Loading...
HomeMy WebLinkAbout12 - Design Report - Norton East Ranch Ph 2 - Stormwater MORRISON I,-Z� MAIERLE, INC. An Employee-Owned Company STORMWATER DESIGN REPORT NORTON RANCH EAST SUBDIVISION PHASE 2 BOZEMAN, MONTANA December 2012 Prepared For: Norton Properties, LLC 63020 NE Lower Meadow, Suite A Bend, OR 97701 , d^ A JAMES R. :-� NICKELSON y� l Prepared By' 9063 P.E. G, ,�, Morrison-Maierie, Inc. 2880 Technology Boulevard West Bozeman, Montana 59718 / / Z NA5149\001\Design Docs\Reports\Storm Drainage Report.docx Introduction The Norton Ranch East Subdivision, Phase 2 is a portion of a project that was previously designed by Engineering, Inc. and approved in 2008 by the City of Bozeman under the project name of Norton Ranch East Subdivision, Phase 1. Since the approval in 2008, Engineering, Inc. separated a portion of the original Phase 1 into a new "Phase 1" project using the design work accomplished during the original Phase 1. The design for Phase 2 uses the original approved Engineering, Inc. design as a basis and therefore this design report is limited to providing information to the specific components of Phase 2 and changes that are needed due to the changes in the City of Bozeman Design Standards. A copy of the approved design report by Engineering, Inc. dated January 2008, Revised 4/30/08 is attached to this report and is incorporated by reference and is referred to as the "approved design report" in this document. Phase 2 Description Phase 2 consists of 30 residential lots and a total area of 6.66 acres. It is located directly west of the platted Phase 1 and is bounded by May Fly Street on the south, Dragon Fly Street on the North and a park on the west. The attached exhibit shows the location of Phase 2 relative to the overall Phase 1 project. Existing and Proposed Conditions The existing conditions are outlined in approved design report. The proposed conditions are identical to what is shown in the approved design report with the exception that the lot density is slightly less. The approved design report used a runoff coefficient of 0.5 which is a reasonable value to use for both the original proposed density and the current proposed density. Storm Drainage Basins The Phase 2 project drains to three of the basins in the original design. These include Basins 2, 3 and 4. For Basins 3 and 4 the stormwater conveyance, detention and treatment facilities were constructed as part of the platted Phase 1 project and no further improvements are required. The drainage area for Basin 2 includes a portion of the platted Phase 1 project, a portion of future phases and the street extension of May Fly Street. For Basin 2 a temporary pond was constructed at the west end of May Fly Street, with this project the temporary pond will be abandoned and the original approved pond and outlet structure will be constructed in the park to the west of Phase 2. Hydraulic Capacity The proposed pipes, inlets, curb grades and pond outlet structures will be as outlined in the approved design report. Maintenance The maintenance and inspection program approved with the approved design report will be followed by the Homeowner's Association. Modifications Required Due to Changes in City Design Standards A prefabricated end section has been added to the end of the storm drain pipe(s). END N:\5149\001\Design Docs\Reports\Storm Drainage Report.docx ,► ENGINEERING , INC . A Consulting Engineers and Land Surveyors C7 Stormwater Management Design Report For Norton East Ranch Subdivision, Phasel Bozeman, Montana January 2008 °"T "q \ � REVISED 4/30/08 R DO= DA n K E.I. No. BOZ-07004.01 — p 13975PE w N Prepared for: 0jVA11\` ?``\'' Norton Properties, LLC /ll516102 63020 Lower Meadow Road, Suite A Bend, OR 97701 705 Osterman Drive, Suite F Bozeman, MT 59715 Phone 406.522.9876 Fax 406.922.2768 info.bozeman@enginc.com www.enginc.com Norton East Ranch Subdivision, Phase 1 Bozeman, Montana Stormwater Management Design Report Table of Contents I. INTRODUCTION.......................................................................................................................... 1 II. EXISTING SITE CONDITIONS.............................................................................................. 2 III. PROPOSED SITE CONDITIONS............................................................................................2 IV. HYDROLOGICAL METHODOLOGY................................................................................... 3 V. STORMWATER ANALYSIS AND DESIGN......................................................................... 3 VI. CULVERT DESIGN.......................................................................................................................5 VII. MAINTENANCE CONSIDERATIONS................................................................................ .6 VIII. CONCLUSION.................................................................................................................................7 REFERENCES List of Tables Table I 10 year, 2 hour Pre-Developed Peak Flow Calculations .............................................................4 Table 2 Detention Pond Storage C iltwlalions........................................................................................... 5 Appendices AppendixA Vicinity Map Drainage Basin Map Storm Sewer Layout Appendix B Detention Pond Calculations Inlet dam'Gutter Calculations Pipe Suing Calculations Culvert Suing Calculations Gutter Capacity Calculations Out'all Structure Suing Sidewalk Chase Suing P:BOZ-07004.01 1 11A �S ENGINEERING, INC. Consulting Engineers and Land Surveyors January 2008 REVISED 4/30/08 E.I. No. BOZ-07004.01 STORMWATER MANAGEMENT DESIGN REPORT FOR NORTON EAST RANCH SUBDIVISION, PHASE 1 BOZEMAN, MONTANA I. INTRODUCTION The Norton East Ranch Subdivision—Phase I is a proposed residential development situated on approximately 39.386 acres in Bozeman,Montana. The development is located in Section 9, Township 2 South,Range 5 East,Principal Meridian Montana, Gallatin County,Montana, as shown on the Vicinity Map in Appendix A. It is generally bounded by Babcock Street to the north, Fallon Street to the south and Laurel Parkway on the west. The development is planned for 314 residential dwelling units. The subject property is currently owned by: ale Norton Properties 63020 Lower Meadow Road, Suite A Bend, OR 97701 The purpose of this report is to analyze the stormwater drainage characteristics for the site and determine the appropriate stormwater management facilities required for the development, as required by state and local regulations. This analysis is being completed for the road and utility design submittal. The design standards governing this project are found in City of Bozeman Design Standards and Specifications Policy,March 2004, and any addenda thereto. P:BOZ-07004.01_STORM REPORT_NORTON 1 705 Osterman Drive,Suite F • Bozeman,Montana 59715 • Phone(406)522-9876 • Fax(406)922-2768 • www.enainc.com H. EXISTING SITE CONDITIONS Site Features and Vegetation Currently, the property consists primarily of pasture land for grazing. The land is not being used for agricultural production at this time. The topography across the site slopes to the northwest at an approximate grade of 1-3%. There are approximately 4.02 acres of delineated wetlands situated on the northwest part of the property. Soils and Groundwater The Natural Resources Conservation Service (MRCS) Soil Survey had identified four soil types for the property:: Hyalite-Beaverton Complex (448A),Enbar Loam (509B),Meadowcreek Loam (510B), and Hyalite-Beaverton Complex (748A). These soils correlate to hydrologic group C (clay loam, shallow sandy loam, soils low in organic contents, soils usually high in clay). According to a Geotechnical Investigation, prepared by Rimrock Engineering, Inc. in April 2007, the following soil horizons were observed on the subject parcel. The top one foot was comprised of topsoil and vegetation. This horizon was underlain by a layer of lean clay and sandy lean clay ranging from 1.5 feet to 3 feet below the existing grades. Beneath the clay layer was gravel with sand and cobble that extended to the explored depth of 14.5 feet. Information obtained from Montana's Ground-Water Information Center (GWIC)website indicates that the static water level in the area of the proposed development ranges in depth from 50 feet to two feet below existing ground surfaces. The average groundwater depth was 11.24 feet. Six groundwater wells were installed on the project site in December 2006. The wells indicate a static groundwater level of 1.5'below existing ground surfaces in the northwest corner. III. PROPOSED SITE CONDITIONS As previously mentioned, the development consists of a total of 314 dwelling units — including single family, duplex and multi-family units. Proposed site improvements include the construction of water and sewer mains, paved roads with curb and gutter, and storm drainage facilities, where necessary. All roads are proposed to be constructed to a crowned section with a three percent cross slope. Roadway drainage will be collected and conveyed via curb and gutter, curb inlets, and detention ponds. All local interior roads will be paved to a 33-foot wide section to back of curb. Laurel Parkway and Babcock will be paved to a 45-foot wide section to back of curb. Boulevard and sidewalk width vary between the two street sections. In general, the toads running north-south flow to the north at grades ranging from approximately 1% to 2%. The east-west roads vary from running parallel to the contours to a slight grade to the northwest. These roads have a minimum of 0.5% grade with high and low points to maintain minimum grades. Valley gutters are used to convey east-west stormwater across north-south running roads. In some areas, the east-west roads have been designed to flow to the north-south roads with valley gutters utilized to convey east-west stormwater to the north. P:BOZ-07004.01 STORivi REPORT NORTON 2 IV. HYDROLOGICAL METHODOLOGY The calculations and recommendations within this report are based on the regulations set forth in the City of Bozeman Design Standards and Specifications Policy,March 2004, and any addenda thereto. Stormwater management will be addressed with the following conveyance facilities: surface flow, drainage swales, curb inlet,pipe conveyance and detention or retention ponds. Both open space within the development and offsite areas will be utilized for detention pond storage. All offsite detention ponds will be located on easements located outside of the public right-of-way. The Rational Method was used to determine the pre-developed release rate and,in turn, the developed minimum required storage volume. All calculations associated with the release rate and required storage volumes were based on a 10-year, 2-hour storm event. The conveyance facilities, described further in this report, are based on a 25-year, 2-hour storm event. V. STORMWATER ANALYSIS AND DESIGN The Rational Method was used to analyze stormwater runoff under conditions which include the property in both a pre-developed and developed state. Runoff Coefficient (C) Runoff coefficients were used from Table I-1 of th✓ City of Bozeman Design Standards and Specifications Policy. A runoff coefficient of 0.20 was used for open land conditions and 0.50 was used for dense residential for developed conditions. Intensity (i) Rainfall intensity values were determined by using the Rainfall Intensity-Duration Curves (IDF) (Figures I-2 and I-3) from the City of Bozeman Design Standards and Specifications Policy. From the curves, specific intensities equal to the time of concentration were determined and used for peak flow calculations (see Appendix B for calculations). Time to Concentration (Tj Time to concentration for overland flow for each drainage basin was calculated using the Figure I-1 for distances less than 1200 feet. For distances greater than 1200 feet, the TR-55 method for shallow concentrated flow was used (see below). These times were then summed for a total time to concentration for each basin. Shallow Concentrated Flow (Channel Flow) To calculate shallow concentrated flow the TR-55 method assumes that sheet flow becomes shallow concentrated flow after f 3,gg-feet„ The average velocity is derived as a function of water course slope and land use. The relationship is expressed as: V = k(100s)os where: V = average velocity (ft/sec) k= land use parameter (see Table 3-12, McCuen,page 121) s = average land slope (ft/ft) P:BOZ-07004.01_STORM_REPORT_NORTON 3 The travel time for shallow concentrated flow is then calculated as: Tt = L / (3600V) where:tt = time of travel for shallow concentrated flow (hours) L = flow length (ft) V= average velocity (ft/sec) Drainage Basins/Peak Flow Calculations Drainage areas which contribute runoff to the proposed development were delineated and analyzed for developed conditions to aid in the sizing of detention or retention ponds, culverts, and storm drainage conveyance facilities. Seven onsite drainage basins were delineated on the property. Each basin contributes storm runoff to a detention pond down gradient of the drainage basin. These basins are identified numerically, 1- -W(see Drainage Basin Map in Appendix A of this report). Additionally, three offsite drainage basins (OS-1 - OS-3) were delineated for the extensions of West Babcock Street and Fallon Street. Pre- development peak flow calculations were made for each basin for the 10 year,2 hour storm event. Detailed calculations are provided in Appendix B and are summarized in Table 3 below. Table 1 - 10 Year,2 Hour Pre-Developed Peak Flow Calculations Area Rainfall Peak Basin Description (acres) C Intensity Discharge in/hour cfs 1 Open Land ;5.278 0.20 1.00 1.06 2 Open Land 10.386 \ 0.20 0.96 2.00 3 Open Land 12.116 0.20 0.82 0.35 4 Open Land 18.576 0.20 0.73 2.71 5 Open Land 0.992 0.20 ' 0.41 6 Open Land j3.057 0.20 0.76 0.60 7 Open Land ,0.917% 0.20 .41 OS-1 Open Land 1.436 0.20 1.13 0.32 OS-2 Open Land 1.06 0.20 0.82 0.17 OS-3 Open Land i 1 1.01 0.20 1.93 1 0.39 41,32 rye r- 4,o�Aac���� 45,39vc ✓s 41,77 f4c Detention Pond Sizing The City of Bozeman De ign Standards and Specification Policy requires that detention basins be designed to accommodate the difference in peak runoff between the pre-development and post- development 10-year design storm while limiting the release rates to pre-development runoff rates. The required storage is determined by subtracting the total basin release volume from the runoff volume at different storm intervals. The pond locations are shown on the attached Drainage Basin Map. A minimum basin area of 145 square feet per 1 cfs release rate is required for sediment control. Each detention pond will have an outlet pipe with an orifice plate sized to convey the pre- development flow from the 10-year, 2-hour storm event. The volumes of the ponds are shown in Table 2 below. The pond depth totals 2.5 feet-allowing for 1.5 feet of storage, as acceptable by City design standards, and one foot of freeboard. Due to high static groundwater levels in the northwest corner of the subdivision, Ponds 3, 4, 6, and 7�ere designed with an overall depth of 1.5 RBOZ-07004.01STORM_REPORT_NORTON 4 feet by eliminating the one foot of freeboard. The ponds were intentionally oversized, as shown in Table 2, to account for the lack of freeboard. The bottom of the outlet control structures on the shallow ponds will be sunk down below the pond bottom,with the inlet grate being located at the pond bottom elevation, to allow for the"T" fitting to be included. The sides of the ponds will be sloped to finished grade at 4HAV slope. Detailed calculations are provided in Appendix B. Table 2—Detention/Retention Pond Volumes Min. Required Pond Volume Min. Required Pond Volume Pond Storage Vol. (cf) c Pond Storage Vol. c c 1 2,885 2,903 6 1,941 3,415 2 5,807 6,071 7* 1,353 073 Z 2,156 3 1,291 2,985 OS-1 1,819 1,952 4 12,058 16,288 0S-2 1 1,597 1 1,736 5* 1,440 1,482 OS-3 960 1,130 Ponds 5 and 7 are retention ponds. Roadside Drainage and Gutter Capacity Calculations The impact of storm water runoff on roadways is also an important design consideration. The City of Bozeman Design Standards and Specifications Policy provides that for city streets, the flow in the gutters shall not be greater than 0.15 feet below the top of curb. Using this criteria, the available gutter capacity was calculated using Manning's Formula for the roadways running north-south and east-west (see Appendix B for Calculations). A 3%pavement crown slope was used as required by City design standards. Inlet Spacing and Capacity Calculations The proposed roadway design for the local streets includes 33-feet to back of curb,boulevard and sidewalk. Laurel Parkway and West Babcock Street will be paved to a 45-foot wide section to back of curb with a boulevard and sidewalk on each side of the road. Storm water runoff will be captured from the local streets through the use of storm drain inlets and direct it to the proposed detention ponds draining on-site basins. The location of curb inlets and storm sewer mains are shown on the Storm Sewer exhibit located in Appendix A of this report. Similarly, storm drain inlets will be used to capture runoff from West Babcock Street and Fallon Street (basins OS-1 - OS-3). The runoff will then be directed to the offsite ponds. Inlet spacing calculations were performed to determine um�pacing requirements througho the development. The analysis included determining allowable capacity of both gutter and curb inlets. VI. CULVERT DESIGN Culverts will be installed in four locations along West Babcock Street and in one location along Fallon Street. Two 40" x 65" arch RCP culverts will be,� stalled' �across Fallon Street and West Babcock Streets to convey water from Baxter Creek. culverts ve a design capacity of 150 cfs which exceeds the 25-year storm flow of 148 cfs from Baxter Creek. A second 40" x 65" arch RCP culvert will be installed in both locations to provide 100% overflow protection. P:BOZ-07004.01 STORM_REPORT NORTON 5 In addition to the Baxter Creek culvert on West Babcock, a 12" RCP culvert was installed to provide connectivity to the wetlands near the northwest corner of Phase 1. The culvert has a design capacity of 3.57 cfs, which is more than adequate according to Barbara Vaughn, who prepared the wetland study for this project. There is natural swale, with no apparent beginning or end, that is currently passed under the existing two track road via an 18" CMP culvert. This culvert will be removed and replaced with an 18" RCP culvert with a design capacity of 10.03 cfs. Finally, a 36" RCP arch equivalent culvert will convey water from Baxter Ditch under West Babcock Street, just west of the intersection with Cottonwood Road. The culvert size matches the existing culvert immediately upstream from the crossing and a crossing into the soccer park just south of Durston Road. This culvert has a design capacity of 26.51 cfs. Detailed calculations are included in Appendix B of this report. VII. MAINTENANCE CONSIDERATIONS The storm drainage system within the Norton East Ranch Subdivision—Phase 1 is defined as a private and public system. The storm drainage facilities that he within the publicly dedicated right- of-ways are defined as public systems. The public systems shall be maintained by the City of Bozeman. The private system, those facilities that do not lie within the publicly dedicated right-of- way,including the retention and detention ponds, will be maintained initially by the developer and then the Homeowner's Association, once established. Due to sediment in the storm runoff and other variables,regular maintenance will be required by the City to maintain proper performance of the conveyance network. The following steps are minimum requirements for the maintenance of the storm facilities. Inspection Program—On an annual basis, the following elements of the stormwater facilities should be inspected for excess sedimentation: 1) Curb Cut Openings 2) Drainage Swales j4 U A n 3) Detentio Ponds 4) Catch Basins Maintenance Program—The following maintenance measures should be completed based on the inspection program: 1) Curb Cut Openings—excess sedimentation should be removed manually. 2) Drainage Swales—swales should be mowed when necessary and any excess sedimentation removed. 3) Detention Ponds—a stake4hould be set six inches above the original bottom of the basin. If sediment is over the stake,it should be removed and the basin should be re- vegetated according to the original landscape plan. 4) Catch Basins—excess sedimentation should be removed either manually or with a vacuum truck and flushed. P:BOZ-07004.01 STORM_REPORT_NORTON 6 VIII. CONCLUSION The included analyses and calculations show that the proposed storm water management system for the Norton East Ranch Subdivision,Phase 1 development will adequately handle the 10-year and 25-year storm events. Available inlet capacity will limit encroachment of runoff on pavement surfaces to acceptable levels. REFERENCES 1.City Engineering Division. (2004). Design Standards and Specifications Policy and any addenda thereto. Bozeman, MT:Author. 2.Lindeburg, Michael R., PE. (2003). Civil Engineering Reference Manual for the PE Exam. Ninth Edition. Belmont, CA:Professional Publications,Inc. 3.McCuen,Richard H. (1998).Hydrologic Analysis and Design,Second Edition.Upper Saddle River,NJ:Prentice Hall. 4.Montana Department of Transportation. (1998).AASHTO Model Drainage Manual.Chapters 7,9-10 5.United States Department of Agriculture. Natural Resources Conservation Service. Conservation Engineering Division. (1986).Urban Hydrology for Small Watersheds:TR-55.Washington,DC:Author. P:BOZ-07004.01 STORM REPORT NORTON 7 Appendix A Vidnity and Drainage Basin Maps NORTON RANCH SUBDIVISION - PHASE 1 S GALLATIN COUNTY, MONTANA Rj n 1 i • ,. € I I i r41 1 b ink i - 3 I r t - SITE T- .- - 4786AT iB d r' a Ir i ;. 'WHO '= I � I � ilk_ - -- ��-���'•�� � .I � _`I � 4824HUFFINE LN --��`� ! � • f•• ,_tea a"A '' • lam_ -- , j � 98991 16 •T 1 ► r-�,w+►+Frrs�: —1:5 Q- a-- _-- aa= z>= -- I __�� " _-- - VICINITY MAP 4891 ' d 1 CL ENGINEERING, INC. w Consulting Engineers and Land Surveyors `a BILUNQS ■ SOZINIAN 2000 1000 0 2000 NORTON VICINrrY MAP.DWG BOZ 07004 01 06/07/07 RDH NORTON RANCH SUBDIVISION - PHASE 1 BOZEMAN, MONTANA I DETENTION POND 4 DETE iJ RETENTION p0 D S 8 •�� POND 7 ,,t. �� .• „•, -.- -- — _ .•:. _.`���- •�. OFF SITE BASIN 3 ••••••••;;:• -- 4�: :, •.,,rrw„ :0 F SITE BASIN 2: ,, •:.;;; ACRES •'•�' 1 06 ACRES ...................................... ABCOCK ST 1.01 t.. ::•: ....................................... POND O �. DETENTION DETENTION BASIN E) 1 } ! S 3 POND OS-2 i ACRES it........ - t :::::::::::::::::s..••:.:...... i:PQND:. — STKE ET-- ::: •'�•'� BASIN 3 BASIN 4 OPEN SPACE/ 2.12ACRES 10.58ACRES _ BAxfERCREEK BASIN 7 WETLANDS AREA FLooDPu+IN 100-YR 0 91 ACRES 4.02 ACRES jJ ... LL WETLAND i BOUNDARY ' ~ _...__.. DETENTIO ON I •":' DETENTION : ' - :• POND I k , t: I F— I J BASIN 2 BASIN 1 �J 10.39 ACRES 5,28ACRES ` Ill I t a —_.: v� DETENTION U I - , , 1.f POND OS-1 RETENTION POND/ J fi y i }-.:: �. .......:: — .. ..` ::: .-._._� �_�_.:»� ..,....... _•..'----'—OFF SITE BASIN 1. ...... ::•�...:.:....:... .................................... _ 1 44 ACRES —_� �— BA 5 0.99 ACRES ES 7 DRAINAGE BASIN MAP LEGEND BASIN 6 — —4707— — EXISTING CONTOUR BASIN 1 BASIN 2 E""""W.� " BASIN 7 OFF STREET DRAINAGE ARROWS ENGINEERING, INC. OFFSITE BASIN 1 —' STREET DRAINAGE ARROWS ^ �::�:::�-'1 BASIN 3 � NOT TO SCALE Consulting Engineers and Land Surveyors —1 BASIN 4 '':k':W ' OFFSITE BASIN 2 A s�wNas - soz�� BASIN 5 OFFSITE BASIN 3 %XX%X.UYiIG BOZ-07004.03 uy/t /Ol BDS t c� i Appendix B Peak Flow, Detention Pond, and Gutter Capacity Calculation. DETENTION POND CALCULATIONS Norton East Ranch Subdivision - Phase 1 Pond Basin 1 T-e 4,,4 r, Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 5.278 a Acre C= 0.2 Open Land Calculate Time of Concentration(TJ /oo><( c l 47 93 — ¢78�� /ti ¢oo � = 1,5 °70 Existing Conditions: c K �a0 x S= 1.85% D C=0.20 ✓ Open Land Conditions Overland Flow: v//— �o e,r A 3�o / Assume: L=481 ft.-(300 ft sheet flow/181 ft shallow flow) �I� D IL ("i W a D From Figure 1-1,T,,= 30 min. (overland flow) 4 0K Total Tc= 30.00 rr Calculate Pre-developed Storm Intensity at Tc From Figure 1-3, using the 10 year event, I =0.64T,-o ' oK 1= 1.00 in/hr Calculate Pre-developed Peak Runoff Rate Q10=ciA,using the above parameters o, 2 AI,0 X j Z7a,4-- Qio= 1.06 °r- cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50°K Dense Residential 1 6(, �P y,z��pi; ,(g) j, o,s k" � OL Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (inthr) (cfs) (f) W) (cf) 5 3.2185 8.49 2548 318 2230 7 2.5862 6.83 2867 445 2421 9 2.1964 5.80 3130 572 2558 11 1.9278 5.09 3358 700 2658 13 1.7295 4.56 3560 827 2733 15 1.5759 4.16 3743 954 2789 17 1.4527 3.83 3910 1081 2829 19 1.3514 3.57 4066 1209 2857 21 1.2663 3.34 4211 1336 2875 23 1.1936 3.15 4347 1463 2884 '25 1'1306 2,98 se- 4476 ix 1 1590 n�,'' 3885 c' ' 27 1.0755 2.84 4598 1717 2880 29 1.0266 2.71 4714 1845 2870 31 0.9831 2.59 4826 1972 2854 33 0.9439 2.49 4932 2099 2833 35 0.9085 2.40 5035 2226 2809 37 0.8763 2.31 5134 2353 2780 39 0.8468 2.23 5229 2481 2749 41 0.8197 2.16 5322 2608 2714 43 0.7947 2.10 5411 2735 2676 45 0.7716 2.04 5498 2862 2636 47 0.7501 1.98 5582 2989 2593 49 0.7300 1.93 5664 3117 2547 51 0.7113 1.88 5744 3244 2500 53 0.6937 1.83 5822 3371 2451 55 0.6772 1.79 5898 3498 2400 57 0.6617 1.75 5972 3626 2347 59 0.6470 1.71 6045 3753 2292 Storage Volume Required= 2885 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 fUsec 3. Surface Area based on minimum volume using of depth Design Release Rate= 1.06 °K cfs Minimum Area= 154°� sf Since 1924 sf>154 sf, use 1924 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1924 sf oK Volume Required= 2885 ft3 Depth Provided= 1.50 ft(max) or. Side Slopes= 4 :1 Length= 160 ft Width= 12 ft Norton East Ranch Subdivision -Phase 1 Pond Basin 2 pp1e. r-- Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 10.386 Acre C= 0.2 V Open Land Calculate Time of Concentration(TJ Existing Conditions: /00,A (AEI 4714 - 4789)/370 3,!; o S= 1.35% oK C=0.20 ✓ Open Land Conditions Overland Flow: 0 K Assume: L=491 ft.-(300 ft sheet flow/191 ft shallow flow) deck a..,�t = 36 o � From Figure 1-1,T, 32 min. (overland flow) flooI<S . .QA-M hw 0�( � SCE TG Total T.= 32.001 min Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I=0.64Tc-o.s5 1 = 0.96 OK- Calculate Pre-developed Peak Runoff Rate Q,o= ciA,using the above parameters Q'o= 2.00 °"_ cis Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 OK Dense Residential Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 16.71 5014 600 4414 7 2.5862 13.43 5641 840 4801 9 2.1964 11.41 6159 1080 5079 11 1.9278 10.01 6607 1320 5287 13 1.7295 8.98 7005 1560 5445 15 1.5759 8.18 7365 1800 5565 17 1.4527 7.54 7695 2040 5655 19 1.3514 7.02 8000 2280 5720 21 1.2663 6.58 8286 2520 5765 23 1.1936 6.20 8554 2761 5793 25 1.1306 5.87 8807 3001 5806 27 1.0755- 5.58 04 9047 '3241 Or- 5807 of 29 1.0266 5.33 9277 3481 5796 31 0.9831 5.11 9496 3721 5775 33 0.9439 4.90 9706 3961 5745 35 0.9085 4.72 9908 4201 5707 37 0.8763 4.55 10102 4441 5661 39 0.8468 4.40 10290 4681 5609 41 0.8197 4.26 10472 4921 5551 43 0.7947 4.13 10648 5161 5487 45 0.7716 4.01 10819 5401 5418 47 0.7501 3.90 10985 5641 5344 49 0.7300 3.79 11146 5881 5265 51 0.7113 3.69 11303 6121 5182 '53 0.6937 3.60 11456 6361 5095 55 0.6772 3.52 11606 6601 5005 57 0.6617 3.44 11752 6841 4911 59 0.6470 3.36 11894 7081 4813 Storage Volume Required = 5807 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.006ec 3.Surface Area based on minimum volume usin 1 f of depth Design Release Rate= 2.00 cK cfs Minimum Area= 2900� sf Since 3871 sf>290 sf, use 3871 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 3871 sf 0� Volume Required= 5807 ft3 Depth Provided = 1.50 ft(max)vK Side Slopes= 4 :1✓ Length= 160 ft Width= 24 ft Norton East Ranch Subdivision -Phase 1 Pond Basin 3 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 2.116 ®K Acre C= 0.2 Open Land Calculate Time of Concentration(T j Existing Conditions: lop Y(61 4707- 477q)�`�-Gsu S= 1.15% DK o C=0.20 V Open Land Conditions Overland Flow: � Assume: L=790 ft.-(300 ft sheet flow/490 ft shallow flow) ao'l, . ,%"f H � �0 � (�ew e 7� From Figure 1-1,Tc= 41 min.(overland flow) I ,Qoo K 4vo P t �sf 4s� Total T,_ ' I41:OOj min Calculate Pre-developed Storm Intensity at Tc From Figure 1-3, using the 10 year event, I =0.64T,-o.s5 DfL 1 = 0.82 in/hr Calculate Pre-developed Peak Runoff Rate Q,o= ciA,using the above parameters 010= 0.35 01 cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 oK Dense Residential Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 3.41 1022 104 917 7 2.5862 2.74 1149 146 1004 9 2.1964 2.32 1255 187 1068 11 1.9278 2.04 1346 229 1117 13 1.7295 1.83 1427 271 1157 15 1.5759 1.67 1501 312 1188 17 1.4527 1.54 1568 354 1214 19 1.3514 1.43 1630 395 1234 21 1.2663 1.34 1688 437 1251 23 1.1936 1.26 1743 479 1264 25 1.1306 1.20 1794 520 1274 27 1.0755 1.14 1843 562 1281 29 1.0266 1.09 1890 604 1286 31 0.9831 1.04 1935 645 1289 33 0.9439 01 1.00 cK 1977 GPI 687 00- 1291 0 35 0.9085 0.96 2019 729 1290 37 0.8763 0.93 2058 770 1288 39 0.8468 0.90 2096 812 1285 41 0.8197 0.87 2133 853 1280 43 0.7947 0.84 2169 895 1274 45 0.7716 0.82 2204 937 1267 47 0.7501 0.79 2238 978 1260 49 0.7300 0.77 2271 1020 1251 51 0,7113 0.75 2303 1062 1241 53 0.6937 0.73 2334 1103 1231 55 0.6772 0.72 2365 1145 1220 57 0.6617 0.70 2394 1186 1208 59 0.6470 0.68 2423 1228 1195 Storage Volume Required= 1291 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2. Settling velocity of 40 micron particles=0.0069 ft/sec 3. Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.35 cfs Minimum Area= 50 �� sf Since 860 sf>50 sf, use 860 sf (See Detention Pond Sizing Sheet for Area) k Surface Area= 860 sf Volume Required= 1291 ft3 Depth Provided = 1.50 ft(max) ck Side Slopes= 4 :1 ✓ Length= 160 ft Width= 5 ft Norton East Ranch Subdivision - Phase 1 Pond Basin 4 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method,and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 18.576 0- Acre C= 0.2 ✓ Open Land Calculate Time of Concentration(Tc) Existing Conditions: S= 1.35% °4 C=0.20 ✓ Open Land Conditions Overland Flow: o,K I d e ti Assume: L= 1022 ft.-(300 ft sheet flow/722 ft shallow flow) �1�f 4, 2,95, � �� — From Figure 1-1, Tc= 49 0V- min. (overland flow) Total Tc= 49.00 OFF min Calculate Pre-developed Storm Intensity at T. From Figure 1-3, using the 10 year event, I =0.64T(;-o ' I = 0.73 04 in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters Q10= 2.71 VK cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 4 tL Dense Residential Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 29.89 8968 814 8154 7 2.5862 24.02 10089 1139 8950 9 2.1964 20.40 11016 1465 9552 11 1.9278 17.91 11818 1790 10028 13 1.7295 16.06 12529 2116 10414 15 1.5759 14.64 13173 2441 10732 17 1.4527 13.49 13763 2767 10996 19 1.3514 12.55 14309 3092 11217 21 1.2663 11.76 14819 3417 11402 23 1.1936 11.09 15299 3743 11556 25 1.1306 10.50 15752 4068 11683 27 1.0755 9.99 16182 4394 11788 29 1.0266 9.54 16592 4719 11872 31 0.9831 9.13 16984 5045 11939 33 0.9439 8.77 17359 5370 11989 35 0.9085 8.44 17720 5696 12025 37 0.8763 8.14 18069 6021 12047 39 0.8468 7.87 18405 6347 120s8 41 0.8197 7.61 18729 6672 12057 43 0.7947 7.38 19044 6998 12047 45 0.7716 7.17 19350 7323 12027 47 0.7501 6.97 19647 7649 11998 49 0.7300 6.78 19935 7974 11961 51 0.7113 6.61 20216 8300 11917 53 0.6937 6.44 20490 8625 11865 55 0.6772 6.29 20758 8950 11807 57 0.6617 6.15 21019 9276 11743 59 0.6470 6.01 21274 9601 11673 Storage Volume Required= 12058 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3. Surface Area based on minimum volume using 1 foot depth Design Release Rate= 2.71 a� cfs Minimum Area= 393 a� sf Since 8039 sf>393 sf, use 8039 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 8039 sf ®�= Volume Required = 12058 ft3 Depth Provided = 1.50 ft(max) 0 Side Slopes= 4 :1 w Length= 160 ft Width= 50 ft Norton East Ranch Subdivision -Phase 1 Pond Basin 5 (44A- iar-'„ Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the retention facilities were sized based on a 10-year 2-hour storm event. Area= 0.992 aw Acre I = 0.41 ✓ In/Hr. C= 0.5 or- Dense Residential Calculate Developed Peak Runoff Rate Qio= ciA,using the above parameters Qio= 0..20'1' cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event V= 7200 x Qio Dense Residential V= 1440 ' cf 014 Norton East Ranch Subdivision -Phase 1 Pond Basin 6 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 3.057 OK Acre C= 0.2 ✓ Open Land Calculate Time of Concentration(TJ Existing Conditions: 32 7o S= 1.35% °I` lag (EI 4786 -q 77G l�6 n _ >. C=0.20 v Open Land Conditions Overland Flow: Ale- Assume: L=885 ft.-(300 ft sheet flow/585 ft shallow flow) 805 t�0 _ 0� From Figure I-1,T,= 46 min.(overland flow) d IL Total T,= 46.00 min Calculate Pre-developed Storm Intensity at TC From Figure 1-3, using the 10 year event, I =0.64T�o 15 1 = 0.76°K in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters Q10= 0.47 0�— cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.50 W- Dense Residential M`7 ° pav S ® q Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (w/hr) (cfs) (cf) (cf) (cf) 5 3.2185 4.92 1476 140 1336 7 2.5862 3.95 1660 195 1465 9 2.1964 3.36 1813 251 1562 11 1.9278 2.95 1945 307 1638 13 1.7295 2.64 2062 363 1699 15 1.5759 2.41 2168 419 1749 17 1.4527 2.22 2265 474 1791 19 1.3514 2.07 2355 530 1825 21 1.2663 1.94 2439 586 1853 23 1.1936 1.82 2518 642 1876 25 1.1306 1.73 2592 698 1895 27 1.0755 1.64 2663 753 1910 29 1.0266 1.57 2730 809 1921 31 0.9831 1.50 2795 865 1930 33 0.9439 1.44 2857 921 1936 35 0.9085 1.39 2916 977 1940 37 0.8763 1.34 2973 1032'+ 39 0.8468 1.29 3029 1088 1941 41 0.8197 1.25 3082 1144 1938 43 0.7947 1.21 3134 1200 1934 45 0.7716 1.18 3184 1256 1929 47 0.7501 1.15 3233 1311 1922 49 0.7300 1.12 3281 1367 1913 51 0.7113 1.09 3327 1423 1904 53 0.6937 1.06 3372 1479 1893 55 0.6772 1.04 3416 1535 1881 57 0.6617 1.01 3459 1591 1868 59 0.6470 0.99 3501 1646 1855 Storage Volume Required= 1941 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2. Settling velocity of 40 micron particles=0.0069 ft/sec 3. Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.47 cfs Minimum Area= 67 sf Since 1682 sf>88 sf, use 1682 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1294 sf Volume Required= 1941 fO Depth Provided= 1.50 ft(max) ok Side Slopes= 4 :1 Length= 160 ft Width= 8 ft Norton East Ranch Subdivision - Phase 1 Pond Basin 7 -} 'M Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the retention facilities were sized based on a 10-year 2-hour storm event. Y2 A?I'J 11 o� f✓5" x `-Sik 13 f6r - Sk�+�¢A/ 3q� 45 5 Area= 0.917 Acre 0,11 AC I = 0.41 In/Hr. C= Dense Residential Calculate Developed Peak Runoff Rate ,z,2115' h s/c a : o,� Q10= ciA, using the above parameters r i('95° (aEr►J + _((V, - D'` Q10= 0.19 oK cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event V:= 7200 x Q10 Dense Residential n V 1353 " cf v s 1�32 ok �.e. Q��av;�d = 21 S(a ca Norton East Ranch Subdivision -Phase 1 Pond Basin OS-1 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. n Area= 1.436 ° Acre 9$Z,361 'e <00 �f 57l�Z S+ C= 0.2 ✓ Open Land = J,3/ G Calculate Time of Concentration(TJ Existing Conditions: S= 1.25% 04 C=0.20 D 4- Open Land Conditions Overland Flow: Assume: L=275 ft.-sheet flow o� From Figure 1-1,T�= 25 min. (overland flow) OIL Total T,, 425.00 min Calculate Pre-developed Storm Intensity at Tc From Figure 1-3, using the 10 year event, I =0.64T,-o.s® 1 = 1.131 lZ_ in/hr Calculate Pre-developed Peak Runoff Rate Qjo= ciA, using the above parameters Qio= 0 32 Gt1- Os Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.90 °4 Road and Right-of-Way Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 4.16 1248 97 1150 7 2.5862 3.34 1404 136 1267 9 2.1964 2.84 1533 175 1358 11 1.9278 2.49 1644 214 1430 13 1.7295 2.24 1743 253 1490 15 1.5759 2.04 1833 292 1541 17 1.4527 1.88 1915 331 1584 19 1.3514 1.75 1991 370 1621 21 1.2663 1.64 2062 409 1653 23 1.1936 1.54 2129 448 1681 25 1.1306 1.46 2192 487 1705 27 1.0755 1.39 2252 526 1726 29 1.0266 1.33 2309 565 1744 31 0.9831 1.27 2363 604 1759 33 0.9439 1.22 2415 643 1773 35 0.9085 1.17 2466 682 1784 37 0.8763 1.13 2514 721 1793 39 0.8468 1.09 2561 760 1801 41 0.8197 1.06 2606 799 1807 43 0.7947 1.03 2650 838 1812 45 0.7716 1.00 2692 877 1816 47 0.7501 0.97 2734 916 1818 49 0.7300 0.94 2774 955 1819 51 0.7113 0.92 2813 994 1819 53 0.6937 0.90 2851 1033 1819 55 0.6772 0.88 2888 1072 1817 57 0.6617 0.86 2925 1111 1814 59 0.6470 0.84 2960 1149 1811 Storage Volume Required= 1819 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.32 °�_ cfs Minimum Area= 47 1� sf Since 1213 sf>47 sf, use 1213 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1213 sf Volume Required = 1819 ft3 Depth Provided= 1.50 ft(max) os= Side Slopes= 4 :1 „ Length = 160 ft Width= 8 ft Norton East Ranch Subdivision - Phase 1 Pond Basin OS-2 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 1.06 °� Acre 3 7,91 ,x 90 _ S 7 q-p a _rf C= 0.2 r Open Land Calculate Time of Concentration(T.) Existing Conditions: S=0.75% C=0.20 oK Open Land Conditions Overland Flow: „_ Assume: L=523 ft.-(300 ft sheet flow/223 shallow flow) From Figure 1-1,Tc= 41 04 min. (overland flow) • p�L Total T.= 41.00 min Calculate Pre-developed Storm Intensity at T. From Figure 1-3, using the 10 year event, I=0.64Tc-o.6s c I = 0.82 ° in/hr Calculate Pre-developed Peak Runoff Rate Q10= ciA, using the above parameters Qio= 0.17 °� cfs Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.90 0�L Road and Right-of-Way Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 3.07 921 52 869 7 2.5862 2.47 1036 73 963 9 2.1964 2.10 1132 94 1038 11 1.9278 1.84 1214 115 1099 13 1.7295 1.65 1287 136 1151 15 1.5759 1.50 1353 156 1197 17 1.4527 1.39 1414 177 1236 19 1.3514 1.29 1470 198 1272 21 1.2663 1.21 1522 219 1303 23 1.1936 1.14 1571 240 1332 25 1.1306 1.08 1618 261 1357 27 1.0755 1.03 1662 282 1381 29 1.0266 0.98 1704 302 1402 31 0.9831 0.94 1744 323 1421 33 0.9439 0.90 1783 344 1439 35 0.9085 0.87 1820 365 1455 37 0.8763 0.84 1856 386 1470 39 0.8468 0.81 1890 407 1484 41 0.8197 0.78 1924 428 1496 43 0.7947 0.76 1956 448 1508 45 0.7716 0.74 1987 469 1518 47 0.7501 0.72 2018 490 1528 49 0.7300 0.70 2048 511 1537 51 0.7113 0.68 2076 532 1545 53 0.6937 0.66 2105 553 1552 55 0.6772 0.65 2132 573 1559 57 0.6617 0.63 2159 594 1565 59 0.6470 0.62 2185 615 1570 61 0.6332 0.60 2211 636 1575 63 0.6200 0.59 2236 • 657 1579 65 0.6076 0.58 2260 678 1583 67 0.5957 0.57 2285 699 1586 69 0.5844 0.56 2308 719 1589 71 0.5737 0.55 2331 740 1591 73 0.5634 0.54 2354 761 1593 75 0.5536 0.53 2377 782 1595 77 0.5442 0.52 2399 803 1596 79 0.5352 0.51 2420 824 1596 81 0.5266 0.50 2441' 845 1597 83 0.5183 0.49 2462 866 1597 85 0.5103 0.49 2483 886 1597 87 0.5027 0.48 2503 907 1596 89 0.4953 0.47 2523 928 1595 91 0.4882 0.47 2543 949 1594 93 0.4814 0.46 2562 970 1593 Storage Volume Required= 1597 cf Detention Basin Sizing Assume: 1. Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.17 °w cfs Minimum Area= 25 °4 sf Since 1065 sf>25 sf,use 1065 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 1065 sf 01` Volume Required= 1597 ft3 Depth Provided= 1.50 ft(max) 04 Side Slopes= 4 :1 ✓ Length= 160 ft Width— 7 ft Norton East Ranch Subdivision - Phase 1 Pond Basin OS-3 Bozeman, MT The following calculations were used to determine the minimum required storage volume for storm water runoff. The volumes were calculated using the Rational Method, and the detention facilities were sized based on a 10-year 2-hour storm event. Area= 1.01 �t Acre 3 1p.s, 0 J 0, i C= 0.2 Open Land Calculate Time of Concentration(T,) Existing Conditions: S=5.00% 60� C=0.20 1 tL Open Land Conditions Overland Flow: le Assume: L= 105 ft9-sheet flow From Figure 1-1,T,= 11 ` ;min.(overland flow) a o1c Total Tc= 11.00 min Calculate Pre-developed Storm Intensity at T, From Figure 1-3, using the 10 year event, I =0.64TC-'-" 1= 1.93 0� in/hr Calculate Pre-developed Peak Runoff Rate 010= ciA, using the above paramott-r.; Q10= 0 39 Q� (+' Calculate Developed Minimum Required Volume Storage For 10-Year Event C= 0.900� Road and Right-of-Way Developed Developed Pre-developed Storm Duration Intensity Runoff Rate Runoff Volume Release Volume Required Storage (Minutes) (in/hr) (cfs) (cf) (cf) (cf) 5 3.2185 293 878 117 761 7 2.5862 2.35 987 164 824 9 2.1964 2.00 1078 210 868 11 1.9278 1.75 1157 257 900 13 1.7295 1.57 1226 304 922 15 1.5759 1.43 1289 350 939 17 1.4527 1.32 1347 397 950 19 1.3514 1.23 1400 444 956 ,21 1.2663 1:15 1450 491 . 23 1.1936 1.08 1497 537 960 25 1.1306 1.03 1542 584 957 27 1.0755 0.98 1584 631 953 29 1.0266 0.93 1624 678 946 31 0.9831 0.89 1662 724 938 33 0.9439 0.86 1699 771 928 35 0.9085 0.83 1734 818 916 37 0.8763 0.80 1768 865 904 39 0.8468 0.77 1801 911 890 41 0.8197 0.75 1833 958 875 43 0.7947 0.72 1864 1005 859 45 0.7716 0.70 1894 1051 842 47 0.7501 0.68 1923 1098 825 49 0.7300 0.66 1951 1145 806 51 0.7113 0.65 1979 1192 787 53 0.6937 0.63 2005 1238 767 55 0.6772 0.62 2032 1285 746 57 0.6617 0.60 2057 1332 725 59 0.6470 0.59 2082 1379 703 Storage Volume Required= 960 cf Detention Basin Sizing Assume: 1.Non-flocculant particles 2.Settling velocity of 40 micron particles=0.0069 ft/sec 3.Surface Area based on minimum volume using 1 foot depth Design Release Rate= 0.39'�_ cfs Minimum Area= 56 Q�L sf Since 640 sf>56 sf, use 640 sf (See Detention Pond Sizing Sheet for Area) Surface Area= 640 sf of Volume Required= 960 ft3- Depth Provided= 1.50 ft(max) He- Side Slopes= 4 :1 ✓ Length= 160 ft Width= 4 ft Detention Pond Sizing The following tables were used to determine the detention pond volumes. The volumes were calculated by using the prismoidal method and are based on the detention pond configuration shown on the drainage basin map. All elevations are assumed. DETENTION POND OS-1 POND ELEV AREA VOLUME JVOLUME.0 I Comment DESIG 1 ft2 ft3 ft3 97 9 0 0 97.5 775 144.59 144.69 bottom Z 98 1049 454,28 598.86 a 98.5 1350 598.17 1,197.03 f 0 99 1678 756.52 1.952.55 WSE /�I � 0 99.5 2033 926.33 2,878.83 w 100 2414 1,110.39 3,949.27 top o DETENTION POND OS-2 POND ELEV AREA VOLUME VOLUME,,;,,, Comment DESIG ft2 ft' 97 9' 0• (? 97.5 632 119.40 119.40 txottom 0 Z 98 918 - 38528 504.69 IL 98.5 1229 ; 634:$6 .1,039.55 0 99 1566 69T.05 1,736.60 WSE > /S 99.5 1929 872.17 '2.-b= , w100 2318 1,060.26 ,3.669.04 top ►- w o , DETENTION POND OS-3 POND ELEV AREA FVOLUME VOLUME,,,m Comment DESIG ft2 ft3 fe 97 9 0 4 97.5 321 63,96 63'06 bottom z 98 570 21379 283.T5 a 98.5 845 351.60 635,25' 90 99 1145 495A0 1;130.6R VIIS�' � qG d 1 ®� 9.5 1472 652.54 f't83.4U w100 1823 622.19 2.605.58 t.)p �.. w n DETENTION POND 1 POND ELEV . AREA , VOLUME VOLUME.,,; Comment DESIG ft2 ft3 ft3 97 9 0, 0 97.5 1298 235.86 �^ 235.86 • battom G z 98 1606 724.64 96OA8 0 98.6 1939 884.94 1,845.43 Al;'J z 99 2298 1.057.98, 2.903.41 W 5E 0 99.5 2683 1.244.01 .114 41t w100 3093 1,442.79 5,590.20 top W ! t] DETENTION POND 2 POND ELEV AREA VOLUME VOLUME,,,; Comment, DESIG ft2 ft3 ft3 97 9: 0 0 97.5 2854 503.88_: 503.86 bottom z 98 3414 1,564.9.1 2,068.79 98.5 4000 1851.57 3.920.36 11 0 99 4613 2.151.43 .6.071.79 W5E 7 5807 C� A'a p1� 99.5 5253 2,464.77 T�'i M w100 5919 2,791.34 11,327.20 top H H. o r� DETENTION POND 3 POND ELEV AREA I VOLUME IVOLUME',um Comment DESIG (ft). ft3 f(3 98 9 0 0' 98.5 1157 p 211.34 211.34 bottom 0 99 1608 688.16 899.60 Z � 0 99.5 2084 s . 920.43 1,81*94 na 0(� Q.' zo 100 2586 '.1,165:25 2,985.18 WSEitop z w w 0 DETENTION POND 4 POND ELEV AREA I VOLUME VOLUME,,,,,, Comment DESIG (ft') ft� ft3 R u 98 9 0 0' ' 98.5 8193 1,412.26 ' 1,412.26 txl�tom n z 99 9332 4,378,16 15,790.414'' C 99.5 10497 4,95A.40 10,744.82 z 100 11687 5,643.34 16,288.115 1NSEltop 4 z w w n RETENTION POND 5 +POND ELEV AREA VOLUME VOLUME,,,,„ Comment DESIG ft2 ft3 0 97 9 0 0 97.5 332 06.94 65.94 bcmom z 98 732 259.60 '' 325.44 Q. 98.5 1157 468.21 793.66 z 99 1608 688.16 1,481.82 WSE B 4�} ® � �, 99.5 2084 930.43 2.402.25 w 100 2586 1,165.25 3.567.50 Wp w n DETENTION POND 6 POND ELEV AREAJ'IVOLUME-. VOLUMP.. Comment DESIG ft2 ft3) (ft)'r 98 9 0 0 98.5 1507 272.08 272.Oai bat'tom n 99 1886 846.48 `„ 1,118.66 z - O 99.5 2293 1,043.09 ,-r 2,161.65 O100 2726 1,263.19 "3;414.64 WSEItop > 19 4 4 04 /V� 09 t= z w F- w n RETENTION POND 7 POND ELEV AREA VOLUME VOLUME,,,m Comment DESIG ft2 Ift3 ft3 -" 98 9 0 0 98.5 827 163.71 153.71 r. bottom n 99 1153 492.75 646.46 z IL 99.5 1507 663.03 1,309.49 p z 100 1886 846.4$ 2 155.97 WSE/top 3S 3 c° o ._..�. uS 1112. c z w w I INLET & GUTTER CALCULATIONS | �W, 6 mt-�k E ` P ■ §ID to # 4 �gLL§G . tM z� ° )Co §°� ~ �« #W > % ) . 19, � ƒ 2 �f�\ a e. . \ §2m u - { UIr k , � §CL ® 2 _ ( �#==J ) � ` CD LD k - n A_j 0 2 2 $ / } \ , LL " \ J 2 § | 6t� > / 1§? $ \ f 2 G k = �■f ° 0 .0 � 22 - e� 2 | m ' / m f k U) 0 �d z E . } 0 IL 2 ! 0 \ o E z a - ` / ƒ §S § / \ 1 T $ ) 2 \ \ \ - \ k < } ƒ \ } \ { mcl � ( k \ 0 %). Um § / j} ) { \ }#��] { f { \ / a) \ ` ` = ~ ( \ � = e w 0 § M w k ; {§ # E - _ ® 2 _ 2 � � \ k ak w, a 0 c „ _ « § §<\ G \ $a %\ w § E r = G \= > } / I - §\\ | ' ; ; 0 3f§� IL \\ \ k 0L) /f \ }\ / k k / \ | K ) \ \ \ § « , =mo D LL_ � _ � , q, a § 0 k - k ( { c - - | uk / { ) J ) /\ ) k 00 ƒ< 2 6 2 0 !_ _ 0 / d ) | ■� � . s£ :k '[ | )to |.to § k = f |��§. . 7m� b + LL 2 ) ~ t�§« cc kU) > { $ C)Lu \ U. ■/u = tie bR ) I§3:_j f $jge ` $ 0 ( 0CL ® 2 _ (£ter] E § LL0 2 c � |In § §� s / - 2 : - . _ o z u w § - e _ 2 \ & Lo ; " ■ � ® � � A0§2@ } f 2 G k = /w■uo > \ � 22 - J | ® W 2 } § § 2 7 � w \ � . �� E \ § k | Z 0 L < } Z 0 ( 0 ( 52� � t ■ U. .0 \ \ : \ \ Lu 2 c k \ \ k z ) ) _ �/ � a) k \ \ �/ ) \) § { a} ) }t=�k / f ) § : 3 E a \ ( E kto \ � �� ` ` ~ \ CD c 05 r .a � ( ) (} , owg u m k� 2 A 0) ^ - ak ` a � a5 , � » « a f<\ G > - {\\ � _ © In G)§) _ \ )/ 2 » 2 ) / j . LU a.a. 9 ) § \ \ \0 | §a � ' } !I f 4 § | / 2 ; » { ; \= f - mo §\ _ § » ; '. \ 2 ! / k k\ .0 { ) - - | w 2 \ § ) ) )) 3 k ) k ƒ» z § k k |' / G ! m ___ w3 3 �-- 02 330 � $1 LL§�� � { i �§k % §Iw— \ /LL. U.| p k (§�dL \ . f |§ILL Scu - / §� o ` o If - 8 § _ o \ } r - e . . 1�2 R $ 2 `> £ ° 2 ~ �Lo %fxIf— k � � § kwuo e } ƒ 0 rj)0 f q CL f 4 J 2 c / \ 6 7 2 w \ - 2 § _ § 2 o z / � z / j 0`� ( - §[ f { 0 cc , _ \ - / - $ 7 ) K I : ■� 5 ( § / / ) � | 72� G \ @ » 0 ; \ �f 'o< § / as { ƒ \ )2�:] ) { k \ J!« 2 2 ) } \ \ \ 6)a)2 = @ sM �§\ # / 2° ) |/ ! $a`6� a r _ r 2\ 22■ a \ ) ( \, . . _ - _ , ) k@ (, 2. =2 a # \ 0 _ «§ f`° \ , � _ _ §#K� % E. & : ego = § } 3! §§ k= \ jk \ » ! f = ! 1 zzz 2 d \k CO� E §3 • • /\ - , ` � 4 2 E /� 2 k r z CL =;o _LL- § . a k \ Off s ] - _ k ( { } - ~ - | §. § \ \ ) /) 3 \ \k )# z § / k �_ _ ° / d \ 2 & 0 • �u 1 0 ee� \ LL w/� } 141 §� . o . � 0 LL. \ 10LL LL 00 k 2 E 1 LUzb� � .0 -j 2 BCL� M \ m - LL 0 ° Ci - a c 1 LU2 \ 20 © 3 K0z 2 2 > k \ co ° 2C4 | o ■ C-4 U. { » qk u §/ua ;■02 o - e� k0 06 m I uj /0\ k / ` 11 / } § 0-1 T - 2 - �� 0 - §[ / \ i \ i 1 ) \ ■ { - ` - ^ ° CCU, i - ■� m { ) k 0 / 220 m 0 5 , . 2 ( � )}) r / {} ) ƒ / )S�«k ) I { / ) �Z« \ k /\ ; � ` ` ` § \ ®\} �k \ S k { {/ | �§� ) \ 0 j� \\ , aul k � /\ a /( / 116 0 �^ \ L0 ` � \ \ § f«° / 7.2 \/ / ) 2 / 2� t } & c / ! \ - >CY y� c \ k j § \� | \\\ 1 s } }\ f © k % \ /ba- \ 2 { o $ % - § . ; K k a ] \ - _ m § \ } - - j �� & { \ G ) $j 3 ) }� ! # 6 \ u k_-_ § 0 0 - I ■� � \ § ° _, |�-jL . \ LL�ZE ; _ 4�k�§k -§�� 8 �MLL. a oo , \ �� j LL � . ) $LL BE A w 2 reo ° to a o . ) . � � m - . . 00z 2 > / ° 1§ 2 \ 2 § lim .52_K2 \ 0 � S \ %w § 421 / �� k m c / EMC w | £ c ! §■L } 2 2 . | 0-1 & o E , U)- _ 2 — / | ƒ� ( z \ \ co Ci — _ ] � � — k � � - } { t ` $ } & \ = 2 1 k E ® k / | � ! 5 ` \ _ 2 | _ :co: IM k � k ()) \ (/ ) \ \ §tom-j { { \ { \ )Z« ) 2 [ - _ a ! 4 )cr 2 ) f @ }{R | K§§ § [ � � �_ ) )� ` r) w in ° ` ` ]/ o§/ o k f , # )CN ƒ{\ G \\® \/ kk G\� & S J § — >o/ | /� = t k v 37§� \ )§ cc cm / » f § ) 1' _j z ƒ § k C § §3/2 U) { !� , k 4 ; E | zK2 § { § I2 { o § — ! ; k \ 2 § { — / % / \�, # { { G ) /w 3 k )k )) § ) k _ / 0 0 | k)\ , U. 1§�ID \ o�2b » , mj [� ; . � . | % § 10■/& 6 2LL o . � . /§ / \ 222 f LO g � - $ ! tj 0 M - . 10 '02 > 1 3 \ % ® CD �§ 2 0:02 k �§ \§/uf 0 ` o o - ,-J C.. \ E J ) / ' � \ � ¥ / ) 2 | _ § 2It k& < r t ! | 0-1 ` - z - ` 0 » ; | 0LL ) \ / | -LL i E - ® % | z� � ( 2 cc / k \ A j � > §� k m k _ § £ \ § 0 \\ ))) \ / (( \ \ ƒ )\_�k { { { \ }\ � 1 �§ k\ } ) \ ` \ k \\\j§ / © r 10 \/ I §§) & \ j ( \„ k { o{ _ } ) „ . _ - / 6 ) 2 c «A f`° \$a \/ ) § E �3K� > { & > % - >00 /moo ƒ k § ) �k§) I \ )� / # ) E § [ �� § ƒ \ S , ƒ §3 , 1 A % 77 f k 4 E [ �� C % � t ) }; / =o $t - § » E E { & « a g m \ ) - k / E 7 - - �. m ( » ) /) ) ) ) k ƒƒ z 0 fn k R d ) o � m II 11 II II 11 IJ Q V i U. i ia� m0JU. O U Q '3 LL Z U O IQ LL 00 p I�?W V1 In `, O N � V � 1~0.O Z LL V N c� %U LL 0 1 S _ ' LLGLL a E N N G! 0 kA ® O m 1�O w N c 5 �� X �Or2 O i002U _ A 1 LL Q 'DO Lh U �1� II II II II II U 7 N 3 O a ILLOF v ?� fn N I W F ILL0wLL OO O L C E 7 13 W Z V c fCC 0 0 \� J !CL U.d o > LL .+ m a) E x y w f/1 i y W C ul c , ' IL , 1 O y LL Oo C) _ ' c $ Y 1 3 r ` m Q' coU.O U. v r 1 y �A y J II N C , U N 11 V y q ! Z QQ D •III O) w \ A N Y N 1 N O > 06 > LL C p N T O 1 m y a ° o N c c w In c o �¢� ~ L o E c 0�� � g O� li .4 c E rn m m 1 NIS, N L m N �O) 1` \ aC (0 � � F j i8 O_ N h � � M a') 3 N N O C N" MO !n p w 3 1� m N 'D O t� 7 1 Q R'J Z a c o� al—y 0 O� d rP mQ O Z o = c c m CL ;.? N U N m C C d II II II II II II II II II w U O >Q O 1 O t J U N N O =O L 7 7 ~_ N m d 1 �w Q () c Q ° m U c o rn c�U o H 1O LL 4 1 JaK i o O)O O) E OU II II N N — 3 C_ '� J F O O O , Z� Q U •y3 N .? LL !n U J j LL LL 7 O. LL d ! O O. a 10 co .0 ry C CL a) N .O. N m o m o L E i m 1 U U c U 11 C 7 7 1 W Q y m a u o `m > 7 E m u U O O LL Q LL U 0 U Z 7 O l--- a 0 d- N M N °= 1 �► J � LL V >. I Z LL awf- U �Ej�a.. ro U c Q LL d I�oWLL � > (mLLZU o ° 10 iLL 1 iccczFN ,c O IDS JLL Q I�0ZU N 9�- `tl- �V LL m c � � o Su cs U) '� I OJ W LL c .0 �i �r y = I• LLO. d C ) - e �ln�o �o I�~W .! m O 1f" J LL `- Vl100 z0 Y Oi A 1 LL w O d N7 d n UJ� > 'pW M N y N F i�O w J LL 10 o zU ° � V C � m �— 3 o!S o `LL J LL �° > LL x .• a' m�^ F I w E d } C m f0 W c ' L O a� 'n z0LL o Z E ° I OyLL o 0 1 c w N 2175 U a] O LL 7 L � n T U c I U. U 5 V a) O N 1 U. / V ``y °Oj ' 11'j 1P Z } o 0 O CO, `b o O N v `u' p 'N T O P m UI p d L N 3 II O U C L E rn o `m c o a) c c ° m i o y o m¢2 ~ y h LL E wi r E E r ' 3 a a; a) M „ m 7! d L CID, N 10 CON a O O O ° y N Q in m o I 3 w m In N C al p Ol U N m ll to `c O M O M N (? ry m Uc1m0i c 'mn CoUm 5 ULL V m FI-I :I°I °T I II ° C d II II II II <U N � > 11 II I� o O ' o W U LU CD Jc oU N P J Zm ° E U II i �o o o nc nU LL O n a p w I/1 U1 ! J# m UN a a a) m m c O U c «o (UU E uL E 7A > a) C L C7 0 0 ii UJ(da Q LL U U U ����.� U 0 Y 1 uj U Y I LL Z O : U lui �O wio LU W IJ Q C T a 11-- �OWyS 0 O u im LL 2 U o O y� t1lw r Z U NI V 1 � r O Q II II II II 11 Vl vi v c a r L o o. o o. II O C v ~ y " J O Y 2 "M = OrLLZU� O G u o m f y O N O � � � u o LLyo�Ng rn ! } 2 U O > LL U C N r v c low I w = (OWK— a a C > oa N IC LL 1 m m o m n o w d C Z t Nomo o �t o.�mri �, YJ c W n u 11 II II II I1 11 11 II O O <NJ� > u aNJ� > >5 t7 waE O O Z i� c J N o 0 3 0 o d .cam Z m 4 O LL a o 'F a 10 m LL u p o_ u E ' g u w rn N V o m Q o + u + .r c E u rn o c w =¢_ c FIL E (7 o p��xY� E Nei s,K� E E00 Q[ g331 L (n O ` C A C m V C 2 U N N LL y 0 O c7 O W O m 0 m O N N N d¢m O Y U V- c i. II II O O 0 Z = 0 — O U .^�.. p z C Q u C C II II 11 II II II II II II II II y II II II _ a V uN c¢U p p°o 0 0 o N J U N J w > H d rn 0 0 0 w O o U c m 10 A m c� o c.�%i �" m v LL ' a z 4 0 C. m E oUNO U - 3 c c ~ o o O AF,d Ww N rn o N CL > AW I ay U ZE U NLLc > J E LA N > O L UOO ¢ U = U$p LL < 9fo 'Mo §B \ �U, \o k)§La §03 - 5( m .0 o ! \ % _ 0 0 Z \ � ' oV \ ) / E �§2a 0 / » `°� s � / §� ° ) w 0 �k � E k t CL •o ! \ z ) - [ �W� \ - E !ri tT$ ,Li.Sa ( � 0 ) - - ` ` !a E e o ) ƒ } ( § { $ § & §/ 2■ ) / © I � \{) \ �ƒ ) + \ k£��\ \ { \ / cc\« / ! ° f kf 2° ! t) CL }, � .00 § / � /k \ )� / §$«& & ' - \ t ° \ o\a 0� A\ / \ \ / \°` ��9 ) e ! & !\!! \ } 37 f e = «K2 k # / « « § ° ) ! - ' } } \ -Jk § { cm - )! ) / ƒk !! Z § 0 ) _ & J ) s vp e � M � � J QCS Y i p W o N .� �� V Q �► �l � Z � i LLU oLai ru d y 4 �-j J ------------------ U LU m Im O j w o c 3( LL Z U o 10 L \LA. I�ZF 0 �r3-W'LL �U 0?CJ 7 m c 1 r ° I d v _ oa L o r y = LL p +�i�x E i N C v 1 0 m \ O N H W nomov o I�OZv Gf ° -P, v o (I-LL.be a ' `U)J 1> ! \f to m 3U) N 3 ~ (LLo,�v, o LL o O L N ° C7 3 W Z V o LL v C E I�d_ r C U) o LL 06 W M > o (D t i w 3 0 C M cLLJ 1 Y; E m Z0Li o w O 3 3 I �Li� o r Z 0 \ N N 1 m ~ I LL M � t o U C N \ U O V A O = II d \ 3 C (0 ° ~ N Z Q CO v p N m o m >y 6 a N W n co �1 U N CD O O ,?_', t0 p R' N I m V N CD Ino N¢= Uli E w E E ° I ° o to'CO, $ c A c Z mt m�1O p m� o ~ o 00 vi m IL 3 W o m of N o N O Z d N =� C O = C =LL c d 0 O G N O.U� \ pZ S •� T N II II O f. C U 7--. LL C 'C p II u II II II y II —0 II II w U °N c ¢U U c °o0 3 a- c m m C7�J� u r 'y of yd0 F-W O t (7 m e co co y U R In B F- U V rn F .'v v iLL v I Z N CIO O) E O U N O !n II 3 c 'c ~ O O O I ? z U Z = c y C 1'• LL U U S J U lLL 7 a LL d \ a a a N O 0 ' A c 0 N m LL W 2 O M m c o LIn E d M m L N U A > N C N O O U U ! Zak S F- w U 000 iLL¢ LL U L) U I 0 U' j °w o Iw c (q J ru al IQLLJN ^, ; K U. 3 to'w = c� •U w 1(n � I 1 C 13LLz_u • U cc Io ( O w .6 14 ~ n O L F J LL O m 14 Q U !U Ji c r � 1 ca I 3= N m ! Oa� 10 l0 O p J w o drn pv x a C i LL O + O O) N t ° L N OOP N O !H3JtNL CJ • y fq Ip � N c o v o 10O2U � y �j�j� U II II II II II 1 a)0 .0 U) N OJT > 1�N t.. 3 O N CS 3 LL ll yo o H O t N E O 3 W Z U p LL f.1 Io� o ca m iC '" p> 1u a w 3 M C -E U,) � I Y W 2 E C £ O w 3 i Z a o 0 E o o OJ-1 o C V1 Occ LL o rn I LL� 6 O N m u ° m ; d ^, ��c H y c Nm5 •�LFph0Ouryry3U1 LNOON�a mc.mCmNC aQNVII LUN0II 1 cCpN U CC HUUC 3 •F NCO?p MCyl ON Lcc�oUII, f Z(J?/Z! NOm LO to UT m O p D O > LLN II , O CO CCE � E Em � o o LL Gcp m m - y MN•SyOf0 N cO m o t` U) O N w 1w Cl) N a JN O TN L 0 0 40 O O 41 O. � U)�O wC c mddI N 3 OL O p�oo rn w p LL W C U " F O O O ZF O L .21 U (NtiU3Up) LU C d Np A > y U U OO E Q LL U U U J C7 C7 U I OJ= O 1 f LL V 1 ��OF LAN n 3 ,OW�U N � < U U IQ 'or�-j S 3LL_Uo ° 10 L !IL N IQ O !ui ky f'Yn •r L ,� J U n I�0z IU LL m c 1 � o ca V1 ! O a M •J W o t d� y c LL Q O o O� 1 J LL D +o oN o 0 IOZU '- p Ln \ N J w > U lO W .L-. N d N s 7 3 N N N Q ~ LL O LULL LL O w `O c., E 110 ix 13wzUp ILL •+ CO O O m w ( x� p o C W 'tom o ! m x c E C 2 1 lu o , za z0LLo m O € o 0yLL o Z O G N 1 3 m 4 c n I :LL U 1� Ola O N U `N m NI E m 1 i 2 C N h M. a` a`i o o °V I m N �. O O N LL p M •fA T � p`a 1 O N L N II } U C L OI a' C W C a 41 C C r I!'1 L O m I N � p nOiQ2 H_o E p�c� E E c m .� C c`Ni 1 J N O C LL j I+D EL_. Y O) N d m .�_. U m O O cm m C I O m N LO ` m m F O t7 O O) O O C O y 1 Z �„ O N L m 0 L V Q N f`O[f 10 n y •y N a w Q 3 y31 N N C O1 (n O w O m O N N C Ip C V C = C C LL Ol O a N Y G 1 (/)? N O N C O O In _ O UI ` O _ 7 O Y O N 'C 11 11 II II II II m n II II w U fn _V N C Q V U p 0 0 3 V m C W m N J > U W O) y 0 0 I (••' L Q r� c m U cN o m Ln - UU F� :3 E I .wja U N rn° rn E o U ° ° � � 3 c � o 0 0 1 Z� z U � E `er E f' LL aJ ° °LL Z) a LL a I Q a m N N O .m. a m N O1 LL 2 �d.. m co m 0 1`p 0 L E LL c m m 1 U (j 7 O L N O ci A > N C N O m U V 5 F N O U 0 0 LL LL U U U --�— f7 0 ` Y O LL V ` 3 �10 LLJVl 3 I0 .0 wIL �mo Jv� LL _ U U �3 LL Lp., r N C I O n�i x a? E LL `O O m o IW r o + ov`�iN� 1'�Zwy K n �O V CDN O it i z u ` l�LL .. cc N II II II II 11 r O Q(n J > ,� = ~ I O a m L -C 1 {L O O a 1 a� c e o, a- d S (� w L V l0 1r 3 W Y (o jozes ; U LL C U o N N 3 N Ivry o O r N E N '�>ZV o V 'C a,r a c IO�_ m o!S c�a oly�a `o G) r M nNcco m I 7 O C (p tr 4 1n o c+i Y O x W C O N � i > E C LL i = C O C O € o ~ I 0 LL C, L° Z O c ` N t U LL U C N co N O > a LL 0 M 'y T > I m Q N .J 17 E U rn C c N �' N C C d N L C p N i N ° NQ= -T F o E o o� c� E E 2 � y w •c o c LL ° E m'm N om Y rn it o min v� A p y FO- ;(Omo co $ c h y co 12 r o 3L mo L cL 10 ; W Dorn ? r w fn y ✓ a 0co I 3�J Z 3 O N C C p IOU a = C C LL C 0 0 0 N O G 1 10 N a U , Q y? T N II II O �• C U LL •� C C to II 11 II II II II y II II LU N Q U U o 0 3 x m LL N J > F > - >0 0 I ❑ L Q U C t0O UN3 U H V a ~ JLL EL (Y (1 O 11 Z 0N p 11 UdE O EmZ (n c w O o O c '3 N i0U )U l G yo _ G m S U V OL ll L c U L N E c 7 A 7 I LL, ❑ y C L(U U A > > C N O L A _ ` Z# N H 0 U 0 o iL< li U 0 c7 �{ U UJ �+., E ++ o n 0 O N O II II II II II � > I OW Y Q F- 1 J= O , LLU , I�0 LL LIU J y io Ul CJ w c� ,N.. InOr CO !mO JLL O u o 1 LL Z U o N 3 c ,f tf E �O � o U. 0 o Io Iw R + O01 GD (M 0) �or:oo 0 7 LL n 'A_ 2 � N O — I~3 Z V C W IQ 1-3 O 1 f)U. _. r . Q 11 II II II II �z 2 m o N�� > 1..3F% n w F- o w +. LL a °�` . d c ^ 1-3w , V1 W IC u 11 O LL 0 z c LL Off } O O N 3 o I�Oy~jVlo w O t C au I W Z * V C n V C n x w c ��a p Iri LL C y > ��IKa E U. OtS 10 IC L voi, O 3 m F- N O(^h � 1 Y.,,1 O c y p O O N O I Q ' N C 1 W 2 a u n u u u E C Y N f7 J > 1 d W Iq. L-• O m Q v ! Z0p c F-O 0 I y LL o N Z O l0 — °� OJrn U C N W O 1 ILL U Ste. O \ _ O V N 11 y L Vi y U N C U F- > N Z Q y �i A > � m IN nGj ac ac a o O C Q 'y lL 2N >. 0 P 1 m y U C w U O v C 1C C udi = _ .d. N `C` g m N I N � 8 N ¢2 ro E j C C O E m ? m u m'y +y No�IploI :nI°I In LLH ��-11 m o lc° ao� n d J 3 N N O O Zo a= CLLM G O. O In uui S<U U -0 ° vcc y > >0 0 Q0" iU o c Cli D oU F- - 1O ) E -c C ON U O O N'U C •3 y C LL a�U �J j LLli 7 4. LL d 1 U G a m oal m m o E LL m is 1 H 0 U C L N U A > N C INi! ` L A N Lu 1 ? N 7 J F- m U O 0 FL¢ LL CS U U 1� _ _ LL O U 1�1mJOF N i<LL 1Yru 3 ! zw OW U 6 N lj 1�t� v � o is ImozyLL s u O u ; Z U o cM ss x�� E LL R Iw C O t m 7-JLL 1` N f � Uu• p ` IL II II 11 II 1 . 3= v I o0 o� s L "o m a o mu 02V y y W 1-J- m w Y 'j } a y N � 3 U) w 3 nIy SoC/Cjy & rn 3 y N''ll d N 3WZv o f Ti LLra 9 0 C y W o �oNOc� E E 2 II II u u u $ m p ?' 6, C� > S ! 17aE ¢ t 0 3 W 1 zoo_ z Z € 0 J U) E m y v }1 a o t0 d N c H \ O U N Q N U O a U N a u N t 3 N " u SO O y w NQ c L• �� E o N�xr E E S o a m 1. c �^ o m 1�/1 41 L m Q O 5 V7 m 3 V O N.m (V N m y N 3fV y,.j C C� O W �mc; O °� a O N V N I OKJ Z O c m C ° C 2 ° N LL T `O G N G U 1 O ? U d c_ 9 �, ::n II `o y o N u 11 n u n n ° y n u u j U. U) AN �QU U a c U" "m- c m W W > LL r o iaO L Q m o v a o� o 0. E F m V LL V 1 '4 z O U o n u c0 E O o N o m U c m F E N I 2 H d c c c �ainU �� °1 °iL a° LL a. a m` n 'ul 3 5 � A c m L ° ° > > C u! 2 U 0 Z, N p Si 1✓ C H to U U .0 LL.¢ lL U U U .�WM- i� O f7 � � LL u° Lu Blux-2T % ]Kk° vi ] fG § ce�§tee u § l�� CO ] §�� ! �U.�� ° 0 § -iw ® E � { U. ■ k �©2 } aM m�) eo� �bo � ' - .0 �5 §k�, / 2 �LL @ §@ - � JJ ' 2 « � � 0 �� Z ) � | z0� ` � \ 0 k | Ito ( k ! \ . � ' LL A / = k - Cc \k \ (S_ ) f } g)$ § \_\ zJ«/\2 � !§ « �! , I ?i #;& § ) t£ f & 2 \ !oa K■ ! a{£r Li }\) 3/{ A / m /| / `-/ - \ w CL ) / 7\k k7!| { \/ /iu / u k o { 0 \) I O W Y J Y O LL I,u 0 LL i W IX n 3 Io lL—U CV \ f N Q •U U 1� T limo o o (3:U. o U 10 L 'ILL o � IiCZH� v £ ( 3 J 0 n aV ILL. rC r O d m 1 fq 1 0 IC Y 1 LL 13 o a 1 41 d c 2 r ° to IL Y ILL d IOF C c LL a - 3aV7' m to � N 3 rim) 3 ILL°WLLS c jow?oo N 06 f0 IC ° 'LL a o > O ++ w m L Ll d N F he c° C LLI °c i E O ( �a � L O 3 3 1 Z.�H O L J(n LL O Z O \ O N dI 3 c o O LL cm n m cLi m LL U o V C N n L y (p C U F C 1 l0 _ N _ N ad. d 1 n m�p 10 N U N N O O O .T. Ip Rq' d I m`a rNil N O N LL 1+0 T I� O 1 p d L N 3 II N ) ll] p L 1 E = U F O O C 10.X N C C N L C 1 m y o N¢2 a!�c�� E E y 'r a N c c g n y 1- 2 NL m �0 O �f/) 1- Q 'p m<'O �i fA C N a �N i 3 ru Q 3 3N coo 01 rn chin Ind a ` CD C', m N�N wao ! QU Z Z O N C 0 = C CO C m a _ Q G•a N y >, .• II II p yl O .�°- C •� N II II II 11 II It `7 II C II II 1 W V f7 �N c¢U U c 4' 3� 7s -2 M QUJ� > H > > >dd r ¢ o > rn m \ ~W U c m w U�No m� ~ UU I` o ii 4 J>a Cl , ° n 0° E o Ij a II c 11 3 c a o 0 0 2~ co c 1- UU aJ °ii 7 LL CL ! Z m '3 v° .? m y a 5 i w LL m O a m O.0 A N D L E LL C 10 A 1 F- U U U W N N O V N > u0i E V U 1 C L N U N > N C N 2L N m ( ? 7 H'rn U O D LL Q LE U U U | � §�j quo �0w R�2LLm ( I■fib % | %o§(Aa . > LL \ to 0 ) )f | _ k ) � %E § .05 � k _j- _ . o oze .x e _ , - � � � kN ` Om § 2 ® § t§§� $ { � c04 i k& 2cs 0) } / § � 0 I ; # | 4 - f w § ` .c CD �� ■ It k§LL ) } ) ) � \ | \ / D : �( \ \ ) _ \ E ` Coo. `5 \ _ ƒ C cn / / § 1 to _ FL , ) )_\ \ § l )) 2 Ac{, ||| ),- ! k/ /6ci ! Z ) , \ 1k2§ z , _ 0 2 13 7 f 77 ,cli >\ , '0G . o} a E<o §a a $\w , & & o\ � A< � J§ �§m \® > \/) k! f f2 | k 2 oW .- u \I ( )a 1 § \ F \ \k !# z 0 e N U C •E IolonM� � C-4 c j o u u u 11 u i J > U I !V v� F 0= o C7 1 LL rJ O F o wU W'IA� C V N m Of 0 LU LL o C � ��LL?v O O C * x c E O c iC O d v IC,�^m, c�no co CZrVJ ao 0 0 o p o v, C4 iyoZt� L) _ 1U LL C N II II II II 11 1 m 1 > 7 3=' U w r I 0 L 1 LL Lu D O ar C � 1�0r r t G M Y MAIC (002U N m; U IrJ— LL: O .0 119 N d 1� =F 3 3 O IUL W O t Cnn E °+° " (O�ZU � rn LL V V . LL C N c I d ca m coo U >> °$��x� E N ++ w a W 3 nCD co C ; 1 N�CD (i Ne N x m o o 0 1 Q> W cI I 11 I I I I I I - 61 CL C a 3 3 ~ zoLL Ld Z € 1 Jy O � ® LL U.V N L �• VVV U c N O CD U O O N `9 v N � U �I � 1 y •� 0cr O d N > Q •N LL O v N d >O t o N E rn K o c c y c c N t c ! N y o ¢_ ~ �. Uli E o����a E •E d 2 o d U c10i t N O c a o E Y rn ' S•J 0 d `� d °'L U d +ml��orn M $ c co "fir z f' ¢ 3 N L l�0 N r, 3 D' V NO N N fn 'lN W d j 0? 1 W 3 N (n C O W Ci O O V V N 1 O Z y ON C O = C3 cLL G C aU � �Oy? a `I O N O G C II 11 w WUc > > r00 U o r C7 U Cv.y om h b d Uo d N ~ U U F O I?md LL I1 a r~a 11 (nE ot e cm O c dLL c DAod dNO. im u) UUo E i c o L C U L d O c at N d L N O N > N Nj E O m 5 F- N U U 0 0 ii¢ ti | � §§ . °° ° o ,.Jo E Ns_ � ) 10 ) � §` 42 k mow` # CD tL §S ) { ! 2)7 @ /��2 ■ ■■u � _ } \\\\\ \ �� , °° of > » ■� m 2 ' 2�U. 2 § wi 2 m b)k° - L.0 k > k ` ■ g # ` §U)� \ § f CR ��§3b § f� § Q � 2 3#:�/ ) 1' \ ad m } q = \ I ; ¥ , | 4N � w | !��°^ • � 2 k k §��� > 00 k z k K ��� � k - / Sbf \ } LL _ @ . ! W �I 2 _ ( ■ _ )` 2 _ ƒ 6 w > \ [ ©� e ) , � 1 ) a )f § / a} 2 / \ k$ «k 2 t \ \ J!» • i 1-5 7 ■.) m \ r } \) @L \ },��� ° \ \ /\� � .$k� � \ ; ! 'Ir�. , § 2 � a v� 3 , . , , - . t « )§ y<o � §� )} � E Eef�� > 2 R ) m - �oCY A • o - . )t§§ / k� \ / ! E f j §� 7 \ ■ (( § lL) )\ % »ƒ 5 2 k \ | ■� $ ! ; }a f � �mo _ - ! � o E ]m Cc c - _ k ( E c - - | §, « / ) /) 3 ) \k }# » 6 k § ;_ _ 0 0 i U.�3 3 § §�§. . ( % ■b s ° \ §b` - ° MCC-j q�� ci �) ! ° S° { , §E§2m ! `° §)!° - : } R UJ | u.CL 0.- \ 2 % - 022W� \ _ � a ), f$ ) § m ! §§�LLm ƒ \ k c U) ;_�0 El k 1 §«u � ) � § / }\)§3 / | �) ! } \ c ! ' /�k � \ !� 2m | / | ! . kLL _ hum ) { • LU % ƒ / \ _ ! ® « §i | - � � ;/\ 6 } 9 . E 2 �#=�) ! ! k N §f - ) { ! , \ § (k \ \ \ ` C a!0 | 22§ ! ( \ ! \f C! ` , �\, 2 - ° 5 : \ j} \ �k } m® W | \ { - {33 ' �W� \ j {\ \ $ )\\\ / « \§ / / \ «r , ■ { « i= £ ) - . CL a! ¥ - \\ / ( ) - - § i }k k u \k 7! / \ 3 3 i _� ) § \ . ..jtu o 3° ■ Be q�§, \ §�a! J - §§§tea . |■�■u� $ � _ | o §2§L 2 \flu. i m | U.W A , - �0 � r �' \ \ _ 15 ■ - Me` k 013 � � � § ■off. U. r #�zb7 / off_ 06 mm (#��) f E a � Co ! 2 ■ G)2§N § -)! f w > E § k 11 k � | } . a■E< } ) | ! ]°� §2E� ( - _ § � f i .LL ) « - i § 9 { 0 > in § ® ƒ ! 3 k eƒ} § \ `f \ / ¥£��) ! B! _ ; | )mom ) / - ° CL $�( < ƒ ) ;\ ; ; ` & 3 ®@ \ ` Cz , 0.-z ``` \ � ® \ !( - - If }/ \66 § ) ;«A \{ } 7] ) �G«= % / / ! ( - |oo �Lu0 \� co \k/f k } �/ f Z k \ «IL e( \ { { i{ £ ° : - : E ! a - k} k § { \ - - | . \ \ E )) k Jk �< = o G 3 [_ g G ! • � �)A B �22R . | §[\u. ! © \ M CKJ �� # oo . 222�/ � j LL - �G«J > " � r } | fib§ 0 � k 00 - � � ca 1,04 k-ruG@ } 2 ¥ § § t�zIx u� ) u = & � `` 08 - ) a _ ; ; I / x § t $G«& ! } �IWL { 2 2 JU) ! \ f ) \ §S§ \ \IT c $ \ § - . ;) �} k \ ( (\ \ \ �) f �� { \ • � a!, §G |, $§ z |t ! © # 3 7§/«[ 7 - , .o• « k f . .! & © - - z �` °� )\ /66 § ) $®, j{ } \) { !G%; ' } ! ( - $66 � ��IL § \ .20 � k \\ \ IL I 0 \ IL ( f�/ \ \\m ) % - - - fa k § \ �. - { j /) 5 k 3! 7J z 6 ) U y LL O LL U i'0 �LL U i. O IwL S c + u i3LLZU o u r a = O d os�rr,�ta E LL t N o vi 00 1 v +o""'o 0 1!a Ju- t 3=U a W rn � m II II u n n vi OLE, 10 d LL p o t 5 a � o t .O m iooz_eN N N t0 O 'a d LO 2O j 3 En 'a 3 h �LL 0 W LL S m li V E1. + w �3:E 9 o C r c_ oO 10 M ° �ixx� E LL N N O CO W 3 C H ~ moN�m W o o N o m o 1 > m c C 2 11 11 II It II ' E O y NfnJ 2 > W' N t a LL i O- O 2 F OO O E o m p J(O O $ O `y �✓+ N W W P d O INi O se Er Ix J d VI N U — N yU^31 d d W d 3 O N d A n }1 Q Q m UO N y IL O A q N > { •'coN O E v C II L C N F N 'e Q2 y N C? o dLL 3cL mrio m rn v� N o W Vamom m v ri c JN �. K,W.I Z 3 N I _ II II O O yO II d QII IIp�ZZ~ N U U = WON � LL u CYa 5 W LL 4 mo U U � m ~ o w U O v7 �c U D c IL O O. dQ U U w d o d > uJi E > o m u d u� L Q Z F- N U (..7 on LL Q li U U U (D . it�t!/ ! +c5 \ �Wo Zi�02�; ) U[Q\® ! c §} 0 §° CL - qA«& / j \ : - � (0 ci a } «0�in 2 ] [%z� ® . §2 _ - d3N \ $; cR 020 COO} ii / c §/�z \ � � 2 - I j r _ c ` ' , § j } ` ( k0 � | - §2§ : | - / _ \_ ! \ ƒ 22 $ \ 12 » � � ! c + ® ® s j aƒ t ° "#��# ! \#��# ! » \\ - , ( 1 § ! ) _, ) k �k ` i �J§2f f , - §/ i eee I :~ § - .° ` _ * e . .. _ _ " " k kN�� \\ k )\ f ;a«; ! t /\; : t 2` +`° - Ea«= 3: z �§ £ 4 \� E 1:-c / ° ` ` ) / z�k } { ( �} { _ « i t k « , - a E - \ ;/ 4t { \ - - | 2. . { \ : ee u / }k Ii , ; 2S�=# i k§§C5 » U) �u §)�\ 4wz: ( BCE® , / )G _ $ &ale ; �■«e° 0 . 1.0 /!§® . Z e� _ m . w- E \�Z s § io03 5 2 E2` - J % m ) §§{� \ % % ¥ § \E3 { � 0c ; .- ad 2 2 -o \#_�# ! /� ; I ] 0 \ R(0 t i ��u'E3 \ z § 0. ` k2E� k _ U. iU. ! _ \ \ / | 22m � ■ OR - 0 �#! § ;± ¥ 2 /#��! ! ! k f !« ` \ 9®a@= � � )� , o )/ \ ! \ 2(2 m - 2 It ) - ! 6 \;G ) ) §a, j{ \ - f " \ ) � ) $ L) / - \\ ! e / \ / %GG � �Lm \ } / �! \ | j c 2 (\;u �y & : = 2 \ }\ \ }! I; z 6 / \ |_./_ ~ 0 \ | w� x° ■ ice§. | B�.� f $ , / 7§2S5 ■� §��« � o } k31 k ! ■ e §§� J tC | k K9/bf ) 2 §■�«J | } § )2LU ; 2 a f | �Q\& | / ■ a 2 k } 02�f LU f ! $ \ t \ k2 / � | q �i) � § ) \ � k■��J ! f � � § ��« ^ f k }�� 2 f � - k k 2 , - ® - & ■` ° k « «° o&■ k\ \�3 ) t\,� L) } kk C !G%& i \ / | L oo ) ) s §� 2 ) alum )\ w AR e a 2 { 2 ` EE) / $ ■a7\ % !I 5 ® � o �} \ ! % ru, I 3! 3 k k! )! J ! ; 2 j « $ - �_2 /w0 uo .§2 §§§tea 0 ■� ! 00 \ ! a_3 � o §�� A ■ § oo�& o - � 2 � R�! - 2 � 2 22m ` % & 2� a / / ■/w� \ tt S«�) ! } 77 � $ I ] / \)\\§ § -) : { 0 } ` t ¥ \ �G!&! \ / 7U) \ c i \ f ) / 2e{ ^ Itz { a !! ■ eƒ t ( / ¥#�_3 ! ! ) \ . J!« f }\ / - - |�\)» § °OC , j K2§ ; �o � �a w=w _ _ ! §/ _ ! 2 # O`m c , u !! « : ° fEa= \{ / \k / !®«� | / \ , 22§ ! : /\ ) \ /%)\ % °° ) Z E a _ f { ` `7 f.c !: # - = 6 E U) / \ - - �, � § -0 ) / \k iz z 6 k k _/� ° 0 ) [ /LUo LLao Q§ . §LL§§ ( _ § . rl�� S \U. 'r; $ . . �. ) ■§�§/ ) j ! §�zo } G«fit \ s - 2 0 � @_j- - • 2 > � - . f 6 § \ mo { \ § � �Z2a to \ M@i .2 (f��) ! CL k . . { ) A� � `3m§ Cl? ,§ , ! � ;`E:° § ) \ IL_ � � 0 $ , ` F U. | o2Ea o ! � +- � ( ! �k » } f a #! — « wƒ ® \ \S_�$ : I \ \ )!« k \ ° ` } /OC j \f K§§ @ ■ ;` @! .2 w„ § a ; ®` ! , 2 !#«_ \{ � | / �k \ / \ H:i , ■ J_ « 7= { - E5 / 7$ k \ E } ! / ) )k J J! !J z 6 k k _ a ) - | B) � . �L° » k2§� . ) ` / 20 & § �■{� ! 20. !*r2; 7 §f/�� §(E ; ` - KO\ 0 UG \ 2 7 p)!U. � . 1 & 0V 0§ | ! \ @ ! , � * 39�2 \ k � , E U� § k � � - # - � w / k E f )K k { 2 / f SNt « � ■ ! k | ! �t eff J { ;ƒ k ƒ } /9 I ! E k 6 \ ` _\ I !k \\ . fj 1 ] � / 8° # f . #! , ,a a<o a § a65 " % ' , � KB ■f } § ; \ / ! q ! &G | . �,o ! : 012 ao e a , 1 | 2 �_ ! « » ƒ m. J3 " " 77 } !! \ ` � 1J----- ` | j 7�0 7iLL § \ ` / & {ku a L ; u F ; o H0 Lu § |i li! r �fb; , § §�• S [ ��■\ o §o _ is �t)9 - k ®� \ | fi § m ) ® E o_. § 4) ° � p0 2km ` t - a Q CM \�§�a \ ) 0 � ! /7l�� � a \ . k \ � Mm t } � m E k % j \ 0 | \U) \ § | ! §� , { _ ° - $ { 12 ( | \ « ® - *i 4/ $ \ /#_-) f ! CL \{ { k}` §\2 ; )\ c !-o . _ 3}� 6m ° \ , m/ { f} )/° f j22%2y��&6CO M. !!#� ]{e \; ,{/; 0A2§1 CL m � i � \ - - _ 3 § E \ / / [ �,� § , ! J) ) / \k 7k » 6 / / i ° & 3 3 ■ Note:When specifying/orde grates,refer to"Choosing the proper inlet 5 .�e"on pages 117-118. For a complete listing of FREE OPEN AREAS and WEIR PERIMETERS of all NEENAH grates, refer to pages 306-311. R-3067 Combination Inlet Brame,Grate,Curb Box Heavy Duty 30 3I4' CURB BOXADJUSTABLE e•i0 e• 17314,I• 35 1/d' a 314' 11N 2R' Curb Plate Available �- I}� 7�. "�+r+y�.��' 33* 43' 31' M _ WEIR Standard Grate(shown):Type R-diagonal 1 SO. PERIMETER t G rae CATALOG GRATE FT. LINEAL Alternate (s) NUMBER TYPE OPEN FEET R-3067 R 20 SIB R-3067 c 16 5.8 i R-3067 L 2.1 58 Type C Type L Available Curb Boxes:2"Radius Open,3"Radius Open,6"Radius Open, 10"Radius Open,Mountable/Barred Enviro-Curb Boxes available,see page 121. For Double and Triple units,refer to R-3295-2 and R-3295-3. R-3067-C Combination Inlet Frame,Grate Heavy Duty1,_ 39 1/2' 10 1/ 35 1/4' 17 1/2' B • IIIIhI�1 1/4' I 1YP. 4' I 11� tom'1 3/d'I _ 43• M {. 31, 331/2' WEIR Standard Grate(shown):Type C SO. PERIMETER Alternate Grate(s): CATALOG GRATE FT. LINEAL NUMBER TYPE OPEN FEET 11111111 R-3067-C C 2.1 8.8 �1' Type L Furnished without curb box for use at driveway locations. R-3067-L Combination Inlet Brame,Grate,Curb Box Heavy Duty 3e 3/4'- CURB BOX ADJUSTABLE TO 0•N/ON 35 1/4' '-5 3/4' r- 17 311' 3,TYP• 1 7/B• 1/2' -�JI/�+�/f'7j'i7��� e CurOPlale Avaltable 13 t F- WEIR SO. PERIMETER CATALOG Fr. NUMBER TYRPEE OPEN LINEAL Available Curb Boxes:2"Radius Open,3"Radius Open. n 3087rL L— 2' s- Enviro-Curb Boxes available,see page 121. w� -- - - to [discharge vs Depth On Grate 94 7 (.�. ?", c rw tee) too go 10 6o < 4 ku 54 7 d Lu 6 z o� IL 3 30 d U. 0LU 20 3 Mtc.waln 30(,1-�- ae lu2 � `'- 1- 0 to— < L 9 _ a �. 8 = / �vtic� CAeklty '7 UJ .9 09 4 Lu •6 .g 3 = 4 VA .S �s m.il Jialmlu..1M.. �M"� :■ : � .�..me■■ ■ ■ ■w■■ Mann ■■■■■ am■ EanE■E■■■ /■s■■/s■/ a 1 among 111110:1 CUNNEEN"'N movirmnlowi = ii::iiiaiiriiiGir; :: i�MEN moo ■ MEN ■ ■ Mw■a ■ ■■ ■■■■ /■/■ ■■■■■■■■�/■en■■■■■■ OM\N '�■■■ Moo ■ma an MEMO EMO ��■ENm■a■gC■■■a■■■MM■■s■■®■■■■ 11ij■ ■ ■ Una ■r■ ■ ■■ �■!!laiMK1E■■■■■■■airs■■■s■/■® a X� ■■a a■■■ ■■ ■e■■ �./S.iQn/■■/■■/■■/■■//■■s■■■■■ ■w■►s ar ■�iJ10001■ i■/ifi ■■►24ANOMME■MMM■■■■■E ■■■■ ■■N.•>~■■SIZES� � .. ■■ ■■■■ �r�, ,EM!"2M N421■■11 MEN ■E/■�■■■■ 0 gussia MEN ._ ■� ■r �a■■ ■ MESON■■/�T■■OEM■:=LN■■,VEM/soon mama. a 1E�SEMM■En■>r.`■d. ■■■r:4Si�■//■■diem±waEa■■■��,;�� amongMamg■y�■Bob-Fa'+ MEO -� ■■■■■a■s�+■■��/i■■a■�:.���■a■�� owns ■N■■N ��IN ■■ ..�±h nn s■■■gym■a■ ■s�...��wEa7■aME■■■/■. WWX �■m■ ■E■■ Mason r■��in": ■■■■��■a■ ■■S■■■■■a.■■s■� ■N:- irrn'�iasw■�aiw■E■■■■aanEm■sn SEE/i//■■■■■■■■■■E/a/s■/■�■■■� Hi ■s■En■MnE/■■!■E!■a■an ■■■1A ■■■■■■ ■ ■■ ■■■■■■■■■�N■■■■■■■1 �■o�Ern ii■un n■■MMn■o■n.0 C E/■■■ma ss ■■m■■NNna■■ MEN■■■■11MM■■■n■■■■EEs ■S aS■EE■E �■ IIII �� iI � 1111 � 11 11111111 ■■■ ■mM■ mom■ ■ ago■ ' EOMas■s■■■■■■na■■■ ■■a■■ NE■■ ON soul som■■■Ca■'li l�i`?i■E�i�i■OE� Ball rlo■assons■ ■■■�■■■■■=Moo■ ■ n■a ■■■ ■■ ■N■ ■ ■ a■u■ man ■■ ■■■ ■■ Kammv��ra■m■ Mar ■■■ ■E■■sMN■m/■a C■■:11E■■1■a� ■as■mrs ■ �■■ ■EM��mi ■Eaaama■mom Moll M was ■E oMaoEra■ ■■■/■■■■■■■N■■ fain ■■■ ■■■� ■■�■ni■■�■s■■■■■ =:�A■■�'■'�� �■■■s■■ u■■■■�■i� A�� iia��wool RON K■EI�■■■■■aE■■■ ■E■ as■� ■■/n■■�aaa7■oa■n■ j�. NO aa■m■■■m�EImes son .momm . ■o ■■1■ ■■ma■nE■Mm■Ennoum■■■1Q : ■oommms on :Ems �■�0 0� ■.mom Mon■■■■■■■L■■ONEENO mmussamom mommonam am "a W ._ �!Nm■■■■■a■Ms■■r■1■� �ieC<Lt' ■iaN■■artwa■■aOasamm ■ a;l �r 'AA&IM a a!■■ant■■■ �M■~■�`� /■N■iiiamiminsisman ��aa�� O■■■ ■al ■ a ■ on ■Ea CNN■ ■■■■■a■mm■■sam Mali EE■ ■INEON ■ ■m■.-M..N■M■■■■NNE =E■ ■E■sNN■■ ■■Es /: ■EEmmra■■■ ■■■�: �...' �.. o■O ■■sons=a■■NMEM■o� ■ass�lNa� o■■■■■■■■■�ia■■■■MM■M�M.:a��Aroa, s■M�irEm■aN■■EE■■■■nM■■n■aE■■ ■o■■s■n■■■■ME■■■■Mr ■■■■■i■l.IS EN■■■EEI■■NE■■M■M■M■ f■/11■=a /■ ■anasam■■■■M■■■■■■I.I1=:CC:��1� C:::::C:::�:: ::: M::::mnsom C::::I::C:CI::::::::....E■..■. ■EBB■ ENs■ ■■s ■■■■■MO■Om■O■E■ ■EOO■M■MMMm�■■■O■■■■n■M■MN/a■