 0 0 2. W e l l s , P o w e r a n d C o n t r o l 5 E A $ 4 0 0 , 0 0 0 . 0 0 $ 2 , 0 0 0 , 0 0 0 3. C o n n e c t t o T r a n s m i s s i o n M a i n ( s ) 5 L S $ 1 0 0 , 0 0 0 . 0 0 $ 5 0 0 , 0 0 0 4. J u n c t i o n a n d B o o s t e r S t a t i o n 1 E A $ 3 , 0 0 0 , 0 0 0 . 0 0 $ 3 , 0 0 0 , 0 0 0 5. D i s i n f e c t i o n ( R e s i d u a l ) F a c i l i t i e s U p g r a d e 1 E A $ 1 5 0 , 0 0 0 . 0 0 $ 1 5 0 , 0 0 0 Su b t o t a l $ 6 , 9 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 3 8 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 3 8 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 6 9 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 6 9 0 , 0 0 0 . 0 0 Su b t o t a l $1 , 0 3 5 , 0 0 0 . 0 0 $7 , 9 3 5 , 0 0 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 7 9 3 , 5 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 1 0 % ) 1 l . s . $ 7 9 3 , 5 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 1 0 % ) 1 l . s . $ 7 9 3 , 5 0 0 Su b t o t a l $2 , 3 8 0 , 5 0 0 $2 , 3 8 0 , 5 0 0 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 5 A c r e s 5 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 5 0 0 , 0 0 0 Su b t o t a l $5 0 0 , 0 0 0 $5 0 0 , 0 0 0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 2 , 1 6 3 , 1 0 0 Su b t o t a l $2 , 1 6 3 , 1 0 0 $2 , 1 6 3 , 1 0 0 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $0 Su b t o t a l $0 $0 In f l a t i o n $1 2 , 9 7 8 , 6 0 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 0 1 b , c We s t T r a n s m i s s i o n M a i n – P h a s e 1 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 4 8 " D I P - C l a s s 5 1 25 , 2 2 7 l . f $ 6 3 2 . 0 0 $ 1 5 , 9 4 3 , 4 6 4 2. 2 4 " D I P - C l a s s 5 1 5, 9 5 2 l . f . $ 1 9 2 . 0 0 $ 1 , 1 4 2 , 7 8 4 3. 1 6 " D I P - C l a s s 5 1 4, 5 2 0 l . f . $ 1 1 8 . 0 0 $ 5 3 3 , 3 6 0 Su b t o t a l $ 1 7 , 6 1 9 , 6 0 8 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 3 5 2 , 3 9 2 . 1 6 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 3 5 2 , 3 9 2 . 1 6 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 1 7 6 , 1 9 6 . 0 8 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 8 8 0 , 9 8 0 . 4 0 Su b t o t a l $1 , 7 6 1 , 9 6 0 . 8 0 $1 9 , 3 8 1 , 5 6 9 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 1 , 9 3 8 , 1 5 7 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 1 , 5 5 0 , 5 2 6 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 9 6 9 , 0 7 8 Su b t o t a l $4 , 4 5 7 , 7 6 1 $4 , 4 5 7 , 7 6 1 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 35 , 6 9 9 l . f . $ 9 . 5 0 $ 3 3 9 , 1 4 1 Su b t o t a l $3 3 9 , 1 4 1 $3 3 9 , 1 4 1 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 2 , 4 1 7 , 8 4 7 Su b t o t a l $2 , 4 1 7 , 8 4 7 $2 , 4 1 7 , 8 4 7 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $2 6 , 5 9 6 , 3 1 7 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D C I P N a m e : WF P _ 0 8 So u r d o u g h T r a n s m i s s i o n M a i n – Ph a s e 2 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 3 6 " D I P - C l a s s 5 1 9, 4 7 7 l . f $ 3 6 9 . 0 0 $ 3 , 4 9 7 , 0 1 3 Su b t o t a l $ 3 , 4 9 7 , 0 1 3 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 6 9 , 9 4 0 . 2 6 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 6 9 , 9 4 0 . 2 6 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 3 4 , 9 7 0 . 1 3 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 1 7 4 , 8 5 0 . 6 5 Su b t o t a l $3 4 9 , 7 0 1 . 3 0 $3 , 8 4 6 , 7 1 4 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 3 8 4 , 6 7 1 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 3 0 7 , 7 3 7 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 1 9 2 , 3 3 6 Su b t o t a l $8 8 4 , 7 4 4 $8 8 4 , 7 4 4 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 9, 4 7 7 l . f . $ 9 . 5 0 $ 9 0 , 0 3 2 Su b t o t a l $9 0 , 0 3 2 $9 0 , 0 3 2 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 9 6 4 , 2 9 8 Su b t o t a l $9 6 4 , 2 9 8 $9 6 4 , 2 9 8 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $5 , 7 8 5 , 7 8 8 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 2 9 Ea s t T r a n s m i s s i o n M a i n Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 2 4 " D I P - C l a s s 5 1 20 , 5 6 8 l . f $ 1 9 2 . 0 0 $ 3 , 9 4 9 , 0 5 6 Su b t o t a l $ 3 , 9 4 9 , 0 5 6 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 7 8 , 9 8 1 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 7 8 , 9 8 1 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 3 9 , 4 9 1 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 1 9 7 , 4 5 3 Su b t o t a l $3 9 4 , 9 0 5 . 6 0 $4 , 3 4 3 , 9 6 2 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 4 3 4 , 3 9 6 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 3 4 7 , 5 1 7 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 1 7 , 1 9 8 Su b t o t a l $9 9 9 , 1 1 1 $9 9 9 , 1 1 1 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Ri g h t - o f - w a y 20 , 5 6 8 l . f . $ 9 . 5 0 $ 1 9 5 , 3 9 6 Su b t o t a l $1 9 5 , 3 9 6 $1 9 5 , 3 9 6 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 5 5 3 , 8 4 7 Su b t o t a l $5 5 3 , 8 4 7 $5 5 3 , 8 4 7 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $6 , 0 9 2 , 3 1 6 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 3 9 We s t T r a n s m i s s i o n M a i n – P h a s e 2 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 4 8 " D I P - C l a s s 5 1 37 , 7 3 9 l . f $ 6 3 2 . 0 0 $ 2 3 , 8 5 1 , 0 4 8 Su b t o t a l $ 2 3 , 8 5 1 , 0 4 8 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 4 7 7 , 0 2 0 . 9 6 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 4 7 7 , 0 2 0 . 9 6 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 2 3 8 , 5 1 0 . 4 8 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 1 , 1 9 2 , 5 5 2 . 4 0 Su b t o t a l $2 , 3 8 5 , 1 0 4 . 8 0 $2 6 , 2 3 6 , 1 5 3 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 2 , 6 2 3 , 6 1 5 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 2 , 0 9 8 , 8 9 2 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 1 , 3 1 1 , 8 0 8 Su b t o t a l $6 , 0 3 4 , 3 1 5 $6 , 0 3 4 , 3 1 5 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 37 , 7 3 9 l . f . $ 9 . 5 0 $ 3 5 8 , 5 2 1 Su b t o t a l $3 5 8 , 5 2 1 $3 5 8 , 5 2 1 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 3 , 2 6 2 , 8 9 9 Su b t o t a l $3 , 2 6 2 , 8 9 9 $3 , 2 6 2 , 8 9 9 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $3 5 , 8 9 1 , 8 8 7 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 5 2 Gr o u n d w a t e r W e l l F i e l d Tr a n s m i s s i o n M a i n - P h a s e 2 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 2 4 " D I P - C l a s s 5 1 30 , 3 0 0 l. f $ 1 9 2 . 0 0 $ 5 , 8 1 7 , 6 0 0 Su b t o t a l $ 5 , 8 1 7 , 6 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 1 6 , 3 5 2 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 1 6 , 3 5 2 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 8 , 1 7 6 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 2 9 0 , 8 8 0 . 0 0 Su b t o t a l $5 8 1 , 7 6 0 . 0 0 $6 , 3 9 9 , 3 6 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 6 3 9 , 9 3 6 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 5 1 1 , 9 4 9 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 3 1 9 , 9 6 8 Su b t o t a l $1 , 4 7 1 , 8 5 3 $1 , 4 7 1 , 8 5 3 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 30 , 3 0 0 l . f . $ 9 . 5 0 $ 2 8 7 , 8 5 0 Su b t o t a l $2 8 7 , 8 5 0 $2 8 7 , 8 5 0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 8 1 5 , 9 0 6 Su b t o t a l $8 1 5 , 9 0 6 $8 1 5 , 9 0 6 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $8 , 9 7 4 , 9 6 9 . 0 8 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D C I P N a m e : WF P _ 4 0 49 7 5 N o r t h w e s t R e s e r v o i r 2 Ha r d C o s t 1 . 0 a. 49 7 5 N o r t h w e s t R e s e r v o i r 2 1. N o r t h w e s t R e s e r v o i r 2 ( 5 M G ) 5 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 5 , 0 0 0 , 0 0 0 Su b t o t a l $ 5 , 0 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n ( 1 0 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 0 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 5 0 0 , 0 0 0 . 0 0 Su b t o t a l $7 5 0 , 0 0 0 . 0 0 $5 , 7 5 0 , 0 0 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 5 7 5 , 0 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 4 6 0 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 8 7 , 5 0 0 Su b t o t a l $1 , 3 2 2 , 5 0 0 $1 , 3 2 2 , 5 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 2 . 5 A c r e P r o p e r t y R e q u i r e m e n t 2 . 5 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 2 5 0 , 0 0 0 Su b t o t a l $2 5 0 , 0 0 0 $2 5 0 , 0 0 0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 5 % ) 1 l . s . $ 1 , 0 9 8 , 3 7 5 Su b t o t a l $1 , 0 9 8 , 3 7 5 $1 , 0 9 8 , 3 7 5 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $8 , 4 2 0 , 8 7 5 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 1 51 2 5 W e s t S o u r d o u g h R e s e r v o i r 2 Ha r d C o s t 1 . 0 a. 51 2 5 W e s t S o u r d o u g h R e s e r v o i r 2 1. W e s t S o u r d o u g h R e s e r v o i r 2 ( 5 M G ) 5 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 5 , 0 0 0 , 0 0 0 Su b t o t a l $ 5 , 0 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 0 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 5 0 0 , 0 0 0 . 0 0 Su b t o t a l $7 5 0 , 0 0 0 . 0 0 $5 , 7 5 0 , 0 0 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 5 7 5 , 0 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 4 6 0 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 8 7 , 5 0 0 Su b t o t a l $1 , 3 2 2 , 5 0 0 $1 , 3 2 2 , 5 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 2 . 5 A c r e P r o p e r t y R e q u i r e m e n t 2 . 5 l . s . $ 1 0 0 , 0 0 0 . 0 0 $ 2 5 0 , 0 0 0 Su b t o t a l $2 5 0 , 0 0 0 $2 5 0 , 0 0 0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 5 % ) 1 l . s . $ 1 , 0 9 8 , 3 7 5 Su b t o t a l $1 , 0 9 8 , 3 7 5 $1 , 0 9 8 , 3 7 5 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $8 , 4 2 0 , 8 7 5 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 2 53 5 0 S o u t h w e s t R e s e r v o i r a n d Pu m p S t a t i o n Ha r d C o s t 1 . 0 a. So u t h w e s t R e s e r v o i r a n d P u m p S t a t i o n 1. S o u t h w e s t R e s e r v o i r P u m p S t a t i o n 1 l. s $1 , 3 5 4 , 1 8 1 $1 , 3 5 4 , 1 8 1 2. S o u t h w e s t R e s e r v o i r ( 4 M G ) 4 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 4 , 0 0 0 , 0 0 0 3. 2 4 " D I P C l a s s 5 1 10 0 l. f $ 1 9 2 . 0 0 $ 1 9 , 2 0 0 4. 3 0 " D I P C l a s s 5 1 7, 5 2 5 l. f $ 2 9 4 . 0 0 $ 2 , 2 1 2 , 3 5 0 Su b t o t a l $ 7 , 5 8 5 , 7 3 1 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 5 1 , 7 1 4 . 6 1 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 5 1 , 7 1 4 . 6 1 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 7 5 , 8 5 7 . 3 1 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 1 , 1 3 7 , 8 5 9 . 6 0 Su b t o t a l $1 , 5 1 7 , 1 4 6 . 1 4 $9 , 1 0 2 , 8 7 6 . 8 1 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 9 1 0 , 2 8 8 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 7 2 8 , 2 3 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 4 5 5 , 1 4 4 Su b t o t a l $2 , 0 9 3 , 6 6 2 $2 , 0 9 3 , 6 6 2 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 3 A c r e P r o p e r t y R e q u i r e m e n t 3 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 Su b t o t a l $3 0 0 , 0 0 0 $3 0 0 , 0 0 0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 2 , 2 9 9 , 3 0 8 Su b t o t a l $2 , 2 9 9 , 3 0 8 $2 , 2 9 9 , 3 0 8 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $1 3 , 7 9 5 , 8 4 6 . 1 7 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 3 53 6 0 N o r t h M o u n t a i n R e s e r v o i r an d P u m p S t a t i o n Ha r d C o s t 1 . 0 a. N o r t h R e s e r v o i r a n d P u m p S t a t i o n 1. N o r t h R e s e r v o i r P u m p S t a t i o n 1 l. s $1 , 1 9 8 , 9 1 8 $1 , 1 9 8 , 9 1 8 2. N o r t h R e s e r v o i r ( 3 M G ) 3 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 3 , 0 0 0 , 0 0 0 3. 1 6 " D I P C l a s s 5 1 13 , 2 3 0 l. f $ 1 1 8 . 0 0 $ 1 , 5 6 1 , 1 4 0 4. 2 4 " D I P C l a s s 5 1 65 l. f $ 1 9 2 . 0 0 $ 1 2 , 4 8 0 Su b t o t a l $ 5 , 7 7 2 , 5 3 8 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 1 5 , 4 5 0 . 7 7 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 1 5 , 4 5 0 . 7 7 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 7 , 7 2 5 . 3 8 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 8 6 5 , 8 8 0 . 7 5 Su b t o t a l $1 , 1 5 4 , 5 0 7 . 6 6 $6 , 9 2 7 , 0 4 6 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 6 9 2 , 7 0 5 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 5 5 4 , 1 6 4 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 3 4 6 , 3 5 2 Su b t o t a l $1 , 5 9 3 , 2 2 1 $1 , 5 9 3 , 2 2 1 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 3 A c r e P r o p e r t y R e q u i r e m e n t 3 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 Su b t o t a l $3 0 0 , 0 0 0 $3 0 0 , 0 0 0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 1 , 7 6 4 , 0 5 3 Su b t o t a l $1 , 7 6 4 , 0 5 3 $1 , 7 6 4 , 0 5 3 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $1 0 , 5 8 4 , 3 2 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 4 56 3 0 E a s t M o u n t a i n Z o n e Re s e r v o i r a n d P u m p S t a t i o n Ha r d C o s t 1 . 0 a. Ea s t M o u n t a i n Z o n e 1. E a s t M o u n t a i n P u m p S t a t i o n 1 l. s $1 , 8 3 9 , 2 5 5 $1 , 8 3 9 , 2 5 5 2. E a s t M o u n t a i n R e s e r v o i r ( 6 M G ) 6 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 6 , 0 0 0 , 0 0 0 3. 1 8 " D I P C l a s s 5 1 5, 5 5 5 l. f $ 1 3 6 . 0 0 $ 7 5 5 , 4 8 0 4. 2 4 " D I P C l a s s 5 1 2, 9 6 0 l. f $ 1 9 2 . 0 0 $ 5 6 8 , 3 2 0 Su b t o t a l $ 9 , 1 6 3 , 0 5 5 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 8 3 , 2 6 1 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 8 3 , 2 6 1 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 9 1 , 6 3 1 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 5 % ) 1 l . s . $ 1 , 3 7 4 , 4 5 8 Su b t o t a l $1 , 8 3 2 , 6 1 1 $1 0 , 9 9 5 , 6 6 6 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 1 , 0 9 9 , 5 6 7 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 8 7 9 , 6 5 3 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 5 4 9 , 7 8 3 Su b t o t a l $2 , 5 2 9 , 0 0 3 $2 , 5 2 9 , 0 0 3 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d 3 A c r e P r o p e r t y R e q u i r e m e n t 3 A c r e $ 1 0 0 , 0 0 0 . 0 0 $ 3 0 0 , 0 0 0 Su b t o t a l $3 0 0 , 0 0 0 $3 0 0 , 0 0 0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 2 0 % ) 1 l . s . $ 2 , 7 6 4 , 9 3 4 Su b t o t a l $2 , 7 6 4 , 9 3 4 $2 , 7 6 4 , 9 3 4 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $1 6 , 5 8 9 , 6 0 4 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 5 So u r d o u g h R e s e r v o i r 2 Ha r d C o s t 1 . 0 a. So u r d o u g h R e s e r v o i r 2 1. S o u r d o u g h R e s e r v o i r 2 ( 4 M G ) 4 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 4 , 0 0 0 , 0 0 0 Su b t o t a l $ 4 , 0 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n a n d D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 8 0 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 8 0 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 4 0 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 4 0 0 , 0 0 0 . 0 0 Su b t o t a l $6 0 0 , 0 0 0 . 0 0 $4 , 6 0 0 , 0 0 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 4 6 0 , 0 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 3 6 8 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 3 0 , 0 0 0 Su b t o t a l $1 , 0 5 8 , 0 0 0 $1 , 0 5 8 , 0 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d C i t y o w n e d L a n d a t S o u r d o u g h S i t e 0 A c r e $ 0 Su b t o t a l $0 $0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 5 % ) 1 l . s . $ 8 4 8 , 7 0 0 Su b t o t a l $8 4 8 , 7 0 0 $8 4 8 , 7 0 0 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $6 , 5 0 6 , 7 0 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 6 Wa t e r T r e a t m e n t P l a n t R e s e r v o i r 2 Ha r d C o s t 1 . 0 a. Wa t e r T r e a t m e n t P l a n t R e s e r v o i r 2 1. W T P R e s e r v o i r 2 ( 5 M G ) 5 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 5 , 0 0 0 , 0 0 0 Su b t o t a l $ 5 , 0 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 0 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 5 0 0 , 0 0 0 . 0 0 Su b t o t a l $7 5 0 , 0 0 0 . 0 0 $5 , 7 5 0 , 0 0 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 5 7 5 , 0 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 4 6 0 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 8 7 , 5 0 0 Su b t o t a l $1 , 3 2 2 , 5 0 0 $1 , 3 2 2 , 5 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d C i t y o w n e d L a n d a t W T P 0 A c r e $ 0 Su b t o t a l $0 $0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 7 0 7 , 2 5 0 Su b t o t a l $7 0 7 , 2 5 0 $7 0 7 , 2 5 0 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $7 , 7 7 9 , 7 5 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 7 Wa t e r T r e a t m e n t P l a n t R e s e r v o i r 3 Ha r d C o s t 1 . 0 a. Wa t e r T r e a t m e n t P l a n t R e s e r v o i r 3 1. W T P R e s e r v o i r 3 ( 5 M G ) 5 , 0 0 0 , 0 0 0 MG $ 1 . 0 0 $ 5 , 0 0 0 , 0 0 0 Su b t o t a l $ 5 , 0 0 0 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 0 0 , 0 0 0 . 0 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 5 0 , 0 0 0 . 0 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 5 0 0 , 0 0 0 . 0 0 Su b t o t a l $7 5 0 , 0 0 0 . 0 0 $5 , 7 5 0 , 0 0 0 . 0 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 5 7 5 , 0 0 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 4 6 0 , 0 0 0 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 2 8 7 , 5 0 0 Su b t o t a l $1 , 3 2 2 , 5 0 0 $1 , 3 2 2 , 5 0 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. As s u m e d C i t y o w n e d L a n d a t W T P 0 A c r e $ 0 Su b t o t a l $0 $0 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 7 0 7 , 2 5 0 Su b t o t a l $7 0 7 , 2 5 0 $7 0 7 , 2 5 0 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 Inflation $7 , 7 7 9 , 7 5 0 . 0 0 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N Q U A N T I T Y U N I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 7 We s t T r a n s m i s s i o n M a i n – P h a s e 3 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 3 6 " D I P - C l a s s 5 1 19 , 5 4 2 l . f $ 3 6 9 . 0 0 $ 7 , 2 1 0 , 9 9 8 Su b t o t a l $ 7 , 2 1 0 , 9 9 8 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 1 4 4 , 2 1 9 . 9 6 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 1 4 4 , 2 1 9 . 9 6 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 7 2 , 1 0 9 . 9 8 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 3 6 0 , 5 4 9 . 9 0 Su b t o t a l $7 2 1 , 0 9 9 . 8 0 $7 , 9 3 2 , 0 9 7 . 8 0 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 7 9 3 , 2 1 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 6 3 4 , 5 6 8 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 3 9 6 , 6 0 5 Su b t o t a l $1 , 8 2 4 , 3 8 2 $1 , 8 2 4 , 3 8 2 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 19 , 5 4 2 l . f . $ 9 . 5 0 $ 1 8 5 , 6 4 9 Su b t o t a l $1 8 5 , 6 4 9 $1 8 5 , 6 4 9 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 9 9 4 , 2 1 3 Su b t o t a l $9 9 4 , 2 1 3 $9 9 4 , 2 1 3 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $1 0 , 9 3 6 , 3 4 2 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 4 9 We s t T r a n s m i s s i o n M a i n – P h a s e 4 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 3 0 " D I P - C l a s s 5 1 8, 3 8 2 l . f $ 2 9 4 . 0 0 $ 2 , 4 6 4 , 3 0 8 Su b t o t a l $ 2 , 4 6 4 , 3 0 8 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 4 9 , 2 8 6 . 1 6 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 4 9 , 2 8 6 . 1 6 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 2 4 , 6 4 3 . 0 8 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 1 2 3 , 2 1 5 . 4 0 Su b t o t a l $2 4 6 , 4 3 0 . 8 0 $2 , 7 1 0 , 7 3 9 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 2 7 1 , 0 7 4 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 2 1 6 , 8 5 9 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 1 3 5 , 5 3 7 Su b t o t a l $6 2 3 , 4 7 0 $6 2 3 , 4 7 0 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 8, 3 8 2 l . f . $ 9 . 5 0 $ 7 9 , 6 2 9 Su b t o t a l $7 9 , 6 2 9 $7 9 , 6 2 9 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 3 4 1 , 3 8 4 Su b t o t a l $3 4 1 , 3 8 4 $3 4 1 , 3 8 4 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $3 , 7 5 5 , 2 2 1 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P I D : C I P N a m e : WF P _ 5 0 We s t T r a n s m i s s i o n M a i n – P h a s e 5 Ha r d C o s t 1 . 0 W a t e r T r a n s m i s s i o n S y s t e m a. Wa t e r M a i n 1. 2 4 " D I P - C l a s s 5 1 8, 2 9 5 l . f $ 1 9 2 . 0 0 $ 1 , 5 9 2 , 6 4 0 Su b t o t a l $ 1 , 5 9 2 , 6 4 0 Ha r d C o s t - M a r k u p s 2 . 0 a. Mo b i l i z a t i o n / D e m o b i l i z a t i o n ( 2 % ) 1 l . s . $ 3 1 , 8 5 2 . 8 0 b. Tr a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 3 1 , 8 5 2 . 8 0 c. Er o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 1 5 , 9 2 6 . 4 0 d. Co n t r a c t o r O v e r h e a d a n d P r o f i t ( 5 % ) 1 l . s . $ 7 9 , 6 3 2 . 0 0 Su b t o t a l $1 5 9 , 2 6 4 . 0 0 $1 , 7 5 1 , 9 0 4 Estimated Hard/Construction Costs So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 1 0 % ) 1 l . s . $ 1 7 5 , 1 9 0 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 8 % ) 1 l . s . $ 1 4 0 , 1 5 2 c. Le g a l a n d A d m i n i s t r a t i v e ( 5 % ) 1 l . s . $ 8 7 , 5 9 5 Su b t o t a l $4 0 2 , 9 3 8 $4 0 2 , 9 3 8 Estimated Soft Costs Pr o p e r t y A c q u i s i t i o n 4 . 0 a. Rig h t - o f - w a y 8, 2 9 5 l . f . $ 9 . 5 0 $ 7 8 , 8 0 3 Su b t o t a l $7 8 , 8 0 3 $7 8 , 8 0 3 Estimated Property Acquisition Costs Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 1 0 % ) 1 l . s . $ 2 2 3 , 3 6 4 Su b t o t a l $2 2 3 , 3 6 4 $2 2 3 , 3 6 4 Project Contingency In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n $2 , 4 5 7 , 0 0 9 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T Bo z e m a n W a t e r F a c i l i t y P l a n U p d a t e OP I N I O N O F T O T A L P R O B A B L E P R O J E C T C O S T CI P N a m e : G& D P R V s ( a p p r o x i m a t e l y 4 2 si t e s ) Ha r d C o s t 1 . 0 a. Pu m p s , E l e c t r i c a l , C o n t r o l , S C A D A , P R V ' s 1 l. s . $2 3 5 , 0 0 0 1. P r e c a s t o r c a s t i n - p l a c e c o n c r e t e v a u l t ( w a t e r t i g h t ) 2. V a l v i n g & p i p i n g 3. A b o v e g r a d e S C A D A / C o n t r o l w e a t h e r e n c l o s u r e 5. E l e c t r i c a l & C o n t r o l s 6. H e a t i n g & V e n t i l a t i o n / D e h u m i d i f i c a t i o n 7. H a t c h ( S a f e t y a c c e s s - e l i m i n a t e c o n f i n e d s p a c e en t r y ) 8. P o w e r t o s i t e 9. P R V ' s h a r n e s s i n g 10 . S C A D A p r o g r a m m i n g Su b t o t a l $2 3 5 , 0 0 0 Ha r d C o s t - M a r k u p s 2 . 0 a. M o b i l i z a t i o n ( 5 % ) 1 l . s . $ 1 1 , 7 5 0 . 0 0 b. T r a f f i c C o n t r o l ( 2 % ) 1 l . s . $ 4 , 7 0 0 . 0 0 c. E r o s i o n C o n t r o l ( 1 % ) 1 l . s . $ 2 , 3 5 0 . 0 0 d. C o n t r a c t o r O v e r h e a d a n d P r o f i t ( 1 0 % ) 1 l . s . $ 2 3 , 5 0 0 . 0 0 Su b t o t a l $4 2 , 3 0 0 . 0 0 $2 7 7 , 3 0 0 . 0 0 Es t i m a t e d H a r d / C o n s t r u c t i o n C o s t s So f t C o s t s 3 . 0 a. En g i n e e r i n g ( 5 % ) 1 l . s . $ 1 3 , 8 6 5 b. Co n s t r u c t i o n A d m i n i s t r a t i o n a n d M a n a g e m e n t ( 5 % ) 1 l . s . $ 1 3 , 8 6 5 c. Le g a l a n d A d m i n i s t r a t i v e ( 2 % ) 1 l . s . $ 5 , 5 4 6 Su b t o t a l $3 3 , 2 7 6 $3 3 , 2 7 6 Es t i m a t e d S o f t C o s t s Pr o p e r t y A c q u i s i t i o n 4 . 0 a. No t I n c l u d e d 0 l . s . $ 0 Su b t o t a l $0 $0 Es t i m a t e d P r o p e r t y A c q u i s i t i o n C o s t s Pr o j e c t C o n t i n g e n c y 5 . 0 a. To t a l P r o j e c t C o n t i n g e n c y ( 3 0 % ) 1 l . s . $ 9 3 , 1 7 3 Su b t o t a l $9 3 , 1 7 3 $9 3 , 1 7 3 Pr o j e c t C o n t i n g e n c y In f l a t i o n 6 . 0 a. No t I n c l u d e d 1 l . s . $ 0 Su b t o t a l $0 $0 In f l a t i o n Co s t P e r P R V S I T E $4 0 3 , 7 4 9 T o t a l P r o b a b l e P r o j e c t C o s t ( 2 0 1 6 ) UN I T C O S T T O T A L C O S T C O M P O N E N T S U B T O T A L Au g u s t , 2 0 1 6 CO S T C O M P O N E N T I T E M # I T E M D E S C R I P T I O N QU A N T I T Y UN I T ID DESCRIPTION CIP_ITEMS Cost V8040 PRV - Flow for SE Mountain Zone G&D 403,749$ V8042 PRV - Flow for SE Mountain Zone G&D 403,749$ V8062 PRV - Emergency Flow from SD Zone to NW1 Zone G&D 403,749$ V8072 PRV - Emergency Flow from WTP Zone to SD Zone G&D 403,749$ V8074 PRV - Emergency Flow from SW Zone to WTP Zone G&D 403,749$ V8076 PRV - Emergency Flow from WTP Zone to SD Zone G&D 403,749$ V8080 PRV - Emergency Flow from WTP Zone to SD Zone G&D 403,749$ V8086 PRV - Emergency Flow from WTP Zone to SD Zone G&D 403,749$ V8092 PRV - Emergency Flow from WTP Zone to SD Zone G&D 403,749$ V8098 PRV - Emergency Flow from WTP Zone to SD Zone G&D 403,749$ V8104 PRV - Flow for SE Mountain Zone G&D 403,749$ V8106 PRV - Emergency Flow from SE Mountain Zone to Sourdough Zone G&D 403,749$ V8108 PRV - Emergency Flow from SE Mountain Zone to Sourdough Zone G&D 403,749$ V8110 PRV - Emergency Flow from SE Mountain Zone to Sourdough Zone G&D 403,749$ V8112 PRV - Emergency Flow from SE Mountain Zone to Sourdough Zone G&D 403,749$ V8128 PRV - Emergency Flow from NW1 Zone to NW2 Zone G&D 403,749$ V8130 PRV - Emergency Flow from NW1 Zone to NW2 Zone G&D 403,749$ V8134 PRV - Emergency Flow from NW1 Zone to NW3 Zone G&D 403,749$ V8142 PRV - Emergency Flow from NW1 Zone to NW3 Zone G&D 403,749$ V8152 PRV - Emergency Flow from NW1 Zone to NW3 Zone G&D 403,749$ V8162 PRV - Emergency Flow from NW2 Zone to NW3 Zone G&D 403,749$ V8164 PRV - Flow from NW1 Zone to NW2 Zone G&D 403,749$ V8166 PRV - Flow from NW1 Zone to NW2 Zone G&D 403,749$ V8168 PRV - Flow from NW1 Zone to NW2 Zone G&D 403,749$ V8178 PRV - Flow from for North Mountain Zone G&D 403,749$ V8180 PRV - Flow from for North Mountain Zone G&D 403,749$ V8182 PRV - Flow from for North Mountain Zone G&D 403,749$ V8184 PRV - Flow from for North Mountain Zone G&D 403,749$ V8186 PRV - Flow for SE Mountain Zone G&D 403,749$ V8188 PRV - Flow for East Mountain Zone G&D 403,749$ V8190 PRV - Flow for East Mountain Zone G&D 403,749$ V8192 PRV - Flow for East Mountain Zone G&D 403,749$ V8194 PRV - Flow for East Mountain Zone G&D 403,749$ V8200 PRV - Flow for East Mountain Zone G&D 403,749$ V8202 PRV - Flow for East Mountain Zone G&D 403,749$ V8204 PRV - Flow for East Mountain Zone G&D 403,749$ V8206 PRV - Flow for East Mountain Zone G&D 403,749$ V8208 PRV - Flow for East Mountain Zone G&D 403,749$ V8210 PRV - Flow for East Mountain Zone G&D 403,749$ V8216 PRV - Flow for East Mountain Zone G&D 403,749$ V8226 PRV - Emergency Flow Gallatin Park Zone to NW2 Zone G&D 403,749$ V8228 PRV - Emergency Flow from Northeast Zone to NW2 Zone G&D 403,749$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_1610 Future Pipe G&D 190.94 8 HGL 5360 (N)61 11,647$ FP_1613 Future Pipe G&D 1167.48 8 HGL 5360 (N)61 71,216$ FP_1652 Future Pipe G&D 1696.58 8 HGL 4725 (NW3)61 103,492$ FP_1612 Future Pipe G&D 2111.68 8 HGL 5360 (N)61 128,812$ FP_1609 Future Pipe G&D 3205.30 8 HGL 5360 (N)61 195,523$ FP_1608 Future Pipe G&D 857.33 8 HGL 5360 (N)61 52,297$ FP_1611 Future Pipe G&D 1272.90 8 HGL 5360 (N)61 77,647$ FP_1648 Future Pipe G&D 462.89 8 HGL 4725 (NW3)61 28,236$ FP_1651 Future Pipe G&D 2375.01 8 HGL 4725 (NW3)61 144,876$ FP_1615 Future Pipe G&D 810.53 8 HGL 5360 (N)61 49,442$ FP_1650 Future Pipe G&D 1167.09 8 HGL 4725 (NW3)61 71,192$ FP_1649 Future Pipe G&D 1229.17 8 HGL 4725 (NW3)61 74,979$ FP_1578 Future Pipe G&D 1041.45 8 HGL 4850 (NW2)61 63,528$ FP_1581 Future Pipe G&D 927.47 8 HGL 4850 (NW2)61 56,576$ FP_1579 Future Pipe G&D 837.71 8 HGL 4850 (NW2)61 51,100$ FP_1592 Future Pipe G&D 1018.06 8 HGL 4850 (NW2)61 62,102$ FP_1576 Future Pipe G&D 250.05 8 HGL 4850 (NW2)61 15,253$ FP_1572 Future Pipe G&D 1795.61 8 HGL 4850 (NW2)61 109,532$ FP_1571 Future Pipe G&D 1537.50 8 HGL 4850 (NW2)61 93,787$ FP_1591 Future Pipe G&D 1553.51 8 HGL 4850 (NW2)61 94,764$ FP_1589 Future Pipe G&D 1253.85 8 HGL 4850 (NW2)61 76,485$ FP_1582 Future Pipe G&D 1264.08 8 HGL 4850 (NW2)61 77,109$ FP_1583 Future Pipe G&D 2798.73 8 HGL 4850 (NW2)61 170,723$ FP_1584 Future Pipe G&D 2663.16 8 HGL 4850 (NW2)61 162,453$ FP_1707 Future Pipe G&D 928.98 8 HGL 4725 (NW3)61 56,668$ FP_1718 Future Pipe G&D 1927.51 8 HGL 4725 (NW3)61 117,578$ FP_1717 Future Pipe G&D 3154.81 8 HGL 4850 (NW2)61 192,443$ FP_1713 Future Pipe G&D 343.35 8 HGL 4725 (NW3)61 20,944$ FP_1712 Future Pipe G&D 418.92 8 HGL 4725 (NW3)61 25,554$ FP_1711 Future Pipe G&D 1200.84 8 HGL 4725 (NW3)61 73,251$ FP_1710 Future Pipe G&D 958.46 8 HGL 4725 (NW3)61 58,466$ FP_1708 Future Pipe G&D 1008.02 8 HGL 4725 (NW3)61 61,489$ FP_1723 Future Pipe G&D 2586.15 8 HGL 4850 (NW2)61 157,755$ FP_1706 Future Pipe G&D 365.51 8 HGL 4725 (NW3)61 22,296$ FP_1705 Future Pipe G&D 304.96 8 HGL 4725 (NW3)61 18,603$ FP_1704 Future Pipe G&D 286.98 8 HGL 4725 (NW3)61 17,506$ FP_1702 Future Pipe G&D 1562.36 8 HGL 4725 (NW3)61 95,304$ FP_1701 Future Pipe G&D 1380.32 8 HGL 4725 (NW3)61 84,200$ FP_1709 Future Pipe G&D 349.39 8 HGL 4725 (NW3)61 21,313$ FP_1719 Future Pipe G&D 860.25 8 HGL 4725 (NW3)61 52,475$ FP_1722 Future Pipe G&D 2552.39 8 HGL 4725 (NW3)61 155,696$ FP_1728 Future Pipe G&D 986.11 8 HGL 4850 (NW2)61 60,153$ FP_1727 Future Pipe G&D 1940.28 8 HGL 4850 (NW2)61 118,357$ FP_1671 Future Pipe G&D 693.62 8 HGL 4725 (NW3)61 42,311$ FP_1670 Future Pipe G&D 1137.95 8 HGL 4725 (NW3)61 69,415$ FP_1669 Future Pipe G&D 899.89 8 HGL 4725 (NW3)61 54,893$ FP_1668 Future Pipe G&D 553.54 8 HGL 4725 (NW3)61 33,766$ FP_1667 Future Pipe G&D 2599.58 8 HGL 4725 (NW3)61 158,574$ FP_1666 Future Pipe G&D 1363.27 8 HGL 4725 (NW3)61 83,160$ FP_1659 Future Pipe G&D 1543.98 8 HGL 4725 (NW3)61 94,183$ FP_1658 Future Pipe G&D 575.17 8 HGL 4725 (NW3)61 35,085$ FP_1684 Future Pipe G&D 1298.63 8 HGL 4725 (NW3)61 79,217$ FP_1693 Future Pipe G&D 1083.54 8 HGL 4725 (NW3)61 66,096$ FP_1692 Future Pipe G&D 1048.71 8 HGL 4725 (NW3)61 63,971$ FP_1691 Future Pipe G&D 1304.18 8 HGL 4725 (NW3)61 79,555$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_1690 Future Pipe G&D 1048.91 8 HGL 4725 (NW3)61 63,983$ FP_1689 Future Pipe G&D 1222.54 8 HGL 4725 (NW3)61 74,575$ FP_1688 Future Pipe G&D 1083.54 8 HGL 4725 (NW3)61 66,096$ FP_1672 Future Pipe G&D 1507.77 8 HGL 4725 (NW3)61 91,974$ FP_1685 Future Pipe G&D 1222.54 8 HGL 4725 (NW3)61 74,575$ FP_1533 Future Pipe G&D 1400.69 8 HGL 5560 (SE)61 85,442$ FP_1530 Future Pipe G&D 1760.65 8 HGL 5560 (SE)61 107,400$ FP_1532 Future Pipe G&D 994.32 8 HGL 5560 (SE)61 60,654$ FP_1531 Future Pipe G&D 2510.93 8 HGL 5560 (SE)61 153,167$ FP_1528 Future Pipe G&D 2132.67 8 HGL 5560 (SE)61 130,093$ FP_1492 Future Pipe G&D 2075.58 8 HGL 5560 (SE)61 126,611$ FP_1491 Future Pipe G&D 1198.01 8 HGL 5560 (SE)61 73,078$ FP_1490 Future Pipe G&D 383.18 8 HGL 5560 (SE)61 23,374$ FP_1505 Future Pipe G&D 454.86 8 HGL 5560 (SE)61 27,747$ FP_1501 Future Pipe G&D 499.05 8 HGL 5560 (SE)61 30,442$ FP_1504 Future Pipe G&D 1663.78 8 HGL 5560 (SE)61 101,491$ FP_1502 Future Pipe G&D 702.90 8 HGL 5560 (SE)61 42,877$ FP_2192 Future Pipe G&D 969.28 8 HGL 4850 (NW2)61 59,126$ FP_2226 Future Pipe G&D 668.06 8 HGL 4850 (NW2)61 40,752$ FP_2430 Future Pipe G&D 411.88 8 HGL 5630 (MT)61 25,125$ FP_2428 Future Pipe G&D 639.26 8 HGL 5630 (MT)61 38,995$ FP_2427 Future Pipe G&D 34.60 8 HGL 5630 (MT)61 2,111$ FP_2419 Future Pipe G&D 2011.60 8 HGL 5630 (MT)61 122,708$ FP_2409 Future Pipe G&D 495.22 8 HGL 5630 (MT)61 30,208$ FP_2408 Future Pipe G&D 55.84 8 HGL 5630 (MT)61 3,406$ FP_2407 Future Pipe G&D 414.10 8 HGL 5630 (MT)61 25,260$ FP_2406 Future Pipe G&D 58.66 8 HGL 5630 (MT)61 3,578$ FP_2460 Future Pipe G&D 3541.08 8 HGL 5038 (L)61 216,006$ FP_2459 Future Pipe G&D 507.99 8 HGL 5038 (L)61 30,987$ FP_2454 Future Pipe G&D 1012.40 8 HGL 5038 (L)61 61,756$ FP_2451 Future Pipe G&D 42.50 8 HGL 5630 (MT)61 2,592$ FP_2450 Future Pipe G&D 75.42 8 HGL 5630 (MT)61 4,601$ FP_2449 Future Pipe G&D 28.67 8 HGL 5630 (MT)61 1,749$ FP_2446 Future Pipe G&D 67.16 8 HGL 5630 (MT)61 4,097$ FP_2365 Future Pipe G&D 1258.32 8 HGL 5038 (L)61 76,757$ FP_2369 Future Pipe G&D 603.64 8 HGL 5038 (L)61 36,822$ FP_2351 Future Pipe G&D 955.85 8 HGL 5630 (MT)61 58,307$ FP_2350 Future Pipe G&D 1104.52 8 HGL 5630 (MT)61 67,376$ FP_2348 Future Pipe G&D 1827.74 8 HGL 5630 (MT)61 111,492$ FP_2347 Future Pipe G&D 1569.91 8 HGL 5630 (MT)61 95,765$ FP_2346 Future Pipe G&D 1100.25 8 HGL 5630 (MT)61 67,115$ FP_2345 Future Pipe G&D 190.15 8 HGL 5630 (MT)61 11,599$ FP_2383 Future Pipe G&D 966.59 8 HGL 5630 (MT)61 58,962$ FP_2402 Future Pipe G&D 151.23 8 HGL 5630 (MT)61 9,225$ FP_2401 Future Pipe G&D 58.04 8 HGL 5630 (MT)61 3,540$ FP_2396 Future Pipe G&D 666.67 8 HGL 5630 (MT)61 40,667$ FP_2391 Future Pipe G&D 1715.64 8 HGL 5630 (MT)61 104,654$ FP_2390 Future Pipe G&D 734.33 8 HGL 5630 (MT)61 44,794$ FP_2388 Future Pipe G&D 853.16 8 HGL 5630 (MT)61 52,043$ FP_2386 Future Pipe G&D 1320.38 8 HGL 5630 (MT)61 80,543$ FP_2367 Future Pipe G&D 621.84 8 HGL 5038 (L)61 37,932$ FP_2382 Future Pipe G&D 1105.74 8 HGL 5630 (MT)61 67,450$ FP_2381 Future Pipe G&D 1295.61 8 HGL 5630 (MT)61 79,032$ FP_2378 Future Pipe G&D 3752.55 8 HGL 5038 (L)61 228,905$ FP_2376 Future Pipe G&D 1354.52 8 HGL 5630 (MT)61 82,626$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_2373 Future Pipe G&D 1065.10 8 HGL 5630 (MT)61 64,971$ FP_2385 Future Pipe G&D 1627.62 8 HGL 5630 (MT)61 99,285$ FP_1903 Future Pipe G&D 243.06 8 HGL 4975 (NW1)61 14,826$ FP_1842 Future Pipe G&D 1709.03 8 HGL 5560 (SE)61 104,251$ FP_1841 Future Pipe G&D 717.28 8 HGL 5560 (SE)61 43,754$ FP_1840 Future Pipe G&D 1024.22 8 HGL 5560 (SE)61 62,478$ FP_1902 Future Pipe G&D 145.87 8 HGL 4975 (NW1)61 8,898$ FP_1898 Future Pipe G&D 2568.05 8 HGL 5126 (S)61 156,651$ FP_1897 Future Pipe G&D 1895.29 8 HGL 5126 (S)61 115,613$ FP_1896 Future Pipe G&D 781.25 8 HGL 5126 (S)61 47,656$ FP_1895 Future Pipe G&D 1242.48 8 HGL 5126 (S)61 75,791$ FP_1894 Future Pipe G&D 1675.37 8 HGL 5126 (S)61 102,198$ FP_1893 Future Pipe G&D 798.61 8 HGL 5126 (S)61 48,715$ FP_1833 Future Pipe G&D 2375.44 8 HGL 5126 (S)61 144,902$ FP_1836 Future Pipe G&D 1154.45 8 HGL 5126 (S)61 70,421$ FP_1821 Future Pipe G&D 1544.71 8 HGL 5126 (S)61 94,227$ FP_1837 Future Pipe G&D 794.77 8 HGL 5126 (S)61 48,481$ FP_1832 Future Pipe G&D 1106.21 8 HGL 5126 (S)61 67,479$ FP_1831 Future Pipe G&D 2662.07 8 HGL 5126 (S)61 162,387$ FP_1830 Future Pipe G&D 1710.77 8 HGL 5126 (S)61 104,357$ FP_1829 Future Pipe G&D 564.50 8 HGL 5126 (S)61 34,435$ FP_1828 Future Pipe G&D 846.40 8 HGL 5126 (S)61 51,631$ FP_1827 Future Pipe G&D 609.39 8 HGL 5126 (S)61 37,173$ FP_1826 Future Pipe G&D 782.87 8 HGL 5126 (S)61 47,755$ FP_1825 Future Pipe G&D 1493.39 8 HGL 5126 (S)61 91,097$ FP_1824 Future Pipe G&D 425.44 8 HGL 5126 (S)61 25,952$ FP_1822 Future Pipe G&D 667.52 8 HGL 5126 (S)61 40,719$ FP_1820 Future Pipe G&D 687.81 8 HGL 5126 (S)61 41,956$ FP_1819 Future Pipe G&D 1171.91 8 HGL 5126 (S)61 71,486$ FP_1818 Future Pipe G&D 1293.43 8 HGL 5126 (S)61 78,900$ FP_1817 Future Pipe G&D 399.31 8 HGL 5126 (S)61 24,358$ FP_1816 Future Pipe G&D 1478.79 8 HGL 5126 (S)61 90,206$ FP_1815 Future Pipe G&D 851.78 8 HGL 5126 (S)61 51,959$ FP_1834 Future Pipe G&D 1425.07 8 HGL 5126 (S)61 86,929$ FP_1823 Future Pipe G&D 1284.84 8 HGL 5126 (S)61 78,375$ FP_1835 Future Pipe G&D 278.32 8 HGL 5126 (S)61 16,978$ FP_1904 Future Pipe G&D 328.15 8 HGL 4975 (NW1)61 20,017$ FP_2094 Future Pipe G&D 1629.54 8 HGL 5560 (SE)61 99,402$ FP_2092 Future Pipe G&D 2175.44 8 HGL 5560 (SE)61 132,702$ FP_1911 Future Pipe G&D 229.17 8 HGL 4975 (NW1)61 13,979$ FP_1920 Future Pipe G&D 185.63 8 HGL 4975 (NW1)61 11,323$ FP_1919 Future Pipe G&D 871.54 8 HGL 4975 (NW1)61 53,164$ FP_1918 Future Pipe G&D 672.80 8 HGL 4975 (NW1)61 41,041$ FP_1917 Future Pipe G&D 735.33 8 HGL 4975 (NW1)61 44,855$ FP_1916 Future Pipe G&D 770.58 8 HGL 4975 (NW1)61 47,005$ FP_1914 Future Pipe G&D 619.21 8 HGL 4975 (NW1)61 37,772$ FP_1912 Future Pipe G&D 684.06 8 HGL 4975 (NW1)61 41,728$ FP_1915 Future Pipe G&D 396.21 8 HGL 4975 (NW1)61 24,169$ FP_1910 Future Pipe G&D 593.79 8 HGL 4975 (NW1)61 36,221$ FP_1909 Future Pipe G&D 787.92 8 HGL 4975 (NW1)61 48,063$ FP_1908 Future Pipe G&D 442.19 8 HGL 4975 (NW1)61 26,973$ FP_1907 Future Pipe G&D 423.67 8 HGL 4975 (NW1)61 25,844$ FP_1906 Future Pipe G&D 521.12 8 HGL 4975 (NW1)61 31,789$ FP_1905 Future Pipe G&D 128.52 8 HGL 4975 (NW1)61 7,840$ FP_1913 Future Pipe G&D 187.53 8 HGL 4975 (NW1)61 11,439$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_2317 Future Pipe G&D 1894.14 8 HGL 4725 (NW3)61 115,543$ FP_2334 Future Pipe G&D 2895.44 8 HGL 5560 (SE)61 176,622$ FP_2338 Future Pipe G&D 1589.05 8 HGL 5630 (MT)61 96,932$ FP_1755 Future Pipe G&D 628.94 10 HGL 5126 (S)74 46,542$ FP_1590 Future Pipe G&D 1190.90 10 HGL 4850 (NW2)74 88,126$ FP_1756 Future Pipe G&D 369.63 10 HGL 5126 (S)74 27,352$ FP_1588 Future Pipe G&D 767.63 10 HGL 4850 (NW2)74 56,805$ FP_1754 Future Pipe G&D 577.53 10 HGL 5126 (S)74 42,737$ FP_1751 Future Pipe G&D 1802.89 10 HGL 5126 (S)74 133,414$ FP_1752 Future Pipe G&D 2054.01 10 HGL 5126 (S)74 151,997$ FP_1499 Future Pipe G&D 994.80 10 HGL 5560 (SE)74 73,615$ FP_1498 Future Pipe G&D 834.55 10 HGL 5560 (SE)74 61,757$ FP_1508 Future Pipe G&D 1177.87 10 HGL 5126 (S)74 87,162$ FP_1506 Future Pipe G&D 545.17 10 HGL 5126 (S)74 40,343$ FP_1503 Future Pipe G&D 1402.65 10 HGL 5560 (SE)74 103,796$ FP_1507 Future Pipe G&D 1419.76 10 HGL 5126 (S)74 105,062$ FP_2429 Future Pipe G&D 2827.76 10 HGL 5630 (MT)74 209,254$ FP_2439 Future Pipe G&D 50.86 10 HGL 5630 (MT)74 3,764$ FP_2413 Future Pipe G&D 56.99 10 HGL 5630 (MT)74 4,217$ FP_2412 Future Pipe G&D 522.61 10 HGL 5630 (MT)74 38,673$ FP_2411 Future Pipe G&D 3596.53 10 HGL 5630 (MT)74 266,143$ FP_2410 Future Pipe G&D 70.12 10 HGL 5630 (MT)74 5,189$ FP_2456 Future Pipe G&D 73.29 10 HGL 5038 (L)74 5,423$ FP_2440 Future Pipe G&D 54.88 10 HGL 5630 (MT)74 4,061$ FP_2455 Future Pipe G&D 1740.43 10 HGL 5038 (L)74 128,792$ FP_2380 Future Pipe G&D 524.43 10 HGL 5630 (MT)74 38,808$ FP_2371 Future Pipe G&D 1729.58 10 HGL 5038 (L)74 127,989$ FP_2370 Future Pipe G&D 3336.18 10 HGL 5038 (L)74 246,877$ FP_2071 Future Pipe G&D 251.09 10 HGL 5126 (S)74 18,581$ FP_2332 Future Pipe G&D 1675.39 10 HGL 5560 (SE)74 123,979$ FP_2480 Future Pipe G&D 1050.44 10 HGL 4850 (NW2)74 77,733$ FP_2479 Future Pipe G&D 1975.10 10 HGL 4885 (G)74 146,158$ FP_1616 Future Pipe G&D 1190.87 12 HGL 5360 (N)87 103,605$ FP_1606 Future Pipe G&D 3732.42 12 HGL 5360 (N)87 324,720$ FP_1605 Future Pipe G&D 1902.98 12 HGL 5360 (N)87 165,560$ FP_1603 Future Pipe G&D 778.92 12 HGL 4850 (NW2)87 67,766$ FP_1600 Future Pipe G&D 1178.88 12 HGL 4850 (NW2)87 102,563$ FP_1599 Future Pipe G&D 1895.18 12 HGL 4850 (NW2)87 164,881$ FP_1598 Future Pipe G&D 1438.40 12 HGL 4850 (NW2)87 125,141$ FP_1623 Future Pipe G&D 1501.40 12 HGL 5360 (N)87 130,622$ FP_1646 Future Pipe G&D 3385.32 12 HGL 4725 (NW3)87 294,523$ FP_1645 Future Pipe G&D 4013.79 12 HGL 4725 (NW3)87 349,200$ FP_1641 Future Pipe G&D 3085.78 12 HGL 5360 (N)87 268,463$ FP_1621 Future Pipe G&D 1882.08 12 HGL 5360 (N)87 163,741$ FP_1620 Future Pipe G&D 608.47 12 HGL 5360 (N)87 52,937$ FP_1619 Future Pipe G&D 1728.35 12 HGL 5360 (N)87 150,366$ FP_1618 Future Pipe G&D 1217.51 12 HGL 5360 (N)87 105,924$ FP_1597 Future Pipe G&D 808.82 12 HGL 4850 (NW2)87 70,367$ FP_1640 Future Pipe G&D 3338.81 12 HGL 5360 (N)87 290,476$ FP_1763 Future Pipe G&D 2682.42 12 HGL 5350 (SW)87 233,371$ FP_1764 Future Pipe G&D 2682.42 12 HGL 5350 (SW)87 233,371$ FP_1580 Future Pipe G&D 473.07 12 HGL 4975 (NW1)87 41,158$ FP_1765 Future Pipe G&D 2578.13 12 HGL 5350 (SW)87 224,297$ FP_1766 Future Pipe G&D 2660.57 12 HGL 5350 (SW)87 231,470$ FP_1577 Future Pipe G&D 1223.97 12 HGL 4850 (NW2)87 106,486$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_1575 Future Pipe G&D 843.76 12 HGL 4850 (NW2)87 73,407$ FP_1574 Future Pipe G&D 786.53 12 HGL 4850 (NW2)87 68,428$ FP_1573 Future Pipe G&D 1917.01 12 HGL 4850 (NW2)87 166,780$ FP_1586 Future Pipe G&D 288.15 12 HGL 4850 (NW2)87 25,069$ FP_1594 Future Pipe G&D 2775.83 12 HGL 4850 (NW2)87 241,497$ FP_1593 Future Pipe G&D 2167.85 12 HGL 4850 (NW2)87 188,603$ FP_1587 Future Pipe G&D 992.74 12 HGL 4850 (NW2)87 86,368$ FP_1585 Future Pipe G&D 1363.06 12 HGL 4850 (NW2)87 118,586$ FP_1757 Future Pipe G&D 1316.36 12 HGL 5350 (SW)87 114,524$ FP_1758 Future Pipe G&D 2708.46 12 HGL 5350 (SW)87 235,636$ FP_1759 Future Pipe G&D 2968.87 12 HGL 5350 (SW)87 258,292$ FP_1595 Future Pipe G&D 1136.12 12 HGL 4850 (NW2)87 98,843$ FP_1715 Future Pipe G&D 1431.28 12 HGL 4725 (NW3)87 124,522$ FP_1714 Future Pipe G&D 2040.01 12 HGL 4725 (NW3)87 177,481$ FP_1703 Future Pipe G&D 2018.56 12 HGL 4725 (NW3)87 175,615$ FP_1700 Future Pipe G&D 1111.25 12 HGL 4725 (NW3)87 96,679$ FP_1699 Future Pipe G&D 2552.10 12 HGL 4725 (NW3)87 222,033$ FP_1737 Future Pipe G&D 1275.69 12 HGL 5126 (S)87 110,985$ FP_1750 Future Pipe G&D 959.10 12 HGL 5126 (S)87 83,442$ FP_1749 Future Pipe G&D 838.91 12 HGL 5126 (S)87 72,986$ FP_1748 Future Pipe G&D 741.84 12 HGL 5126 (S)87 64,540$ FP_1747 Future Pipe G&D 677.73 12 HGL 5126 (S)87 58,962$ FP_1746 Future Pipe G&D 1149.66 12 HGL 5126 (S)87 100,021$ FP_1744 Future Pipe G&D 563.37 12 HGL 5126 (S)87 49,013$ FP_1743 Future Pipe G&D 1099.27 12 HGL 5126 (S)87 95,636$ FP_1740 Future Pipe G&D 687.87 12 HGL 5126 (S)87 59,844$ FP_1738 Future Pipe G&D 1333.82 12 HGL 5126 (S)87 116,042$ FP_1735 Future Pipe G&D 1324.49 12 HGL 5126 (S)87 115,231$ FP_1734 Future Pipe G&D 1319.56 12 HGL 5126 (S)87 114,802$ FP_1733 Future Pipe G&D 2006.40 12 HGL 5126 (S)87 174,557$ FP_1732 Future Pipe G&D 1339.26 12 HGL 5126 (S)87 116,515$ FP_1725 Future Pipe G&D 1301.46 12 HGL 4850 (NW2)87 113,227$ FP_1724 Future Pipe G&D 1271.81 12 HGL 4725 (NW3)87 110,648$ FP_1695 Future Pipe G&D 299.16 12 HGL 4725 (NW3)87 26,027$ FP_1739 Future Pipe G&D 1322.48 12 HGL 5126 (S)87 115,056$ FP_1570 Future Pipe G&D 1820.76 12 HGL 4850 (NW2)87 158,406$ FP_1665 Future Pipe G&D 737.84 12 HGL 4725 (NW3)87 64,192$ FP_1674 Future Pipe G&D 1341.40 12 HGL 4725 (NW3)87 116,702$ FP_1662 Future Pipe G&D 515.61 12 HGL 4725 (NW3)87 44,858$ FP_1664 Future Pipe G&D 2238.04 12 HGL 4725 (NW3)87 194,710$ FP_1694 Future Pipe G&D 407.81 12 HGL 4725 (NW3)87 35,480$ FP_1683 Future Pipe G&D 1891.68 12 HGL 4725 (NW3)87 164,576$ FP_1682 Future Pipe G&D 1315.36 12 HGL 4725 (NW3)87 114,437$ FP_1681 Future Pipe G&D 1394.95 12 HGL 4725 (NW3)87 121,360$ FP_1680 Future Pipe G&D 1615.90 12 HGL 4725 (NW3)87 140,583$ FP_1679 Future Pipe G&D 859.48 12 HGL 4725 (NW3)87 74,774$ FP_1678 Future Pipe G&D 1302.15 12 HGL 4725 (NW3)87 113,287$ FP_1676 Future Pipe G&D 1341.15 12 HGL 4725 (NW3)87 116,680$ FP_1675 Future Pipe G&D 1744.99 12 HGL 4725 (NW3)87 151,814$ FP_1357 Future Pipe G&D 1201.57 12 HGL 5221 (WTP)87 104,537$ FP_1445 Future Pipe G&D 2812.72 12 HGL 4850 (NW2)87 244,707$ FP_1444 Future Pipe G&D 1413.84 12 HGL 4850 (NW2)87 123,004$ FP_1442 Future Pipe G&D 1407.16 12 HGL 4850 (NW2)87 122,423$ FP_1353 Future Pipe G&D 1148.79 12 HGL 5221 (WTP)87 99,944$ FP_1354 Future Pipe G&D 1367.19 12 HGL 5221 (WTP)87 118,946$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_1355 Future Pipe G&D 1013.82 12 HGL 5221 (WTP)87 88,203$ FP_1422 Future Pipe G&D 1372.98 12 HGL 4975 (NW1)87 119,449$ FP_1356 Future Pipe G&D 1519.10 12 HGL 5221 (WTP)87 132,162$ FP_1448 Future Pipe G&D 1902.99 12 HGL 4725 (NW3)87 165,560$ FP_1358 Future Pipe G&D 1393.23 12 HGL 5221 (WTP)87 121,211$ FP_1359 Future Pipe G&D 1243.50 12 HGL 5221 (WTP)87 108,185$ FP_1360 Future Pipe G&D 1432.46 12 HGL 5221 (WTP)87 124,624$ FP_1426 Future Pipe G&D 691.35 12 HGL 4975 (NW1)87 60,147$ FP_1468 Future Pipe G&D 607.39 12 HGL 4725 (NW3)87 52,843$ FP_1460 Future Pipe G&D 708.47 12 HGL 4975 (NW1)87 61,637$ FP_1447 Future Pipe G&D 2295.93 12 HGL 4850 (NW2)87 199,745$ FP_1456 Future Pipe G&D 1753.84 12 HGL 4725 (NW3)87 152,584$ FP_1455 Future Pipe G&D 2547.03 12 HGL 4725 (NW3)87 221,592$ FP_1350 Future Pipe G&D 1343.86 12 HGL 5221 (WTP)87 116,916$ FP_1453 Future Pipe G&D 463.51 12 HGL 4850 (NW2)87 40,325$ FP_1452 Future Pipe G&D 2265.95 12 HGL 4850 (NW2)87 197,137$ FP_1386 Future Pipe G&D 1328.19 12 HGL 5126 (S)87 115,553$ FP_1385 Future Pipe G&D 1274.65 12 HGL 5126 (S)87 110,895$ FP_1384 Future Pipe G&D 1328.13 12 HGL 5126 (S)87 115,547$ FP_1383 Future Pipe G&D 1328.13 12 HGL 5126 (S)87 115,547$ FP_1382 Future Pipe G&D 1263.02 12 HGL 5126 (S)87 109,883$ FP_1381 Future Pipe G&D 1406.25 12 HGL 5126 (S)87 122,344$ FP_1423 Future Pipe G&D 2534.73 12 HGL 4975 (NW1)87 220,521$ FP_1379 Future Pipe G&D 1266.09 12 HGL 5126 (S)87 110,150$ FP_1391 Future Pipe G&D 1317.46 12 HGL 5126 (S)87 114,619$ FP_1370 Future Pipe G&D 1432.29 12 HGL 5221 (WTP)87 124,610$ FP_1369 Future Pipe G&D 1193.78 12 HGL 5221 (WTP)87 103,859$ FP_1380 Future Pipe G&D 1354.23 12 HGL 5126 (S)87 117,818$ FP_1401 Future Pipe G&D 1322.11 12 HGL 5126 (S)87 115,023$ FP_1363 Future Pipe G&D 1519.26 12 HGL 5221 (WTP)87 132,175$ FP_1408 Future Pipe G&D 2624.35 12 HGL 4975 (NW1)87 228,319$ FP_1364 Future Pipe G&D 1128.68 12 HGL 5221 (WTP)87 98,195$ FP_1406 Future Pipe G&D 1337.90 12 HGL 5126 (S)87 116,397$ FP_1402 Future Pipe G&D 2759.73 12 HGL 5126 (S)87 240,096$ FP_1399 Future Pipe G&D 1348.92 12 HGL 5126 (S)87 117,356$ FP_1365 Future Pipe G&D 1410.76 12 HGL 5221 (WTP)87 122,736$ FP_1366 Future Pipe G&D 1258.87 12 HGL 5221 (WTP)87 109,522$ FP_1367 Future Pipe G&D 1237.17 12 HGL 5221 (WTP)87 107,634$ FP_1394 Future Pipe G&D 1320.61 12 HGL 5126 (S)87 114,893$ FP_1393 Future Pipe G&D 1302.09 12 HGL 5126 (S)87 113,281$ FP_1392 Future Pipe G&D 1341.21 12 HGL 5126 (S)87 116,685$ FP_1471 Future Pipe G&D 1131.58 12 HGL 4725 (NW3)87 98,447$ FP_1403 Future Pipe G&D 2652.54 12 HGL 5126 (S)87 230,771$ FP_1539 Future Pipe G&D 464.43 12 HGL 5126 (S)87 40,405$ FP_1538 Future Pipe G&D 154.87 12 HGL 5126 (S)87 13,474$ FP_1537 Future Pipe G&D 470.93 12 HGL 5126 (S)87 40,971$ FP_1536 Future Pipe G&D 659.72 12 HGL 5126 (S)87 57,396$ FP_1535 Future Pipe G&D 276.30 12 HGL 5126 (S)87 24,038$ FP_1534 Future Pipe G&D 1022.62 12 HGL 5126 (S)87 88,968$ FP_1349 Future Pipe G&D 776.68 12 HGL 5221 (WTP)87 67,571$ FP_1542 Future Pipe G&D 1618.93 12 HGL 5126 (S)87 140,847$ FP_1551 Future Pipe G&D 734.93 12 HGL 5126 (S)87 63,939$ FP_1568 Future Pipe G&D 611.36 12 HGL 4850 (NW2)87 53,189$ FP_1566 Future Pipe G&D 1287.34 12 HGL 4725 (NW3)87 111,999$ FP_1565 Future Pipe G&D 4125.95 12 HGL 4725 (NW3)87 358,957$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_1556 Future Pipe G&D 1919.69 12 HGL 4850 (NW2)87 167,013$ FP_1368 Future Pipe G&D 1410.76 12 HGL 5221 (WTP)87 122,736$ FP_1555 Future Pipe G&D 182.88 12 HGL 5126 (S)87 15,910$ FP_1554 Future Pipe G&D 931.41 12 HGL 5126 (S)87 81,033$ FP_1540 Future Pipe G&D 597.79 12 HGL 5126 (S)87 52,008$ FP_1552 Future Pipe G&D 1502.72 12 HGL 5126 (S)87 130,736$ FP_1541 Future Pipe G&D 1648.66 12 HGL 5126 (S)87 143,433$ FP_1550 Future Pipe G&D 1111.51 12 HGL 5126 (S)87 96,701$ FP_1549 Future Pipe G&D 1305.02 12 HGL 5126 (S)87 113,537$ FP_1548 Future Pipe G&D 1294.31 12 HGL 5126 (S)87 112,605$ FP_1547 Future Pipe G&D 516.75 12 HGL 5126 (S)87 44,958$ FP_1546 Future Pipe G&D 1475.17 12 HGL 5126 (S)87 128,339$ FP_1545 Future Pipe G&D 602.77 12 HGL 5126 (S)87 52,441$ FP_1544 Future Pipe G&D 1108.27 12 HGL 5126 (S)87 96,419$ FP_1543 Future Pipe G&D 2090.85 12 HGL 5126 (S)87 181,904$ FP_1553 Future Pipe G&D 661.09 12 HGL 5126 (S)87 57,515$ FP_1486 Future Pipe G&D 865.67 12 HGL 4975 (NW1)87 75,313$ FP_1346 Future Pipe G&D 1404.03 12 HGL 5221 (WTP)87 122,150$ FP_1345 Future Pipe G&D 853.20 12 HGL 5221 (WTP)87 74,229$ FP_1480 Future Pipe G&D 1377.91 12 HGL 4975 (NW1)87 119,878$ FP_1478 Future Pipe G&D 1275.39 12 HGL 4975 (NW1)87 110,959$ FP_1475 Future Pipe G&D 964.08 12 HGL 4975 (NW1)87 83,875$ FP_1347 Future Pipe G&D 683.87 12 HGL 5221 (WTP)87 59,497$ FP_1348 Future Pipe G&D 1454.16 12 HGL 5221 (WTP)87 126,512$ FP_1569 Future Pipe G&D 507.38 12 HGL 4850 (NW2)87 44,142$ FP_1483 Future Pipe G&D 789.89 12 HGL 4975 (NW1)87 68,720$ FP_1470 Future Pipe G&D 3679.17 12 HGL 4725 (NW3)87 320,088$ FP_1519 Future Pipe G&D 2201.47 12 HGL 5560 (SE)87 191,528$ FP_1516 Future Pipe G&D 1791.20 12 HGL 5560 (SE)87 155,835$ FP_1513 Future Pipe G&D 2124.53 12 HGL 5560 (SE)87 184,834$ FP_1512 Future Pipe G&D 517.25 12 HGL 5560 (SE)87 45,001$ FP_1340 Future Pipe G&D 1349.35 12 HGL 5126 (S)87 117,393$ FP_2269 Future Pipe G&D 3198.15 12 HGL 5350 (SW)87 278,239$ FP_2281 Future Pipe G&D 2652.33 12 HGL 4975 (NW1)87 230,752$ FP_2280 Future Pipe G&D 2050.05 12 HGL 5126 (S)87 178,355$ FP_2279 Future Pipe G&D 2683.09 12 HGL 5126 (S)87 233,429$ FP_2278 Future Pipe G&D 2667.79 12 HGL 5126 (S)87 232,097$ FP_2276 Future Pipe G&D 2602.59 12 HGL 5126 (S)87 226,425$ FP_2275 Future Pipe G&D 2657.69 12 HGL 5126 (S)87 231,219$ FP_2274 Future Pipe G&D 2484.71 12 HGL 5221 (WTP)87 216,170$ FP_2273 Future Pipe G&D 2364.13 12 HGL 5350 (SW)87 205,679$ FP_2272 Future Pipe G&D 2491.08 12 HGL 5350 (SW)87 216,724$ FP_2241 Future Pipe G&D 1720.58 12 HGL 4975 (NW1)87 149,691$ FP_2270 Future Pipe G&D 2114.31 12 HGL 5350 (SW)87 183,945$ FP_2268 Future Pipe G&D 3111.72 12 HGL 5350 (SW)87 270,720$ FP_2267 Future Pipe G&D 1164.77 12 HGL 5350 (SW)87 101,335$ FP_2266 Future Pipe G&D 1328.58 12 HGL 5221 (WTP)87 115,587$ FP_2265 Future Pipe G&D 3075.87 12 HGL 5221 (WTP)87 267,600$ FP_2259 Future Pipe G&D 5425.44 12 HGL 4975 (NW1)87 472,013$ FP_2247 Future Pipe G&D 1238.00 12 HGL 5126 (S)87 107,706$ FP_2246 Future Pipe G&D 511.23 12 HGL 5126 (S)87 44,477$ FP_2245 Future Pipe G&D 2709.04 12 HGL 5126 (S)87 235,687$ FP_2244 Future Pipe G&D 1356.87 12 HGL 5126 (S)87 118,048$ FP_2340 Future Pipe G&D 187.05 12 HGL 5630 (MT)87 16,273$ FP_2271 Future Pipe G&D 2764.10 12 HGL 5350 (SW)87 240,476$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_2152 Future Pipe G&D 2087.65 12 HGL 4975 (NW1)87 181,625$ FP_2308 Future Pipe G&D 118.52 12 HGL 5360 (N)87 10,311$ FP_2307 Future Pipe G&D 982.30 12 HGL 5360 (N)87 85,460$ FP_2306 Future Pipe G&D 1023.39 12 HGL 5360 (N)87 89,035$ FP_2305 Future Pipe G&D 1592.79 12 HGL 5360 (N)87 138,573$ FP_2303 Future Pipe G&D 2880.34 12 HGL 5360 (N)87 250,589$ FP_2302 Future Pipe G&D 1083.03 12 HGL 5360 (N)87 94,224$ FP_2300 Future Pipe G&D 1297.12 12 HGL 5360 (N)87 112,850$ FP_2299 Future Pipe G&D 1989.55 12 HGL 5360 (N)87 173,091$ FP_2298 Future Pipe G&D 4616.83 12 HGL 5360 (N)87 401,664$ FP_2282 Future Pipe G&D 1618.74 12 HGL 4975 (NW1)87 140,831$ FP_2296 Future Pipe G&D 423.67 12 HGL 4850 (NW2)87 36,859$ FP_2283 Future Pipe G&D 2676.32 12 HGL 4975 (NW1)87 232,840$ FP_2294 Future Pipe G&D 3059.68 12 HGL 4850 (NW2)87 266,192$ FP_2293 Future Pipe G&D 2188.96 12 HGL 4850 (NW2)87 190,440$ FP_2292 Future Pipe G&D 2192.74 12 HGL 4850 (NW2)87 190,768$ FP_2291 Future Pipe G&D 2658.68 12 HGL 4850 (NW2)87 231,305$ FP_2290 Future Pipe G&D 2132.82 12 HGL 4850 (NW2)87 185,556$ FP_2289 Future Pipe G&D 2597.17 12 HGL 4975 (NW1)87 225,954$ FP_2288 Future Pipe G&D 2743.94 12 HGL 4975 (NW1)87 238,723$ FP_2287 Future Pipe G&D 2586.16 12 HGL 4850 (NW2)87 224,996$ FP_2286 Future Pipe G&D 2461.03 12 HGL 4975 (NW1)87 214,109$ FP_2240 Future Pipe G&D 1196.31 12 HGL 5221 (WTP)87 104,079$ FP_2297 Future Pipe G&D 510.42 12 HGL 4850 (NW2)87 44,406$ FP_2190 Future Pipe G&D 65.35 12 HGL 4725 (NW3)87 5,685$ FP_2201 Future Pipe G&D 674.53 12 HGL 5560 (SE)87 58,684$ FP_2198 Future Pipe G&D 1214.42 12 HGL 4850 (NW2)87 105,655$ FP_2197 Future Pipe G&D 813.88 12 HGL 4850 (NW2)87 70,807$ FP_2243 Future Pipe G&D 896.12 12 HGL 5126 (S)87 77,962$ FP_2211 Future Pipe G&D 1514.47 12 HGL 5360 (N)87 131,758$ FP_2187 Future Pipe G&D 599.16 12 HGL 4975 (NW1)87 52,127$ FP_2179 Future Pipe G&D 82.58 12 HGL 4975 (NW1)87 7,184$ FP_2173 Future Pipe G&D 2624.40 12 HGL 5350 (SW)87 228,323$ FP_2171 Future Pipe G&D 30.69 12 HGL 5126 (S)87 2,670$ FP_2224 Future Pipe G&D 4222.89 12 HGL 4850 (NW2)87 367,392$ FP_2235 Future Pipe G&D 105.88 12 HGL 5126 (S)87 9,211$ FP_2229 Future Pipe G&D 2711.51 12 HGL 4850 (NW2)87 235,902$ FP_2228 Future Pipe G&D 1778.12 12 HGL 4850 (NW2)87 154,696$ FP_2227 Future Pipe G&D 1259.58 12 HGL 4850 (NW2)87 109,584$ FP_2203 Future Pipe G&D 2597.54 12 HGL 5560 (SE)87 225,986$ FP_2225 Future Pipe G&D 1833.53 12 HGL 4850 (NW2)87 159,517$ FP_2222 Future Pipe G&D 2683.39 12 HGL 4975 (NW1)87 233,455$ FP_2221 Future Pipe G&D 2757.14 12 HGL 4975 (NW1)87 239,871$ FP_2219 Future Pipe G&D 1112.47 12 HGL 4975 (NW1)87 96,785$ FP_2213 Future Pipe G&D 333.45 12 HGL 4975 (NW1)87 29,010$ FP_2212 Future Pipe G&D 1916.61 12 HGL 5360 (N)87 166,745$ FP_2342 Future Pipe G&D 258.28 12 HGL 5630 (MT)87 22,470$ FP_2433 Future Pipe G&D 1015.12 12 HGL 5630 (MT)87 88,315$ FP_2431 Future Pipe G&D 1096.01 12 HGL 5630 (MT)87 95,353$ FP_2426 Future Pipe G&D 52.92 12 HGL 5630 (MT)87 4,604$ FP_2425 Future Pipe G&D 2032.47 12 HGL 5630 (MT)87 176,825$ FP_2404 Future Pipe G&D 1826.99 12 HGL 5630 (MT)87 158,948$ FP_2309 Future Pipe G&D 610.77 12 HGL 5360 (N)87 53,137$ FP_2424 Future Pipe G&D 1597.69 12 HGL 5630 (MT)87 138,999$ FP_2453 Future Pipe G&D 206.50 12 HGL 5630 (MT)87 17,966$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_2434 Future Pipe G&D 608.33 12 HGL 5630 (MT)87 52,925$ FP_2452 Future Pipe G&D 174.04 12 HGL 5630 (MT)87 15,141$ FP_2445 Future Pipe G&D 36.47 12 HGL 5630 (MT)87 3,173$ FP_2442 Future Pipe G&D 48.42 12 HGL 5630 (MT)87 4,212$ FP_2441 Future Pipe G&D 90.54 12 HGL 5630 (MT)87 7,877$ FP_2403 Future Pipe G&D 68.70 12 HGL 5630 (MT)87 5,977$ FP_2353 Future Pipe G&D 1950.46 12 HGL 5630 (MT)87 169,690$ FP_2364 Future Pipe G&D 167.43 12 HGL 5630 (MT)87 14,566$ FP_2363 Future Pipe G&D 2175.61 12 HGL 5630 (MT)87 189,278$ FP_2362 Future Pipe G&D 1415.82 12 HGL 5630 (MT)87 123,177$ FP_2361 Future Pipe G&D 2527.17 12 HGL 5630 (MT)87 219,864$ FP_2359 Future Pipe G&D 613.12 12 HGL 5630 (MT)87 53,342$ FP_2358 Future Pipe G&D 2191.32 12 HGL 5630 (MT)87 190,645$ FP_2356 Future Pipe G&D 2167.04 12 HGL 5630 (MT)87 188,533$ FP_2405 Future Pipe G&D 49.79 12 HGL 5630 (MT)87 4,332$ FP_2354 Future Pipe G&D 1926.82 12 HGL 5630 (MT)87 167,633$ FP_2352 Future Pipe G&D 4062.47 12 HGL 5630 (MT)87 353,435$ FP_2349 Future Pipe G&D 2723.24 12 HGL 5630 (MT)87 236,922$ FP_2344 Future Pipe G&D 350.08 12 HGL 5630 (MT)87 30,457$ FP_2343 Future Pipe G&D 1121.44 12 HGL 5630 (MT)87 97,565$ FP_2355 Future Pipe G&D 3091.24 12 HGL 5630 (MT)87 268,938$ FP_2392 Future Pipe G&D 1014.43 12 HGL 5630 (MT)87 88,256$ FP_2387 Future Pipe G&D 799.11 12 HGL 5630 (MT)87 69,522$ FP_2366 Future Pipe G&D 839.23 12 HGL 5630 (MT)87 73,013$ FP_2372 Future Pipe G&D 1277.58 12 HGL 5630 (MT)87 111,150$ FP_2310 Future Pipe G&D 2586.86 12 HGL 4975 (NW1)87 225,057$ FP_1852 Future Pipe G&D 1119.35 12 HGL 5126 (S)87 97,383$ FP_1864 Future Pipe G&D 887.50 12 HGL 5126 (S)87 77,213$ FP_1863 Future Pipe G&D 2611.38 12 HGL 5126 (S)87 227,190$ FP_1862 Future Pipe G&D 2258.55 12 HGL 5126 (S)87 196,494$ FP_1860 Future Pipe G&D 2371.12 12 HGL 5126 (S)87 206,288$ FP_1859 Future Pipe G&D 200.59 12 HGL 5126 (S)87 17,451$ FP_1858 Future Pipe G&D 753.63 12 HGL 5126 (S)87 65,565$ FP_1857 Future Pipe G&D 818.62 12 HGL 5126 (S)87 71,220$ FP_1866 Future Pipe G&D 1203.36 12 HGL 5126 (S)87 104,692$ FP_1853 Future Pipe G&D 1353.15 12 HGL 5126 (S)87 117,724$ FP_1867 Future Pipe G&D 818.86 12 HGL 5126 (S)87 71,241$ FP_1851 Future Pipe G&D 1789.11 12 HGL 5126 (S)87 155,653$ FP_1850 Future Pipe G&D 1041.76 12 HGL 5126 (S)87 90,633$ FP_1849 Future Pipe G&D 1697.55 12 HGL 5126 (S)87 147,687$ FP_1845 Future Pipe G&D 3637.96 12 HGL 5126 (S)87 316,502$ FP_1844 Future Pipe G&D 2773.78 12 HGL 5126 (S)87 241,319$ FP_1899 Future Pipe G&D 892.39 12 HGL 4975 (NW1)87 77,638$ FP_1865 Future Pipe G&D 2042.86 12 HGL 5126 (S)87 177,729$ FP_1886 Future Pipe G&D 1216.06 12 HGL 5221 (WTP)87 105,797$ FP_1873 Future Pipe G&D 2695.30 12 HGL 5126 (S)87 234,491$ FP_1872 Future Pipe G&D 1669.67 12 HGL 5126 (S)87 145,262$ FP_1871 Future Pipe G&D 1490.86 12 HGL 5126 (S)87 129,705$ FP_1870 Future Pipe G&D 284.49 12 HGL 5126 (S)87 24,750$ FP_1869 Future Pipe G&D 1008.45 12 HGL 5126 (S)87 87,735$ FP_1868 Future Pipe G&D 848.07 12 HGL 5126 (S)87 73,782$ FP_1783 Future Pipe G&D 2682.45 12 HGL 5350 (SW)87 233,373$ FP_1800 Future Pipe G&D 2552.09 12 HGL 5560 (SE)87 222,032$ FP_1799 Future Pipe G&D 1302.35 12 HGL 5560 (SE)87 113,304$ FP_1798 Future Pipe G&D 1255.58 12 HGL 5560 (SE)87 109,236$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_1797 Future Pipe G&D 2635.00 12 HGL 5560 (SE)87 229,245$ FP_1796 Future Pipe G&D 2778.20 12 HGL 5560 (SE)87 241,703$ FP_1792 Future Pipe G&D 2630.21 12 HGL 5350 (SW)87 228,829$ FP_1791 Future Pipe G&D 2630.73 12 HGL 5350 (SW)87 228,873$ FP_1788 Future Pipe G&D 4557.97 12 HGL 5221 (WTP)87 396,543$ FP_1786 Future Pipe G&D 4636.13 12 HGL 5350 (SW)87 403,344$ FP_1784 Future Pipe G&D 2634.87 12 HGL 5221 (WTP)87 229,233$ FP_1780 Future Pipe G&D 2616.96 12 HGL 5350 (SW)87 227,675$ FP_2341 Future Pipe G&D 3040.26 12 HGL 5630 (MT)87 264,503$ FP_1779 Future Pipe G&D 2620.71 12 HGL 5350 (SW)87 228,002$ FP_1778 Future Pipe G&D 2574.54 12 HGL 5221 (WTP)87 223,985$ FP_1776 Future Pipe G&D 2373.84 12 HGL 5350 (SW)87 206,524$ FP_1777 Future Pipe G&D 399.68 12 HGL 5350 (SW)87 34,772$ FP_1785 Future Pipe G&D 2630.34 12 HGL 5221 (WTP)87 228,840$ FP_1801 Future Pipe G&D 1313.68 12 HGL 5560 (SE)87 114,290$ FP_2025 Future Pipe G&D 17.83 12 HGL 5221 (WTP)87 1,552$ FP_2070 Future Pipe G&D 1054.89 12 HGL 5560 (SE)87 91,775$ FP_2069 Future Pipe G&D 331.04 12 HGL 5560 (SE)87 28,800$ FP_2058 Future Pipe G&D 2171.74 12 HGL 5360 (N)87 188,942$ FP_2033 Future Pipe G&D 653.00 12 HGL 5126 (S)87 56,811$ FP_2032 Future Pipe G&D 2630.34 12 HGL 5350 (SW)87 228,840$ FP_2030 Future Pipe G&D 74.96 12 HGL 5221 (WTP)87 6,521$ FP_2027 Future Pipe G&D 902.39 12 HGL 5221 (WTP)87 78,508$ FP_2026 Future Pipe G&D 12.33 12 HGL 5126 (S)87 1,073$ FP_2111 Future Pipe G&D 3031.58 12 HGL 5350 (SW)87 263,748$ FP_2147 Future Pipe G&D 2953.04 12 HGL 5350 (SW)87 256,915$ FP_2140 Future Pipe G&D 1888.13 12 HGL 4725 (NW3)87 164,267$ FP_2118 Future Pipe G&D 65.78 12 HGL 4850 (NW2)87 5,723$ FP_2112 Future Pipe G&D 2972.53 12 HGL 5560 (SE)87 258,610$ FP_2120 Future Pipe G&D 135.62 12 HGL 4975 (NW1)87 11,799$ FP_2097 Future Pipe G&D 2048.62 12 HGL 5350 (SW)87 178,230$ FP_2096 Future Pipe G&D 2544.20 12 HGL 5221 (WTP)87 221,346$ FP_2091 Future Pipe G&D 2637.39 12 HGL 5560 (SE)87 229,453$ FP_1995 Future Pipe G&D 447.71 12 HGL 5560 (SE)87 38,951$ FP_2012 Future Pipe G&D 1371.65 12 HGL 5126 (S)87 119,334$ FP_2014 Future Pipe G&D 1313.52 12 HGL 5126 (S)87 114,276$ FP_1994 Future Pipe G&D 169.78 12 HGL 5560 (SE)87 14,771$ FP_2327 Future Pipe G&D 2616.46 12 HGL 5560 (SE)87 227,632$ FP_2316 Future Pipe G&D 2615.62 12 HGL 4725 (NW3)87 227,559$ FP_2321 Future Pipe G&D 2342.63 12 HGL 5560 (SE)87 203,809$ FP_2322 Future Pipe G&D 2605.08 12 HGL 5560 (SE)87 226,642$ FP_2311 Future Pipe G&D 2632.48 12 HGL 4975 (NW1)87 229,025$ FP_2319 Future Pipe G&D 936.90 12 HGL 4725 (NW3)87 81,510$ FP_2324 Future Pipe G&D 2605.52 12 HGL 5560 (SE)87 226,680$ FP_2326 Future Pipe G&D 1884.32 12 HGL 5560 (SE)87 163,936$ FP_2328 Future Pipe G&D 2389.31 12 HGL 5560 (SE)87 207,870$ FP_2330 Future Pipe G&D 1020.89 12 HGL 5560 (SE)87 88,817$ FP_2331 Future Pipe G&D 2272.19 12 HGL 5560 (SE)87 197,680$ FP_2333 Future Pipe G&D 1836.00 12 HGL 5560 (SE)87 159,732$ FP_2325 Future Pipe G&D 1364.21 12 HGL 5560 (SE)87 118,686$ FP_2312 Future Pipe G&D 2571.98 12 HGL 5126 (S)87 223,762$ FP_2482 Future Pipe G&D 315.73 12 HGL 4850 (NW2)87 27,468$ FP_2481 Future Pipe G&D 1395.98 12 HGL 5038 (L)87 121,450$ FP_1614 Future Pipe G&D 1816.69 16 HGL 5360 (N)118 214,370$ FP_1653 Future Pipe G&D 957.49 16 HGL 4725 (NW3)118 112,984$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_1647 Future Pipe G&D 937.60 16 HGL 4725 (NW3)118 110,637$ FP_1644 Future Pipe G&D 463.49 16 HGL 4725 (NW3)118 54,691$ FP_1642 Future Pipe G&D 1445.45 16 HGL 5360 (N)118 170,563$ FP_1625 Future Pipe G&D 1755.90 16 HGL 5360 (N)118 207,196$ FP_1617 Future Pipe G&D 4176.27 16 HGL 5360 (N)118 492,800$ FP_1771 Future Pipe G&D 2214.16 16 HGL 5350 (SW)118 261,271$ FP_1762 Future Pipe G&D 313.58 16 HGL 5350 (SW)118 37,003$ FP_1772 Future Pipe G&D 2630.21 16 HGL 5350 (SW)118 310,365$ FP_1770 Future Pipe G&D 2395.98 16 HGL 5350 (SW)118 282,726$ FP_1657 Future Pipe G&D 1663.17 16 HGL 4725 (NW3)118 196,254$ FP_1760 Future Pipe G&D 2578.26 16 HGL 5350 (SW)118 304,235$ FP_1761 Future Pipe G&D 2370.37 16 HGL 5350 (SW)118 279,704$ FP_1655 Future Pipe G&D 1534.28 16 HGL 4725 (NW3)118 181,045$ FP_1698 Future Pipe G&D 928.98 16 HGL 4725 (NW3)118 109,620$ FP_1673 Future Pipe G&D 2224.04 16 HGL 4725 (NW3)118 262,437$ FP_1663 Future Pipe G&D 1210.11 16 HGL 4725 (NW3)118 142,793$ FP_1661 Future Pipe G&D 2652.30 16 HGL 4725 (NW3)118 312,971$ FP_1660 Future Pipe G&D 430.68 16 HGL 4725 (NW3)118 50,820$ FP_1656 Future Pipe G&D 323.12 16 HGL 4725 (NW3)118 38,128$ FP_1654 Future Pipe G&D 1408.28 16 HGL 4725 (NW3)118 166,177$ FP_1697 Future Pipe G&D 587.82 16 HGL 4725 (NW3)118 69,363$ FP_1677 Future Pipe G&D 2852.13 16 HGL 4725 (NW3)118 336,551$ FP_1687 Future Pipe G&D 1102.09 16 HGL 4725 (NW3)118 130,047$ FP_1443 Future Pipe G&D 2256.95 16 HGL 4850 (NW2)118 266,320$ FP_1440 Future Pipe G&D 259.02 16 HGL 4975 (NW1)118 30,564$ FP_1430 Future Pipe G&D 2465.97 16 HGL 4975 (NW1)118 290,984$ FP_1361 Future Pipe G&D 1367.36 16 HGL 5221 (WTP)118 161,349$ FP_1425 Future Pipe G&D 1365.95 16 HGL 4975 (NW1)118 161,182$ FP_1362 Future Pipe G&D 1302.27 16 HGL 5221 (WTP)118 153,667$ FP_1561 Future Pipe G&D 676.83 16 HGL 4725 (NW3)118 79,866$ FP_1436 Future Pipe G&D 2637.30 16 HGL 4850 (NW2)118 311,201$ FP_1457 Future Pipe G&D 3113.72 16 HGL 4725 (NW3)118 367,418$ FP_1469 Future Pipe G&D 2452.33 16 HGL 4725 (NW3)118 289,375$ FP_1466 Future Pipe G&D 1359.34 16 HGL 4725 (NW3)118 160,403$ FP_1465 Future Pipe G&D 1897.91 16 HGL 4725 (NW3)118 223,954$ FP_1464 Future Pipe G&D 1571.19 16 HGL 4725 (NW3)118 185,401$ FP_1463 Future Pipe G&D 1666.91 16 HGL 4725 (NW3)118 196,696$ FP_1462 Future Pipe G&D 1255.95 16 HGL 4725 (NW3)118 148,202$ FP_1461 Future Pipe G&D 195.36 16 HGL 4725 (NW3)118 23,053$ FP_1446 Future Pipe G&D 2606.23 16 HGL 4850 (NW2)118 307,535$ FP_1458 Future Pipe G&D 1160.06 16 HGL 4725 (NW3)118 136,887$ FP_1451 Future Pipe G&D 2601.66 16 HGL 4850 (NW2)118 306,996$ FP_1450 Future Pipe G&D 2548.20 16 HGL 4850 (NW2)118 300,687$ FP_1352 Future Pipe G&D 1302.27 16 HGL 5221 (WTP)118 153,667$ FP_1419 Future Pipe G&D 1363.64 16 HGL 4975 (NW1)118 160,909$ FP_1459 Future Pipe G&D 1087.71 16 HGL 4725 (NW3)118 128,350$ FP_1388 Future Pipe G&D 1263.02 16 HGL 5126 (S)118 149,037$ FP_1387 Future Pipe G&D 1439.06 16 HGL 5126 (S)118 169,810$ FP_1376 Future Pipe G&D 1157.14 16 HGL 5126 (S)118 136,543$ FP_1375 Future Pipe G&D 1484.61 16 HGL 5126 (S)118 175,184$ FP_1374 Future Pipe G&D 1341.40 16 HGL 5126 (S)118 158,285$ FP_1373 Future Pipe G&D 1354.17 16 HGL 5126 (S)118 159,792$ FP_1372 Future Pipe G&D 1146.13 16 HGL 5126 (S)118 135,244$ FP_1371 Future Pipe G&D 1450.32 16 HGL 5126 (S)118 171,138$ FP_1413 Future Pipe G&D 2195.38 16 HGL 4975 (NW1)118 259,055$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_1412 Future Pipe G&D 2583.28 16 HGL 4975 (NW1)118 304,827$ FP_1411 Future Pipe G&D 50.91 16 HGL 5126 (S)118 6,008$ FP_1405 Future Pipe G&D 2630.21 16 HGL 5126 (S)118 310,365$ FP_1404 Future Pipe G&D 2672.96 16 HGL 5126 (S)118 315,409$ FP_1389 Future Pipe G&D 1354.23 16 HGL 5126 (S)118 159,799$ FP_1390 Future Pipe G&D 1263.09 16 HGL 5126 (S)118 149,045$ FP_1773 Future Pipe G&D 2708.46 16 HGL 5350 (SW)118 319,599$ FP_1332 Future Pipe G&D 1389.06 16 HGL 5221 (WTP)118 163,909$ FP_1333 Future Pipe G&D 1251.64 16 HGL 5221 (WTP)118 147,694$ FP_1526 Future Pipe G&D 776.30 16 HGL 5560 (SE)118 91,604$ FP_1525 Future Pipe G&D 937.13 16 HGL 5560 (SE)118 110,581$ FP_1524 Future Pipe G&D 1948.27 16 HGL 5560 (SE)118 229,896$ FP_1334 Future Pipe G&D 1287.53 16 HGL 5221 (WTP)118 151,929$ FP_1564 Future Pipe G&D 1284.83 16 HGL 4725 (NW3)118 151,610$ FP_1562 Future Pipe G&D 2151.74 16 HGL 4725 (NW3)118 253,906$ FP_1521 Future Pipe G&D 2446.52 16 HGL 5560 (SE)118 288,690$ FP_1481 Future Pipe G&D 1338.05 16 HGL 4975 (NW1)118 157,890$ FP_1523 Future Pipe G&D 1837.60 16 HGL 5560 (SE)118 216,837$ FP_1485 Future Pipe G&D 1263.51 16 HGL 4975 (NW1)118 149,094$ FP_1484 Future Pipe G&D 1375.96 16 HGL 4975 (NW1)118 162,364$ FP_1482 Future Pipe G&D 1267.94 16 HGL 4975 (NW1)118 149,616$ FP_1479 Future Pipe G&D 1293.67 16 HGL 4975 (NW1)118 152,653$ FP_1477 Future Pipe G&D 1741.67 16 HGL 4975 (NW1)118 205,517$ FP_1474 Future Pipe G&D 1582.05 16 HGL 4975 (NW1)118 186,682$ FP_1517 Future Pipe G&D 1974.46 16 HGL 5560 (SE)118 232,986$ FP_1515 Future Pipe G&D 1757.82 16 HGL 5560 (SE)118 207,422$ FP_1514 Future Pipe G&D 1685.38 16 HGL 5560 (SE)118 198,875$ FP_1522 Future Pipe G&D 1014.28 16 HGL 5560 (SE)118 119,685$ FP_1335 Future Pipe G&D 1367.36 16 HGL 5221 (WTP)118 161,349$ FP_1336 Future Pipe G&D 1367.36 16 HGL 5221 (WTP)118 161,349$ FP_1337 Future Pipe G&D 1280.38 16 HGL 5221 (WTP)118 151,085$ FP_1338 Future Pipe G&D 1323.79 16 HGL 5221 (WTP)118 156,207$ FP_1339 Future Pipe G&D 1367.36 16 HGL 5221 (WTP)118 161,349$ FP_2284 Future Pipe G&D 247.31 16 HGL 4975 (NW1)118 29,183$ FP_2295 Future Pipe G&D 2315.11 16 HGL 4850 (NW2)118 273,183$ FP_2202 Future Pipe G&D 1226.13 16 HGL 5560 (SE)118 144,683$ FP_2200 Future Pipe G&D 941.25 16 HGL 5126 (S)118 111,068$ FP_2199 Future Pipe G&D 1315.73 16 HGL 5560 (SE)118 155,257$ FP_2196 Future Pipe G&D 2677.36 16 HGL 4850 (NW2)118 315,928$ FP_2195 Future Pipe G&D 616.32 16 HGL 4725 (NW3)118 72,726$ FP_2194 Future Pipe G&D 560.47 16 HGL 4725 (NW3)118 66,135$ FP_2186 Future Pipe G&D 1918.96 16 HGL 4975 (NW1)118 226,437$ FP_2185 Future Pipe G&D 238.79 16 HGL 4975 (NW1)118 28,177$ FP_2184 Future Pipe G&D 763.97 16 HGL 4975 (NW1)118 90,149$ FP_2183 Future Pipe G&D 2237.69 16 HGL 4725 (NW3)118 264,048$ FP_2181 Future Pipe G&D 51.88 16 HGL 4975 (NW1)118 6,122$ FP_2193 Future Pipe G&D 326.20 16 HGL 4725 (NW3)118 38,492$ FP_2239 Future Pipe G&D 2520.66 16 HGL 5221 (WTP)118 297,437$ FP_2237 Future Pipe G&D 2629.42 16 HGL 5126 (S)118 310,272$ FP_2236 Future Pipe G&D 1638.16 16 HGL 5126 (S)118 193,303$ FP_2234 Future Pipe G&D 2563.11 16 HGL 5126 (S)118 302,446$ FP_2231 Future Pipe G&D 2655.70 16 HGL 4975 (NW1)118 313,373$ FP_2230 Future Pipe G&D 47.24 16 HGL 4975 (NW1)118 5,574$ FP_2223 Future Pipe G&D 3055.56 16 HGL 4850 (NW2)118 360,556$ FP_2220 Future Pipe G&D 1893.39 16 HGL 4975 (NW1)118 223,420$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_2464 Future Pipe G&D 1260.55 16 HGL 4975 (NW1)118 148,745$ FP_1774 Future Pipe G&D 2548.61 16 HGL 5350 (SW)118 300,736$ FP_2458 Future Pipe G&D 2590.52 16 HGL 5560 (SE)118 305,682$ FP_2457 Future Pipe G&D 1316.54 16 HGL 5560 (SE)118 155,352$ FP_1856 Future Pipe G&D 1837.23 16 HGL 5126 (S)118 216,793$ FP_1855 Future Pipe G&D 3663.92 16 HGL 5126 (S)118 432,342$ FP_1846 Future Pipe G&D 2982.01 16 HGL 5126 (S)118 351,877$ FP_1843 Future Pipe G&D 973.50 16 HGL 5126 (S)118 114,873$ FP_1854 Future Pipe G&D 1436.90 16 HGL 5126 (S)118 169,554$ FP_1888 Future Pipe G&D 2712.21 16 HGL 5126 (S)118 320,041$ FP_1892 Future Pipe G&D 1241.44 16 HGL 5126 (S)118 146,490$ FP_1891 Future Pipe G&D 1024.45 16 HGL 5126 (S)118 120,886$ FP_1889 Future Pipe G&D 2655.31 16 HGL 5126 (S)118 313,327$ FP_1887 Future Pipe G&D 2441.41 16 HGL 5126 (S)118 288,087$ FP_1885 Future Pipe G&D 2646.41 16 HGL 5126 (S)118 312,277$ FP_1884 Future Pipe G&D 442.79 16 HGL 5126 (S)118 52,250$ FP_1890 Future Pipe G&D 2680.15 16 HGL 5221 (WTP)118 316,258$ FP_1790 Future Pipe G&D 2685.92 16 HGL 5350 (SW)118 316,939$ FP_1806 Future Pipe G&D 2626.37 16 HGL 5560 (SE)118 309,911$ FP_1775 Future Pipe G&D 2552.22 16 HGL 5350 (SW)118 301,162$ FP_1805 Future Pipe G&D 1317.72 16 HGL 5560 (SE)118 155,491$ FP_1811 Future Pipe G&D 2604.69 16 HGL 5126 (S)118 307,354$ FP_1810 Future Pipe G&D 1277.11 16 HGL 5126 (S)118 150,699$ FP_1809 Future Pipe G&D 2509.86 16 HGL 5126 (S)118 296,164$ FP_1807 Future Pipe G&D 51.20 16 HGL 5126 (S)118 6,042$ FP_2037 Future Pipe G&D 466.46 16 HGL 5126 (S)118 55,043$ FP_2068 Future Pipe G&D 2589.69 16 HGL 5560 (SE)118 305,583$ FP_2059 Future Pipe G&D 1211.20 16 HGL 5360 (N)118 142,921$ FP_2057 Future Pipe G&D 742.07 16 HGL 5360 (N)118 87,564$ FP_2073 Future Pipe G&D 140.71 16 HGL 5126 (S)118 16,604$ FP_2040 Future Pipe G&D 139.45 16 HGL 5126 (S)118 16,455$ FP_2074 Future Pipe G&D 149.28 16 HGL 5126 (S)118 17,615$ FP_2036 Future Pipe G&D 879.23 16 HGL 5221 (WTP)118 103,749$ FP_2028 Future Pipe G&D 139.28 16 HGL 5221 (WTP)118 16,435$ FP_2121 Future Pipe G&D 1241.35 16 HGL 4975 (NW1)118 146,480$ FP_2117 Future Pipe G&D 99.51 16 HGL 4850 (NW2)118 11,742$ FP_2076 Future Pipe G&D 1449.51 16 HGL 5360 (N)118 171,042$ FP_2114 Future Pipe G&D 2531.91 16 HGL 5560 (SE)118 298,765$ FP_1921 Future Pipe G&D 2644.02 16 HGL 5221 (WTP)118 311,994$ FP_1969 Future Pipe G&D 2534.73 16 HGL 4975 (NW1)118 299,098$ FP_2015 Future Pipe G&D 91.18 16 HGL 4975 (NW1)118 10,760$ FP_2124 Future Pipe G&D 872.71 16 HGL 4975 (NW1)118 102,980$ FP_2003 Future Pipe G&D 633.89 16 HGL 5360 (N)118 74,800$ FP_2008 Future Pipe G&D 1346.16 16 HGL 5126 (S)118 158,846$ FP_2013 Future Pipe G&D 1361.44 16 HGL 5126 (S)118 160,650$ FP_2315 Future Pipe G&D 1285.31 16 HGL 4725 (NW3)118 151,666$ FP_2320 Future Pipe G&D 1291.71 16 HGL 5560 (SE)118 152,422$ FP_2314 Future Pipe G&D 1426.13 16 HGL 4725 (NW3)118 168,283$ FP_2323 Future Pipe G&D 2625.97 16 HGL 5560 (SE)118 309,864$ FP_2336 Future Pipe G&D 2951.42 16 HGL 5630 (MT)118 348,267$ FP_2337 Future Pipe G&D 1094.03 16 HGL 5630 (MT)118 129,096$ FP_2422 Future Pipe G&D 207.32 18 HGL 5630 (MT)136 28,196$ FP_2432 Future Pipe G&D 780.02 18 HGL 5630 (MT)136 106,082$ FP_2423 Future Pipe G&D 585.48 18 HGL 5630 (MT)136 79,625$ FP_2461 Future Pipe G&D 19.53 18 136 2,656$ ID DESCRIPTION CIP_ITEMS LENGTH_FT DIAMETER ZONE_NEW Unit Cost $/FT Cost FP_2462 Future Pipe G&D 46.96 18 136 6,386$ FP_2435 Future Pipe G&D 1427.21 18 HGL 5630 (MT)136 194,101$ FP_2360 Future Pipe G&D 237.40 18 HGL 5630 (MT)136 32,287$ FP_2389 Future Pipe G&D 517.69 18 HGL 5630 (MT)136 70,406$ FP_2384 Future Pipe G&D 526.07 18 HGL 5630 (MT)136 71,545$ FP_2335 Future Pipe G&D 1351.15 18 HGL 5630 (MT)136 183,757$ FP_2339 Future Pipe G&D 1272.03 18 HGL 5630 (MT)136 172,996$ FP_1378 Future Pipe G&D 1393.29 24 HGL 5126 (S)192 267,512$ FP_1377 Future Pipe G&D 24.57 24 HGL 5126 (S)192 4,717$ FP_1398 Future Pipe G&D 1315.11 24 HGL 5126 (S)192 252,501$ FP_1331 Future Pipe G&D 1193.78 24 HGL 5221 (WTP)192 229,205$ FP_1330 Future Pipe G&D 1410.76 24 HGL 5221 (WTP)192 270,866$ FP_2174 Future Pipe G&D 66.03 24 HGL 5221 (WTP)192 12,678$ FP_2204 Future Pipe G&D 646.58 24 HGL 5126 (S)192 124,144$ FP_2466 Future Pipe G&D 70.14 24 192 13,468$ FP_1782 Future Pipe G&D 994.02 24 HGL 5221 (WTP)192 190,851$ FP_1781 Future Pipe G&D 2644.26 24 HGL 5221 (WTP)192 507,698$ FP_2148 Future Pipe G&D 63.73 24 HGL 5360 (N)192 12,237$ FP_2090 Future Pipe G&D 2961.69 24 HGL 5126 (S)192 568,644$ FP_2009 Future Pipe G&D 1270.14 24 HGL 5126 (S)192 243,868$ FP_2218 Future Pipe G&D 17.35 30 HGL 5221 (WTP)294 5,102$ FP_2217 Future Pipe G&D 20.13 30 HGL 5221 (WTP)294 5,919$ FP_2056 Future Pipe G&D 50.25 30 HGL 5221 (WTP)294 14,774$ Water Facility Plan Update Appendices July 2017 Appendix H – Prioritization Matrix Pr o j e c t ID Pr o j e c t N a m e A r e t h e r e o t h e r a f f e c t e d pr o j e c t s ? C o o r d i n a t i o n , pr e r e q u i s i t e , op p o r t u n i s t i c , e t c . Ho w i s c a p a c i t y a f f e c t e d by t h i s p r o j e c t ? De s c r i b e t h e c r i t i c a l i t y (i . e . , i m p o r t a n c e ) o f t h i s pr o j e c t t o t h e o p e r a t i o n ? Ho w i s c o n n e c t i v i t y af f e c t e d b y t h i s p r o j e c t ? (R e l i a b i l i t y / R e d u n d a n c y ) Wh a t s a f e t y m e a s u r e s a r e mit i g a t e d w i t h t h i s p r o j e c t Wh a t r e g u l a t i o n s o r st a n d a r d s a r e a t t a i n e d wit h t h i s p r o j e c t Ris k A s s e s s m e n t H o w i s e f f i e c i e n c y im p r o v e d b y t h i s p r o j e c t ? Wh a t i s t h e i m p a c t f o r t h i s eq u i p m e n t ? Additional Factor 1 Prioitization ScoreProject Ranking FY 2018 2019 2020 2021 2022 Est Cost WF P _ 0 2 a R i s k - B a s e d C A # 5 - S o u r d o u g h T r a n s m i s s i o n Ma i n C o n d i t i o n A s s e s s m e n t Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d aff e c t a l a r g e p o p u l a t i o n o f e n d - us e r s . T h e r e i s n o p o s s i b i l i t y o f a wo r k - a r o u n d w i t h o u t a s s e t . Cu r r e n t s y s t e m / a s s e t i s a g i n g an d / o r e x h i b i t s p r o b l e m s a n d n o im m e d i a t e c o r r e c t i o n o r wo r k a r o u n d i s a v a i l a b l e . Lo w r i s k o f m i n o r i n j u r y I m p a c t s d o n o t a p p l y . H i g h r i s k o f m a j o r s y s t e m f a i l u r e th a t w o u l d c a u s e i n t e r r u p t i o n o f se r v i c e , o r d a m a g e t o p r o p e r t y o r eq u i p m e n t . im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y 3 5 . 6 1 $ 7 1 9 , 7 8 5 $ 719,785 WF P _ 0 2 b So u r d o u g h T r a n s m i s s i o n M a i n C A B a s e d R e h a b Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d aff e c t a l a r g e p o p u l a t i o n o f e n d - us e r s . T h e r e i s n o p o s s i b i l i t y o f a wo r k - a r o u n d w i t h o u t a s s e t . Cu r r e n t s y s t e m / a s s e t i s a g i n g an d / o r e x h i b i t s p r o b l e m s a n d n o im m e d i a t e c o r r e c t i o n o r wo r k a r o u n d i s a v a i l a b l e . Lo w r i s k o f m i n o r i n j u r y I m p a c t s d o n o t a p p l y . H i g h r i s k o f m a j o r s y s t e m f a i l u r e th a t w o u l d c a u s e i n t e r r u p t i o n o f se r v i c e , o r d a m a g e t o p r o p e r t y o r eq u i p m e n t . im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y 3 5 . 6 2 $ 1 , 0 0 0 , 0 0 0 $ 1,000,000 WF P _ 0 4 S o u r d o u g h W a t e r R i g h t s U t i l i z a t i o n S t u d y W i n d o w o f o p p o r t u n i t y f o r p r o j e c t is l i m i t e d a n d p r o j e c t t i m e l i n e i s dr i v e n b y a n o u t s i d e e n t i t y a n d th e r e i s i m m e d i a t e d e m o n s t r a t e d ne e d . P r o j e c t i s a p r e q u i s i t e f o r ad d i t i o n a l p r o j e c t s t a g e s a n d d e l a y wil l d e l a y m u l t i p l e s i g n i f i c a n t Im p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d aff e c t a l a r g e p o p u l a t i o n o f e n d - us e r s . T h e r e i s n o p o s s i b i l i t y o f a wo r k - a r o u n d w i t h o u t a s s e t . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . R e g u l a t i o n t h a t r e q u i r e s co m p l i a n c e i n n e a r f u t u r e 1 - 5 ye a r s O R A n t i c i p a t e d r e g u l a t i o n wit h m a j o r i m p l i c a t i o n s f o r C O B Op e r a t i o n s Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . H a s s y s t e m - w i d e a p p l i c a t i o n a n d aff e c t s c r i t i c a l a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply 35.0 3 $ 400,000 $ 400,000 WF P _ 0 1 a We s t T r a n s m i s s i o n M a i n P l a n n i n g S t u d y Win d o w o f o p p o r t u n i t y f o r p r o j e c t is l i m i t e d a n d p r o j e c t t i m e l i n e i s dr i v e n b y a n o u t s i d e e n t i t y a n d th e r e i s i m m e d i a t e d e m o n s t r a t e d ne e d . P r o j e c t i s a p r e q u i s i t e f o r ad d i t i o n a l p r o j e c t s t a g e s a n d d e l a y wil l d e l a y m u l t i p l e s i g n i f i c a n t Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . C u r r e n t s y s t e m / a s s e t i s a g i n g an d / o r e x h i b i t s p r o b l e m s a n d n o im m e d i a t e c o r r e c t i o n o r wo r k a r o u n d i s a v a i l a b l e . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . P r o j e c t ' s i m p l e m e n t a t i o n w i l l r e s u l t in d e m o n s t r a b l e e n h a n c e d re v e n u e s / c o s t r e d u c t i o n s > $5 0 0 , 0 0 0 a b o v e t h e c o s t o f t h e pro j e c t . A l t e r n a t i v e l y , f a i l u r e o f u n - ma i n t a i n e d s y s t e m w o u l d c o s t > $5 0 0 , 0 0 i n h i g h e r c o s t s . Ha s s y s t e m - w i d e a p p l i c a t i o n a n d aff e c t s c r i t i c a l a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply 30.0 4 $ 400,000 $ 400,000 WF P _ 0 5 H i l l t o p T a n k I n s p e c t i o n a n d M i x i n g S y s t e m I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d aff e c t a l a r g e p o p u l a t i o n o f e n d - us e r s . T h e r e i s n o p o s s i b i l i t y o f a wo r k - a r o u n d w i t h o u t a s s e t . Cu r r e n t s y s t e m / a s s e t i s a g i n g an d / o r e x h i b i t s p r o b l e m s a n d n o im m e d i a t e c o r r e c t i o n o r wo r k a r o u n d i s a v a i l a b l e . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Im p a c t s d o n o t a p p l y . H a s s u b s y s t e m a p p l i c a t i o n o r aff e c t s m a j o r a s s e t ( s ) a n d pr o d u c e s q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , pr o c e s s e s , o r a d o p t i o n o f b e s t in d u s t r y p r a c t i c e s Impacts do not apply 26.3 5 $ 239,616 $ 239,616 WF P _ 1 2 S C A D A M a s t e r P l a n W i n d o w o f o p p o r t u n i t y f o r p r o j e c t is l i m i t e d a n d p r o j e c t t i m e l i n e i s dr i v e n b y a n o u t s i d e e n t i t y a n d th e r e i s i m m e d i a t e d e m o n s t r a t e d ne e d . P r o j e c t i s a p r e q u i s i t e f o r ad d i t i o n a l p r o j e c t s t a g e s a n d d e l a y wil l d e l a y m u l t i p l e s i g n i f i c a n t pr o j e c t s . Im p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d po s s i b l y a f f e c t a l a r g e p o p u l a t i o n of e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n Uti l i t y r e s o u r c e s . A s s e t i s a t o r ex c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Be t w e e n 5 0 % a n d 1 0 0 % o f pro j e c t ' s c o s t s w i l l b e r e p a i d th r o u g h e i t h e r e n h a n c e d r e v e n u e s or l o w e r c o s t s . A l t e r n a t i v e l y , f a i l u r e of u n - m a i n t a i n e d s y s t e m w o u l d co s t u p t o 5 0 % a n d 1 0 0 % o f pro j e c t ' s c o s t . Ha s s y s t e m - w i d e a p p l i c a t i o n a n d aff e c t s c r i t i c a l a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply. 23.1 6 $ 250,000 $ 250,000 WF P _ 1 9 a R i s k B a s e d C A # 4 - L y m a n C r e e k W a t e r Tr a n s m i s s i o n M a i n Win d o w o f o p p o r t u n i t y f o r p r o j e c t is l i m i t e d a n d p r o j e c t t i m e l i n e i s dr i v e n b y a n o u t s i d e e n t i t y a n d th e r e i s i m m e d i a t e d e m o n s t r a t e d ne e d . P r o j e c t i s a p r e q u i s i t e f o r ad d i t i o n a l p r o j e c t s t a g e s a n d d e l a y wil l d e l a y m u l t i p l e s i g n i f i c a n t pr o j e c t s . Im p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d po s s i b l y a f f e c t a l a r g e p o p u l a t i o n of e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n Uti l i t y r e s o u r c e s . A s s e t i s a t o r ex c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Cu r r e n t s y s t e m / a s s e t i s a g i n g an d / o r e x h i b i t s p r o b l e m s a n d n o im m e d i a t e c o r r e c t i o n o r wo r k a r o u n d i s a v a i l a b l e . Lo w r i s k o f m i n o r i n j u r y I m p a c t s d o n o t a p p l y . H i g h r i s k o f s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , or d a m a g e t o p r o p e r t y o r eq u i p m e n t . im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . 2 1 . 9 7 $ 1 3 4 , 6 7 0 $ 134,670 . WF P _ 1 0 a G r o u n d w a t e r W e l l F i e l d D e v e l o p m e n t - P h a s e 1 W i n d o w o f o p p o r t u n i t y f o r p r o j e c t is l i m i t e d a n d p r o j e c t t i m e l i n e i s dr i v e n b y a n o u t s i d e e n t i t y a n d th e r e i s i m m e d i a t e d e m o n s t r a t e d ne e d . P r o j e c t i s a p r e q u i s i t e f o r ad d i t i o n a l p r o j e c t s t a g e s a n d d e l a y wil l d e l a y m u l t i p l e s i g n i f i c a n t Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . C u r r e n t s y s t e m i s a g i n g b u t d o e s no t e x h i b i t p r o b l e m s - a w o r k ar o u n d i s a v a i l a b l e . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . P r o j e c t ' s i m p l e m e n t a t i o n w i l l r e s u l t in d e m o n s t r a b l e e n h a n c e d re v e n u e s / c o s t r e d u c t i o n s > $2 5 0 , 0 0 0 a b o v e t h e c o s t o f t h e pro j e c t . A l t e r n a t i v e l y , f a i l u r e o f u n - ma i n t a i n e d s y s t e m w o u l d c o s t < $5 0 0 , 0 0 0 o r > $ 2 5 0 , 0 0 0 i n h i g h e r Ha s s y s t e m - w i d e a p p l i c a t i o n a n d aff e c t s c r i t i c a l a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply 20.6 8 $ 8,612,400 $ 8,612,400 WF P _ 1 3 V e r t i c a l A s s e t R i s k A s s e s s m e n t P h a s e 1 A n o u t s i d e e n t i t y h a s a l i k e - p r o j e c t wh i c h r e q u i r e s c o o r d i n a t i o n a n d th e r e i s a n i m m e d i a t e a n d de m o n s t r a t e d n e e d f o r t h e p r o j e c t . Pro j e c t i s a p r e r e q u i s i t e f o r ad d i t i o n a l p r o j e c t ( s ) . Im p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d po s s i b l y a f f e c t a l a r g e p o p u l a t i o n of e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n Uti l i t y r e s o u r c e s . A s s e t i s a t o r ex c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Im p a c t s d o n o t a p p l y . H a s s y s t e m - w i d e a p p l i c a t i o n a n d aff e c t s c r i t i c a l a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply 20.0 9 $ 19,838 $ 19,838 WF P _ 1 6 S o u r d o u g h T a n k I n s p e c t i o n a n d P o t e n t i a l Im p r o v e m e n t s Th e r e i s a d e m o n s t r a t e d l o n g - t e r m ne e d f o r t h e p r o j e c t a n d a n o u t s i d e en t i t y h a s a l i k e - p r o j e c t . I n t a n g i b l e be n e f i t s c a n b e r e a l i z e d b y co o r d i n a t i n g s c h e d u l e s t o c o i n c i d e . Im p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d po s s i b l y a f f e c t a l a r g e p o p u l a t i o n of e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n Uti l i t y r e s o u r c e s . A s s e t i s a t o r ex c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Cu r r e n t s y s t e m e x h i b i t s p r o b l e m s - a w o r k a r o u n d i s a v a i l a b l e b u t i s dif f i c u l t t o e s t a b l i s h a n d i s p r o n e t o er r o r . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . H i g h r i s k o f s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , or d a m a g e t o p r o p e r t y o r eq u i p m e n t . Im p a c t s d o n o t a p p l y . H a s s u b s y s t e m a p p l i c a t i o n o r aff e c t s m a j o r a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply. 20.0 10 $ 500,000 $ 500,000 WF P _ 1 4 V e r t i c a l A s s e t R i s k A s s e s s m e n t P h a s e 2 I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d po s s i b l y a f f e c t a l a r g e p o p u l a t i o n of e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n Uti l i t y r e s o u r c e s . A s s e t i s a t o r ex c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Im p a c t s d o n o t a p p l y . H a s s y s t e m - w i d e a p p l i c a t i o n a n d aff e c t s c r i t i c a l a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply. 17.5 11 $ 85,963 $ 85,963 WF P _ 1 5 R & R ( R i s k , F i r e f l o w , A g e , C o n d i t i o n , S i z e , e t c ) I m p a c t s d o n o t a p p l y . C a p a c i t y i s i n c r e a s e d f r o m de f i c i e n t s t a t u s t o m e e t m i n i m u m ac c e p t a b l e s e r v i c e l e v e l s . Mo d e r a t e a s s e t w h o s e f a i l u r e wo u l d a f f e c t a p o p u l a t i o n o f e n d - us e r s w h e r e w o r k - a r o u n d i s po s s i b l e , h o w e v e r i t i s i n c o n v e n i e n t an d l i m i t s f u n c t i o n a l i t y . Cu r r e n t s y s t e m e x h i b i t s p r o b l e m s - a w o r k a r o u n d i s a v a i l a b l e b u t i s dif f i c u l t t o e s t a b l i s h a n d i s p r o n e t o er r o r . Lo w r i s k o f m i n o r i n j u r y A n t i c i p a t e d r e g u l a t i o n ( r e g u l a t i o n in t h e c u r r e n t l e g i s l a t i v e / r e g u l a t o r pr o c e s s ) Ris k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Pr o j e c t ' s c o s t s a r e r e p a i d ( t h r o u g h lo w e r c o s t s o r e n h a n c e d r e v e n u e s ) wit h i n 5 y e a r s o f c o m p l e t i o n : " Y e a r 5 b r e a k e v e n " . A l t e r n a t i v e l y , fa i l u r e o f u n - m a i n t a i n e d s y s t e m wo u l d c o s t w h a t t h e p r o p o s e d pro j e c t c o s t s i n Y e a r 5 . Ha s s u b s y s t e m a p p l i c a t i o n o r aff e c t s m a j o r a s s e t ( s ) a n d pr o d u c e s q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , pr o c e s s e s , o r a d o p t i o n o f b e s t in d u s t r y p r a c t i c e s Impacts do not apply. 17.5 12 $ 2,500,000 $ 500,000 $ 500,000 $ 500,000 $ 500,000 $ 500,000 WF P _ 1 8 P R V U p g r a d e s ( a p p r o x i m a t e l y 1 6 s i t e s ) T h e p r o j e c t m a y b e n e e d e d . A n ou t s i d e e n t i t y h a s a l i k e - p r o j e c t . Im p a c t s d o n o t a p p l y . M o d e r a t e a s s e t w h o s e f a i l u r e wo u l d a f f e c t a p o p u l a t i o n o f e n d - us e r s w h e r e w o r k - a r o u n d i s po s s i b l e , h o w e v e r i t i s i n c o n v e n i e n t an d l i m i t s f u n c t i o n a l i t y . Cu r r e n t s y s t e m e x h i b i t s p r o b l e m s - a w o r k a r o u n d i s a v a i l a b l e b u t i s dif f i c u l t t o e s t a b l i s h a n d i s p r o n e t o er r o r . Lo w r i s k o f a s e r i o u s i n j u r y I m p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Pr o j e c t ' s c o s t s a r e r e p a i d ( t h r o u g h lo w e r c o s t s o r e n h a n c e d r e v e n u e s ) wit h i n 5 y e a r s o f c o m p l e t i o n : " Y e a r 5 b r e a k e v e n " . A l t e r n a t i v e l y , fa i l u r e o f u n - m a i n t a i n e d s y s t e m wo u l d c o s t w h a t t h e p r o p o s e d pro j e c t c o s t s i n Y e a r 5 . Ha s s u b s y s t e m a p p l i c a t i o n o r aff e c t s m a j o r a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply. 17.5 13 $ 7,637,760 $ 3,000,000 $ 4,000,000 $ 637,760 WF P _ 1 9 b Ly m a n T r a n s m i s s i o n M a i n C A B a s e d R e h a b Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d po s s i b l y a f f e c t a l a r g e p o p u l a t i o n of e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n Uti l i t y r e s o u r c e s . A s s e t i s a t o r ex c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Cu r r e n t s y s t e m / a s s e t i s a g i n g an d / o r e x h i b i t s p r o b l e m s a n d n o im m e d i a t e c o r r e c t i o n o r wo r k a r o u n d i s a v a i l a b l e . Lo w r i s k o f m i n o r i n j u r y I m p a c t s d o n o t a p p l y . H i g h r i s k o f s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , or d a m a g e t o p r o p e r t y o r eq u i p m e n t . im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . 1 6 . 9 1 4 $ 5 0 0 , 0 0 0 $ 500,000 WF P _ 1 1 I n t e g r a t e d W a t e r R e s o u r c e s P l a n U p d a t e A n o u t s i d e e n t i t y h a s a l i k e - p r o j e c t wh i c h r e q u i r e s c o o r d i n a t i o n a n d th e r e i s a n i m m e d i a t e a n d de m o n s t r a t e d n e e d f o r t h e p r o j e c t . Pro j e c t i s a p r e r e q u i s i t e f o r ad d i t i o n a l p r o j e c t ( s ) . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Im p a c t s d o n o t a p p l y . H a s s y s t e m - w i d e a p p l i c a t i o n a n d aff e c t s c r i t i c a l a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply 16.3 15 $ 150,000 $ 150,000 WF P _ 0 9 a R e s e r v o i r 1 - S i t i n g W i n d o w o f o p p o r t u n i t y f o r p r o j e c t is l i m i t e d a n d p r o j e c t t i m e l i n e i s dr i v e n b y a n o u t s i d e e n t i t y a n d th e r e i s i m m e d i a t e d e m o n s t r a t e d ne e d . P r o j e c t i s a p r e q u i s i t e f o r ad d i t i o n a l p r o j e c t s t a g e s a n d d e l a y wil l d e l a y m u l t i p l e s i g n i f i c a n t Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . P r o j e c t ' s i m p l e m e n t a t i o n w i l l r e s u l t in d e m o n s t r a b l e e n h a n c e d re v e n u e s / c o s t r e d u c t i o n s > $2 5 0 , 0 0 0 a b o v e t h e c o s t o f t h e pro j e c t . A l t e r n a t i v e l y , f a i l u r e o f u n - ma i n t a i n e d s y s t e m w o u l d c o s t < $5 0 0 , 0 0 0 o r > $ 2 5 0 , 0 0 0 i n h i g h e r Ha s s u b s y s t e m a p p l i c a t i o n o r aff e c t s m a j o r a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply 15.0 16 $ 350,000 $ 350,000 WF P _ 3 8 P e a r S t r e e t B o o s t e r S t a t i o n U p g r a d e I m p a c t s d o n o t a p p l y . C a p a c i t y i s i n c r e a s e d f r o m a se v e r e l y d e f i c i e n t s t a t u s t o m e e t min i m u m a c c e p t a b l e s e r v i c e le v e l s . Mo d e r a t e a s s e t w h o s e f a i l u r e wo u l d a f f e c t a p o p u l a t i o n o f e n d - us e r s w h e r e w o r k - a r o u n d i s po s s i b l e , h o w e v e r i t i s i n c o n v e n i e n t an d l i m i t s f u n c t i o n a l i t y . Cu r r e n t s y s t e m e x h i b i t s p r o b l e m s - a w o r k a r o u n d i s a v a i l a b l e b u t i s dif f i c u l t t o e s t a b l i s h a n d i s p r o n e t o er r o r . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Be t w e e n 5 0 % a n d 1 0 0 % o f pro j e c t ' s c o s t s w i l l b e r e p a i d th r o u g h e i t h e r e n h a n c e d r e v e n u e s or l o w e r c o s t s . A l t e r n a t i v e l y , f a i l u r e of u n - m a i n t a i n e d s y s t e m w o u l d co s t u p t o 5 0 % a n d 1 0 0 % o f pro j e c t ' s c o s t . Ha s l i m i t e d a p p l i c a t i o n a n d pr o d u c e s q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , p r o c e s s , or a d o p t i o n o f b e s t i n d u s t r y pr a c t i c e s . Impacts do not apply 15 17 $ 486,720 $ 486,720 WF P _ 2 4 S C A D A P h a s e 1 T h e r e i s a d e m o n s t r a t e d l o n g - t e r m ne e d f o r t h e p r o j e c t a n d a n o u t s i d e en t i t y h a s a l i k e - p r o j e c t . I n t a n g i b l e be n e f i t s c a n b e r e a l i z e d b y co o r d i n a t i n g s c h e d u l e s t o c o i n c i d e . Im p a c t s d o n o t a p p l y . M o d e r a t e a s s e t w h o s e f a i l u r e wo u l d a f f e c t a p o p u l a t i o n o f e n d - us e r s w h e r e w o r k - a r o u n d i s po s s i b l e , h o w e v e r i t i s i n c o n v e n i e n t an d l i m i t s f u n c t i o n a l i t y . Cu r r e n t s y s t e m e x h i b i t s p r o b l e m s - a w o r k a r o u n d i s a v a i l a b l e . Ris k c a n a f f e c t q u a l i t y o f p u b l i c se r v i c e , e m p l o y e e s t r e s s Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . B e t w e e n 5 0 % a n d 1 0 0 % o f pro j e c t ' s c o s t s w i l l b e r e p a i d th r o u g h e i t h e r e n h a n c e d r e v e n u e s or l o w e r c o s t s . A l t e r n a t i v e l y , f a i l u r e of u n - m a i n t a i n e d s y s t e m w o u l d co s t u p t o 5 0 % a n d 1 0 0 % o f pro j e c t ' s c o s t . Ha s s u b s y s t e m a p p l i c a t i o n o r aff e c t s m a j o r a s s e t ( s ) a n d pr o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e be n e f i t s t h a t i m p r o v e s p r o d u c t qu a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Impacts do not apply. 10.3 18 $ 2,239,050 $ 559,763 $ 839,644 $ 839,644 WF P _ 3 2 R i s k B a s e d C A # 2 - D o w n t o w n A r e a I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d po s s i b l y a f f e c t a l a r g e p o p u l a t i o n of e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n Uti l i t y r e s o u r c e s . A s s e t i s a t o r ex c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Cu r r e n t s y s t e m e x h i b i t s p r o b l e m s - a w o r k a r o u n d i s a v a i l a b l e b u t i s dif f i c u l t t o e s t a b l i s h a n d i s p r o n e t o er r o r . Ris k c a n a f f e c t q u a l i t y o f p u b l i c se r v i c e , e m p l o y e e s t r e s s Im p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . 1 0 . 3 1 9 $ 2 8 , 1 1 6 $ 28,116 WF P _ 0 1 b We s t T r a n s m i s s i o n M a i n - P h a s e 1 D e s i g n Win d o w o f o p p o r t u n i t y f o r p r o j e c t is l i m i t e d a n d p r o j e c t t i m e l i n e i s dr i v e n b y a n o u t s i d e e n t i t y a n d th e r e i s i m m e d i a t e d e m o n s t r a t e d ne e d . P r o j e c t i s a p r e q u i s i t e f o r ad d i t i o n a l p r o j e c t s t a g e s a n d d e l a y wil l d e l a y m u l t i p l e s i g n i f i c a n t Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . C u r r e n t s y s t e m / a s s e t i s a g i n g an d / o r e x h i b i t s p r o b l e m s a n d n o im m e d i a t e c o r r e c t i o n o r wo r k a r o u n d i s a v a i l a b l e . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y 1 0 . 0 2 0 $ 2 , 9 0 7 , 2 3 5 $ 2,907,235 WF P _ 2 6 R e d u n d a n t N o r t h 5 0 3 8 Z o n e F e e d I m p a c t s d o n o t a p p l y . C a p a c i t y i s i n c r e a s e d f r o m de f i c i e n t s t a t u s t o m e e t m i n i m u m ac c e p t a b l e s e r v i c e l e v e l s . Min o r a s s e t w h o s e f a i l u r e w o u l d aff e c t a s m a l l p o p u l a t i o n o f e n d - us e r s . A n n o y i n g , h o w e v e r , n o sig n i f i c a n t a d v e r s e i m p a c t . A l o n g - te r m w o r k - a r o u n d m a y b e po s s i b l e . Cu r r e n t s y s t e m e x h i b i t s p r o b l e m s - a w o r k a r o u n d i s a v a i l a b l e . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Im p a c t s d o n o t a p p l y . H a s s u b s y s t e m a p p l i c a t i o n o r aff e c t s m a j o r a s s e t ( s ) a n d pr o d u c e s q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , pr o c e s s e s , o r a d o p t i o n o f b e s t in d u s t r y p r a c t i c e s Impacts do not apply 9.7 21 $ 59,488 $ 59,488 WF P _ 3 4 R i s k B a s e d C A # 1 - W e s t B o z e m a n Tr a n s m i s s i o n Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M a j o r a s s e t w h o s e f a i l u r e w o u l d po s s i b l y a f f e c t a l a r g e p o p u l a t i o n of e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n Uti l i t y r e s o u r c e s . A s s e t i s a t o r ex c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Cu r r e n t s y s t e m i s a g i n g b u t d o e s no t e x h i b i t p r o b l e m s - a w o r k ar o u n d i s a v a i l a b l e . Ris k c a n a f f e c t q u a l i t y o f p u b l i c se r v i c e , e m p l o y e e s t r e s s Im p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . 8 . 4 2 2 $ 4 7 , 8 2 6 $ 47,826 WF P _ 3 5 R i s k B a s e d C A # 3 - B a x t e r / O a k s o u t h o f Fr e e w a y Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M o d e r a t e a s s e t w h o s e f a i l u r e wo u l d a f f e c t a p o p u l a t i o n o f e n d - us e r s w h e r e w o r k - a r o u n d i s po s s i b l e , h o w e v e r i t i s i n c o n v e n i e n t an d l i m i t s f u n c t i o n a l i t y . Cu r r e n t s y s t e m e x h i b i t s p r o b l e m s - a w o r k a r o u n d i s a v a i l a b l e . Ris k c a n a f f e c t q u a l i t y o f p u b l i c se r v i c e , e m p l o y e e s t r e s s Im p a c t s d o n o t a p p l y . R i s k o f s u b s y s t e m f a i l u r e a n d t h e po t e n t i a l f o r i n t e r r u p t i o n o f s e r v i c e , da m a g e t o p r o p e r t y o r e q u i p m e n t in a l i m i t e d a r e a . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . 7 . 2 2 3 $ 2 3 , 7 7 5 $ 23,775 WF P _ 3 6 W a t e r I n f o r m a t i o n M a n a g e m e n t S o l u t i o n s (W I M S ) Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . M i n o r a s s e t w h o s e f a i l u r e w o u l d aff e c t a s m a l l p o p u l a t i o n o f e n d - us e r s . A n n o y i n g , h o w e v e r , n o sig n i f i c a n t a d v e r s e i m p a c t . A l o n g - te r m w o r k - a r o u n d m a y b e po s s i b l e . Im p a c t s d o n o t a p p l y . I m p a c t s d o n o t a p p l y . P o t e n t i a l r e g u l a t i o n a n t i c i p a t e d i n ne x t 5 - 1 0 y e a r s . Im p a c t s d o n o t a p p l y . B e t w e e n 5 0 % a n d 1 0 0 % o f pro j e c t ' s c o s t s w i l l b e r e p a i d th r o u g h e i t h e r e n h a n c e d r e v e n u e s or l o w e r c o s t s . A l t e r n a t i v e l y , f a i l u r e of u n - m a i n t a i n e d s y s t e m w o u l d co s t u p t o 5 0 % a n d 1 0 0 % o f pro j e c t ' s c o s t . Ha s l i m i t e d a p p l i c a t i o n a n d pr o d u c e s q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , p r o c e s s , or a d o p t i o n o f b e s t i n d u s t r y pr a c t i c e s . Impacts do not apply 4.1 24 $ 186,300 $ 186,300 Water Facility Plan Update Appendices July 2017 Appendix I – Short-Term Project Narratives Ci t y o f B o z e m a n Wa t e r C I P - P r o j e c t s Re c o m m e n d e d S h o r t - T e r m C I P - Pr o j e c t s En t e r a p r o j e c t n a m e So u r d o u g h T r a n s m i s s i o n M a i n – C A B a s e d R e h a b L y m a n T r an s m i s s i o n M a i n C A B a s e d R e h a b G r o u n d w a t e r W e l l F i e ld D e v e l o p m e n t - P h a s e 1 P R V U p g r a d e s ( a p p r o x i m a t e l y 16 sites) CI P P r o j e c t N u m b e r ( le a v e b l a n k i f th i s i s a n e w p r o j e c t ) WF P _ 0 2 b WF P _ 1 9 b WF P _ 1 0 a WFP_18 De p a r t m e n t En g i n e e r i n g En g i n e e r i n g Wa t e r I m p a c t F e e s Engineering Ca t e g o r y In f r a s t r u c t u r e In f r a s t r u c t u r e In f r a s t r u c t u r e Infrastructure En t e r a B r i e f P r o j e c t D e s c r i p t i o n (on e s e n t e n c e ) Th e p r o j e c t c o n s i s t s o f r e p a i r s / r e h a b w o r k o n t h e e xi s t i n g 30 - i n c h b a r w r a p p e d c o n c r e t e S o u r d o u g h t r a n s m i s s i o n ma i n , f r o m t h e S o u r d o u g h w a t e r t r e a t m e n t p l a n t t o t he So u r d o u g h r e s e r v o i r , a n d t h e 1 6 - i n b a r - w r a p p e d co n c r e t e p i p e f r o m S o u r d o u g h R e s e r v o i r t o K a g y . P r o je c t sc o p e i s d e p e n d e n t o n c o n d i t i o n a s s e s s m e n t o f t h e ex i s t i n g S o u r d o u g h t r a n s m i s s i o n m a i n ( W F P _ 0 2 a ) . Th i s p r o j e c t c o n s i s t s o f r e p a i r a n d r e h a b i l i t a t i o n wo r k o n th e l o w e r L y m a n t r a n s m i s s i o n p i p e l i n e , a p p r o x i m a t e l y be t w e e n L y m a n R e s e r v o i r a n d P e a r S t r e e t P u m p S t a t i o n. Sc o p e w i l l d e p e n d o n t h e r e s u l t s o f W F P _ 1 9 a , c o n d i t io n as s e s s m e n t o f t h e p i p e l i n e . Th i s p r o j e c t c o n s i s t s o f t h r e e c o m p o n e n t s : 1 ) P u r c h ase la n d f o r c o n s t r u c t i o n a n d o p e r a t i o n o f a m u n i c i p a l gr o u n d w a t e r w e l l f i e l d ; 2 ) O b t a i n i n g m i t i g a t i o n w a t er ne c e s s a r y t o i m p l e m e n t a D N R C - a p p r o v e d m i t i g a t i o n pl a n ; a n d 3 ) W a t e r r i g h t p e r m i t t i n g t o o b t a i n a b e n eficial wa t e r u s e p e r m i t , t h e l e g a l w a t e r r i g h t s n e c e s s a r y to op e r a t e a m u n i c i p a l g r o u n d w a t e r w e l l , 4 ) W e l l de v e l o p m e n t Waterproof, Install above-ground weather proof enclosures (for PLC rack, PLC, I/O, Power supply, b atter charger, battery, control transformer, switch, netw ork communication,HMI,and related equipment), single phase power source, wide area network communication connection, Electric Unit Heater, Vent fan, sump pu mp and safety access (Bilco Hatch access) in non-trave led way sites. Install field instrumentation for remote indication of pressure, flow, temperature, and sele ct water quality parameters (as required). Standardize pressure controls, provide remote indication and c ontrol functionality, and improve upon confined space entr y limitations. Co n t a c t N a m e Br i a n H e a s t o n Br i a n H e a s t o n Br i a n H e a s t o n Brian Heaston Co n t a c t E m a i l bh e a s t o n @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t b h e a s t o n @ b o z e m a n . n e t Co n t a c t P h o n e N u m b e r 58 2 - 2 2 8 0 58 2 - 2 2 8 0 58 2 - 2 2 8 2 582-2280 Co s t o f t h e P r o j e c t $1 , 0 0 0 , 0 0 0 $5 0 0 , 0 0 0 $8 , 6 1 2 , 4 0 0 $7,637,760 Ye a r S c h e d u l e d FY 1 9 FY 1 9 FY 1 8 FY20 Se l e c t a P r o j e c t F u n d Wa t e r I m p a c t F e e Wh a t a r e t h e A l t e r n a t i v e s Co n s i d e r e d ? Re p l a c e m e n t o r p a r a l l e l i n g o f S o u r d o u g h T r a n s m i s s i o n Ma i n , o r c o n s t r u c t i o n o f t h e W e s t T r a n s m i s s i o n M a i n fr o m W T P t o G o l d e n s t e i n a n d 1 9 t h . Co n t i n u e t o o p e r a t e L y m a n t r a n s m i s s i o n m a i n a s - i s . S lo w e r d e v e l o p m e n t o f p o t e n t i a l g r o u n d w a t e r s u p p l y S t atus quo operation Wh a t a r e t h e A d v a n t a g e s o f Ap p r o v a l ? Re p a i r o f i d e n t i f i e d p r o b l e m s s u c h t h a t o p e r a t i o n o f t h e ma i n c a n c o n t i n u e f o r t h e n e x t s e v e r a l y e a r s . Ad d s n e w s o u r c e o f w a t e r s u p p l y t o t h e C i t y o f B o z e man, pu r s u a n t t o t h e I n t e g r a t e d W a t e r R e s o u r c e s P l a n , t o me e t t h e C i t y ’ s f u t u r e w a t e r s u p p l y n e e d s . Improve water distribution operations through incre ased understanding of system operating characteristics. Improve responsiveness to dynamic operating conditi ons. Facilitate improved access to existing sites now re quiring confined space entry procedures. Standardize and improve surge control features throughout system. Wh a t a r e t h e a d d i t i o n a l o p e r a t i n g co s t s i n t h e f u t u r e ( if a p p l i c a b l e - pr o v i d e c o s t a n d a d e s c r i p t i o n )? Cu r r e n t l y U n k n o w n Cu r r e n t l y U n k n o w n Cu r r e n t l y u n k n o w n Debt service (if any) to construct, power costs, SC ADA maintenance, vault maintenance, instrument maintenance, programming libraries Ar e t h e r e a n y a d d i t i o n a l f u n d i n g so u r c e s ? 10 0 % W a t e r I m p a c t F e e s Ar e t h e r e o t h e r a f f e c t e d p r o j e c t s ? Cu r r e n t l y U n k n o w n Cu r r e n t l y U n k n o w n Pressure Management, PRV Abandonments Is t h i s a p r o j e c t o r a p i e c e o f eq u i p m e n t ? Pr o j e c t Pr o j e c t Pr o j e c t Project CU R R E N T P R O J E C T R A N K I N G : 13 8 2 14 1 Ho w i s c a p a c i t y a f f e c t e d b y t h i s pr o j e c t ? No c h a n g e No c h a n g e A g r o u n d w a t e r w e l l f i e l d w o u l d s u b s t a n t i a l l y i n c r e a s e the Ci t y ' s w a t e r s u p p l y c a p a c i t y N/A De s c r i b e t h e c r i t i c a l i t y ( i . e . , im p o r t a n c e ) o f t h i s p r o j e c t t o t h e op e r a t i o n ? Th i s m a i n i s c u r r e n t l y a s i n g l e - p o i n t o f f a i l u r e a n d i s in u n k n o w n c o n d i t i o n . Ly m a n t r a n s m i s s i o n i n t o P e a r S t r e e t P S i s c r i t i c a l t o pr o v i d e s o m e w a t e r f r o m t h e L y m a n s y s t e m i n t h e ev e n t o f a f a i l u r e i n t h e S o u r d o u g h s y s t e m s . Th e C i t y i s f a c i n g a l o n g - t e r m w a t e r s u p p l y g a p . A c quiring ad d i t i o n a l n e w s o u r c e s o f w a t e r i s c r i t i c a l t o t h e City be i n g a b l e t o c l o s e t h i s g a p . G r o u n d w a t e r p r o c u r e m e nt is al s o c r i t i c a l t o p r o v i d e a b a c k u p s o u r c e t o t h e s o u thern wa t e r s h e d s , i n c a s e o f f i r e o r o t h e r c a t a s t r o p h e . F inally, gr o u n d w a t e r i s t h e m o s t d r o u g h t r e s i l i e n t s o u r c e o f wa t e r , a n d p r o c u r e m e n t o f g r o u n d w a t e r w o u l d si g n i f i c a n t l y r e d u c e t h e C i t y ' s v u l n e r a b i l i t y t o d r ought. Without project, system operators are without vital data on system operating conditions. Limited real time d ata limits capability to anticipate, diagnose, or corre ct abnormal operating conditions. Ho w i s c o n n e c t i v i t y a f f e c t e d b y t h i s pr o j e c t Th i s p r o j e c t i m p r o v e s c o n n e c t i v i t y o f t h e d i s t r i b u t i o n sy s t e m t o t h e C i t y ' s W T P . Im p r o v e d c o n n e c t i v i t y f r o m t h e L y m a n s o u r c e t o t h e Ci t y . Cu r r e n t l y t h e m a j o r i t y o f t h e C i t y ' s s u p p l y c o m e s f rom th e H y a l i t e a n d S o u r d o u g h w a t e r s h e d s , c o n n e c t e d th r o u g h t h e S o u r d o u g h W T P t o t h e C i t y ' s s o u t h s i d e . Co n n e c t i n g a m a j o r n e w s o u r c e o f w a t e r f r o m t h e w e s t wi l l g r e a t l y i m p r o v e t h e c o n n e c t i v i t y o f t h e C i t y ' s supply an d d i s t r i b u t i o n s y s t e m s . Maintains existing connectivity Wh a t s a f e t y o r r i s k m e a s u r e s a r e mi t i g a t e d w i t h t h i s p r o j e c t Re d u c e d r i s k o f f a i l u r e o f t h e S o u r d o u g h T r a n s m i s s i on Ma i n . I f t h i s m a i n f a i l s t h e S o u r d o u g h a n d H i l l t o p re s e r v o i r s w o u l d p r o v i d e 1 t o 2 d a y s o f s u p p l y , de p e n d i n g o n t h e s e a s o n . Re d u c e d r i s k o f a c r i t i c a l f a i l u r e a l o n g t h e L y m a n tr a n s m i s s i o n m a i n . Ri s k s t o w a t e r s u p p l y f r o m t h e C i t y ' s s o u t h e r n wa t e r s h e d s . L y m a n s p r i n g p r o v i d e s s o m e r i s k r e d u c t i on to m a j o r f a i l u r e s ( w i l d f i r e , d a m f a i l u r e , c o n t a m i n a tion) in th e s o u t h e r n w a t e r s h e d s , b u t i s n o t s u f f i c i e n t t o p rovide su b s t a n t i a l r e d u n d a n c y . A g r o u n d w a t e r w e l l f i e l d w o u ld co n t r i b u t e t o t h i s r e d u n d a n c y , r e d u c i n g t h e s e r i s k s . Standardized pressure controls offers improved protections from surge conditions which are likely cause of pipe failure. Improves service levels to existin g customers where pressure transients cause leaks in sprinkler systems or within customer premises Wh a t r e g u l a t i o n s o r s t a n d a r d s a r e at t a i n e d w i t h t h i s p r o j e c t Re l i a b l e w a t e r d e l i v e r y i n f r a s t r u c t u r e a n d s u f f i c i e nt f i r e fl o w . Re d u n d a n t w a t e r d e l i v e r y i n f r a s t r u c t u r e a n d s u f f i c i en t fi r e f l o w t o d o w n t o w n . Wa t e r s u p p l y r e d u n d a n c y N / A Ho w i s t h i s p r o j e c t / e q u i p m e n t le v e r a g e d w i t h o t h e r st a k e h o l d e r s / p r o j e c t s / f u n d s ? Sc o p e o f t h e p r o j e c t w i l l b e d i c t a t e d b y t h e r e s u l t s o f WF P _ 0 2 a Un k n o w n A g r o u n d w a t e r w e l l f i e l d p r o j e c t i s i n h e r e n t l y t i e d to co n s t r u c t i o n o f a t r a n s m i s s i o n m a i n f r o m t h e w e l l f i eld to to w n , a n d o t h e r i n f r a s t r u c t u r e ( p o t e n t i a l l y a s t o r a ge re s e r v o i r a n d b o o s t e r s t a t i o n ) n e c e s s a r y t o d i s t r i b ute this wa t e r a c r o s s t h e C i t y . Unknown 2 Ci t y o f B o z e m a n Wa t e r C I P - P r o j e c t s Re c o m m e n d e d S h o r t - T e r m C I P - Pr o j e c t s En t e r a p r o j e c t n a m e CI P P r o j e c t N u m b e r ( le a v e b l a n k i f th i s i s a n e w p r o j e c t ) De p a r t m e n t Ca t e g o r y En t e r a B r i e f P r o j e c t D e s c r i p t i o n (on e s e n t e n c e ) Co n t a c t N a m e Co n t a c t E m a i l Co n t a c t P h o n e N u m b e r Co s t o f t h e P r o j e c t Ye a r S c h e d u l e d Se l e c t a P r o j e c t F u n d Wh a t a r e t h e A l t e r n a t i v e s Co n s i d e r e d ? Wh a t a r e t h e A d v a n t a g e s o f Ap p r o v a l ? Wh a t a r e t h e a d d i t i o n a l o p e r a t i n g co s t s i n t h e f u t u r e ( if a p p l i c a b l e - pr o v i d e c o s t a n d a d e s c r i p t i o n )? Ar e t h e r e a n y a d d i t i o n a l f u n d i n g so u r c e s ? Ar e t h e r e o t h e r a f f e c t e d p r o j e c t s ? Is t h i s a p r o j e c t o r a p i e c e o f eq u i p m e n t ? CU R R E N T P R O J E C T R A N K I N G : SC A D A P h a s e 1 Hi l l t o p T a n k I n s p e c t i o n a n d M i x i n g S y s t e m R e d u n d a n t N or t h 5 0 3 8 Z o n e F e e d R i s k B a s e d R & R WF P _ 2 4 WF P _ 0 5 WF P _ 2 6 WFP_15 En g i n e e r i n g Wa t e r O p e r a t i o n s Wa t e r O p e r a t i o n s In f r a s t r u c t u r e Eq u i p m e n t Eq u i p m e n t Infrastructure In s t a l l W i d e A r e a N e t w o r k i n f r a s t r u c t u r e , c o n n e c t P RV va u l t s , v e r i f y / i n s t a l l P r e s s u r e r e l i e f p e r e a c h P r es s u r e Zo n e , c e n t r a l s i t e i m p r o v e m e n t s , u p d a t e h i s t o r i a n , an d im p l e m e n t p r e s s u r e m a n a g e m e n t r e g i m e s t o i m p r o v e sy s t e m p r e s s u r e p r o t e c t i o n In s p e c t r e s e r v o i r . F u r n i s h a n d I n s t a l l M i x e r ( s ) , P o we r a n d Co n t r o l a n d u p d a t e R e s e r v o i r S C A D A t o i n c l u d e r e m o t e mo n i t o r i n g c a p a b i l i t y o f m i x e r ( s ) . Ev a l u a t e , a n d u p g r a d e a s r e q u i r e d , 2 n d l o c a t i o n o f re d u n d a n t f e e d o f 5 1 3 0 Z o n e w a t e r i n t o N o r t h ( 5 0 3 8 ) Zo n e . T h i s w i l l e n s u r e a l t e r n a t i v e s o u r c e o f w a t e r exists an d i s s u f f i c i e n t t o f e e d N o r t h Z o n e i n t i m e w h e n L yman Cr e e k s o u r c e i s u n a v a i l a b l e . This bucket of funds could be used for both Risk-ba sed CA and those which are only Fire-flow driven (or opportunistic upgrades) Br i a n H e a s t o n Jo h n A l s t o n Jo h n A l s t o n bh e a s t o n @ b o z e m a n . n e t j a l s t o n @ b o z e m a n . n e t ja l s t o n @ b o z e m a n . n e t 58 2 - 2 2 8 0 58 2 - 2 2 5 0 58 2 - 2 2 5 0 $2 , 2 3 9 , 0 5 0 $2 3 9 , 6 1 6 $5 9 , 4 8 8 $2,500,000 FY 2 0 FY 1 8 FY 1 9 FY20 St a t u s Q u o I n s t a l l a t i o n o f s e p a r a t e i n l e t a n d o u t l e t c o n f i g u ra t i o n s pe r e a c h R e s e r v o i r Co n t i n u e w i t h s i n g l e c o n n e c t i o n b e t w e e n p r e s s u r e z o nes im p r o v e d s u r v e i l l a n c e o f s y s t e m o p e r a t i o n , i n c r e a s e d co n t r o l a n d u n d e r s t a n d i n g o f r e a l - t i m e s y s t e m co n d i t i o n s , a b i l i t y t o i m p l e m e n t t i g h t e r p r e s s u r e ma n a g e m e n t c o n t r o l s . Le a s t e x p e n s i v e w a y t o e f f e c t r e s e r v o i r m i x i n g a n d ad d e d fr e e z e p r o t e c t i o n Us e e x i s t i n g f a c i l i t i e s a n d c o n n e c t i v i t y t o p r o v i d e re d u n d a n t b a c k u p s o u r c e o f w a t e r Fund for repair and rehabilitation of items the department considers most urgent, based on WFPU and experience, over the next 5 years. SC A D A W A N m a i n t e n a n c e e x p e n s e s , s e r v e r a n d ha r d w a r e m a i n t e n a n c e , s o f t w a r e m a i n t e n a n c e a n d pr o g r a m m i n g l i b r a r i e s En e r g y c o s t s f o r m i x i n g ; S C A D A m a i n t e n a n c e , s c h e d u l ed mi x e r m a i n t e n a n c e , No n e PR V v a u l t u p g r a d e s , R e s e r v o i r m i x i n g u p g r a d e s , n e w st o r a g e r e s e r v o i r , P e a r S t . B o o s t e r S t a t i o n u p g r a d e , re m o t e w a t e r q u a l i t y s u r v e i l l a n c e s y s t e m Pe a r S t . B o o s t e r S t a t i o n U p g r a d e Pr o j e c t Eq u i p m e n t Pr o j e c t Project 12 18 5 21 3 Ho w i s c a p a c i t y a f f e c t e d b y t h i s pr o j e c t ? De s c r i b e t h e c r i t i c a l i t y ( i . e . , im p o r t a n c e ) o f t h i s p r o j e c t t o t h e op e r a t i o n ? Ho w i s c o n n e c t i v i t y a f f e c t e d b y t h i s pr o j e c t Wh a t s a f e t y o r r i s k m e a s u r e s a r e mi t i g a t e d w i t h t h i s p r o j e c t Wh a t r e g u l a t i o n s o r s t a n d a r d s a r e at t a i n e d w i t h t h i s p r o j e c t Ho w i s t h i s p r o j e c t / e q u i p m e n t le v e r a g e d w i t h o t h e r st a k e h o l d e r s / p r o j e c t s / f u n d s ? N/ A N/ A N/ A Moderate improvements in fire flow capacity at some hydrants in the system Im p r o v e d s u r v e i l l a n c e o f s y s t e m o p e r a t i o n , i n c r e a s e d co n t r o l a n d u n d e r s t a n d i n g o f r e a l - t i m e s y s t e m co n d i t i o n s , a b i l i t y t o i m p l e m e n t t i g h t e r p r e s s u r e ma n a g e m e n t c o n t r o l s . Wi t h o u t m i x i n g o f t a n k c o n t e n t s , W a t e r Q u a l i t y c a n be im p a c t e d , c o l d w e a t h e r o p e r a t i o n c a n c r e a t e d a m a g e to re s e r v o i r c o n t e n t s Th i s p r o v i d e s a s e c o n d p a t h f o r w a t e r t o m o v e f r o m So u t h Z o n e t o N o r t h Z o n e i n e v e n t t h a t L y m a n so u r c e i s u n a v a i l a b l e . Multiple hydrants were identified in the WFPU model ing work that have less than optimal fire flow for the surrounding land use. However, the deficiencies wer e slight and can be mitigated by other means. Im p r o v e s c o n n e c t i v i t y o f r e m o t e s i t e s t o o n e a n o t h e r, en h a n c i n g o v e r a l l s y s t e m o p e r a t i o n N/ A N/ A Im p r o v e d u n d e r s t a n d i n g o f c a u s e / e f f e c t a l l o w s i m p r o ve d ov e r a l l s y s t e m o p e r a t i o n i n c l u d i n g m o r e p r e c i s e p r e ss u r e co n t r o l , r e a l - t i m e s t a t u s i n g d u r i n g a b n o r m a l e v e n t s , Fr e e z e p r o t e c t i o n r e d u c e s r i s k o f i c e d a m a g e t o c a t ho d i c pr o t e c t i o n s y s t e m , t a n k i n t e r i o r . Se c o n d s o u r c e f r o m o u t s i d e t h e P r e s s u r e Z o n e . A d d s am o u n t o f r e d u n d a n c y t o s y s t e m n e e d e d i n e v e n t L y m a n so u r c e i s u n a v a i l a b l e Reduced risk of lower fire flows in some fire hydra nts Co m p l i a n c e w i t h a p p l i c a b l e S C A D A a n d s e c u r i t y st a n d a r d s . N/ A Me e t s C i t y H y d r a u l i c c r i t e r i a F i r e f l o w m a i n t e n a n c e Un k n o w n Un k n o w n Co u l d b e p e r f o r m e d i n c o n j u n c t i o n w i t h P e a r S t . B o o ster Up g r a d e t o f a c i l i t a t e t e s t i n g a n d c o m m i s s i o n i n g 4 Ci t y o f B o z e m a n Wa t e r C I P - P r o j e c t s Re c o m m e n d e d S h o r t - T e r m C I P - Pr o j e c t s En t e r a p r o j e c t n a m e CI P P r o j e c t N u m b e r ( le a v e b l a n k i f th i s i s a n e w p r o j e c t ) De p a r t m e n t Ca t e g o r y En t e r a B r i e f P r o j e c t D e s c r i p t i o n (on e s e n t e n c e ) Co n t a c t N a m e Co n t a c t E m a i l Co n t a c t P h o n e N u m b e r Co s t o f t h e P r o j e c t Ye a r S c h e d u l e d Se l e c t a P r o j e c t F u n d Wh a t a r e t h e A l t e r n a t i v e s Co n s i d e r e d ? Wh a t a r e t h e A d v a n t a g e s o f Ap p r o v a l ? Wh a t a r e t h e a d d i t i o n a l o p e r a t i n g co s t s i n t h e f u t u r e ( if a p p l i c a b l e - pr o v i d e c o s t a n d a d e s c r i p t i o n )? Ar e t h e r e a n y a d d i t i o n a l f u n d i n g so u r c e s ? Ar e t h e r e o t h e r a f f e c t e d p r o j e c t s ? Is t h i s a p r o j e c t o r a p i e c e o f eq u i p m e n t ? CU R R E N T P R O J E C T R A N K I N G : Pe a r S t . B o o s t e r S t a t i o n U p g r a d e Hy a l i t e R e s e r v o i r I n f r a s t r u c t u r e a n d C o n t r o l Im p r o v e m e n t s Gr o u n d w a t e r W e l l F i e l d T r a n s m i s s i o n M a i n - P h a s e 1 S o urdough Transmission Main – Phase 1 WF P _ 3 8 WF P _ 5 4 WF P _ 2 0 WFP_03 En g i n e e r i n g Engineering In f r a s t r u c t u r e In f r a s t r u c t u r e In f r a s t r u c t u r e Infrastructure Re h a b i l i t a t e s t a t i o n b y a d d i n g 2 - 1 0 0 0 g p m h i g h s e rv i c e pu m p s , 1 - 4 0 0 g p m n o r m a l s e r v i c e p u m p , e l e c t r i c a l an d co n t r o l ( e i t h e r V F D a n d d i s c h a r g e c h e c k v a l v e o r S o ft St a r t s w i t h d i s c h a r g e c o n t r o l v a l v e s ) ; v e r i f y c o n d i ti o n o r in s t a l l n e w 5 0 3 8 Z o n e P R V s ( 1 l o w r a n g e , 1 h i g h r a n ge ) t o ba c k f e e d Z o n e . A l l o w s i n t e r i m o p e r a t i o n a s b o o s t e r st a t i o n i n t o S o u t h 5 1 3 0 Z o n e f o r S o u t h Z o n e r e s e r v o ir s , as w e l l a s b a c k f e e d w h e n L y m a n R e s e r v o i r t o b e t a k e n ou t o f s e r v i c e . P r o v i d e S C A D A c o n t r o l l o g i c m o d i f i c at i o n s as r e q u i r e d . Ar m o r i n g o f t h e c o n t r o l t o w e r ( t o e n a b l e s o m e y e a r - ov e r - ye a r s t o r a g e c a p a c i t y ) a n d c o n t r o l u p g r a d e s t o i m p r ov e wi n t e r o p e r a t i o n Th e p r o j e c t c o n s i s t s o f a c o n s t r u c t i n g a n e w t r a n s m ission 24 " m a i n t h a t w o u l d c o n n e c t t h e C i t y ’ s e x i s t i n g di s t r i b u t i o n s y s t e m t o a p o t e n t i a l f u t u r e g r o u n d w a t er we l l f i e l d s y s t e m l o c a t e d w e s t o f t h e c u r r e n t C i t y bo u n d a r y . T h e p r e c i s e l o c a t i o n o f t h e r e q u i r e d m a i n is de p e n d e n t o n g r o u n d w a t e r y i e l d s a n d w e l l l o c a t i o n s , but wi l l l i k e l y c o n v e y w a t e r f r o m t h e F o u r C o r n e r s r e g i on to th e C i t y a l o n g H u f f i n e R o a d . The project consists of constructing approximately 8,700 feet of 30-inch DIP transmission main, which would parallel the existing older 30-inch concrete main. The proposed transmission main would connect to a new 4 8- inch DIP coming from the WTP and extend to the Sourdough reservoir. Jo h n A l s t o n La i n L e o n i a k Br i a n H e a s t o n Brian Heaston ja l s t o n @ b o z e m a n . n e t ll e o n i a k @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t bheaston@bozeman.net 58 2 - 3 2 0 0 58 2 - 3 2 2 0 58 2 - 2 2 8 0 582-2280 $4 8 6 , 7 2 0 $3 , 8 5 8 , 3 0 0 $8 , 9 7 4 , 9 6 9 $4,241,272 FY 1 8 FY 2 2 FY 2 0 FY18 Ab a n d o n m e n t o f S i t e a s b o o s t e r s t a t i o n . S t a t u s q u o fo r ba c k f e e d f r o m 5 1 3 0 S o u t h Z o n e t o 5 0 3 8 N o r t h Z o n e Co n t i n u e t o d e a l w i t h c u r r e n t H y a l i t e d a m o p e r a t i o n Al t e r n a t i v e s a r e d e p e n d e n t o n g r o u n d w a t e r y i e l d a n d lo c a t i o n . Conduct a condition assesment of the existing 30-in ch concrete pipe and repair/rehabilitate as necessary. Ma i n t a i n c a p a b i l i t y d u r i n g h i g h d e m a n d p e r i o d t o fi l l / m a i n t a i n r e s e r v o i r l e v e l s i n S o u r d o u g h a n d H i l lt o p Re s e r v o i r s . A u g m e n t S o u r d o u g h s u p p l y d u r i n g p e a k de m a n d p e r i o d . P r o v i d e c a p a b a b i l i t y t o b a c k f e e d N o r th Zo n e i n e v e n t L y m a n C r e e k s u p p l y i s i n s u f f i c i e n t o r L y m a n Re s e r v o i r i s o u t o f s e r v i c e . Dr o u g h t m i t i g a t i o n , i m p r o v e d w a t e r u s e a n d c o s t ef f i c i e n c i e s Co n s t r u c t i o n o f t h i s m a i n w o u l d p r o v i d e a s i g n i f i c a nt, re d u n d a n t s u p p l y o f w a t e r f r o m a w a t e r s h e d o t h e r t h an th e S o u r d o u g h / H y a l i t e s y s t e m s , r e d u c i n g t h e C i t y ' s risk of de p e n d e n c y o n t h e S o u r d o u g h W a t e r T r e a t m e n t P l a n t an d p r o v i d i n g a d r o u g h t - r e s i s t a n t s u p p l y o f w a t e r . In ad d i t i o n , t h i s s u p p l y w i l l c o n t r i b u t e t o a d e q u a t e w ater su p p l y c a p a c i t y f o r t h e C i t y ' s o v e r a l l f u t u r e d e v e l opment. The condition of the existing transmission main fro m the WTP to the Sourdough reservoir is currently unknown . Approval of this project will provide redundancy fo r this main, and mitigate the risk and consequence of its failure. No An n u a l O p e r a t i n g & M a i n t e n a n c e C o s t s : I m p a c t F e e s c an no t b e s p e n t o n a n n u a l o p e r a t i o n s a n d m a i n t e n a n c e co s t s . T h e W a t e r U t i l i t y w i l l s e e i n c r e m e n t a l i n c r e ases in ge n e r a l m a i n t e n a n c e c o s t s . C u r r e n t c o s t e s t i m a t e o f $1 2 , 5 0 0 p e r w a t e r - m a i n m i l e m a i n t a i n e d a n n u a l l y . Annual Operating & Maintenance Costs: Impact Fees c an not be spent on annual operations and maintenance costs. The Water Utility will see incremental incre ases in general maintenance costs. Current cost estimate of $12,500 per water-main mile maintained annually. Th e a b i l i t y t o u t i l i z e s o m e y e a r - o v e r - y e a r s t o r a g e in Hy a l i t e t o m i t i g a t e a g a i n s t a d r y y e a r r e d u c e s t h e cr i t i c a l i t y o f o b t a i n n i g g r o u n d w a t e r , o r a d d i n g m a j or st o r a g e t o L y m a n . Cu r r e n t l y U n k n o w n Currently Unknown Pr o j e c t Pr o j e c t Pr o j e c t Project 17 N o t P r e v i o u s l y R a n k e d N o t P r e v i o u s l y R a n k e d N o t P r e viously Ranked 5 Ho w i s c a p a c i t y a f f e c t e d b y t h i s pr o j e c t ? De s c r i b e t h e c r i t i c a l i t y ( i . e . , im p o r t a n c e ) o f t h i s p r o j e c t t o t h e op e r a t i o n ? Ho w i s c o n n e c t i v i t y a f f e c t e d b y t h i s pr o j e c t Wh a t s a f e t y o r r i s k m e a s u r e s a r e mi t i g a t e d w i t h t h i s p r o j e c t Wh a t r e g u l a t i o n s o r s t a n d a r d s a r e at t a i n e d w i t h t h i s p r o j e c t Ho w i s t h i s p r o j e c t / e q u i p m e n t le v e r a g e d w i t h o t h e r st a k e h o l d e r s / p r o j e c t s / f u n d s ? En a b l e s L y m a n s u p p l y a t a p p r o x i m a t e l y 2 - 3 M G D t o b e fu l l y u t i l i z e d Ca p a c i t y c o u l d b e i m p r o v e d i n a m a j o r d r o u g h t c o n d i ti o n . Th i s p r o j e c t w o u l d i n c r e a s e B o z e m a n ' s l o n g - t e r m wa t e r s u p p l y c a p a c i t y t o p o t e n t i a l l y m a t c h g r o w t h pr o j e c t i o n s . I t i s n e c e s s a r y t o c l o s e t h e l o n g - t e r m wa t e r s u p p l y g a p d o c u m e n t e d i n t h e C i t y ' s 2 0 1 3 In t e g r a t e d W a t e r R e s o u r c e s P l a n . This transmission main will provide additional capa city from the WTP to the Sourdough reservoir. In a b s e n c e o f p u m p i n g c a p a c i t y , L y m a n s o u r c e c a n n o t b e fu l l y e x p l o i t e d t o f i l l r e s e r v o i r s i n S o u t h Z o n e . W it h li m i t e d s t o r a g e , c a n a f f e c t c a p a b i l i t y t o m a i n t a i n st o r a g e fo r e q u a l i z a t i o n , f i r e p r o t e c t i o n a n d e m e r g e n c y s t o ra g e . Cu r r e n t v u l n e r a b i l i t y o f B o z e m a n t o d r o u g h t i s v e r y h i g h , du e t o t h e l a c k o f s o u r c e s t h a t a r e r o b u s t i n d r o u g ht (l a r g e r a w w a t e r r e s e r v o i r s w i t h y e a r - o v e r - y e a r s t o ra g e ca p a c i t y , l a r g e r i v e r s , o r g r o u n d w a t e r ) . H y a l i t e R e se r v o i r is c a p a b l e o f p r o v i d i n g y e a r - o v e r - y e a r s t o r a g e , b u t i s n o t op e r a t e d i n t h a t m a n n e r d u e t o c o n c e r n s o f i c e d a m a ge to t h e c o n t r o l t o w e r . De v e l o p m e n t o f a G r o u n d w a t e r W e l l F i e l d i s c r u c i a l to t h e C i t y ' s l o n g - t e r m w a t e r s u p p l y , f r o m c a p a c i t y , re d u n d a n c y a n d d r o u g h t r e s i l i e n c y p e r s p e c t i v e s . This project is critical to overcome vulnerabilitie s presented by the aging and unknown condition of the existing transmission main between the City's WTP a nd Sourdough Tank. Ma i n t a i n s e x i s t i n g c o n n e c t i v i t y De v e l o p m e n t o f a g r o u n d w a t e r s u p p l y a n d tr a n s m i s s i o n m a i n w i l l i m p r o v e B o z e m a n ' s l o n g - t e r m wa t e r s u p p l y p o r t f o l i o , d r o u g h t r e s i l i e n c y a n d im p r o v e c i r c u l a t i o n a n d w a t e r a g e i n t h e C i t y ' s sy s t e m . This project improves connectivity between the WTP and the City. N/ A Th e r i s k o f a n e x t r e m e l y d r y y e a r r e s u l t i n g i n t h e in a b i l i t y to f i l l t h e H y a l i t e r e s e r v o i r w i t h e n o u g h w a t e r f o r t h e C i t y an d i r r i g a t i o n u s e s . Wi t h o u t a g r o u n d w a t e r s u p p l y , t h e C i t y ' s h a s s u b s t a ntial lo n g - t e r m r i s k t o w a t e r s u p p l y i n s u f f i c i e n c y a n d w a ter sh o r t a g e s d u e t o d r o u g h t o r o t h e r d i s a s t e r s i n t h e so u t h e r n w a t e r s h e d s . D e v e l o p i n g a n d c o n n e c t i n g a gr o u n d w a t e r s u p p l y w i l l g r e a t l y r e d u c e t h e s e r i s k s . The risk of not having adequate potable water and f ire flow supplies to the City in the event of a failure to the existing bar-wrapped 30" main. N/ A Dr o u g h t r e s i l i i e n c y W a t e r s u p p l y s e c u r i t y , d r o u g h t re s i l i e n c y W a t e r s u p p l y s e c u r i t y Un k n o w n Pr o j e c t c o u l d p o t e n t i a l l y r e m o v e t h e 2 0 % s u r c h a r g e th e Ci t y p a y s f o r H y a l i t e r e l e a s e s . Th i s p r o j e c t i s t i e d t o t h e d e v e l o p m e n t o f a w e l l f i eld su p p l y , w h i c h i s d e p e n d e n t o n o n g o i n g h y d r o g e o l o g i c st u d i e s , w a t e r r i g h t s a s s e s s m e n t s , a n d e n v i r o n m e n t a l re v i e w . This project's cost and administration could be imp roved if combined with the new 3,000 feet of 48" bypass p ipe. 6 Ci t y o f B o z e m a n Wa t e r C I P - E q u i p m e n t Re c o m m e n d e d S h o r t - T e r m C I P P r o j e c t s En t e r a p r o j e c t n a m e We s t T r a n s m i s s i o n M a i n P l a n n i n g S t u d y R i s k - B a s e d C A # 5 - S o u r d o u g h T r a n s m i s s i o n M a i n S o u r d o u g h W a t e r R i g h t s U t i l i z a t i o n S t u d y I n t e g r a t e d W a t e r R e s o u r c e s P l a n U p d a t e S C A D A M a s t e r P l a n V e r t i c a l A s s e t R i s k A s sessment - Ph 1 CI P P r o j e c t N u m b e r ( le a v e b l a n k i f t h i s i s a n e w p r o j e c t ) WF P _ 0 1 a WF P _ 0 2 a WF P _ 0 4 WF P _ 1 1 WF P _ 1 2 WFP_13 De p a r t m e n t En g i n e e r i n g En g i n e e r i n g En g i n e e r i n g SC A D A GIS Ca t e g o r y Pl a n n i n g D o c u m e n t P l a n n i n g D o c u m e n t P l a n n i n g D o c u m e n t P l a n n i n g D o c u m e n t P l a n n i n g D o c u m e n t E n g i n e e r i n g S e r v i c e En t e r a B r i e f P r o j e c t D e s c r i p t i o n Wa t e r F a c i l i t y P l a n U p d a t e Pe r f o r m h i g h r e s o l u t i o n c o n d i t i o n a s s e s s m e n t o f So u r d o u g h T r a n s m i s s i o n i n a c c o r d a n c e w i t h 2 0 1 5 Co n d i t i o n a s s e s s m e n t r e p o r t St u d y t o d e v e l o p r e c o m m e n d e d p r o j e c t ( s ) t o e n a b l e l o n g - te r m u t i l i z a t i o n o f S o u r d o u g h w a t e r r i g h t s . Up d a t e t o t h e 2 0 1 3 I n t e g r a t e d W a t e r R e s o u r c e s P l a n Ev a l u a t e o p t i o n s a n d d e v e l o p r e c o m m e n d a t i o n s f o r W i d e - ar e a n e t w o r k i m p l e m e n t a t i o n f o r p l a n n e d r e m o t e w a t e r in f r a s t r u c t u r e . D e v e l o p S C A D A d e s i g n , e q u i p m e n t a n d SC A D A t a g g i n g a n d p r o g r a m m i n g s t a n d a r d s . F o r m u l a t e da t a a c c e s s i b i l i t y a n d S C A D A i n t e g r a t i o n w i t h o t h e r C i t y ap p l i c a t i o n s ( e . g . , C M M S ) Expand the use of risk to vertical plant assets including reservoirs, groundwater sources, PRV’s, booster stations, and treatment plants. Create a generalized risk policy for the city that will allow for the comparison of risk across various asset classes on a comparable scale, which then allows for better allocation of CIP funding and effort to the highest risk assets across the entire utility. Develop implementation plan Co n t a c t N a m e Br i a n H e a s t o n Br i a n H e a s t o n La i n L e o n i a k Br i a n H e a s t o n Un k n o w n Jon Henderson Co n t a c t E m a i l bh e a s t o n @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t ll e o n i a k @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t U n k n o w n jhenderson@bozeman.net Co n t a c t P h o n e N u m b e r 58 2 - 2 2 8 1 58 2 - 2 2 8 0 58 2 - 3 2 2 0 58 2 - 2 2 8 2 582-2250 Co s t o f t h e P r o j e c t $4 0 0 , 0 0 0 $7 1 9 , 7 8 5 $4 0 0 , 0 0 0 $1 5 0 , 0 0 0 $250,000 $19,838 Ye a r S c h e d u l e d FY 1 8 FY 1 8 FY 1 8 FY 1 9 FY 1 8 FY19 Se l e c t a P r o j e c t F u n d Wh a t a r e t h e A l t e r n a t i v e s C o n s i d e r e d ? De f e r t h e s t u d y f u r t h e r o u t , d e f e r r i n g e v e n t u a l co n s t r u c t i o n o f t h e W e s t T r a n s m i s s i o n M a i n . No i n s p e c t i o n St a t u s q u o o p e r a t i o n o f l i m i t e d S C A D A w i t h i n d i s t r i b u t i o n sy s t e m a n d p l a n t Maintenance of existing policy and non-data driven decision making Wh a t a r e t h e A d v a n t a g e s o f A p p r o v a l ? Id e n t i f y k e y d e s i g n p a r a m e t e r s , r i g h t - o f - w a y , r o u t e an d p e r m i t t i n g f o r t h e W e s t T r a n s m i s s i o n M a i n , s o th a t d e s i g n a n d c o n s t r u c t i o n c a n p r o c e e d o n c e f u n d s ar e a v a i l a b l e . re d u c e r a n g e o f u n c e r t a i n t y o f m a j o r p i p e l i n e i n t e g r i t y ; id e n t i f y a r e a s i n n e e d o f r e p a i r a n d / o r r e h a b i l i t a t i o n Up d a t i n g t h i s p r o j e c t w i l l e n a b l e t h e C i t y t o h o n e i n o n th e b e s t a p p r o a c h e s t o c l o s i n g t h e C i t y ' s f u t u r e w a t e r su p p l y g a p . Le v e r a g e t e c h n o l o g y t o i m p r o v e u n d e r s t a n d i n g a n d r e a l tim e r e m o t e c o n t r o l o f i n f r a s t r u c t u r e . I m p r o v e d p r e s s u r e ma n a g e m e n t o f h i g h - p r e s s u r e o p e r a t i o n . I n f o r m ma i n t e n a n c e d e c i s i o n s w i t h p e r f o r m a n c e d a t a . Implement consistent treatment of business risk in CIP planning, Operational budget reviews and adjustment, and system repairs across all City asset classes. Wh a t a r e t h e a d d i t i o n a l o p e r a t i n g c o s t s in t h e f u t u r e ( if a p p l i c a b l e - p r o v i d e c o s t an d a d e s c r i p t i o n )? As s u m i n g p r o j e c t i s c a p i t a l i z e d , o p e r a t i n g c o s t s t o b e l e s s th a n $ 3 5 , 0 0 0 f o r i n - h o u s e l a b o r Ar e t h e r e a n y a d d i t i o n a l f u n d i n g so u r c e s ? Ar e t h e r e o t h e r a f f e c t e d p r o j e c t s ? All s u b s e q u e n t p h a s e s o f W e s t T r a n s m i s s i o n M a i n de s i g n a n d c o n s t r u c t i o n SC A D A P h a s e 1 , S C A D A P h a s e 2 , P R V V a u l t u p g r a d e s , We l l f i e l d d e v e l o p m e n t , r e s e r v o i r m i x e r s , n e w b o o s t e r st a t i o n s , n e w r e s e r v o i r s i t e s Is t h i s a p r o j e c t o r a p i e c e o f e q u i p m e n t ? Pr o j e c t pr o j e c t pr o j e c t Pr o j e c t pr o j e c t project Wh i c h i n f r a s t r u c t u r e a s s e t s a r e ma i n t a i n e d b y t h i s e q u i p m e n t ? So u r d o u g h T r a n s m i s s i o n M a i n N/ A N/A De s c r i b e t h e c r i t i c a l i t y ( i . e . , i m p o r t a n c e ) of t h i s e q u i p m e n t t o t h e o p e r a t i o n ? Ev e n t u a l c o n s t r u c t i o n o f t h e W e s t T r a n s m i s s i o n M a i n is n e c e s s a r y t o p r o v i d e r e d u n d a n c y f o r t h e S o u r d o u g h Tr a n s m i s s i o n M a i n a s w e l l a s a d e q u a t e p o t a b l e w a t e r an d f i r e f l o w f o r t h e C i t y ' s w e s t , n o r t h w e s t a n d n o r t h ar e a s . Cr i t i c a l i t y i s d e p e n d e n t o n c o m p l e t i o n o f o t h e r r i s k re d u c t i o n m e a s u r e s . A t t h i s t i m e , i t e m i s h i g h l y c r i t i c a l . Ho w e v e r , c r i t i c a l i t y i s r e d u c e d i f o t h e r s t r u c t u r a l im p r o v e m e n t s a r e c o m p l e t e d a s s c h e d u l e d . Th i s p r o j e c t i s c r i t i c a l f o r t h e C i t y t o m a i n t a i n i t s w a t e r rig h t s o n S o u r d o u g h C r e e k . Sh o u l d b e i m p l e m e n t e d i n c u r r e n t f i s c a l y e a r t o a d o p t f o r pl a n n i n g p r o c e s s e s f o r F Y 1 8 Should be implemented in current fiscal year to adopt for planning processes for FY 18 Ho w i s e f f i c i e n c y i m p r o v e d w i t h t h i s eq u i p m e n t ? Co n v e y a n c e o f w a t e r t o t h e C i t y ' s w e s t e r n , no r t h w e s t e r n a n d n o r t h e r n a r e a s w i l l b e m o r e ef f i c i e n t t h a t m o v i n g w a t e r t h r o u g h d o w n t o w n a n d ex i s t i n g P R V s fo c u s r e s o u r c e s t o w h e r e a n y d e f e c t i s f o u n d , a n d el i m i n a t e u n n e c e s s a r y c a p i t a l e x p e n s e o f r e h a b i l i t a t i o n an d / o r r e p l a c e m e n t Da t a - d r i v e n d e c i s i o n m a k i n g D a t a - d r i v e n d e c i s i o n m a k i n g 9 PR O J E C T R A N K I N G : 1 3 15 6 4 1 Wh a t i s t h e i m p a c t ( i . e . , s c o p e - o f - u s e ) f o r th i s e q u i p m e n t ? Ad d r e s s r i s k f r o m p i p e l i n e f a i l u r e a n d e s t a b l i s h n e e d f o r ad d i t i o n a l R & R e x p e n s e s t o m a i n t a i n s e r v i c e . E s t a b l i s h ba s e l i n e c o n d i t i o n f o r f u t u r e u s e i n s c h e d u l i n g a d d i t i o n a l in s p e c t i o n / r e p a i r s Cr i t i c a l s e c u r i t i z a t i o n o f w a t e r r i g h t s o n S o u r d o u g h wa t e r s h e d Wh a t a r e t h e i m p l i c a t i o n s o f d e f e r r i n g th e p u r c h a s e o f t h i s e q u i p m e n t ? De l a y o f e v e n t u a l d e s i g n a n d c o n s t r u c t i o n o f t h e We s t T r a n s m i s s i o n M a i n , c o n t i n u e d r e l i a n c e o n t h e sin g l e - p o i n t - o f - f a i l u r e S o u r d o u g h T r a n s m i s s i o n M a i n to c o n v e y w a t e r t o t h e C i t y f r o m t h e W T P . Op p o r t u n i s t i c p i p e l i n e a s s e s s m e n t c a n b e d o n e w h e n fa c t o r s l i m i t e x p e n s e s a s s o c i a t e d w i t h i n s p e c t i o n Lo s s o f s o m e S o u r d o u g h w a t e r r i g h t s F a i l u r e t o m o n i t o r a n d a v o i d l o n g - t e r m w a t e r s u p p l y g a p th i s p r o j e c t i s p r e c u r s o r t o c o n s t r u c t i o n p r o j e c t s a t cr i t i c a l f a c i l i t i e s Ho w i s t h i s p r o j e c t / e q u i p m e n t l e v e r a g e d wit h o t h e r s t a k e h o l d e r s / p r o j e c t s / f u n d s ? Un k n o w n Re c o m m e n d e d b y I W R P , D M P o l d e r / p r o j e c t s p r e c u r s o r t o c o n s t r u c t i o n p r o j e c t s w cr i t i c a l f a c i l i t i e s Use funds allocated to FY 17 budget?2 Ci t y o f B o z e m a n Wa t e r C I P - E q u i p m e n t Re c o m m e n d e d S h o r t - T e r m C I P P r o j e c t s En t e r a p r o j e c t n a m e CI P P r o j e c t N u m b e r ( le a v e b l a n k i f t h i s i s a n e w p r o j e c t ) De p a r t m e n t Ca t e g o r y En t e r a B r i e f P r o j e c t D e s c r i p t i o n Co n t a c t N a m e Co n t a c t E m a i l Co n t a c t P h o n e N u m b e r Co s t o f t h e P r o j e c t Ye a r S c h e d u l e d Se l e c t a P r o j e c t F u n d Wh a t a r e t h e A l t e r n a t i v e s C o n s i d e r e d ? Wh a t a r e t h e A d v a n t a g e s o f A p p r o v a l ? Wh a t a r e t h e a d d i t i o n a l o p e r a t i n g c o s t s in t h e f u t u r e ( if a p p l i c a b l e - p r o v i d e c o s t an d a d e s c r i p t i o n )? Ar e t h e r e a n y a d d i t i o n a l f u n d i n g so u r c e s ? Ar e t h e r e o t h e r a f f e c t e d p r o j e c t s ? Is t h i s a p r o j e c t o r a p i e c e o f e q u i p m e n t ? Wh i c h i n f r a s t r u c t u r e a s s e t s a r e ma i n t a i n e d b y t h i s e q u i p m e n t ? De s c r i b e t h e c r i t i c a l i t y ( i . e . , i m p o r t a n c e ) of t h i s e q u i p m e n t t o t h e o p e r a t i o n ? Ho w i s e f f i c i e n c y i m p r o v e d w i t h t h i s eq u i p m e n t ? PR O J E C T R A N K I N G : Ve r t i c a l A s s e t R i s k A s s e s s m e n t - P h 2 S o u r d o u g h T a n k I n s p e c t i o n a n d I m p r o v e m e n t s Ris k B a s e d C A # 4 - L y m a n C r e e k W a t e r T r a n s m i s s i o n Ma i n Ri s k B a s e d C A # 2 - D o w n t o w n A r e a R i s k B a s e d C A # 1 - W e s t B o z e m a n T r a n s m i s s i o n R i s k B a s e d C A # 3 - B a x t e r / O a k s o u t h o f F r e e w a y WF P _ 1 4 WF P _ 1 6 WF P _ 1 9 a WF P _ 3 2 WF P _ 3 4 WFP_35 GI S Wa t e r O p e r a t i o n s E n g i n e e r i n g En g i n e e r i n g En g i n e e r i n g Engineering En g i n e e r i n g S e r v i c e P l a n n i n g D o c u m e n t P l a n n i n g D o c u m e n t P l a n n i n g D o c u m e n t P l a n n i n g D o c u m e n t P l a n n i n g D o c u m e n t Ex p a n d t h e u s e o f r i s k t o v e r t i c a l p l a n t a s s e t s i n c l u d i n g re s e r v o i r s , P R V ’ s , b o o s t e r s t a t i o n s , a n d t r e a t m e n t pl a n t s . P e r f o r m r i s k a s s e s s m e n t p e r I m p l e m e n t a t i o n pl a n . Th i s p r o j e c t w o u l d e n t a i l t a k i n g t h e S o u r d o u g h T a n k of f l i n e ( o n c e t h e W e s t T r a n s m i s s i o n M a i n i s o n l i n e ) , in s p e c t i n g i t a n d r e p a i r i n g i t a s n e c e s s a r y . T h i s p r o j e c t ma y o r m a y n o t i n c l u d e r e c o n f i g u r a t i o n o f t h e in l e t / o u t l e t c o n f i g u r a t i o n t o p r o v i d e f l o w - t h r o u g h hy d r a u l i c s . Pr e p a r e a n d e v a l u a t e c o n d i t i o n a s s e s s m e n t p l a n a n d ex e c u t e c o n d i t i o n a s s e s s m e n t f o r t h e h i g h c o n s e q u e n c e tr a n s m i s s i o n m a i n t h r o u g h t h e n o r t h e a s t b o z e m a n co r r i d o r t o c o n f i r m l i k e l i h o o d o f f a i l u r e . Pr e p a r e a n d e v a l u a t e c o n d i t i o n a s s e s s m e n t p l a n a n d ex e c u t e c o n d i t i o n a s s e s s m e n t f o r t h e h i g h c o n s e q u e n c e dis t r i b u t i o n a n d b a c k b o n e m a i n s t h r o u g h t h e d o w n t o w n bo z e m a n c o r r i d o r w i t h m o d e r a t e l i k e l i h o o d o f f a i l u r e t o co n f i r m o r u p d a t e l i k e l i h o o d o f f a i l u r e i n o r d e r t o m o r e ac c u r a t e l y i d e n t i f y p i p e s a s c a n d i d a t e s f o r R & R . Pr e p a r e a n d e v a l u a t e c o n d i t i o n a s s e s s m e n t p l a n a n d ex e c u t e c o n d i t i o n a s s e s s m e n t f o r t h e h i g h c o n s e q u e n c e tr a n s m i s s i o n m a i n t h r o u g h t h e s o u t h w e s t b o z e m a n co r r i d o r t o c o n f i r m l i k e l i h o o d o f f a i l u r e . Prepare and evaluate condition assessment plan and execute condition assessment for the high consequence distribution and backbone mains through this corridor with moderate likelihood of failure to confirm or update likelihood of failure in order to more accurately identify pipes as candidates for R&R. Jo n H e n d e r s o n Jo h n A l s t o n Br i a n H e a s t o n Br i a n H e a s t o n Br i a n H e a s t o n Brian Heaston jh e n d e r s o n @ b o z e m a n . n e t ja l s t o n @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t bheaston@bozeman.net 58 2 - 2 2 5 0 58 2 - 2 2 4 9 58 2 - 2 2 8 0 58 2 - 2 2 8 0 58 2 - 2 2 8 0 582-2280 $8 5 , 9 6 3 $5 0 0 , 0 0 0 $1 3 4 , 6 7 0 $2 8 , 1 1 6 $47,826 $23,775 FY 1 9 FY 1 9 FY 1 9 FY 1 8 FY 1 8 FY18 Ma i n t e n a n c e o f e x i s t i n g p o l i c y a n d n o n - d a t a d r i v e n de c i s i o n m a k i n g Wa i t f o r c r i t i c a l f a i l u r e N o i n s p e c t i o n No i n s p e c t i o n No i n s p e c t i o n No inspection Im p l e m e n t c o n s i s t e n t t r e a t m e n t o f b u s i n e s s r i s k i n C I P pl a n n i n g , O p e r a t i o n a l b u d g e t r e v i e w s a n d a d j u s t m e n t , an d s y s t e m r e p a i r s a c r o s s a l l C i t y a s s e t c l a s s e s . Re h a b i l i t a t i o n o f c r i t i c a l s t o r a g e i n f r a s t r u c t u r e f o r s e v e r a l de c a d e s t o c o m e . Do i n g p l a n n e d c o n d i t i o n a s s e s s m e n t c a n p r o v i d e a c o s t ef f e c t i v e m e c h a n i s m o f i d e n t i f y i n g l i k e l y a s s e t f a i l u r e s an d t h e r e b y o f f e r i n g t h e o p p o r t u n i t y o f r e p a i r i n g t h e de f i c i e n c y o r t h e w h o l e a s s e t i f n e e d e d p r i o r t o f a i l u r e . Ad d i t i o n a l l y , C A o f t e n c a n i d e n t i f y a s s e t s i n g o o d w o r k i n g co n d i t i o n , s o o n l y r e q u i r e d r e p a i r s a r e c o m p l e t e d th e r e b y s a v i n g s i g n i f i c a n t m o n e y i n r e p l a c i n g a s s e t s i n go o d w o r k i n g o r d e r . Do i n g p l a n n e d c o n d i t i o n a s s e s s m e n t c a n p r o v i d e a c o s t ef f e c t i v e m e c h a n i s m o f i d e n t i f y i n g l i k e l y a s s e t f a i l u r e s an d t h e r e b y o f f e r i n g t h e o p p o r t u n i t y o f r e p a i r i n g t h e de f i c i e n c y o r t h e w h o l e a s s e t i f n e e d e d p r i o r t o f a i l u r e . Ad d i t i o n a l l y , C A o f t e n c a n i d e n t i f y a s s e t s i n g o o d w o r k i n g co n d i t i o n , s o o n l y r e q u i r e d r e p a i r s a r e c o m p l e t e d th e r e b y s a v i n g s i g n i f i c a n t m o n e y i n r e p l a c i n g a s s e t s i n go o d w o r k i n g o r d e r . Do i n g p l a n n e d c o n d i t i o n a s s e s s m e n t c a n p r o v i d e a c o s t ef f e c t i v e m e c h a n i s m o f i d e n t i f y i n g l i k e l y a s s e t f a i l u r e s an d t h e r e b y o f f e r i n g t h e o p p o r t u n i t y o f r e p a i r i n g t h e de f i c i e n c y o r t h e w h o l e a s s e t i f n e e d e d p r i o r t o f a i l u r e . Ad d i t i o n a l l y , C A o f t e n c a n i d e n t i f y a s s e t s i n g o o d w o r k i n g co n d i t i o n , s o o n l y r e q u i r e d r e p a i r s a r e c o m p l e t e d th e r e b y s a v i n g s i g n i f i c a n t m o n e y i n r e p l a c i n g a s s e t s i n go o d w o r k i n g o r d e r . Doing planned condition assessment can provide a cost effective mechanism of identifying likely asset failures and thereby offering the opportunity of repairing the deficiency or the whole asset if needed prior to failure. Additionally, CA often can identify assets in good working condition, so only required repairs are completed thereby saving significant money in replacing assets in good working order. No n e As s u m i n g p r o j e c t i s c a p i t a l i z e d , o p e r a t i n g c o s t s t o b e l e s s th a n $ 3 5 , 0 0 0 f o r i n - h o u s e l a b o r No No No pr o j e c t Pr o j e c t Pr o j e c t Pr o j e c t Pr o j e c t Project N/ A N/ A Sh o u l d b e i m p l e m e n t e d i n c u r r e n t f i s c a l y e a r t o a d o p t f o r pl a n n i n g p r o c e s s e s f o r F Y 1 8 Th e c o n d i t i o n o f t h e S o u r d o u g h T a n k i s u n k n o w n . T h e hy d r a u l i c s t o a n d f r o m t h e t a n k a r e s u s p e c t e d t o b e su b o p t i m a l . T h i s p r o j e c t i s c r i t i c a l t o e n s u r e t h a t t h e So u r d o u g h t a n k i s r e l i a b l e a n d o p e r a t i n g w e l l . Ma j o r a s s e t w h o s e f a i l u r e w o u l d p o s s i b l y a f f e c t a la r g e p o p u l a t i o n o f e n d - u s e r s . W o r k - a r o u n d po s s i b l e w i t h h e a v y b u r d e n o n U t i l i t y r e s o u r c e s . As s e t i s a t o r e x c e e d s s e r v i c e c a p a c i t y a n d d o e s no t a l l o w f o r g r o w t h Hig h r i s k a s s e t s w h o s e f a i l u r e w o u l d c a u s e s i g n i f i c a n t dis r u p t i o n o f s e r v i c e a n d a d v e r s e s o c i a l i m p a c t s . A s s e t s ar e a g i n g a n d m a y b e n e a r l y f a i l u r e . Ma j o r a s s e t w h o s e f a i l u r e w o u l d p o s s i b l y a f f e c t a l a r g e po p u l a t i o n o f e n d - u s e r s . W o r k - a r o u n d m a y b e p o s s i b l e wit h h e a v y b u r d e n o n U t i l i t y r e s o u r c e s . High risk assets whose failure would cause significant disruption of service and adverse social impacts. Assets are aging and may be nearly failure. Da t a - d r i v e n d e c i s i o n m a k i n g N / A 19 22 23 11 10 14 3 Wh a t i s t h e i m p a c t ( i . e . , s c o p e - o f - u s e ) f o r th i s e q u i p m e n t ? Wh a t a r e t h e i m p l i c a t i o n s o f d e f e r r i n g th e p u r c h a s e o f t h i s e q u i p m e n t ? Ho w i s t h i s p r o j e c t / e q u i p m e n t l e v e r a g e d wit h o t h e r s t a k e h o l d e r s / p r o j e c t s / f u n d s ? Ri s k o f c r i t i c a l f a i l u r e o f S o u r d o u g h T a n k d u e t o co r r o s i o n . R i s k o f l o n g w a t e r a g e a n d r e d u c e d w a t e r qu a l i t y d u e t o p o o r h y d r a u l i c s . Ha s s u b s y s t e m a p p l i c a t i o n o r a f f e c t s m a j o r a s s e t ( s ) an d p r o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Ha s s u b s y s t e m a p p l i c a t i o n o r a f f e c t s m a j o r a s s e t ( s ) an d p r o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Ha s s u b s y s t e m a p p l i c a t i o n o r a f f e c t s m a j o r a s s e t ( s ) an d p r o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , p r o c e s s e s , o r a d o p t i o n o f be s t i n d u s t r y p r a c t i c e s Has subsystem application or affects major asset(s) and produces substantial & quantifiable benefits that improves product quality, processes, or adoption of best industry practices N/ A Us e f u n d s a l l o c a t e d t o F Y 1 7 b u d g e t ? Po s s i b l y Po s s i b l y Po s s i b l y Possibly 4 Ci t y o f B o z e m a n Wa t e r C I P - E q u i p m e n t Re c o m m e n d e d S h o r t - T e r m C I P P r o j e c t s En t e r a p r o j e c t n a m e CI P P r o j e c t N u m b e r ( le a v e b l a n k i f t h i s i s a n e w p r o j e c t ) De p a r t m e n t Ca t e g o r y En t e r a B r i e f P r o j e c t D e s c r i p t i o n Co n t a c t N a m e Co n t a c t E m a i l Co n t a c t P h o n e N u m b e r Co s t o f t h e P r o j e c t Ye a r S c h e d u l e d Se l e c t a P r o j e c t F u n d Wh a t a r e t h e A l t e r n a t i v e s C o n s i d e r e d ? Wh a t a r e t h e A d v a n t a g e s o f A p p r o v a l ? Wh a t a r e t h e a d d i t i o n a l o p e r a t i n g c o s t s in t h e f u t u r e ( if a p p l i c a b l e - p r o v i d e c o s t an d a d e s c r i p t i o n )? Ar e t h e r e a n y a d d i t i o n a l f u n d i n g so u r c e s ? Ar e t h e r e o t h e r a f f e c t e d p r o j e c t s ? Is t h i s a p r o j e c t o r a p i e c e o f e q u i p m e n t ? Wh i c h i n f r a s t r u c t u r e a s s e t s a r e ma i n t a i n e d b y t h i s e q u i p m e n t ? De s c r i b e t h e c r i t i c a l i t y ( i . e . , i m p o r t a n c e ) of t h i s e q u i p m e n t t o t h e o p e r a t i o n ? Ho w i s e f f i c i e n c y i m p r o v e d w i t h t h i s eq u i p m e n t ? PR O J E C T R A N K I N G : Wa t e r I n f o r m a t i o n M a n a g e m e n t S o l u t i o n ( W I M S ) W e s t T r a n s m i s s i o n M a i n - P h a s e 1 D e s i g n R e s e r v o i r 1 - S i t i n g H y a l i t e W a t e r s h e d a n d R e s e r v o i r H y d r o l o g i c S t u d y So u r d o u g h C a n y o n N a t u r a l S t o r a g e a n d W e t l a n d En h a n c e m e n t - P l a n n i n g a n d D e s i g n WF P _ 3 6 WF P _ 0 1 b WF P _ 0 9 a WF P _ 2 3 WF P _ 5 3 Wa t e r O p e r a t i o n s En g i n e e r i n g En g i n e e r i n g En g i n e e r i n g S e r v i c e P l a n n i n g D o c u m e n t Pla n n i n g D o c u m e n t P l a n n i n g D o c u m e n t Da t a m a n a g e m e n t a n d a n a l y t i c a l t o o l d e v e l o p m e n t t o en h a n c e w a t e r s y s t e m i n f o r m a t i o n u s e De s i g n o f t h e f i r s t p h a s e o f t h e W e s t T r a n s m i s s i o n M a i n , th e c r i t e r i a f o r w h i c h w o u l d b e d e v e l o p e d i n t h e W e s t Tr a n s m i s s i o n M a i n P l a n n i n g S t u d y ( W F P _ 0 1 b ) An a l y z e l o n g - t e r m w a t e r s u p p l y p r o v i d e d b y t h e H y a l i t e wa t e r s h e d a n d e x i s t i n g r e s e r v o i r , a s s e s s c u r r e n t d a m op e r a t i o n a n d f e a s i b i l i t y o f i m p l e m e n t i n g c o n t r o l t o w e r im p r o v e m e n t s a n d / o r r a i s i n g t h e d a m , a n d t h e p o t e n t i a l to c r e a t e a s t r a t e g i c w a t e r r e s e r v e f o r r e d u c e d d r o u g h t vu l n e r a b i l i t y . Ev a l u a t e t h e o p t i m a l p r o j e c t t h a t w i l l e n a b l e t h e C i t y t o ut i l i z e c u r r e n t l y u n u s e d S o u r d o u g h w a t e r r i g h t s . Jo h n A l s t o n Br i a n H e a s t o n La i n L e o n i a k La i n L e o n i a k ja l s t o n @ b o z e m a n . n e t bh e a s t o n @ b o z e m a n . n e t ll e o n i a k @ b o z e m a n . n e t lle o n i a k @ b o z e m a n . n e t 58 2 - 2 2 5 0 58 2 - 2 2 8 0 58 2 - 2 2 8 0 58 2 - 3 2 2 0 58 2 - 3 2 2 0 $1 8 6 , 3 0 0 $2 , 9 0 7 , 2 3 5 $3 5 0 , 0 0 0 $3 5 0 , 0 0 0 $500,000 FY 2 2 FY 2 2 FY 1 9 FY 1 9 FY 1 8 St a t u s Q u o De f e r d e s i g n a n d c o n s t r u c t i o n o f W e s t T r a n s m i s s i o n Ma i n Wa i t u n t i l t h e n e e d f o r t h e r e s e r v o i r i s m o r e i m m i n e n t P o s t p o n e Po s t p o n e au t o m a t e d c o m p l i a n c e r e p o r t i n g ; d a t a a n a l y s i s a n d re p o r t i n g ; S C A D A - W I M S i n t e g r a t i o n ; Po t e n t i a l t o i n s t a l l t h e t r a n s m i s s i o n m a i n b e f o r e si g n i f i c a n t g r o w t h a n d d e v e l o p m e n t o c c u r a l o n g t h e ro u t e , r e d u c e d c o n s e q u e n c e o f f a i l u r e t o S o u r d o u g h Tr a n s m i s s i o n M a i n Pr o c u r e m e n t o f l a n d w h i l e i t i s a v a i l a b l e , a n d l e s s ex p e n s i v e De v e l o p u n d e r s t a n d i n g o f l o n g - t e r m w a t e r a v a i l a b i l i t y i n th e H y a l i t e w a t e r s h e d a n d t h e n e c e s s a r y i m p r o v e m e n t s to t h e r e s e r v o i r t o o p t i m i z e i t s u t i l i z a t i o n De m o n s t r a t e c o n t i n u e d l o n g - t e r m a t t e m p t t o u t i l i z e So u r d o u g h w a t e r r i g h t s N/ A Su b s e q u e n t p h a s e s o f W e s t T r a n s m i s s i o n M a i n d e s i g n an d c o n s t r u c t i o n , c o n s t r u c t i o n o f s t o r a g e r e s e r v o i r s o n th e C i t y ' s w e s t s i d e . Gr o u n d w a t e r p l a n n i n g , e n g i n e e r i n g a n d c o n s t r u c t i o n We s t T r a n s m i s s i o n M a i n s t u d y , d e s i g n , c o n s t r u c t i o n ; re s e r v o i r d e s i g n , c o n s t r u c t i o n p r o j e c t s Lo n g - t e r m d e s i g n o f t h e W e s t T r a n s m i s s i o n M a i n , So u r d o u g h W T P e x p a n s i o n , q u a n t i f i c a t i o n o f gr o u n d w a t e r n e e d s Fi n a l s i z i n g o f W e s t T r a n s m i s s i o n M a i n , a l s o i n f o r m s l o n g - te r m g r o u n d w a t e r n e e d s . Pr o j e c t Pr o j e c t Pr o j e c t , L a n d A c q u i s i t i o n P r o j e c t Eq u i p m e n t N/ A Re d u c e s t h e c o n s e q u e n c e o f a f a i l u r e o n t h e S o u r d o u g h Tr a n s m i s s i o n M a i n , b y p r o v i d i n g a s e c o n d p i p e l i n e t o co n v e y w a t e r t o t h e C i t y f r o m t h e W T P Th e W e s t S o u r d o u g h R e s e r v o i r w i l l b e t h e n e x t n e c e s s a r y re s e r v o i r f o r t h e C i t y t o c o n t i n u e t o p r o v i d e a d e q u a t e po t a b l e w a t e r a n d f i r e f l o w . P r o p e r s i t i n g o f t h i s r e s e r v o i r wil l p r o v i d e r e d u n d a n t s u p p l y t o S o u r d o u g h a n d H i l l t o p Re s e r v o i r s . Un d e r s t a n d i n g t h e H y a l i t e w a t e r s h e d ' s l o n g - t e r m s u p p l y ca p a c i t y a f f e c t s t h e s i z i n g o f t h e W e s t T r a n s m i s s i o n M a i n an d e v e n t u a l W T P e x p a n s i o n , a s w e l l a s t h e c r i t i c a l i t y o f se c u r i n g S o u r d o u g h r i g h t s a n d g r o u n d w a t e r s u p p l y . I n ad d i t i o n , t h i s p r o j e c t w i l l a s s e s s t h e f e a s i b i l i t y o f ar m o r i n g t h e c o n t r o l t o w e r , d e c r e a s i n g t h e C i t y ' s dr o u g h t v u l n e r a b i l i t y b y e n a b l i n g r e t e n t i o n o f w a t e r f r o m we t y e a r s u n t i l t h e f o l l o w i n g y e a r ' s w a t e r s u p p l y i s as s u r e d . If t h e C i t y d o e s n o t d e m o n s t r a t e i n t e n t t o u s e S o u r d o u g h ri g h t s , i t r i s k s h a v i n g t h e m r e d u c e d . Fa c i l i t a t e s m a n d a t o r y c o m p l i a n c e r e p o r t i n g ; i m p r o v e d un d e r s t a n d i n g o f s y s t e m b e h a v i o r a l l o w s m o r e e f f i c i e n t me a s u r e s t o b e d e v e l o p e d i n o p e r a t i o n Wa t e r d e l i v e r y t o t h e C i t y ' s w e s t e r n s i d e w i l l b e c o m e mo r e e f f i c i e n t Gr e a t e r e f f i c i e n c y i n p r o v i d i n g p o t a b l e w a t e r a n d f i r e flo w s t o t h e C i t y ' s w e s t e r n a r e a s . B e t t e r a b i l i t y t o t a k e So u r d o u g h o r H i l l t o p r e s e r v o i r s o f f l i n e a n d s t i l l p r o v i d e su f f i c i e n t s t o r a g e . 24 Not Previously Ranked 25 20 16 5 Wh a t i s t h e i m p a c t ( i . e . , s c o p e - o f - u s e ) f o r th i s e q u i p m e n t ? Wh a t a r e t h e i m p l i c a t i o n s o f d e f e r r i n g th e p u r c h a s e o f t h i s e q u i p m e n t ? Ho w i s t h i s p r o j e c t / e q u i p m e n t l e v e r a g e d wit h o t h e r s t a k e h o l d e r s / p r o j e c t s / f u n d s ? Im p r o v e d a n a l y s i s o f s y s t e m b e h a v i o r ; c o s t s a v i n g s , ef f i c i e n c y g a i n s , w a t e r u s e o p t i m i z a t i o n , w a t e r q u a l i t y im p r o v e m e n t Sy s t e m w i d e i m p r o v e m e n t i n w a t e r s t o r a g e c a p a c i t y Ha s s y s t e m w i d e a p p l i c a t i o n o r a f f e c t s m a j o r a s s e t ( s ) an d p r o d u c e s s u b s t a n t i a l & q u a n t i f i a b l e b e n e f i t s t h a t im p r o v e s p r o d u c t q u a l i t y , p r o c e s s e s , o r a d o p t i o n o f b e s t in d u s t r y p r a c t i c e s Im p a c t s t h e C i t y ' s l o n g - t e r m w a t e r r i g h t s a n d h e l p s c l o s e th e a p p r o a c h i n g w a t e r s u p p l y g a p Co n t i n u e d r e l i a n c e o n e x i s t i n g m a n u a l s y s t e m s Co n t i n u e d r e l i a n c e o n S o u r d o u g h T r a n s m i s s i o n M a i n , a si n g l e p o i n t o f f a i l u r e f o r c o n v e y a n c e o f w a t e r f r o m t h e So u r d o u g h W T P Po t e n t i a l a c q u i s i t i o n o f t h e l a n d b y o t h e r s , l e s s o p t i m a l sit i n g o f t h e r e s e r v o i r Un c e r t a i n t y i n p l a n n i n g a n d d e s i g n i n g S o u r d o u g h W T P su p p l y , W e s t T r a n s m i s s i o n M a i n a n d G r o u n d w a t e r sy s t e m s . C o n t i n u e d h i g h v u l n e r a b i l i t y t o d r o u g h t . Ris k o f l o s s o f s o m e w a t e r r i g h t s Un k n o w n Sc h e d u l e a n d n e e d s h o u l d b e c o r r e l a t e d w i t h S o u r d o u g h wa t e r r i g h t s s e c u r i t i z a t i o n a n d p o t e n t i a l w e l l f i e l d de v e l o p m e n t Po t e n t i a l F E M A i n v o l v e m e n t f o r f l o o d c o n t r o l 6